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Frequentist accuracy of Bayesian estimates

Bradley Efron∗†

Stanford University

Abstract

In the absence of relevant prior experience, popular Bayesian estimation techniques usually
begin with some form of “uninformative” prior distribution intended to have minimal inferential
influence. Bayes rule will still produce nice-looking estimates and credible intervals, but these
lack the logical force attached to experience-based priors and require further justification. This
paper concerns the frequentist assessment of Bayes estimates. A simple formula is shown to give
the frequentist standard deviation of a Bayesian point estimate. The same simulations required
for the point estimate also produce the standard deviation. Exponential family models make
the calculations particularly simple, and bring in a connection to the parametric bootstrap.

Keywords: general accuracy formula, parametric bootstrap, abc intervals, hierarchical and em-
pirical Bayes, MCMC

1 Introduction

The past two decades have witnessed the greatly increased use of Bayesian techniques in statis-
tical applications. Objective Bayes methods, based on neutral or uniformative priors of the type
pioneered by Jeffreys, dominate these applications, carried forward on a wave of popularity for
Markov chain Monte Carlo (MCMC) algorithms. Good references include Ghosh (2011), Berger
(2006), and Kass and Wasserman (1996).

Suppose then that having observed data x from a known parametric family fµ(x), I wish to
estimate θ = t(µ), a parameter of particular interest. In the absence of relevant prior experience,
I assign an uninformative prior π(µ), perhaps from the Jeffreys school. Applying Bayes rule yields
θ̂, the posterior expectation of θ given x,

θ̂ = E{t(µ)|x}. (1.1)

How accurate is θ̂? The obvious answer, and the one almost always employed, is to infer the
accuracy of θ̂ according to the Bayes posterior distribution of t(µ) given x. This would obviously be
correct if π(µ) were based on genuine past experience. It is not so obvious for uninformative priors.
I might very well like θ̂ as a point estimate, based on considerations of convenience, coherence,
smoothness, admissability, or esthetic Bayesian preference, but not trust what is after all a self-
selected choice of prior as determining θ̂’s accuracy. Berger (2006) makes this point at the beginning
of his Section 4.

As an alternative, this paper proposes computing the frequentist accuracy of θ̂. That is, re-
gardless of its Bayesian provenance, we consider θ̂ simply as a function of the data x, and compute
its frequentist variability.

∗Research supported in part by NIH grant 8R37 EB002784 and by NSF grant DMS 1208787.
†Sequoia Hall, 390 Serra Mall, Stanford University, Stanford, CA 94305-4065; brad@stat.stanford.edu
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Our main result, presented in Section 2, is a general accuracy formula for the delta-method
standard deviation of θ̂: general in the sense that it applies to all prior distributions, uninformative
or not. Even in complicated situations the formula is computationally inexpensive: the same
MCMC calculations that give the Bayes estimate θ̂ also provide its frequentist standard deviation.
A lasso-type example is used for illustration.

In fact several of our examples will demonstrate near equality between Bayesian and frequentist
standard deviations. That does not have to be the case though; Remark 1 of Section 6 discusses
a class of reasonable examples where the frequentist accuracy can be less than half of its Bayesian
counterpart. Other examples will calculate frequentist standard deviations for situations where
there is no obvious Bayesian counterpart, e.g., for the upper endpoint of a 95% credible interval.

The general accuracy formula takes on a particularly simple form when fµ(x) represents a p-
parameter exponential family, Section 3. Exponential family structure also allows us to substitute
parametric bootstrap sampling for MCMC calculations, at least for uninformative priors. This
has computational advantages. More importantly, it helps connect Bayesian inference with the
seemingly super-frequentist bootstrap world, a central theme of this paper.

The general accuracy formula provides frequentist standard deviations for Bayes estimators,
but nothing more. Better inferences, in the form of second order-accurate confidence intervals
are developed in Section 4, again in an exponential family bootstrap context. Section 5 uses the
accuracy formula to compare hierarchical and empirical Bayes methods. The paper concludes with
remarks, details, and extensions in Section 6.

