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De-biasing the Lasso:

Optimal Sample Size for Gaussian Designs

Adel Javanmard∗ and Andrea Montanari†

August 31, 2015

Abstract

Performing statistical inference in high-dimensional models is an outstanding challenge. A ma-
jor source of difficulty is the absence of precise information on the distribution of high-dimensional
regularized estimators.

Here, we consider linear regression in the high-dimensional regime p � n and the Lasso
estimator. In this context, we would like to perform inference on a high-dimensional parameters
vector θ∗ ∈ Rp. Important progress has been achieved in computing confidence intervals and
p-values for single coordinates θ∗i , i ∈ {1, . . . , p}. A key role in these new inferential methods is

played by a certain de-biased (or de-sparsified) estimator θ̂d that is constructed from the Lasso
estimator. Earlier work establishes that, under suitable assumptions on the design matrix, the
coordinates of θ̂d are asymptotically Gaussian provided the true parameters vector θ∗ is s0-sparse
with s0 = o(

√
n/ log p).

The condition s0 = o(
√
n/ log p) is considerably stronger than the one required for consistent

estimation, namely s0 = o(n/ log p). Here we consider Gaussian designs with known or unknown
population covariance. When the covariance is known, we prove that the de-biased estimator is
asymptotically Gaussian under the nearly optimal condition s0 = o(n/(log p)2). Note that earlier
work was limited to s0 = o(

√
n/ log p) even for perfectly known covariance.

The same conclusion holds if the population covariance is unknown but can be estimated
sufficiently well, e.g. because its inverse is very sparse. For intermediate regimes, we describe
the trade-off between sparsity in the coefficients θ∗, and sparsity in the inverse covariance of the
design.
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†Department of Electrical Engineering and Department of Statistics, Stanford University. Email: montanar@
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1 Introduction

1.1 Background

Consider random design model where we are given n i.i.d. pairs (y1, x1), (y2, x2), · · · , (yn, xn) with
yi ∈ R, and xi ∈ Rp. The response variable yi is a linear function of xi, contaminated by noise wi
independent of xi

yi = 〈θ∗, xi〉+ wi , wi ∼ N(0, σ2) . (1)

Here θ∗ ∈ Rp is a vector of parameters to be estimated and 〈 · , · 〉 is the standard scalar product.
In matrix form, letting y = (y1, . . . , yn)T and denoting by X the matrix with rows xT1 ,· · · , xTn we

have

y = X θ∗ + w , w ∼ N(0, σ2In×n) . (2)

We are interested in the high-dimensional regime wherein the number of parameters p exceeds
the sample size n. Over the last 20 years, impressive progress has been made in developing and
understanding highly effective estimators in this regime [CT07, BRT09, BvdG11]. A prominent
approach is the Lasso [Tib96, CD95] defined through the following convex optimization problem

θ̂Lasso(y,X;λ) ≡ arg max
θ∈Rp

{
1

2n
‖y −Xθ‖22 + λ‖θ‖1

}
. (3)

(We will omit the arguments of θ̂Lasso(y,X;λ) whenever clear from the context.)
A far less understood question is how to perform statistical inference in the high-dimensional

setting, for instance computing confidence intervals and p-values for quantities of interest. Progress
in this direction was achieved only over the last couple of years. In particular, several papers
[Büh13, ZZ14, JM14b, VdGBRD14, JM14a] develop methods to compute confidence intervals for
single coordinates of the parameters vector θ∗. More precisely, these methods compute intervals
Ji(α) depending on y,X, of nearly minimal size, with the coverage guarantee

P
(
θ∗i ∈ Ji(α)

)
≥ 1− α− on(1) . (4)

The on(1) term is explicitly characterized, and vanishes along sequence of instances of increasing
dimensions under suitable condition on the design matrix X.

The fundamental idea developed in [ZZ14, JM14b, VdGBRD14, JM14a] is to construct a de-
biased (or de-sparsified) estimator that takes the form

θ̂d = θ̂Lasso +
1

n
MXT(y −Xθ̂Lasso) , (5)

where M ∈ Rp×p is a matrix that is a function of X, but not of y. While the construction of M
varies across different papers, the basic intuition is that M should be a good estimate of the precision
matrix Ω = Σ−1, where Σ = E{x1x

T
1 } is the population covariance.

Assume θ∗ is s0-sparse, i.e. it has only s0 non-zero entries. The key result that allows the
construction of confidence intervals in [ZZ14, VdGBRD14, JM14a] is the following (holding under
suitable conditions on the design matrix). If M is ‘sufficiently close’ to Ω, and the sparsity level is

s0 �
√
n

log p
, (6)
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then θ̂d
i is approximately Gaussian with mean θ∗i and variance of order σ2/n.

The condition (6) comes as a surprise, and is somewhat disappointing. Indeed, consistent estima-
tion using –for instance– the Lasso can be achieved under the much weaker condition s0 � n/ log p.
More specifically, in this regime, with high probability [CT07, BRT09, BvdG11]

∥∥θ̂Lasso − θ∗‖22 ≤
Cs0σ

2

n
log p . (7)

This naturally leads to the following question:

Does the de-biased estimator have a Gaussian limit under the weaker condition s0 �
n/ log p?

Let us emphasize that the key technical challenge here does not lie in the fact that M is not a
good estimate of the precision matrix Ω. Of course, if M is not close to Ω, then θ̂d will not have a
Gaussian limit. However earlier proofs [ZZ14, VdGBRD14, JM14a] cannot establish the Gaussian
limit for s0 &

√
n/ log p, even if Ω is known and we set M = Ω. Even the idealized case where the

columns of X are known to be independent and identically distributed (i.e. Ω = I) is only understood
in the asymptotic limit s0, n, p→∞ with s0/p, n/p having constant limits in (0, 1) [JM14b].

In order to describe the challenge, let us set M = Ω, and recall the common step of the proofs in
[ZZ14, VdGBRD14, JM14a]. Using the definitions (2), (5), we get

√
n(θ̂d − θ∗) =

√
n(θ̂Lasso − θ∗) +

1√
n

ΩXT(Xθ∗ + w −Xθ̂Lasso)

=
1√
n

ΩXTw +
√
n(ΩΣ̂− I)(θ∗ − θ̂Lasso) ,

(8)

where Σ̂ = XTX/n ∈ Rp×p is the empirical design covariance. Since w ∼ N(0, σ2In), it is easy
to see that vector ΩXTw/

√
n has Gaussian entries of variance of order one. In order for θ̂d to be

approximately Gaussian, we need the second term (which can be interpreted as a bias) to vanish.
Earlier papers [ZZ14, VdGBRD14, JM14a] address this by a simple `1-`∞ bound. Namely (denoting
by |Q|∞ the maximum absolute value of any entry of matrix Q):∥∥∥√n(ΩΣ̂− I)(θ∗ − θ̂Lasso)

∥∥∥
∞
≤
√
n|ΩΣ̂− I|∞‖θ∗ − θ̂Lasso‖1

≤
√
n× C

√
log p

n
× Cs0σ

√
log p

n

≤ C2σ
s0 log p√

n
,

(9)

where the bound |ΩΣ̂− I|∞ ≤ C
√

(log p)/n follows from standard concentration arguments, and the

bound on ‖θ∗ − θ̂Lasso‖1 is order-optimal and is proved, for instance, in [BRT09, BvdG11].
This simple argument implies that the de-biased estimator is approximately Gaussian if the upper

bound in Eq. (9) is negligible, i.e. if s0 = o(
√
n/ log p). We see therefore that this requirement is

not imposed as to control the error in estimating Ω. It instead follows from the simple `1-`∞ bound
even if Ω is known.
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1.2 Main results

The above exposition should clarify that the `1 − `∞ bound is quite conservative. Considering the
i-th entry in the bias vector bias = (ΩΣ̂ − I)(θ∗ − θ̂Lasso), the `1-`∞ bound controls it as |biasi| ≤
‖(ΩΣ̂− I)i,·‖∞‖θ∗− θ̂Lasso‖1. This bound would be accurate only if the signs of the entries (θ∗j − θ̂Lasso

j )

were aligned to the signs (ΩΣ̂ − I)i,j , j ∈ {1, . . . , p}. While intuitively this is quite unlikely, it is

difficult to formalize this intuition; Note that in a random design setting, the terms (ΩΣ̂− I)i,· and

θ∗ − θ̂Lasso are highly dependent: θ̂Lasso is a deterministic function of the random pair (X,w), while
(ΩΣ̂− I) = (ΩXXT/n− I) is a function of X.

Our main result overcomes this technical hurdle via a careful analysis of such dependencies. We
follow a leave-one-out proof technique. Roughly speaking, in order to understand the distribution of
the i-th coordinate of the de-biased estimator θ̂d

i , we consider a modified problem in which column i
is removed from the design matrix X. We then study the consequences of adding back this column,
and bound the effect of this perturbation. An outline of this proof strategy is provided in Section
4.1.

We state below a simplified version of our main result, referring to Theorem 3.6 below for a full
statement, including technical conditions.

Theorem 1.1 (Known covariance). Consider the linear model (2) where X has independent Gaus-
sian rows, with zero mean and covariance Σ = Ω−1. Assume that Σ satisfies the technical con-
ditions stated in Theorem 3.6. Define the de-biased estimator θ̂d via Eq. (5) with M = Ω and
θ̂Lasso = θ̂Lasso(y,X;λ) with λ = 8σ

√
(log p)/n.

If n, p→∞ with s0 = o(n/(log p)2), then we have

√
n(θ̂d − θ∗) = Z + oP (1) , Z|X ∼ N(0, σ2ΩΣ̂Ω) . (10)

Here oP (1) is a (random) vector satisfying ‖oP (1)‖∞ → 0 in probability as n, p → ∞, and Z|X ∼
N(0, σ2ΩΣ̂Ω) means that the conditional distribution of Z given X is centered Gaussian, with the
stated covariance.

