

STATISTICALLY EFFICIENT THINNING

OF A MARKOV CHAIN SAMPLER

By

Art B. Owen

Technical Report No. 2015-22
November 2015

Department of Statistics
STANFORD UNIVERSITY

Stanford, California 94305-4065

STATISTICALLY EFFICIENT THINNING

OF A MARKOV CHAIN SAMPLER

By

Art B. Owen
Stanford University

Technical Report No. 2015-22
November 2015

This research was supported in part by
National Science Foundation grants
DMS 1407397 and DMS 1521145.

Department of Statistics
STANFORD UNIVERSITY

Stanford, California 94305-4065

http://statistics.stanford.edu

Statistically efficient thinning of a Markov chain

sampler

Art B. Owen
Stanford University

October 2015

Abstract

It is common to subsample Markov chain samples to reduce the stor-
age burden of the output. It is also well known that discarding k − 1
out of every k observations will not improve statistical efficiency. It is
less frequently remarked that subsampling a Markov chain allows one to
omit some of the computation beyond that needed to simply advance the
chain. When this reduced computation is accounted for, thinning the
Markov chain by subsampling it can improve statistical efficiency. Given
an autocorrelation parameter ρ and a cost ratio θ, this paper shows how
to compute the most efficient subsampling frequency k. The optimal k
grows rapidly as ρ increases towards 1. The resulting efficiency gain de-
pends primarily on θ, not ρ. Taking k = 1 (no thinning) is optimal when
ρ ≤ 0. For ρ > 0 it is optimal if and only if θ ≤ (1 − ρ)2/(2ρ). The
efficiency gain never exceeds 1 + θ.

Keywords: Autoregression, Markov chain Monte Carlo, Subsampling

1 Introduction

It is common to thin a Markov chain sample, taking every k’th observation
instead of all of them. Such subsampling is done to produce values that are
more nearly independent. It also saves storage costs. It is well known that the
average over a thinned sample set has greater variance than the plain average
over all of the computed values (Geyer, 1992).

Most authors recommend against thinning, except where it is needed to
reduce storage. MacEachern and Berliner (1994) go so far as to provide a
‘justification for the ban against subsampling’. Link and Eaton (2011) write
that “Thinning is often unnecessary and always inefficient”.

One exception is Geyer (1991) who acknowledges that thinning can in fact
increase statistical efficiency. Thinning makes each iteration cheaper which then
makes it possible to run a thinned Markov chain longer than an unthinned one
at the same computational cost. He gives some qualitative remarks about this

1

effect, but ultimately concludes that it is usually a negligible benefit because
the autocorrelations in the Markov chain decay exponentially fast. Link and
Eaton (2011) also acknowledge this possibility in their discussion as does Neal
(1993, page 106).

This paper revisits the problem for an autoregressive correlation structure.
That structure makes it possible to compute the exact optimal thinning factors.
It is very often optimal to do no thinning. In other settings, optimality requires
a very thin subsample. Sometimes that very thin subsample yields only a small
efficiency, but at other times a very thin subsample yields a large improvement.

Section 2 defines asymptotic efficiency of thinning to every k’th observation
when the samples have unit cost to generate, the function of interest costs
θ > 0 each time we compute it, and the observations have autocorrelation ρm

at lag m. Section 3 presents some inequalities among the efficiency levels at
different subsampling frequencies. Thinning never helps when the first order
autocorrelation parameter ρ is negative. For ρ > 0 if any thinning level is to
help, then taking every second sample must also help, and as a result we can
get sharp expressions for the autocorrelation level at which thinning increases
efficiency. In the limit ρ → ∞ very large thinning factors become optimal but
frequently much smaller factors are nearly as good. The efficiency gain does not
exceed 1 + θ for any ρ and k. Section 4 describes how to compute the optimal
thinning factor k given the parameters θ and ρ. Section 5 has conclusions and
discusses consequences of rejected proposals having essentially zero cost while
accepted ones have a meaningfully large cost. An appendix has R code to
compute the optimal k.