The frequentist properties of Bayes estimates is a venerable topic, nicely reviewed in Chapter 4
of Carlin and Louis (2000). Particular attention focuses on large-sample behavior, where “the data
swamps the prior” and θ̂ converges to the maximum likelihood estimator (see Result 8, Section 4.7
of Berger, 1985), in which case the Bayes and frequentist standard deviations are nearly the same.
Our accuracy formula provides some information about what happens before the data swamps the
prior.

Some other important Bayesian-cum-frequentist topics are posterior and preposterior model
checking as in Little (2006) or Chapter 6 of Gelman et al. (1995); Bayesian consistency, Diaconis
and Freedman (1986); confidence matching priors, going back to Welch and Peers (1963); and
empirical Bayes analysis as in Morris (1983).

Sensitivity analysis — modifying the prior as a check on the stability of posterior inference — is
a staple of Bayesian model selection. The methods of this paper amount to modifying the data as
a posterior stability check (see Lemma 1 of Section 2). The implied suggestion here is to consider
both techniques when the prior is in doubt.

2 The general accuracy formula

We wish to estimate the frequentist accuracy of a Bayes posterior expectation θ̂ = E{t(µ)|x} (1.1),
where t(µ) is a parameter of particular interest. Here µ is an unknown parameter vector existing
in parameter space Ω with prior density π(µ), while x is a sufficient statistic taking its values in,
say, p-dimensional space,

x ∈ Rp, (2.1)

drawn from density fµ(x) in a known parametric family

F = {fµ(x), µ ∈ Ω} . (2.2)

We write the expectation and covariance of x given µ as

x ∼ (mµ, Vµ) (2.3)
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with Vµ a p× p matrix. Denote the gradient of log fµ(x) with respect to x by

αx(µ) = ∇x log fµ(x) =

(
· · · ∂

∂xi
log fµ(x) · · ·

)>
(2.4)

Lemma 1. The gradient of θ̂ = E{t(µ)|x} with respect to x is the posterior covariance of t(µ) with
αx(µ),

∇xθ̂ = cov{t(µ), αx(µ)|x}. (2.5)

(Proof to follow.)

Theorem 1. The delta-method approximation for the frequentist standard deviation of θ̂ = E{t(µ)
|x} is

ŝd =
[
cov{t(µ), αx(µ)|x}>Vµ̂ cov{t(µ), αx(µ)|x}

]1/2
, (2.6)

where µ̂ is the value of µ having mµ̂ = x.

This is the general accuracy formula, general in the sense of applying to all choices of prior,
uninformative or not. Section 3 shows that αx(µ) has a simple form, not depending on x, in
exponential families.

The theorem is an immediate consequence of the lemma and the usual delta-method estimate
for the standard deviation of a statistic s(x): suppose for convenience that x is unbiased for µ, so
that mµ = Eµ{x} = µ and µ̂ = x. A first-order Taylor series approximation yields

sdµ{s}
.
=
[
s′(µ)>Vµs

′(µ)
]1/2

, (2.7)

where s′(µ) indicates the gradient ∇xs evaluated at x = µ. Substituting µ̂ for µ gives the delta-
method standard deviation estimate, for example in (2.6) where s(x) = E{t(µ)|x} = θ̂. Posterior
expectations tend to be smooth functions of x, even if fµ(x) is not, improving the accuracy of
the delta-method approximation. A useful special case of the theorem appeared in Meneses et al.
(1990).

Several points about the general accuracy formula (2.6) are worth emphasizing.

Implementation Suppose
{µ1, µ2, µ3, . . . , µB} (2.8)

is a sample of size B from the posterior distribution of µ given x. Each µi gives corresponding
values of t(µ) and αx(µ) (2.4),

ti = t(µi) and αi = αx(µi). (2.9)

Then t̄ =
∑
ti/B approximates the posterior expectation θ̂, while

ĉov =
B∑
i=1

(αi − ᾱ) (ti − t̄) /B
[
ᾱ =

∑
αi/B

]
(2.10)

estimates the posterior covariance (2.5), so the same simulations that give θ̂ also provide its frequen-
tist standard deviation. (This assumes that Vµ̂ is easily available, as it will be in our applications.)
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Posterior sampling The posterior sample {µ1, µ2, . . . , µB} will typically be obtained via MCMC,
after a suitable burn-in period. The nonindependence of the µ’s does not invalidate (2.10), but
suggests that large values of B may be required for computational accuracy. The bootstrap-based
posterior sampling method of Section 3 produces independent values µi. Independence permits
simple assessments of the required size B; see (3.12).