Remark 1.2. The more complete statement of this result, Theorem 3.6 provides explicit non-
asymptotic bounds on the error term oP (1), In particular ‖oP (1)‖∞ turns out to be of order√
s0/n (log p) with probability converging to one as n, p→∞.

Remark 1.3. We believe that a generalization of this result should apply to a broad class of random
designs with independent sub-Gaussian rows. The main technical challenge in extending the present
techniques to the sub-Gaussian setting is in generalizing the leave-one-out construction. As discussed
in Section 4.1, when studying the effect of modifying column i, we need to account for dependencies
between columns. This is easier to do for Gaussian designs, where dependencies are fully described
by the design covariance Σ.

Remark 1.4. Roughly speaking, Theorem 1.1 (and its complete version, Theorem 3.6) implies
that –at least for Gaussian designs, and neglecting logarithmic factors– statistical inference can be
performed from a number of samples that scale as the number of non-zero parameters. This should
be contrasted with earlier results [ZZ14, VdGBRD14, JM14a], that require a number of samples
scaling as the square of the number of parameters.

It is instructive to compare this with the past progress in sparse estimation and compressed
sensing. In that context, earlier work based on incoherence conditions [DH01, DET06] implied
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accurate reconstruction from a number of random samples scaling quadratically in the number of non-
zero coefficients. Subsequent progress was based on the restricted isometry property [CRT06, CT07],
and established accurate reconstruction from a linear number of measurements.

Remark 1.5. An alternative approach to avoid the `1-`∞ bund in Eq. (9) is to modify the definition
of de-biased estimator in Eq. (5), using sample-splitting. Roughly speaking, we can split the same
in two batches of size n/2. One batch is then used to estimate θ̂Lasso and the other batch for y and
X appearing in Eq. (5) (and possibly for computing M).

Appendix F discusses in greater detail this method. This approach is subject to variations due
to the random splitting, and does not make use of part of half of the response variables. While it
provides a viable alternative, it is not the focus of the present work.

1.3 Extensions and applications

Theorem 1.1 raises an important questions: Can we compute confidence intervals under the weak
sparsity condition s0 = o(n/(log p)2), even if the precision matrix Ω is unknown? Does the Gaussian
limit hold even if M is an imperfect estimate of Ω?

The general procedure we have in mind is the same as in [ZZ14, VdGBRD14, JM14a]. Namely,
we construct a suitable de-biasing matrix M from the design matrix X, and an estimate σ̂ of the
noise variance. Then, for a significance level α ∈ (0, 1), we construct the following confidence interval
for parameter θi:

Ji(α) ≡ [θ̂d
i − δ(α, n), θ̂d

i + δ(α, n)] (11)

δ(α, n) ≡ Φ−1(1− α/2)
σ̂√
n

(M Σ̂MT)
1/2
i,i , (12)

where Φ(x) ≡
∫ x
−∞ e

−t2/dt/
√

2π is the Gaussian distribution. Section 3.3 presents a more technical
discussion of this procedure. A straightforward generalization also allows to compute p-values, for
the null hypothesis H0,i : θ∗i = 0. Here we provide a brief examination of various types of issues
arising in applications and corresponding solutions.

Assumptions on the design. The assumption of random design X with i.i.d. Gaussian rows
is obviously highly idealized. However this naturally arises in the context of estimating Gaussian
graphical models. This is itself a broad topic that attracted significant amount of work, since the
seminal work of [MB06]. Remarkably recent contributions have shown the utility of de-biasing
methods in this context [JvdG14, CRZZ15, JvdG15].

From an even broader point of view, let us emphasize that a substantial part of earlier results on
de-biasing assumed random designs [ZZ14, VdGBRD14, JM14a], albeit with less restrictive assump-
tions. We believe that the proof technique developed in the present paper might be generalizable to
such a broader setting.

Noise level and regularization. The construction of the confidence interval Ji(α) in Eqs. (11),
(12) requires a suitable choice of the regularization parameter λ, and an estimate of the noise level
σ̂. The same difficulty was present in [ZZ14, VdGBRD14, JM14a]. The approaches used there (for
instance, using the scaled Lasso [SZ12]) can be followed in the present case as well. Under the

5



assumptions of Theorem 1.1, the same proofs of [JM14a] show that the additional error due to the
choice of λ and σ̂ are negligible.

Estimation of Ω. Crucially, Theorem 1.1 (and its technical version, Theorem 3.6) assumes that
de-biasing is performed using the precision matrix M = Ω. While in general Ω is unknown, there are
settings in which an estimate M that is accurate enough can be constructed. Let us briefly mention
two such scenarios: the second one will be analyzed in greater technical detail in Section 3.3.

Semi-supervised learning. In this context, the statistician is given additional samples x1, x2, . . . , xN ∈
Rp with the same distribution as the {xi}1≤i≤n. For these ‘unlabeled’ samples, the response variable
is unknown. There are indeed many applications in which acquiring the response variable is much
more challenging than capturing the covariates [CSZ06], and therefore N � n. In this setting, we
can estimate Ω more accurately from {xi}1≤i≤N (using –for instance– a high-dimensional covariance
estimation method as in [MB06]), then use this estimate to construct M .

Very sparse precision matrix. If the precision matrix Ω is sufficiently structured, then it can be
reliably estimated from the design matrix X. Both [ZZ14] and [VdGBRD14] assume that Ω is sparse,
and use the node-wise Lasso to construct an estimate Ω̂ [MB06]. They then set M = Ω̂.

We followed the same procedure and hence generalized Theorem 1.1 to the setting of unknown,
sparse precision matrix. We state here a simplified version of this result, deferring to Theorem 3.10
for a more technical statement including non-asymptotic probability bounds.

Theorem 1.6 (Unknown covariance). Consider the linear model (2) where X has independent
Gaussian rows with precision matrix Ω, satisfying the technical conditions of Theorem 1.1 (stated
in Theorem 3.6). Define the de-biased estimator θ̂d via Eq. (5) with θ̂Lasso = θ̂Lasso(y,X;λ), λ =
8σ
√

(log p)/n, and M = Ω̂ computed through node-wise Lasso (see Section 3.3).
Let sΩ the maximum number of non-zero entries in any row of Ω. If n, p → ∞ with s0 =

o(n/(sΩ(log p)2)), then we have

√
n(θ̂d − θ∗) = Z + oP (1) , Z|X ∼ N(0, σ2ΩΣ̂Ω) , (13)

where oP (1) is a (random) vector satisfying ‖oP (1)‖∞ → 0 in probability as n, p→∞.

Remark 1.7. As mentioned above, this version of the de-biased estimator can be constructed entirely
from data. The only unspecified steps are the choice of the regularization parameter λ, and the
estimation of the noise level σ. These can be addressed as in [ZZ14, VdGBRD14, JM14a] without
changes in the sparsity condition.

Remark 1.8. The sparsity condition s0 = o(n/(sΩ(log p)2)) nicely illustrates the practical improve-
ment implied by our more refined analysis. If the sparsity of the precision matrix is of the same
order as the sparsity of θ∗, i.e. sΩ = Θ(s0) as in [ZZ14, VdGBRD14], we recover the condition
s0 = o(

√
n/ log p) which is assumed in the results of [ZZ14, VdGBRD14]. (Note that [JM14a] obtain

the same condition without sparsity assumption on Ω.) In this regime, our improved analysis does
not bring any advantage, since the bottleneck is due to the inaccurate estimation of Ω.

On the other hand, if the precision matrix is much sparser, we obtain a much weaker con-
dition on the coefficients θ∗. For instance if sΩ = Θ(s1−b

0 ), then we get the condition s0 =
o(n1/(2−b)/(log p)2/(2−b)), and for b = 1 (i.e. when Ω has O(1) non-zeros per row), this reduces
to s0 = o(n/(log p)2).
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1.4 Organization

The rest of the paper is organized as follows. Section 2 discusses relations with earlier work in this
area. We state formally our results in Section 3. This section contains some preliminary material,
a complete statements of the two theorems discussed above (known and unknown covariance), and
a numerical illustration. Section 4 presents the proof of Theorem 1.1, covering the case of known
covariance (whose technical version is stated as Theorem 3.6). Section 5 presents the proof of
Theorem 1.6, for unknown covariance (whose technical version is stated as Theorem 3.10).

Proofs of several technical lemmas are deferred to appendices.

2 Related work

A parallel line of research develops methods for performing valid inference after a low-dimensional
model is selected for fitting high-dimensional data [LTTT14, FST14, TLTT14, CHS15]. The re-
sulting significance statements are typically conditional on the selected model. In contrast, here we
are interested in classical (unconditional) significance statements: the two approaches are broadly
complementary.

Our proof is based on a leave-one out technique, and is partially inspired from ideas in math-
ematical spin glass theory [Tal10]. Similar techniques recently proved useful in analyzing robust
regression [EKBBL13, Kar13].

The focus of the present paper is assessing statistical significance, such as confidence intervals,
for single coordinates in the parameters vector θ∗ and more generally for small groups of coordinates.
Other inference tasks are also interesting and challenging in high-dimension, and were the object of
recent investigations [BEM13, BC14, JBC15, JS15].

Sample splitting provides a general methodology for inference in high dimension [WR09, MB10].
As mentioned above, sample splitting can also be used to define a modified de-biased estimator, see
Appendix F. However sample splitting techniques typically use only part of the data for inference,
and are therefore sub-optimal. Also, the result depend on the random split of the data.

A method for inference without assumptions on the design matrix was developed in [Mei14]. The
resulting confidence intervals are typically quite conservative.