2 Asymptotic efficiency

To fix ideas, suppose that we generate a Markov chain xt for t ≥ 1. We have a
starting value x0 and then it costs one unit of computation to transition from
xt−1 to xt. Interest centers on the expected value of yt = f(xt) for some function
f . The cost to compute f is θ. It may be that θ � 1 but it is also possible
that θ is comparable to 1 or even larger. For instance it may be inexpensive
to perform one update on a system of particles, but very expensive to find the
new minimum distance among all those particles or some similar quantity of
interest. When computation must pause to write f(xt) to storage then the cost
of pausing is included in θ.

To focus on essentials, suppose that yt are stationary with mean zero, unit
variance and cor(yt, yt+k) = ρk for an autocorrelation ρ ∈ (−1, 1). The most
interesting cases have ρ > 0. We will sample x1, x2, . . . , xN and retain every
k’th observation yk = f(xk), y2k = f(x2k) and so on. Our estimate of µ = E(yt)
is

µ̂k = µ̂k(N) =
1

n

n∑
i=1

f(xki)

where n = nk = bN/kc. We will get the same limits working with the not

2

necessarily integral nk = N/k. Then

lim
N→∞

nkvar(µ̂k) =
1 + ρk

1− ρk
.

Let the computing budget be B. Our cost is N+nθ = N(1+θ/k). Therefore
we can use Nk = bB/(1 + θ/k)c which once again we replace by B/(1 + θ/k).
For this budget

nk =
Nk
k

=
B

1 + θ/k

1

k
=

B

k + θ
.

The asymptotic efficiency of thinning at factor k relative to not thinning at
all, that is using k = 1, is

eff(k) = eff(k; ρ, θ) = lim
B→∞

var(µ̂1)

var(µ̂k)
=

1 + θ

k + θ

1 + ρ

1− ρ
1− ρk

1 + ρk
. (1)

Table 1 shows arg maxk eff(k; ρ, θ) for a range of correlations ρ and costs θ. As
one would expect, the optimal thinning factor increases with both θ and ρ.

Perhaps surprisingly, the optimal thinning factor can be large even for θ � 1,
when the chain mixes slowly. For instance with θ = 0.01 and ρ = 0.9999, the
optimal thinning takes every 182’nd value. But Table 2 shows that in such cases
only a small relative efficiency gain occurs. For θ = 0.01 and ρ = 0.9999 the
improvement is just under 1% and this gain may not be worth the trouble of
using thinning.

When the cost θ is comparable to one, then thinning can bring a meaningful
efficiency improvement for slow mixing chains. The efficiency gain approaches
θ + 1 in the limit as ρ→ 1. See equation (4) in Section 3.

A more efficient thinning rule allows the user to wait less time for an answer,
or to attain a more accurate answer in the same amount of time. It may be
a slight nuisance to incorporate thinning and when storage is not costly, we
might even prefer to explore a larger set of sampled y values. Table 3 shows
the least amount of thinning that we can do to get at least 95% efficiency
relative to the most efficient value of k. That is, we find the smallest k with
eff(k; ρ, θ) ≥ 0.95 min`≥1 eff(`; ρ, θ). When 95% efficiency is adequate and θ is
small then there is no need to thin. Theorem 2 below shows that there is no
need to thin at any ρ, if efficiency 1/(1 + θ) is acceptable.

3 Some inequalities

Here we compare efficiencies for different choices of the thinning factor k. We
find that thinning never helps when ρ < 0. In the limit as ρ→ 1 the optimal k
diverges to infinity but we can attain nearly full efficiency by taking k to be a
modest muliple of θ. When ρ > 0, the critical value of θ for which eff(k; ρ, θ) >
eff(1; ρ, θ) is an increasing function of k ≥ 2. As a result we can determine when
k = 1 is optimal. The following basic lemma underpins several of the results.

3

θ \ ρ 0.1 0.5 0.9 0.99 0.999 0.9999 0.99999 0.999999

0.001 1 1 1 4 18 84 391 1817
0.01 1 1 2 8 39 182 843 3915
0.1 1 1 4 18 84 391 1817 8434
1 1 2 8 39 182 843 3915 18171
10 2 4 17 83 390 1816 8433 39148
100 3 7 32 172 833 3905 18161 84333
1000 4 10 51 327 1729 8337 39049 181612

Table 1: Optimal thinning factor k as a function of the relative cost θ of function
evaluation and the first order autocorrelation ρ.