The de-biasing method was developed independently from several points of view [Büh13, ZZ14,
JM14b, VdGBRD14, JM14a]. The present authors were motivated by the AMP analysis of the
Lasso [DMM09, BM11, BM12, BLM15], and by the Gaussian limits that this analysis implies. In
particular [JM14b] used those techniques to analyze standard Gaussian designs (i.e. the case Σ = I)
in the asymptotic limit n, p, s0 →∞ with s0/p, n/p constant. In this limit, the de-biased estimator
was proven to be asymptotically Gaussian provided s0 ≤ C n/ log(p/s0) (for a universal constant
C). This sparsity condition is even weaker than the one of Theorem 1.1 (or Theorem 3.6), but the
result of [JM14b] only holds asymptotically. Also [JM14b] proved Gaussian convergence in a weaker
sense than the one established here, implying coverage of the constructed confidence intervals only
‘on average’ ofer the coordinates i ∈ {1, . . . , p}.

A non-asymptotic result under weaker sparsity conditions, and for designs with dependent columns,
was proved in [JM13]. However, this only establishes gaussianity of θ̂d

i for most of the coordinates
i ∈ {1, . . . , p}. Here we prove a significantly stronger result holding uniformly over i ∈ {1, . . . , p}. In
a recent and independent contribution, Cai and Guo [CG15] also investigate the regime of moderate
sparsity

√
n/ log p . s0 . n/ log p, and construct valid confidence intervals, of size (s0 log p)/n (much
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larger than the parametric rate 1/
√
n that we consider here). While this length is proved to be

optimal, this lower bound is related to the estimation of the design covariance. Our Theorem 3.10
clarifies the trade-off between knowledge of the design covariance, and sparsity of the coefficients’
vector.

Most of the work on statistical inference in high-dimensional models has been focused so far on
linear regression. The de-biasing method admits a natural extension to generalized linear models
that was analyzed in [VdGBRD14]. Robustness to model misspecification was studied in [BvdG15].
An R-package for inference in high-dimension that uses the node-wise Lasso is available [DBMM14].
An R implementation of the method [JM14a] (which does not make sparsity assumptions on Ω) is
also available1.

3 Results

3.1 General notations

We use ei to refer to the i-th standard basis element, e.g., ei = (1, 0, . . . , 0). For a vector v, supp(v)
represents the positions of nonzero entries of v. Further, for a vector v, sign(v) is the vector with
entries sign(v)i = +1 if vi > 0, sign(v)i = −1 if vi < 0, and sign(v)i = 0 otherwise. For a matrix
M ∈ Rn×p and a set of indices J ⊆ [p] we use MJ to denote the submatrix formed by columns
in J . Likewise, for a vector θ and a subset S, θS is the restriction of θ to indices in S. For an
integer p ≥ 1, we use the notation [p] = {1, · · · , p} and the shorthand ∼ i for the set [p]\i. We
write ‖v‖p for the standard `p norm of a vector v, i.e., ‖v‖p = (

∑
i |vi|p)1/p and ‖v‖0 for the umber

of nonzero entries of v. For a matrix A ∈ Rm×n, ‖A‖p denotes it `p operator norm; in particular,
‖A‖∞ = max1≤i≤m

∑n
j=1 |Aij |. This is to be contrasted with the maximum absolute value of any

entry of A that, as mentioned above, we denote by |A|∞ ≡ maxi≤m,j≤n |Aij |. Finally, for two
functions f(n) and g(n), the notation f(n) � g(n) means that f ‘dominates’ g asymptotically,
namely, for every fixed positive C, there exists n(C) such that f(n) ≥ Cg(n) for n > n(C). We also
use f(n) . g(n) to indicate that f is ‘bounded’ above by g asymptotically, i.e., f(n) ≤ Cg(n) for
some positive constant C. We use the notations f(n) � g(n) and f(n) = o(g(n)) interchangeably
and oP ( · ) to indicate asymptotic behavior in probability as the sample size n tends to infinity.

We will use c, C, . . . to denote generic constants that can vary from one position to the other of
the paper.

3.2 Preliminaries

For the sake of simplicity, we will often use θ̂ = θ̂(y,X;λ) instead of θ̂Lasso to denote the Lasso
estimator.

We denote the rows of the design matrix X by x1, . . . , xn ∈ Rp and its columns by x̃1, . . . , x̃p ∈ Rn.

The empirical covariance of the design X is defined as Σ̂ ≡ (XTX)/n. The population covariance
will be denoted by Σ, we let Ω ≡ Σ−1 be the precision matrix.

1See http://web.stanford.edu/ montanar/sslasso/.
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Definition 3.1. Given a symmetric matrix Σ̂ ∈ Rp×p and a set S ⊆ [p], the corresponding compat-
ibility constant is defined as

φ2(Σ̂, S) ≡ min
θ∈Rp

{ |S| 〈θ, Σ̂ θ〉
‖θS‖21

: θ ∈ Rp, ‖θSc‖1 ≤ 3‖θS‖1
}
. (14)

We say that Σ̂ ∈ Rp×p satisfies the compatibility condition for the set S ⊆ [p], with constant φ if
φ(Σ̂, S) ≥ φ. We say that it holds for the design matrix X, if it holds for Σ̂ = XTX/n.

It is also useful to recall the notion of restricted eigenvalue, introduced by Bickel, Ritov and
Tsybakov [BRT09]. For integer 0 < s0 < p and a positive number L, define the set C(s0, L) to be
the set of vectors in Rp that satisfy the following cone constraints:

C(s0, L) ≡ {θ ∈ Rp : ∃S ⊆ [p], |S| = s0, ‖θSc‖1 ≤ L‖θS‖1} .

In the high-dimensional regime the empirical covariance Σ̂ is singular, however, we can ask for
non-singularity of Σ̂ on cone-restricted directions, namely for vectors in C(s0, L). Rudelson and Zhou
[RZ13] prove a reduction principle that bounds the restricted eigenvalues of the empirical covariance
in terms of those of the population covariance. We will use their result specified to the case of
Gaussian matrices.

Lemma 3.2. [RZ13, Theorem 3.1] Suppose that σmin(Σ) > Cmin > 0 and σmax(Σ) < Cmax < ∞.
Let X ∈ Rn×p have independent rows drawn from N(0,Σ). Set 0 < δ < 1, 0 < s0 < p, and L > 0.
Define the following event

Bδ(n, s0, L) ≡
{
X ∈ Rn×p : (1− δ)

√
Cmin ≤

‖Xv‖2√
n‖v‖2

≤ (1 + δ)
√
Cmax , ∀v ∈ C(s0, L) s.t. v 6= 0

}
,(15)

There exists a sufficiently large constant c1 = c1(L), such that, for sample size n ≥ c1s0 log(p/s0) we
have

P(Bδ(n, s0, L)) ≥ 1− 2e−δ
2n .

Remark 3.3. Fix S ⊆ [p] with |S| = s0. Under the event Bδ(n, s0, 3), we have

φ2(Σ̂, S) ≥ min
θ∈C(s0,3)

s0〈θ, Σ̂θ〉
‖θS‖21

≥ min
θ∈C(s0,3)

〈θ, Σ̂θ〉
‖θS‖22

≥ (1− δ)2Cmin ,

where the second inequality follows from Cauchy-Schwartz inequality.

We next introduce an event B̃(n, p) as

B̃(n, p) ≡
{

1

n
‖XTw‖∞ ≤ 2σ

√
log p

n

}
. (16)

On B̃(n, p) we can control the randomness part of the problem occurring because of the measurement
noise. A well-known union bound argument shows that B̃(n, p) has large probability (see, for instance,
[BvdG11]).
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Lemma 3.4. [BvdG11, Lemma 6.2] Suppose that Σ̂ii ≤ 1 for i ∈ [p]. Then we have

P(B̃(n, p)) ≥ 1− 2p−1 .

Finally the lemma below states a property of Gaussian design matrices which will be used re-
peatedly in our analysis.

Lemma 3.5. Let vi = XΩei. Then v and X∼i are independent.

Proof. Define u = Ωei and fix j 6= i. Recall that x̃` denotes the `-th column of X. We write
v =

∑p
`=1 x̃`u` and

E(vx̃Tj ) =

p∑
`=1

u`E(x̃`x̃
T
j )

=

p∑
`=1

u`Σ`jIn×n =

p∑
`=1

Ω`iΣ`jIn×n

= (ΩΣ)ijIn×n = 0 ,

where the last step holds since i 6= j. Since v and x̃j are jointly Gaussian, this implies that they are
independent.

3.3 Statement of main theorems

In our first theorem, we assume that the precision matrix Ω ≡ Σ−1 is available and we set M = Ω. We
prove the corresponding de-biased estimator is asymptotically unbiased provided that n� s0(log p)2.

Theorem 3.6 (Known covariance). Consider the linear model (2) where X has independent Gaus-
sian rows, with zero mean and covariance Σ. Suppose that Σ satisfies the following conditions:

(i) For i ∈ [p], we have Σii ≤ 1.

(ii) We have σmin(Σ) > Cmin > 0 and σmax(Σ) < Cmax for some constants Cmin and Cmax.

(iii) We have ‖Σ−1‖∞ ≤ ρ, for some constant ρ > 0.

Let θ̂ be the Lasso estimator defined by (3) with λ = 8σ
√

(log p)/n. Further, let θ̂d be defined as per
equation (5), with M = Ω ≡ Σ−1. Then, there exist constants c, C depending solely on Cmin, Cmax, δ
and ρ, such that, for n ≥ max(25 log p, cs0 log(p/s0)) the following holds true:

√
n(θ̂d − θ∗) = Z +R , Z|X ∼ N(0, σ2ΩΣ̂Ω) , (17)

P
(
‖R‖∞ ≥ C

√
s0

n
log p

)
≤ 2pe−c∗n/s0 + pe−n/1000 + 8p−1 + 2e−δ

2n , (18)

with c∗ ≡ (1− δ)2Cmin/8.

Let us remind that the notation ‖Σ‖∞ is the maximum `1 norms of the rows of Σ. The proof of
this theorem is presented in Section 4.
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This theorem states that if the sample size satisfies n = Ω(s0 log p), then the maximum size of
the ‘bias’ Ri over i ∈ [p] is bounded by

‖R‖∞ = OP

(√s0

n
log p

)
.