θ \ ρ 0.1 0.5 0.9 0.99 0.999 0.9999 0.99999 0.999999

0.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01
0.1 1.00 1.00 1.06 1.09 1.10 1.10 1.10 1.10
1 1.00 1.20 1.68 1.93 1.98 2.00 2.00 2.00
10 1.10 2.08 5.53 9.29 10.59 10.91 10.98 11.00
100 1.20 2.79 13.57 51.61 85.29 97.25 100.17 100.82
1000 1.22 2.97 17.93 139.29 512.38 845.38 963.79 992.79

Table 2: Asymptotic efficiency of the optimal thinning factor k from Table 1 as
a function of θ and ρ. Values rounded to two places.

θ \ ρ 0.1 0.5 0.9 0.99 0.999 0.9999 0.99999 0.999999

0.001 1 1 1 1 1 1 1 1
0.01 1 1 1 1 1 1 1 1
0.1 1 1 2 2 2 2 2 2
1 1 2 5 11 17 19 19 19
10 2 4 12 45 109 164 184 189
100 2 5 22 118 442 1085 1632 1835
1000 2 6 31 228 1182 4415 10846 16311

Table 3: Smallest k to give at least 95% of the efficiency of the most efficient k,
as a function of θ and ρ.

4

Lemma 1. Let r > s ≥ 1 be integers, θ ≥ 0 and −1 < ρ < 1. Then eff(r; ρ, θ) >
eff(s; ρ, θ) if and only if

2(θ + s)(ρs − ρr) > (r − s)(1− ρs)(1 + ρr). (2)

Proof. Because (1 + θ)(1 + ρ)/(1− ρ) > 0, the given inequality in efficiencies is
equivalent to

(s+ θ)(1− ρr)(1 + ρs) > (r + θ)(1− ρs)(1 + ρr).

Equation (2) follows by rearranging this inequality.

It is obvious that thinning cannot improve efficiency when ρ = 0. Here we
find that the same holds for ρ < 0.

Proposition 1. If θ ≥ 0 and −1 ≤ ρ ≤ 0 then eff(1; ρ, θ) ≥ eff(k; ρ, θ) for all
integers k ≥ 2.

Proof. Suppose to the contrary that eff(k) > eff(1). Then Lemma 1 with r = k
and s = 1 yields

2(θ + 1)(ρ− ρk) > (k − 1)(1− ρ)(1 + ρk). (3)

Because the right side of (3) is positive and the left side is not, we arrive at a
contradiction, proving the result.

With negative ρ there is an advantage to taking an odd integer k. For
instance with Lemma 1 we find that eff(3; ρ, θ) > eff(2; ρ, θ) when ρ < 0, but
k = 1 remains the best odd integer. From here on we restrict attention to ρ > 0.
Also it is obvious that k = 1 is best when θ = 0 and so we assume θ > 0.

Many applications have correlations very close to 1. Then

eff(k; 1, θ) ≡ lim
ρ→1

eff(k; ρ, θ) = k
1 + θ

k + θ
. (4)

The optimal k grows without bound as ρ → 1 and it has asymptotic efficiency
θ + 1. From Tables 1 and 2 we might anticipate that there are diminishing
returns to very large k in this limit. If we do not insist on maximum efficiency
we can use much smaller k. To obtain efficiency 1− η relative to the best k in
the large ρ limit we impose

eff(k; 1, θ) ≥ (1 + θ)(1− η)

for 0 < η < 1. Rearranging this inequality we obtain

k ≥ θ(1− η)/η.

For instance to attain 95% efficiency relative to the best k in the large ρ limit,
we may take η = 0.05 and then k = d19θe.

The next proposition introduces a critical cost θ∗(k) beyond which thinning
by the factor k is more efficient than not thinning. That factor increases with
k and the result is that we may then characterize when k = 1 (no thinning) is
optimal.

5

Proposition 2. Let 0 < ρ < 1 and choose an integer k ≥ 2. Then eff(k; ρ, θ) >
eff(1; ρ, θ) if and only if

θ > θ∗(k, ρ) ≡ k − 1

2

(1− ρ)(1 + ρk)

ρ− ρk
− 1. (5)

Proof. This follows from Lemma 1 using r = k and s = 1.