On the other hand, each entry of the ‘noise term’ Zi has variance σ2(ΩΣ̂Ω)ii. Applying Lemma 7.2
in [JM13], we have |ΩΣ̂Ω − Ω|∞ = oP (1) and thus mini∈[p](ΩΣ̂Ω)ii ≥ minii Ωii − oP (1) is of order
one because Ωii ≥ C−1

max. Hence, |Ri| is much smaller than Zi for n� s0(log p)2. We summarize this
observation in the remark below.

Remark 3.7. Under the assumptions of Theorem 3.6, if the sample size satisfies n � s0(log p)2,
then we have ‖R‖∞ = oP (1) and mini∈[p](ΩΣ̂Ω)ii = Ω(1), with high probability. Hence, θ̂d is an
asymptotically unbiased estimator for θ∗.

Corollary 3.8. Under the assumptions of Theorem 3.6, if s0 � n/(log p)2, then θ̂d is normal
distributed. More precisely, for all x ∈ R, we have

lim
n→∞

sup
θ0∈Rp,‖θ0‖0≤s0

∣∣∣∣P{√n(θ̂d
i − θ0,i)

σ(M Σ̂M)
1/2
i,i

≤ x
}
− Φ(x)

∣∣∣∣ = 0 . (19)

Armed with a precise distributional characterization of θ̂d, we can construct asymptotically valid
confidence intervals for each parameter θ0,i as per Eqs. (11), (12).

Furthermore, in the context of hypothesis testing, we can test the null hypothesis H0,i : θ0 = 0
versus the alternative HA,i : θ0,i 6= 0. We construct the two sided p-values

Pi = 2

(
1− Φ

( √
n|θ̂d

i |
σ(M Σ̂MT)

1/2
i,i

))
. (20)

The decision rule follows immediately: we reject H0,i if Pi ≤ α. As already mentioned, in practice σ
has to be replaced by an estimator σ̂, an issue already discussed in [JM14a].

Remark 3.9. It is worth noting that the sample splitting approach, discussed in Appendix F, does
not require Condition (iii) in Theorem 3.6. However as pointed in the introduction, this approach
suffers from variability due to the random splitting and does not fully use half of the response
variables.

We next generalize our result to the case of unknown covariance, where following [ZZ14, VdGBRD14]
we construct the de-biasing matrix M using node-wise Lasso on matrix X. For reader’s convenience,
we first describe this construction.

For i ∈ [p], we define the vector γ̂i = (γ̂i,j)j∈[p]\i ∈ Rp−1 by performing sparse regression of the
i-th column of X against all the other columns. Formally

γ̂i(λ̃) = arg min
γ∈Rp

{ 1

2n
‖x̃i −X∼iγ‖22 + λ̃‖γ‖1

}
, (21)
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where X∼i is the sub-matrix obtained by removing the i-th column (and columns indexed by [p] \ i).
Also define

Ĉ =


1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂1,p
...

...
. . .

...
−γ̂p,1 −γ̂p,2 · · · 1

 , (22)

and let

T̂ 2 = diag(τ̂2
1 , . . . , τ̂

2
p ), τ̂2

i =
1

n
(x̃i −X∼iγ̂j)Tx̃i . (23)

Finally, define M = M(λ̃) by

M = T̂−2Ĉ . (24)

Theorem 3.10 (Unknown covariance). Consider the linear model (2) where X has independent
Gaussian rows, with zero mean and covariance Σ. Suppose that Conditions (i), (ii), (iii) in The-
orem 3.6 hold true for Σ. We further let sΩ be the maximum sparsity of the rows of Ω ≡ Σ−1,
i.e.

sΩ ≡ max
i∈[p]
|{j 6= i,Ωi,j 6= 0}| . (25)

Let θ̂ be the Lasso estimator defined by (3) with λ = 8σ
√

(log p)/n, and let θ̂d be de-biased estimator

with M given by (24) with λ̃ = K
√

log p/n (with K a suitably large universal constant).
Then, there exist constants c, C depending solely on Cmin, Cmax, δ and ρ, such that, for n ≥

cs0 log p, the following holds true:

√
n(θ̂d − θ∗) = Z +R , Z|X ∼ N(0, σ2M Σ̂MT) , (26)

P
(
‖R‖∞ ≥ C

√
s0sΩ

n
log p

)
≤ 2pe−c∗n/s0 + pe−n/1000 + 8p−1 + 2e−δ

2n + c′e−c
′′n ,

for some constants c∗, c
′, c′′ > 0.

The proof of Theorem 3.10 is deferred to Section 5.
A large family of precision matrices satisfy conditions of Theorem 3.6 with sΩ bounded. Examples

include block diagonal Ω where the size of blocks are bounded, and inverse of circulant matrices, e.g.
Σi,j = r|i−j|, for some r ∈ (0, 1).

3.4 Numerical illustration

Our goal in this section is to numerically corroborate the result of Theorem 3.6. Mores specifically,
we aim to show that the de-biased estimator exhibits an unbiased Gaussian distribution provided
that the sample size scales linearly with the number of nonzero parameters.

We generate data from linear model (1) with the following configuration. We fix p = 3000 and
consider regression parameter θ0 with support S0 chosen uniformly at random from the index set
[p] and θ0,i = 0.15 for i ∈ S0 and zero otherwise. The design matrix X has i.i.d. rows drawn from

12
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Figure 1: Empirical kurtosis of the (rescaled) de-biased Lasso estimator Ti =
√
n(θ̂di − θ∗i )/(σ[M Σ̂M ]

1/2
i,i ). We

plot the kurtosis m(γδ) (over coordinates and 100 independent realizations) versus δ along with the upper
and lower one standard error curves, As a function of the number of samples per parameter δ.. Here, ε = 0.2
and δc = 0.57 is our empirical estimate for the number of samples above which the de-biased estimator is
approximately Gaussian.

N(0,Σ), where Σ ∈ Rp×p is the circulant matrix with entries Σi,j = 0.8|i−j|. The measurement noise
w has i.i.d. standard normal entries.

Let s0 = |S0| and ε = s0/p be the sparsity level and δ = n/p denote the under sampling rate. We
vary ε in the set {0.1, 0.15, 0.2, 0.25, 0.3} and for each value of ε we compute critical value of δ above
which the unbiased estimator admits a Gaussian distribution. We will denote this critical value as
δc and define it as follows. We vary δ and for each pair (ε, δ), compute the de-biased estimator
(with M = Σ−1) for 100 realizations of noise w. We then compute the empirical kurtosis of each

coordinate Ti =
√
n(θ̂d

i − θ∗i )/(σ[M Σ̂M ]
1/2
i,i ). For i ∈ [p], let γδi denote the empirical kurtosis of Ti,

where we make the dependence on δ explicit in the notation. Denote by m(γδ) and SD(γδ) the mean
and the standard deviation of γδ = (γδ1 , . . . , γ

δ
p), respectively. We further define the standard error

SE(γδ) = SD(γδ)/
√
p. We use one standard error rule to decide the value of δc. Namely,

δc = arg min{δ ∈ (0, 1), s.t., m(γδ) ≤ SE(γδ) ≤ 0} . (27)

Figure 1 corresponds to ε = 0.2. The asterisks indicate m(γδ) and the dotted lines are m(γδ)±
SE(γδ). By one standard error rule, the estimated value of δc works out at δc = 0.57.

Figure 2 shows δc versus ε. The figure clearly verifies that δc scales at roughly linearly in ε (for
small ε). In other words, in order for the de-biased estimator to have unbiased Gaussian distribution,
the sample size n has only to scale roughly linearly in the support size s0.

13



0.05 0.1 0.15 0.2 0.25 0.3 0.350.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

ε = s0/p

δc

Figure 2: Critical number of samples per coordinate δc, versus fraction of non-zero coordinates ε. For δ > δc(ε)
the de-biased Lasso estimator is empirically Gaussian distributed in our experiment. The approximately linear
relationship at small ε is in agreement with our theory.

4 Proof of Theorem 3.6 (known covariance)

4.1 Outline of the proof

Fix arbitrary integer i ∈ [p]. In our analysis, we focus on the i-th coordinate θ∗i , and then discuss
how the argument can be adjusted to apply to all the coordinates simultaneously. Our argument
relies on a perturbation analysis. We let θ̂p be the Lasso estimator when one forces θ̂p

i = θ∗i . With a
slight abuse of notation, we use the representation θ = (θi, θ∼i).

2 Adopting this convention, we have
θ̂p = (θ∗i , θ̂

p
∼i) where

θ̂p
∼i = arg min

θ
Ly,X(θ∗i , θ) . (28)

Throughout, we make the convention that Ly,X(θ∗i , θ) ≡ Ly,X((θ∗i , θ)).

We observe that θ̂p
∼i can be written as a Lasso estimator. Specifically, by definition of Lasso cost

function we have

Ly,X(θ∗i , θ) =
1

2n
‖y − x̃iθ∗i −X∼iθ‖22 + λ|θ∗i |+ λ‖θ‖1 .

Letting ỹ = y − x̃iθ∗i , we obtain

θ̂p
∼i = arg min

θ
Lỹ,X∼i(θ) . (29)

2Or without loss of generality one can assume i = 1.
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Let vi = XΩei and expand θ̂d
i − θ∗i as follows:

√
n(θ̂d

i − θ∗i ) ≡
√
nθ̂i +

1√
n
eTi ΩXT(y −Xθ̂)−

√
nθ∗i

=
√
nθ̂i +

vT√
n

[
w + x̃i(θ

∗
i − θ̂i) +X∼i(θ

∗
∼i − θ̂∼i)

]
−
√
nθ∗i

=
√
n
(

1− 1

n
〈vi, x̃i〉

)
(θ̂i − θ∗i ) +

vTi√
n

[
w +X∼i(θ

∗
∼i − θ̂∼i)

]
. (30)

We decompose the above expression into the following terms:

Zi ≡
vTi w√
n
,

R
(1)
i ≡

√
n
(

1− 〈vi, x̃i〉
n

)
(θ̂i − θ∗i ) ,

R
(2)
i ≡

vTi√
n
X∼i(θ

∗
∼i − θ̂

p
∼i) ,

R
(3)
i ≡

vTi√
n
X∼i(θ̂

p
∼i − θ̂∼i) .

(31)

The bulk of the proof consists in treating each of the terms above separately. Term Zi gives the

Gaussian component Z in equation (17). In bounding R
(2)
i we use the fact that vi is independent of

X∼i, as per Lemma 3.5. Moreover, since θ̂p
∼i is a deterministic function of (y,X∼i), vi is independent

of X∼i(θ
∗
∼i− θ̂

p
∼i) as well. Bounding R

(3)
i relies on a perturbation analysis showing that the solutions

of Lasso θ̂ and its perturbed form θ̂p, are close to each other.

4.2 Technical steps

Let Z = (Zi)1≤i≤p. We rewrite Z as

Z =
1√
n

ΩXTw .

Since w ∼ N(0, σ2I) is independent of X, we get

Z|X ∼ N(0, σ2ΩΣ̂Ω) .

Let R(1) = (R
(1)
i )pi=1, R

(2) = (R
(2)
i )pi=1, R

(3) = (R
(3)
i )pi=1 ∈ Rp. In the following, we provide a

detailed analysis to control the terms R(1), R(2), R(3).

• Bounding term R(1): Recalling the definition vi = XΩei, we write

R
(1)
i =

√
n
(

1− 1

n
eTi ΩXTXei

)
(θ̂i − θ∗i ) .

Therefore,

‖R(1)‖∞ ≤
√
n|I− ΩΣ̂|∞‖θ̂ − θ∗‖2 .
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For A > 0, let G = G(A) be the event that

Gn(A) ≡
{
X ∈ Rn×p : |ΩΣ̂− I|∞ ≤ A

√
log p

n

}
.

Using the result of [JM14a, Lemma 6.2] for n ≥ (A2Cmin)/(4e2Cmax) log p we have

P(X ∈ Gn(a)) ≥ 1− 2p−c , c =
A2Cmin

24e2Cmax
− 2 .

By choosing A ≡ 10e
√
Cmax/Cmin we get c ≥ 1. Therefore, provided that n ≥ 25 log p,

P(X ∈ Gn(A)) ≥ 1− 2p−1 . (32)

In addition, on the event B ≡ Bδ(n, s0, 3) ∩ B̃(n, p) we have [BvdG11]

‖θ̂ − θ∗‖2 ≤
√

20

(1− δ)2Cmin
λ
√
s0 =

40σ

(1− δ)2Cmin

√
s0 log p

n
.

Combining the above bounds, we obtain that on event Gn(A) ∩ B,

‖R(1)‖∞ ≤
40Aσ

(1− δ)2Cmin

√
s0

n
log p . (33)

• Bounding term R(2): To lighten the notation, we define

ζi ≡
1√
n
X∼i(θ

∗
∼i − θ̂

p
∼i) . (34)

As discussed θ̂p
∼i is a Lasso estimator with design matrix X∼i and response vector ỹ = y − x̃iθ∗i , as

per equation (29). We recall the following results on the prediction error of the Lasso estimator,
which bounds ‖ζi‖2.

Proposition 4.1. [BvdG11, Theorem 6.1] Let S ≡ supp(θ∗∼i). Then on the event B̃(n, p), we have
for λ ≥ 8σ

√
(log p)/n,

‖ζi‖22 ≤
4λ2|S|

φ2(S, Σ̂∼i,∼i)
.

From the definition of the compatibility constant (cf. Definition 3.1), it is clear that φ2(S, Σ̂∼i,∼i) ≥
φ2(S, Σ̂). Therefore, combining Proposition 4.1 and Remark 3.3, we arrive at the following corollary:

Corollary 4.2. On the event B ≡ Bδ(n, s0, 3) ∩ B̃(n, p), we have for λ ≥ 8σ
√

(log p)/n,

‖ζi‖22 ≤
4λ2s0

(1− δ)2Cmin
.
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Employing Corollary 4.2, we derive a tail bound on R
(2)
i .

For i ∈ [p] define the event

Ei ≡
{
‖ζi‖22 ≤

4λ2s0

(1− δ)2Cmin

}
. (35)

By Corollary 4.2, we have B ⊆ Ei for i ∈ [p]. Hence, for any value t > 0

P
(
‖R(2)‖∞ ≥ t;B

)
≤ P

(
max
i∈[p]
|vTi ζi| ≥ t; Ei

)
≤ pmax

i∈[p]
E
{
I(|vTi ζi| ≥ t) · I(Ei)

}
≤ 2pmax

i∈[p]
E
(

exp
[
− t2

2Ωii‖ζi‖2
]
· I(Ei)

)
≤ 2p exp

(
− c∗t

2

s0λ2Ωii

)
,

with c∗ ≡ (1 − δ)2Cmin/8. In the third inequality, we applied Fubini’s theorem, and first integrate
w.r.t vi and then w.r.t ζi using the fact that vi and ζi are independent. Note that vi ∼ N(0,ΩiiIn×n)
and thus vTi ζi|ζi ∼ N(0,Ωii‖ζi‖2). Further, on the event Ei, ‖ζi‖2 can be bounded as in equation 35.

Setting t ≡ σ
√

(128s0)/(c∗Cminn) log p, we get

P
(
‖R(2)‖∞ ≥ σ

√
128s0

c∗Cminn
log p;B

)
≤ 2p−1 . (36)

• Bounding term R(3): In order to bound the last term, we first need to establish the following main
lemma that bounds the distance between Lasso estimator and the solution of the perturbed problem.
We refer to Section 4.3 for the proof of Lemma 4.3.

Lemma 4.3. (Perturbation bound) Suppose that Σii ≤ 1, for i ∈ [p]. Set λ = 8σ
√

(log p)/n and
let B(C∗) ≡ B̃(n, p) ∩ Bδ(n, (C∗ + 1)s0, 3). The following holds true.

P
(
‖θ̂∼i − θ̂p

∼i‖2 ≥ C
′λ;B(C∗)

)
≤ 2 exp

(
− c∗n

s0

)
+ exp

(
− n

1000

)
, (37)

where,

C ′ ≡14(1 + ρ)(1 + δ)
√
Cmax

(1− δ)2Cmin
, c∗ ≡

1

8
(1− δ)2Cmin ,

C∗ ≡ 16
(1 + δ

1− δ

)2Cmax

Cmin
.

We are now ready to bound term R(3).

|R(3)
i | ≤

1√
n
‖vTX∼i‖∞‖θ̂p

∼i − θ̂∼i‖1

≤
√

(C∗ + 1)s0√
n

‖vTX∼i‖∞‖θ̂p
∼i − θ̂∼i‖2

≤
√

(C∗ + 1)s0n |ΩΣ̂− I|∞‖θ̂p
∼i − θ̂∼i‖2 ,
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where in the first inequality we used Proposition 4.7, which states that ‖θ̂p
∼i‖0 ≤ C∗s0, under B, with

C∗ given by equation (54). Therefore, by Lemma 4.3 and equation (32), we have

P
(
|R(3)

i | ≥ C
′′σ

√
s0

n
log p;B(C∗)

)
≤ 2 exp

(
− c∗n

s0

)
+ exp

(
− n

1000

)
+ 2p−2 ,

with C ′′ ≡ 8
√

(C∗ + 1)AC ′. Hence, by union bound over the p coordinates, we get

P
(
‖R(3)‖∞ ≥ C ′′σ

√
s0

n
log p;B(C∗)

)
≤ 2p exp

(
− c∗n

s0

)
+ p exp

(
− n

1000

)
+ 2p−1 . (38)

We are now in position to prove the claim of Theorem 3.6.
Using equations (30) and (31), we have

√
n(θ̂d − θ∗) = Z + R, where Z|X ∼ N(0, σ2ΩΣ̂Ω) and

R = R(1) +R(2) +R(3). Combining equations (33), (36) and (38), we get

P
(
‖R‖∞ ≥ C

√
s0

n
log p;Gn(A) ∩ B(C∗)

)
≤ 2p exp

(
− c∗n

s0

)
+ p exp

(
− n

1000

)
+ 4p−1 , (39)

where C is given by

C ≡ σ
( 40A

(1− δ)2Cmin
+

√
128

c∗Cmin
+ 8
√

(C∗ + 1)AC ′
)
. (40)

Further, for n ≥ max(25 log p, c1C∗s0 log(p/s0)), we have

P
(

(Gn(A) ∩ B(C∗))
c
)
≤ P(Gn(A)c) + P(B̃(n, p)c) + P(Bδ(n, (C∗ + 1)s0, 3)c)

≤ 2p−1 + 2p−1 + 2e−δ
2n = 4p−1 + 2e−δ

2n , (41)

where we used bound (32), Lemma 3.2 and Lemma 3.4.
The result follows from equations (39) and (41).

4.3 Proof of Lemma 4.3 (perturbation bound)

Lemma 4.4. For all θ ∈ Rp−1 the following holds true.

1

2n
‖X∼i(θ − θ̂p

∼i)‖
2
2 ≤ Ly,X(θ∗i , θ)− Ly,X(θ∗i , θ̂

p
∼i) . (42)

Define

L+(θ) ≡ min
θi∈R
Ly,X(θi, θ) ,

∆(θ) ≡ Ly,X(θ∗i , θ)− L+(θ) .

Invoking Lemma 4.4, we obtain

1

2n
‖X∼i(θ̂∼i − θ̂p

∼i)‖
2
2 ≤ L+(θ̂∼i)− L+(θ̂p

∼i) + ∆(θ̂∼i)−∆(θ̂p
∼i)

≤ ∆(θ̂∼i)−∆(θ̂p
∼i) , (43)
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where in the last step we used the fact that θ̂∼i is the minimizer of L+(θ∼i).
3

Recall the definition of Huber function H : R× R+ → R+.