If k is very large and 0 < ρ < 1 then ρk is negligible and

θ∗(k, ρ)
.
=

(k − 1)(1− ρ)

2ρ
− 1.

Proposition 3. For 0 < ρ < 1 the critical θ∗(k, ρ) from (5) is an increasing
function of k ≥ 2.

Proof. Let r = k − 1 ≥ 1 and put

φ∗(r, ρ) =
2(θ∗ + 1)ρ

1− ρ
= r

1 + ρr+1

1− ρr
.

It suffices to show that φ∗ is increasing in r. To this end,

φ∗(r + 1, ρ)− φ∗(r, ρ) = (r + 1)
1 + ρr+2

1− ρr+1
− r1 + ρr+1

1− ρr

=
(r + 1)(1 + ρr+2)(1− ρr)− r(1 + ρr+1)(1− ρr+1)

(1− ρr+1)(1− ρr)
.

(6)

The numerator in (6) is

r[(1 + ρr+2)(1− ρr)− (1 + ρr+1)(1− ρr+1)] + (1 + ρr+2)(1− ρr)
= r[1− ρr + ρr+2] + (1 + ρr+2)(1− ρr)

which is positive. Therefore φ∗(r + 1, ρ) > φ∗(r, ρ).

Theorem 1. For 0 < ρ < 1, the choice k = 1 maximizes the efficiency
eff(k; ρ, θ) over integers k ≥ 1 whenever

θ ≤ (1− ρ)2

2ρ
. (7)

For θ > 0, the choice k = 1 maximizes efficiency if

ρ ≤ 1 +
θ

2
−
√
θ2

4
+ θ. (8)

Proof. From the monotonicity of θ∗ in Proposition 3, if any k > 1 is better
than k = 1 then eff(2; ρ, θ) > eff(1; ρ, θ). Then k = 1 is most efficient if
θ ≤ θ∗(2, ρ) = (1 − ρ)(1 + ρ2)/(ρ − ρ2) − 1 = (1 − ρ)2/(2ρ). The equation
θ = (1 − ρ)2/(2ρ) has two roots ρ for fixed θ > 0 and (7) holds for ρ between
those roots. One of those roots is larger than 1 and the other is given in (8).

6

Theorem 2. For integer lag k ≥ 1, cost θ > and autocorrelation 0 < ρ < 1,
the function eff(k; ρ, θ) is nondecreasing in ρ, and so

eff(k; ρ, θ) ≤ θ + 1.

Proof. The second conclusion follows from the first using the limit in (4).
The derivative of eff(k; ρ, θ)× (k + θ)/(1 + θ) with respect to ρ is

(1− kρk−1 − (k + 1)ρk)(1− ρ)(1 + ρk)− (1 + ρ)(1− ρk)(−1 + kρk−1 − (k + 1)ρk)

(1− ρ)2(1 + ρk)2
.

(9)

It suffices to show that the numerator in (9) is non-negative for 0 < ρ < 1. That
numerator simplifies to

2kρk+1 − 2kρk−1 − 2ρ2k + 2.

It is zero at ρ = 1 and so it now suffices to show that the derivative of the
numerator is negative for 0 < ρ < 1. That derivative is

2k(k + 1)ρk − 2k(k − 1)ρk−2 − 4kρ2k−1 = 2kρk−2(ρ− 1)[(k + 1)ρ+ k − 1]

which is indeed negative as required.

Next we show that eff(k; ρ, θ) is unimodal in k for fixed ρ ∈ (0, 1) and θ > 0.

Proposition 4. Let 0 < ρ < 1 and k ∈ N. Then there is a critical value θ̃∗(k)
such that eff(k+1; ρ, θ) > eff(k; ρ, θ) if and only if θ > θ̃∗, and this critical value
is an increasing function of k.

Proof. From Lemma 1, using r = k+1 and s = k, we find that the critical value
is

θ̃∗(k) =
(1− ρk)(1 + ρk+1)

2ρk(1− ρ)
− k.

Now let ηk = 2(1− ρ)θ̃k = [1 + (2k + 1)(ρk+1 − ρk)− ρ2k+1]ρ−k and write

ρk+1(ηk+1 − ηk) = [1 + (2k + 3)(ρk+2 − ρk+1)− ρ2k+3]

− ρ[1 + (2k + 1)(ρk+1 − ρk)− ρ2k+1]

= (1− ρ) + 2(ρk+2 − ρk+1) + ρ2k+2 − ρ2k+3

= (1− ρ)(1− ρk+1)2.

Therefore ηk+1 > ηk and so θ̃∗(k + 1) > θ̃∗(k).

From Proposition 4 we find that either {k ∈ N | θ̃∗(k) > θ} is empty or it
takes the form {1, 2, . . . , L} for some L ∈ N. In the first case, k = 1 is optimal
and eff(k; ρ, θ) is a nonincreasing function of k. In the second case, eff(k; ρ, θ) is
strictly increasing over k = 1, 2, . . . , k∗ = L+ 1 and nonincreasing thereafter. If
we can find r, s ∈ N with r > s and eff(r; ρ, θ) < eff(s; ρ, θ) then we know that
the optimal value k∗ is in {1, 2, . . . , r}.

7

4 Optimization

The most direct way to maximize eff(k; ρ, θ) over k ∈ N is to compute eff(k; ρ, θ)
for all k = 1, . . . , kmax and then choose

k∗ = k∗(ρ, θ) = arg max
1≤k≤kmax

eff(k; ρ, θ).

It is necessary to find a value kmax that we can be sure is at least as large as k∗.
In light of Proposition 4, we need only find a value kmax where eff(kmax; ρ, θ) <
eff(k′; ρ, θ) holds for some k′ < kmax. We do this by repeatedly doubling k until
we encounter a decreased efficiency.

For moderately large values of θ and 1/(1− ρ) it is numerically very stable
to compute eff(k; ρ, θ). But for more extreme cases it is better to work with

leff(k) ≡ log(eff(k; ρ, θ)) = c(ρ, θ)− log(k + θ) + log(1− ρk)− log(1 + ρk),

where c(ρ, θ) = log[(1+θ)(1+ρ)/(1−ρ)] does not depend on k. Many computing
environments contain a special function log1p(x) that is a numerically more
precise way to compute log(1 + x) for small |x|. Ignoring c we then work with

leff ′(k) ≡ − log(k + θ) + log1p(−ρk)− log1p(ρk).

Now, to find kmax we set m = 1 and then while leff ′(2m) > leff ′(m) set m =
2m. At convergence take kmax = 2m. R Code to implement this optimization
is given in the Appendix. Only in extreme circumstances will kmax be larger
than one million, and so the enumerative approach will ordinarily have a trivial
cost and so it will not be necessary to use more sophisticated searches. It takes
about 1/6 of a second for this search to produce the values in Tables 1 and 2
on a MacBook Air. Relaxing k to noninteger values in [1,∞) one can see that
log eff(ex; ρ, θ) appears to be a concave function of x ∈ [0,∞).

5 Discussion

Thinning a Markov chain sample can improve statistical efficiency. The optimal
subsampling rate grows rapidly as ρ increases towards 1 becoming unbounded in
the limit. Sometimes those large subsampling rates correspond to only modest
efficiency improvements. The magnitude of the improvement depends greatly on
the ratio θ of the cost of function evaluation to the cost of updating the Markov
chain. When θ is of order 1 or higher, a meaningful efficiency improvement can
be attained by thinning the Markov chain.

In some problems, the cost θ may have an important dependence on k. In
an MCMC, it is common to have xt+1 = xt because a proposal was rejected. In
such cases f(xt+1) = f(xt) need not be recomputed. Then an appropriate cost
measure for θ would be the CPU time taken to evaluate f , normalized by the
time to generate a proposal, and then multiplied by the acceptance rate. Larger
values of k increase the chance that a proposal has been accepted and hence the

8

average cost of computing f . For instance, Gelman et al. (1996) find that an
acceptance rate of α = 0.234 is most efficient in high dimensional Metropolis
random walk sampling. Then when thinning by factor k, the appropriate cost is
θ(1−αk) where θ is the cost of an accepted proposal and the efficiency becomes

1 + θ(1− α)

k + θ(1− αk)

1 + ρ

1− ρ
1− ρk

1 + ρk
.