H(x;α) =


α|x| − α2

2 if |x| > α ,

x2

2 if |x| ≤ α .

Lemma 4.5. For θ ∈ Rp−1 define

u(θ) ≡ x̃Ti (w +X∼i(θ
∗
∼i − θ))

‖x̃i‖2
(44)

Also let ci ≡ ‖x̃i‖2/n. Then, the following holds true.

∆(θ) = F(u(θ)) + λ|θ∗i | , (45)

where

F(u) =
ci
2
u2 − ciH(θ∗i + u;λ/ci) . (46)

Lemma 4.5 is proved in Appendix B.
Using equation(43) and by taylor expansion of ∆(θ) around θ̂p

∼i we obtain

1

2n
‖X∼i(θ̂∼i − θ̂p

∼i)‖
2
2 ≤ 〈∇∆(θ̂p

∼i), θ̂∼i − θ̂
p
∼i〉+

1

2
〈θ̂∼i − θ̂p

∼i,∇
2∆(θ̄)(θ̂∼i − θ̂p

∼i)〉 , (47)

for a vector θ̄ on the line segment between θ̂p
∼i and θ̂∼i. Using chain rule, gradient and Hessian of

∆(θ) can be written as

∇∆(θ) = −F′(u(θ))
x̃Ti X∼i
‖x̃i‖2

, (48)

∇2∆(θ) = F′′(u(θ))
XT
∼ix̃ix̃

T
i X∼i

‖x̃i‖4
. (49)

SinceH(·;α) is convex in the first argument, we have F′′ ≤ ci uniformly. Denote by Px̃i ≡ x̃ix̃Ti /‖x̃i‖2,
the projection on the direction of x̃i. Then,

∇2∆(θ̄) � ci
‖x̃i‖2

XT
∼iPx̃iX∼i =

1

n
XT
∼iPx̃iX∼i . (50)

Using equation (50) in bound (47), we get

1

2n
‖P⊥x̃iX∼i(θ̂∼i − θ̂

p
∼i)‖

2
2 ≤ 〈∇∆(θ̂p

∼i), θ̂∼i − θ̂
p
∼i〉 . (51)

Applying equation (48) and Cauchy-Schwartz inequality we get

1

2n
‖P⊥x̃iX∼i(θ̂∼i − θ̂

p
∼i)‖

2
2 ≤ |F′(u(θ̂p

∼i))|
‖X∼i(θ̂∼i − θ̂p

∼i)‖
‖x̃i‖

. (52)

The following preposition upper bounds the gradient of F at the perturbed Lasso solution. We defer
the proof of Proposition 4.6 to Appendix C.

3Note that (θ̂i, θ̂∼i) is the minimizer of Ly,X(θi, θ∼i).
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Proposition 4.6. For i ∈ [p] define Σi|∼i ≡ Σi,i−Σi,∼i(Σ∼i,∼i)
−1Σ∼i,i. Let B ≡ B̃(n, p)∩Bδ(n, s0, 3),

where the events Bδ(n, s0, 3) and B̃(n, p) are given as per equations (15) and (16). The following
holds true.

P
(
|F′(u(θ̂p

∼i))| ≥
4 + 5ρ

4
λ;B

)
≤ 2 exp

(
− c∗n

s0Σi|∼i

)
.

where c∗ ≡ (1− δ)2Cmin/8.

We next upper bound the term ‖X∼i(θ̂∼i − θ̂p
∼i)‖ that appears on the RHS of equation (52).

The following proposition states that the Lasso estimator is sparse. Its proof is given in Ap-
pendix D.

Proposition 4.7. Consider the Lasso selector θ̂ with λ = 8σ
√

log p/n. On the event B ≡ B̃(n, p) ∩
Bδ(n, s0, 3), the following holds:

|Ŝ| ≤ C∗s0 , (53)

with

C∗ ≡
16Cmax

(1− δ)2Cmin
. (54)

Corollary 4.8. Set λ = 8σ
√

(log p)/n. On the event B(C∗) ≡ B̃(n, p) ∩ Bδ(n, (C∗ + 1)s0, 3), the
following holds.

1

n
‖X∼i(θ̂∼i − θ̂p

∼i)‖
2 ≤ (1 + δ)2Cmax‖θ̂∼i − θ̂p

∼i‖
2 . (55)

Corollary 4.8 is proved in Appendix E.
We next lower bound ‖x̃i‖2. Observe that the entries x̃2

i` − 1, ` ∈ [n], are zero-mean sub-
exponential random variables. We obtain the following tail-bound inequality by applying Bernstein-
type inequality for sub-exponential random variables. (See e.g. [JM14b, Equation (190)].)

P
(
‖x̃i‖ ≤

√
n

5

)
≤ e−n/1000 . (56)

Combining the results of Proposition (4.6) and equations (52), (55) and (56), we obtain that

P
( 1

2n
‖P⊥x̃iX∼i(θ̂∼i − θ̂

p
∼i)‖

2
2 ≤ 7(1 + ρ)(1 + δ)

√
Cmaxλ‖θ̂∼i − θ̂p

∼i‖;B
)

≤ 2 exp
(
− c∗n

s0Σi|∼i

)
+ exp

(
− n

1000

)
≤ 2 exp

(
− c∗n

s0

)
+ exp

(
− n

1000

)
, (57)

where the last inequality follows from the assumption Σii ≤ 1 and noting that Σi|∼i ≤ Σii, since
Σ∼i,∼i � 0. The last step is to lower bound the LHS of equation (52). Write

P⊥x̃iX∼i(θ̂∼i − θ̂
p
∼i) = X∼i(θ̂∼i − θ̂p

∼i)− Px̃iX∼i(θ̂∼i − θ̂
p
∼i)

= X∼i(θ̂∼i − θ̂p
∼i)− x̃i

〈 x̃i
‖x̃i‖2

, X∼i(θ̂∼i − θ̂p
∼i)
〉
.
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Define vector µ ∈ Rp with

µi ≡ −
〈 x̃i
‖x̃i‖2

, X∼i(θ̂∼i − θ̂p
∼i)
〉
, µ∼i = θ̂∼i − θ̂p

∼i .

Then µ ∈ C((C∗ + 1)s0, 3), by Proposition 4.7. Hence, on the event B(n, (C∗ + 1)s0, 3), we have

1

2n
‖P⊥x̃iX∼i(θ̂∼i − θ̂

p
∼i)‖

2 =
1

2n
‖Xµ‖2

≥ 1

2
(1− δ)2Cmin‖µ‖2

≥ 1

2
(1− δ)2Cmin‖θ̂∼i − θ̂p

∼i‖
2 . (58)

Finally, note that C(s0, 3) ⊆ C((C∗ + 1)s0, 3). Therefore, Bδ(n, (C∗ + 1)s0, 3) ⊆ Bδ(n, s0, 3), by defi-
nition. Letting B(C∗) ≡ B̃(n, p)∩B(n, (C∗+ 1)s0, n), we have B(C∗) ⊆ B. Combining equations (57)
and (58), we obtain

P
(
‖θ̂∼i − θ̂p

∼i‖ ≥
14(1 + ρ)(1 + δ)

√
Cmax

(1− δ)2Cmin
λ ;B(C∗)

)
≤ 2 exp

(
− c∗n

s0

)
+ exp

(
− n

1000

)
. (59)

This completes the proof.

5 Proof of Theorem 3.10 (unknown covariance)

We decompose
√
n(θ̂d − θ∗) into three terms:

√
n(θ̂d − θ∗) =

√
n(θ̂ − θ∗) +

1√
n
MXT(y −Xθ̂)

=
√
n(I−M Σ̂)(θ̂ − θ∗) +

1√
n
MXTw

=
√
n(I− ΩΣ̂)(θ̂ − θ∗)︸ ︷︷ ︸

I1

+
√
n(Ω−M)Σ̂(θ̂ − θ∗)︸ ︷︷ ︸

I2

+
1√
n
MXTw︸ ︷︷ ︸
I3

.

Note that the term I1 is exactly the bias vector R of the de-biased estimator in case of known
covariance (with M = Ω). Therefore, by invoking the result of Theorem 3.6, we have

P
(
‖I1‖∞ ≥ C

√
s0

n
log p

)
≤ 2pe−c∗n/s0 + pe−n/1000 + 8p−1 + 2e−δ

2n . (60)

We next bound ‖I2‖∞.

‖I2‖∞ =
√
n
∥∥∥(Ω−M)

1

n
XTX(θ̂ − θ∗)

∥∥∥
∞

≤
√
nmax
i∈[p]

∥∥∥ 1√
n
X(M − Ω)ei

∥∥∥
2

∥∥∥ 1√
n
X(θ̂ − θ∗)

∥∥∥
2

(61)
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By applying [BvdG11, Theorem 6.1] (see also Corollary 4.2 in the present paper), on the event
B ≡ Bδ(n, s0, 3) ∩ B̃(n, p), we have for λ ≥ 8σ

√
(log p)/n,∥∥∥ 1√

n
X(θ∗ − θ̂)

∥∥∥
2
≤ 2λ

1− δ

√
s0

Cmin
. (62)

To bound the other term, we recall definition of upper-RE condition.

Definition 5.1. The matrix Γ satisfies an upper restricted eigenvalue condition with parameters
α > 0 and τ(n, p) > 0 if

vTΓv ≤ α‖v‖22 + τ(n, p)‖v‖21 ∀v ∈ Rp .

Raskutti et al. [RWY10] showed that for Gaussian designs with population covariance Σ, the
matrix Σ̂ ≡ (XTX)/n satisfies the upper-RE condition with α = 2σmax(Σ) and τ(n, p) = c(log p)/n,
with probability at least 1− c′ exp(−c′′n) for some constants c, c′, c′′ > 0.

Rewriting the above bound we obtain

1√
n
‖X(M − Ω)ei‖2 ≤

√
2Cmax‖(M − Ω)ei‖2 +

√
c log p

n
‖(M − Ω)ei‖1 . (63)

As proved in [VdGBRD14, Theorem 2.4], we have the following bounds

max
i∈[p]
‖(M − Ω)ei‖1 . sΩ

√
log p

n
, (64)

max
i∈[p]
‖(M − Ω)ei‖2 .