Optimizing this problem is more difficult because the autocorrelation ρ is a
function of the acceptance rate α. At any level of thinning, the optimal α may
depend on θ.

Acknowledgments

This work was supported by the NSF under grants DMS-1407397 and DMS-
1521145. I thank Hera He and Christian Robert for helpful comments.

References

Gelman, A., Roberts, G., and Gilks, W. (1996). Efficient metropolis jumping
hules. In Bernardo, J. M., Berger, J. O., and Smith, A. F. M., editors,
Bayesian statistics 5, pages 599–608.

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In
Keramides, E. M., editor, Proceedings of the 23rd Symposium on the Interface.
Interface Foundation of North America.

Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science,
7(2):473–483.

Link, W. A. and Eaton, M. J. (2011). On thinning of chains in MCMC. Methods
in ecology and evolution, 3(1):112–115.

MacEachern, S. N. and Berliner, L. M. (1994). Subsampling the Gibbs sampler.
The American Statistician, 48(3):188–190.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo
methods. Technical report, University of Toronto.

9

Appendix: R code

Code to find the optimal amount of thinning for a Markov sample.

It costs 1 unit to advance the chain, and theta units to evaluate

the function. The autocorrelation is rho.

effk = function(k,theta,rho){

Asymptotic efficiency of thinning factor k vs using k=1

Compute and exponentiate log(effk)

NB: log1p(x) = log(1+x)

t1 = log1p(theta) - log(k+theta)

t2 = log1p(rho) - log1p(-rho)

t3 = log1p(-rho^k) - log1p(rho^k)

exp(t1 + t2 + t3)

}

leffkprime = function(k,theta,rho){

Log of asymptotic efficiency at thinning factor k.

It ignores terms that do not depend on k.

if(any(rho!=0) & any(abs(rho^k) == 0)){

Basic detection of underflow while still allowing rho=0

badk = min(k[abs(rho^k)==0])

msg = paste("Underflow for k >=",badk,sep=" ")

stop(msg)

}

- log(k+theta) + log1p(-rho^k) - log1p(rho^k)

}

getkmax = function(theta,rho){

Find an upper bound for the optimal thinning fraction k

if(theta<0)stop("Negative theta")

if(rho<0)stop("Negative rho")

if(rho >=1)stop("rho too close to one")

m=1

while(leffkprime(2*m,theta,rho) > leffkprime(m,theta,rho))

m = m*2

2*m

}

10

kopt = function(theta,rho,klimit=10^7){

Find optimal k for the given theta and rho.

Stop if kmax is too large. That usually

means that theta is very large or rho is very nearly one

kmax = getkmax(theta,rho)

if(kmax > klimit){

msg = paste("Optimal k too expensive. It requires checking",kmax,"values.")

stop(msg)

}

leffvals = leffkprime(1:kmax,theta,rho)

best = which.max(leffvals)

best

}

kok = function(theta,rho,klimit=10^7,eta=.05){

Find near optimal k for the given theta and rho.

This is the smallest k with efficiency >= 1-eta times best.

NB: computations in kopt are repeated rather than

saved. This is inefficient but the effect is minor.

best = kopt(theta,rho,klimit)

leffvals = leffkprime(1:best,theta,rho)

ok = min(which(leffvals >= leffvals[best] + log1p(-eta)))

ok

}

kopttable = function(thvals = 10^c(-3:3), rhovals = c(.1,.5,1-10^-c(1:6)),eta=.05){

Prepare tables of optimal k, its efficiency, and smallest

k with at least 1-eta efficiency

T = length(thvals)

R = length(rhovals)

bestk = matrix(0,T,R)

row.names(bestk) = thvals

colnames(bestk) = rhovals

effbk = bestk

okk = bestk

for(i in 1:T)

for(j in 1:R){

theta = thvals[i]

rho = rhovals[j]

11

bestk[i,j] = kopt(theta,rho)

effbk[i,j] = leffkprime(bestk[i,j],theta,rho)-leffkprime(1,theta,rho)

effbk[i,j] = exp(effbk[i,j])

okk[i,j] = kok(theta,rho,eta=eta)

}

list(bestk=bestk, effbk=effbk, okk=okk)

}

12