√
sΩ log p

n
, (65)

Using equations (64), (65) in (63) and we get (recalling that n ≥ cs0 log p)

max
i∈[p]

∥∥∥ 1√
n
X(M − Ω)ei

∥∥∥
2
.

√
sΩ log p

n
. (66)

Combining equations (62) and (66) in (61), we get that on event B,

‖I2‖∞ . σσ

√
sΩs0

n
log p , (67)

with probability at least 1− c′ exp(−c′′n).
Finally, note that

I3|X ∼ N(0, σ2M Σ̂MT) .

The result follows by letting Z ≡ I3 and R ≡ I1 + I2.
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A Proof of Lemma 4.4

For θ we have

Ly,X(θ∗i , θ) =
1

2n
‖y − x̃iθ∗i −X∼iθ‖2 + λ‖θ‖1 + λ|θ∗i |

Let ỹ ≡ y − x̃iθ∗i . We then have

Ly,X(θ∗i , θ) =
1

2n
‖ỹ −X∼iθ̂p

∼i −X∼i(θ − θ̂
p
∼i)‖

2 + λ‖θ‖1 + λ|θ∗i |

= Ly,X(θ∗i , θ̂
p
∼i) +

1

2n
‖X∼i(θ − θ̂p

∼i)‖
2 − 1

n
〈ỹ −X∼iθ̂p

∼i, X∼i(θ − θ̂
p
∼i)〉

+ λ‖θ‖1 − λ‖θ̂p
∼i‖1 (68)

Since θ̂p
∼i is the minimizer of Ly,X(θ∗i , θ) by KKT condition we have

1

n
XT
∼i(ỹ −X∼iθ̂

p
∼i) = λξ, ξ ∈ ∂‖θ̂p

∼i‖1 . (69)

Applying equation (69) in equation (68) we get

Ly,X(θ∗i , θ)− Ly,X(θ∗i , θ̂
p
∼i) =

1

2n
‖X∼i(θ − θ̂p

∼i)‖
2 + λ

(
‖θ‖1 − ‖θ̂p

∼i‖1 − 〈ξ, θ − θ̂
p
∼i〉
)

≥ 1

2n
‖X∼i(θ − θ̂p

∼i)‖
2 ,

where the last step follows from the definition of a subgradient.

B Proof of Lemma 4.5

To lighten the notation, we drop the subscripts y,X in Ly,X(·). Recall that ∆(θ) ≡ Ly,X(θ∗i , θ) −
L+(θ). We start by expanding L(θi, θ).

L(θi, θ) =
1

2n
‖y − x̃iθi −X∼iθ‖22 + λ|θ∗i |+ λ‖θ‖1 .

Plugging in y = x̃iθ
∗
i +X∼iθ

∗
∼i + w and rearranging the terms, we obtain

L(θi, θ) =
1

2n
‖w +X∼i(θ

∗
∼i − θ)‖22 +

1

n
〈θ∗i − θi, x̃Ti (w +X∼i(θ

∗
∼i − θ))〉

+
1

2n
‖x̃i‖2(θ∗i − θi)2 + λ|θi|+ λ‖θ‖1 . (70)

Therefore,

L(θ∗i , θ) =
1

2n
‖w +X∼i(θ

∗
∼i − θ)‖22 + +λ|θ∗i |+ λ‖θ‖1 . (71)
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Combining equations (70) and (71), we rewrite L(θi, θ) as

L(θi, θ) =L(θ∗i , θ) +
1

n
〈θ∗i − θi, x̃Ti (w +X∼i(θ

∗
∼i − θ))〉

+
1

2n
‖x̃i‖2(θ∗i − θi)2 + λ|θi| − λ|θ∗i |

=λ|θi|+
1

2n
‖x̃i‖2

(
θi − θ∗i −

x̃Ti
‖x̃i‖2

(w +X∼i(θ
∗
∼i − θ))

)2

− 1

2n‖x̃i‖2
(
x̃Ti (w +X∼i(θ

∗
∼i − θ))

)2
+ L(θ∗i , θ)− λ|θ∗i | . (72)

Writing expression (72) in terms of ci ≡ ‖x̃i‖2/n and u(θ), given by (44), we get

L(θi, θ) = λ|θi|+
ci
2

(θi − θ∗i − u(θ))2 − ci
2
u(θ)2 + L(θ∗i , θ)− λ|θ∗i | . (73)

Let θopt
i ≡ arg minθi L(θi, θ). It is simple to see that θopt

i = η(θ∗i + u(θ);λ/ci), where η(x;α) is the
soft-thresholding function given by

η(x;α) =


x− α x ≥ α ,
0 |x| ≤ α ,
x+ α x ≤ −α .

By substituting for θopt
i in equation (73) and after some algebraic manipulations, we obtain

L(θopt
i , θ) = ciH(θ∗i + u(θ);λ/ci)−

ci
2
u(θ)2 + L(θ∗i , θ)− λ|θ∗i | ,

where H(x;α) is the Huber function. By definition, L+(θ) = L(θopt
i , θ) and thus

∆(θ) ≡ L(θ∗i , θ)− L+(θ) =
ci
2
u(θ)2 − ciH(θ∗i + u(θ);λ/ci) + λ|θ∗i |

= F(u(θ)) + λ|θ∗i | ,

where F(u) is given by equation (46).

C Proof of Preposition 4.6

Write

F′(u) = ciu− ciH′(θ∗i + u;λ/ci) .

We note that H′(x;α) = x− η(x;α) and hence |H′(x;α)| ≤ α. Therefore,

|F′(u)| ≤ ci|u|+ ci(λ/ci) = λ+ ci|u| . (74)

In the following we bound ci|u(θ̂p
∼i)|.

For i ∈ [p] define
Σi|∼i ≡ Σi,i − Σi,∼i(Σ∼i,∼i)

−1Σ∼i,i .
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Since x̃i and X∼i are jointly Gaussian, we have

x̃i = X∼i(Σ∼i,∼i)
−1Σ∼i,i + Σ

1/2
i|∼iz , (75)

where z ∈ Rn is independent of X∼i with i.i.d standard normal coordinates. Further,
Recalling the definition of ci ≡ ‖x̃i‖/n and u(θ), given by equation (44), we write ci|u(θ̂p

∼i)| as

ci|u(θ̂p
∼i)| =

1

n

∣∣∣∣x̃Ti (w +X∼i(θ
∗
∼i − θ̂

p
∼i))

∣∣∣∣
≤ 1

n
|x̃Ti w|+

1

n
Σ

1/2
i|∼i

∣∣∣∣zTX∼i(θ∗∼i − θ̂p
∼i)

∣∣∣∣+
1

n

∣∣∣∣Σi,∼i(Σ∼i,∼i)
−1XT

∼iX∼i(θ
∗
∼i − θ̂

p
∼i)

∣∣∣∣
≤ 1

n
|x̃Ti w|+

1

n
Σ

1/2
i|∼i

∣∣∣∣zTX∼i(θ∗∼i − θ̂p
∼i)

∣∣∣∣+
1

n
‖Σi,∼i(Σ∼i,∼i)

−1‖1‖XT
∼iX∼i(θ

∗
∼i − θ̂

p
∼i)‖∞ .

(76)

The first inequality here follows from equation (75).
In the following we bound each term on the RHS of equation (76) individually.
On the event B̃(n, p), defined by equation (16), we have

1

n
‖x̃Ti w‖ ≤

1

n
‖XTw‖∞ ≤ 2σ

√
log p

n
=
λ

4
. (77)

We use Corollary 4.2 to bound the second term of expression (76). We recall the event Bδ(n, s0, 3),
given by equation (15) and let B ≡ Bδ(n, s0, 3)∩B̃(n, p). Further, recall the notation ζi ≡ ‖X∼i(θ∗∼i−
θ̂p
∼i)‖/

√
n and the event Ei defined by equation (35). We write

P
( 1√

n
Σ

1/2
i|∼i |z

Tζi| ≥ λ;B
)
≤ P

( 1√
n

Σ
1/2
i|∼i |z

Tζi| ≥ λ; Ei
)

= E
{
I
( 1√

n
Σ

1/2
i|∼i |z

Tζi| ≥ λ
)
· I(Ei)

}
≤ 2E

(
exp

[
− nλ2

2Σi|∼i‖ζi‖2
]
· I(Ei)

)
≤ 2 exp

(
− c∗n

s0Σi|∼i

)
, (78)

with c∗ ≡ (1− δ)2Cmin/8. Here, the penultimate inequality follows from Fubini’s theorem where we
first integrate w.r.t z and then w.r.t ζi. Note that z and ζi are independent. Therefore, zTζi|ζi ∼
N(0, ‖ζi‖2). In the last step, we applied Corollary 4.2.

We next bound the third term on the RHS of equation (76). Note that the KKT conditions for
optimization (29) reads

1

n
XT
∼i(w +X∼i(θ

∗
∼i − θ̂

p
∼i)) = λξ , (79)

for ξ ∈ ∂‖θ̂p
∼i‖1. To lighten the notation, let

νi ≡
1

n
XT
∼iX∼i(θ

∗
∼i − θ̂

p
∼i) .
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We know by equation (79),

‖νi‖∞ ≤
1

n
‖XT
∼iw‖∞ + λ‖ξ‖∞ .

On the event B̃(n, p) we have

1

n
‖XT
∼iw‖∞ ≤ 2σ

√
log p

n
=
λ

4
.

Combining the above two inequalities we obtain

‖ν‖∞ ≤ 5λ/4 . (80)

We next employ Condition (iii) to bound ‖Σi,∼i(Σ∼i,∼i)
−1‖1. By writing Σ−1 in terms of Schur

complement, we have

‖Σ−1ei‖1 = Σ−1
i|∼i

[
1 + ‖Σi,∼i(Σ∼i,∼i)

−1‖1
]
.

By Condition (iii), ‖Σ−1ei‖1 ≤ ρ. Further, by Condition (i), Σi|∼i ≤ Σi,i ≤ 1. Hence, we get

‖Σi,∼i(Σ∼i,∼i)
−1‖1 ≤ ρ− 1. (81)

Using equations (77) to (81), we bound the RHS of equation (76) as follows. Under the event B,

ci|u(θ̂p
∼i)| ≤

5λ

4
ρ .

Applying the above bound to equation (74), we get the desired result.

D Proof of Proposition 4.7

This proposition is an improved version of Theorem 7.2 in [BRT09].
We first recall the definition of restricted eigenvalues as given by:

φmax(k) ≡ max
1≤‖v‖0≤k

〈v, Σ̂v〉
‖v‖22

.

Clearly, φmax(k) is an increasing function of k.
Employing [Ver12, Remark 5.4], for any 1 ≤ k ≤ n and a fixed subset J ⊂ [p] with |J | = k, we

have

P
(
σmax(Σ̂J,J) ≥ Cmax + C

√
k

n
+

t√
n

)
≤ 2e−ct

2
,

for t ≥ 0, where C and c depend only on Cmax. Therefore, by union bound over all possible subsets
J ⊆ [p] we obtain

P
(
φmax(k) ≥ Cmax + C

√
k

n
+

t√
n

)
≤ 2

(
p

k

)
e−ct

2 ≤ 2e−ct
2+k log p+k , (82)

for t ≥ 0.
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Let Ŝ ≡ supp(θ̂). Recall that the stationarity condition for the Lasso cost function reads XT(y−
Xθ̂) = nλ v(θ̂), where v(θ̂) ∈ ∂‖θ̂‖1. Equivalently,

1

n
XTX(θ∗ − θ̂) = λ v(θ̂)− 1

n
XTw .

On the event B̃(n, p), we have ‖XTw‖∞ ≤ nλ/4. Thus for all i ∈ Ŝ∣∣∣∣ 1n [XTX(θ∗ − θ̂)]i
∣∣∣∣ ≥ λ

2
.

Squaring and summing the last identity over i ∈ Ŝ, we obtain that, for h ≡ n−1/2X(θ∗ − θ̂),

λ2

4
|Ŝ| ≤ 1

n

∑
i∈Ŝ

(eTi X
Th)2 = 〈h, 1

n
X
Ŝ
XT
Ŝ
h〉 ≤ ‖Σ̂

Ŝ,Ŝ
‖22‖h‖2 ≤ φmax(|Ŝ|)‖h‖22 . (83)

By a similar argument as in Corollary 4.2, on the event B ≡ B̃(n, p) ∩ B(n, s0, 3) we have

‖h‖22 ≤
4λ2s0

(1− δ)2Cmin
.

Thus,

|Ŝ| ≤ 16φmax(Ŝ)

(1− δ)2Cmin
s0 . (84)

Note that |Ŝ| ≤ n by the fact that the columns of X are in generic positions. Using monotonicity
property of φmax(·), we have φmax(|Ŝ|) ≤ φmax(n). Invoking equation (82) with k = n, we have
φmax(n) ≤ c1

√
log p with high probability for some constant c1.

Hence, by equation (84)

|Ŝ| ≤ C̃s0

√
log p , C̃ ≡ 16c1

(1− δ)2Cmin
. (85)

Now, we use this bound on |Ŝ| along with equation (84) to get a better bound on |Ŝ|. Again by
using the fact that φmax(k) is a non-decreasing function of k, we have

φmax(|Ŝ|) ≤ φmax(C̃s0

√
log p) ≤ Cmax , (86)

with high probability where we used the assumption n � s0(log p)2. Using this bound in equa-
tion (84), we get

|Ŝ| ≤ 16Cmax

(1− δ)2Cmin
s0 .

The result follows.

E Proof of Corollary 4.8

Note that θ̂p
∼i is the Lasso estimators corresponding to (ỹ, X∼i), according to equation (29). As a

corollary of Proposition 4.7, on event B, ‖θ̂p
∼i‖0 ≤ C∗s0, with C∗ ≡ (16Cmax/Cmin)(1 − δ)−2. Also,

‖θ̂∼i‖0 ≤ s0. Therefore,(0, θ̂∼i−θ̂p
∼i) ∈ C((C∗+1)s0, 3) and, by definition, on event Bδ(n, (C∗+1)s0, 3),

the claim holds true.
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F Sample splitting techniques

In this appendix, we discuss how sample splitting can be used to modify the de-biased estimator as to
go around the sparsity barrier at s0 = o(

√
n/ log p). This provides an alternative to the more careful

analysis carried out in the main body of the paper, that we discuss for the sake of simplicity. As
mentioned in the introduction, sample splitting has its own drawbacks, most notably the dependence
of the results on the random data split, and the sub-optimal use of all the samples.

For the sake of notational simplicity we assume here that the number of samples is 2n and is
randomly split in two batches of size n: (x1, y1), . . . , (xn, yn), and (x1, y1),. . . , (xn, yn). Note that
the change of notation only amounts to a constant multiplicative factor in the sample size, which is
of no concern to us. In vector notation, these batches are denoted as (y,X) and (y,X). We then
proceed as follows:

1. We use the second batch to compute the Lasso estimator, namely

θ̂(y,X;λ) ≡ arg max
θ∈Rp

{
1

2n
‖y −Xθ‖22 + λ‖θ‖1

}
. (87)

2. We use the first batch to compute the debiasing matrix M , e.g. using the node-wise Lasso as
in Section 3.3.

3. We use the first batch to implement the de-biasing, namely

θ̂split = θ̂(y,X) +
1

n
MXT

(
y −Xθ̂(y,X)

)
. (88)

The main remark is that, thanks to the splitting, X is statistically independent from θ̂, which greatly
simplifies the analysis. Notice that we did not use the responses in y.

For the sake of simplicity, we shall analyze this procedure in the case in which the precision matrix
Ω is known, and we hence set M = Ω. The generalization to M constructed via the node-wise Lasso
is straightforward as in the proof of Theorem 3.10.

The next statement implies that, for sparsity level s0 = o(n/(log p)2),the sample splitting de-
biased estimator is asymptotically Gaussian.

Proposition F.1. Consider the linear model (2) where X has independent Gaussian rows, with zero
mean and covariance Σ. Suppose that Σ satisfies the technical conditions of Theorem 3.6

Let θ̂ be the Lasso estimator defined by (3) with λ = 8σ
√

(log p)/n. Further, let θ̂split be the mod-
ified (sample-splitting) de-biased estimator defined in Eq. (88) with M = Ω ≡ Σ−1. Then, there exist
constants c, C depending solely on Cmin, Cmax, δ and ρ, such that, for n ≥ c max(log p, s0 log(p/s0))
the following holds true:

√
n(θ̂d − θ∗) = Z +R , Z|X ∼ N(0, σ2ΩΣ̂Ω) , (89)

lim
n→∞

P
(
‖R‖∞ ≥ C

√
s0

n
log p

)
= 0 . (90)

Proof. Proceeding as in the proof of Theorem 3.6, it is sufficient to bound the bias term of
√
n(θ̂split−

θ∗), which is given by (cf. (8))

R ≡
√
n(ΩΣ̂− I)(θ∗ − θ̂) . (91)
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To lighten the notation, let u = θ∗ − θ̂. Expanding R we get

R =
√
n(ΩΣ̂− I)u =

1√
n

n∑
i=1

(Ωxix
T
i − I)u . (92)

To control ‖R‖∞, we bound each component Rj individually. Let ej be the j-th element of the
standard basis with one at the j-th position and zero everywhere else. We write

Rj =
1√
n

n∑
i=1

(eTj Ωxi)(x
T
i u)− uj .

Let Zi ≡ (eTj Ωxi)(x
T
i u)− uj . The variables Zi are independent since u is independent of X because

of data splitting and the rows xi are also independent. Furthermore, E(Zi) = eTj ΩΣu− uj = 0. We
let ‖ · ‖ψ1 and ‖ · ‖ψ2 respectively denote the sub-exponential and sub-gaussian norms. As shown in
[Ver12, Remark 5.18],

‖Zi‖ψ1 ≤ 2‖(eTj Ωxi)(x
T
i u)‖ψ1 .

In addition, for any two random variables v and w, we have ‖vw‖ψ1 ≤ 2‖v‖ψ2‖w‖ψ2 . Hence,

‖(eTj Ωxi)(x
T
i u)‖ψ1 ≤ 2‖eTj Ωxi‖ψ2‖xTi u‖ψ2

= 2‖eTj Ω1/2‖2‖Ω1/2xi‖2ψ2
‖Ω−1/2u‖2

≤ 2
√
Cmax/Cmin ‖Ω1/2xi‖2ψ2

‖u‖2 .

Given that Ω1/2xi ∼ N(0, I), we get ‖Ω1/2xi‖ψ2 = 1. Hence, maxi ‖Zi‖ψ1 ≤ C‖u‖2 with C ≡
4
√
Cmax/Cmin. Applying Bernstein-type inequality [Ver12, Proposition 5.16], for every t ≥ 0, we

have

P
{∣∣∣ n∑

i=1

1√
n
Zi

∣∣∣ ≥ t} ≤ 2 exp
[
− cmin

( t2

C2‖u‖22
,
t
√
n

C‖u‖2

)]
, (93)

where c > 0 is an absolute constant. Observe that on the event B ≡ Bδ(n, s0, 3) ∩ B̃(n, p)4, we have

‖u‖22 = ‖θ∗ − θ̂‖22 . s0λ
2 .

Therefore, by using tail bound (93) and applying union bound over the p entries of R, we get (for
n ≥ c log p with c a suitable constant)

‖R‖∞ .

√
s0

n
log p ,

with high probability.

4See Section 3.2 for definition of Bδ(n, s0, 3) and B̃(n, p)
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