Factorization If
fµ(x) = gµ(x)h(x) (2.11)

then the gradient
∇x log fµ(x) = ∇x log gµ(x) +∇x log h(x). (2.12)

The last term does not depend on µ, so cov{t(µ),∇x log fµ(x)|x} equals cov{t(µ),∇x log gµ(x)|x}
and we can take

αx(µ) = ∇x log gµ(x) (2.13)

in the lemma and the theorem.

Sufficiency If x = (y, z) where y = Y (x) is a q-dimensional sufficient statistic, we can write
fµ(x) = gµ(y)h(z) and

αx(µ) = ∇x log fµ(x) = ∇x log gµ(y) +∇x log h(z). (2.14)

As in (2.12), the last term does not depend on µ so we can take αx(µ) = ∇x log gµ(y). Letting
αy(µ) = ∇y log gµ(y), a q-dimensional vector,

αx(µ) = Y ′
>
αy(µ), (2.15)

where Y ′ is the q × p matrix (∂yi/∂xj). From (2.6) we get

ŝd =
[
cov {t(µ), αy(µ)|y}> Y ′Vµ̂Y ′

>
cov {t(µ), αy(µ)|y}

]1/2
. (2.16)

Notice that Y ′Vµ̂Y
′> is the delta-method estimate of the covariance matrix of y when µ equals

µ̂. In this approximate sense the theorem automatically accounts for sufficiency. However we can
avoid the approximation if in the first place we work with y and its actual covariance matrix. (This
will be the case in the exponential family setup of Section 3.) More importantly, working with y
makes ĉov in (2.10) lower-dimensional, and yields better estimation properties when substituted
into (2.6).

Vector parameter of interest The lemma and theorem apply also to the case where the tar-
get parameter t(µ) is vector-valued, say K-dimensional, as is θ̂ = E{t(µ)|x}. Then ∇xθ̂ and
cov{t(µ), αx(µ)|x} in (2.5) become p×K matrices, yielding K×K approximate frequentist covari-
ance matrix v̂ar for θ̂ = E{t(µ)|x},

v̂ar = cov {t(µ), αx(µ)|x}> Vµ̂ cov {t(µ), αx(µ)|x} , (2.17)

with αx(µ) and Vµ̂ the same as before

4



Discrete statistic x Suppose F in (2.2) is the one-dimensional Poisson family fµ(x) = exp(−µ)·
µx/x!, x a nonnegative integer. We can still calculate αx(µ) = log(µ) (2.4) (ignoring the term due
to x!, as in (2.12)). For µ greater than, say, 10, the Poisson distribution ranges widely enough to
smooth over its discrete nature, and we can expect formula (2.6) to apply reasonably well. Section 5
discusses a multidimensional discrete application.

Bias correction Replacing cov{t(µ), αx(µ)|x} in (2.6) with its nearly unbiased estimate ĉov
(2.10) upwardly biases the sd estimate. Remark 4 of Section 6 discusses a simple bias correction.
Bias was negligible in the numerical examples that follow.

As an example of Theorem 1 in action, we will consider the Diabetes Data of Efron et al. (2004):
n = 442 diabetes patients each have had observed a vector x of p = 10 predictor variables (age,
sex, body mass index, blood pressure, and six blood serum measurements),

xi = (xi1, xi2, . . . , xi10) for i = 1, 2, . . . , n = 442, (2.18)

and also a response variable yi measuring disease progression at one year after entry. Standardizing
the predictors and response variables suggests a normal linear model

y = Xα+ e with e ∼ Nn(0, I). (2.19)

Here X is the n× p matrix having ith row xi, while y is the vector of n responses.
Park and Casella (2008) consider applying a Bayesian version of the lasso (Tibshirani, 1996) to

the Diabetes Data. In terms of our model (2.19) (they do not standardize the variables) Park and
Casella take the prior distribution for α to be

π(α) = e−λL1(α), (2.20)

with L1(α) the L1 norm
∑10

1 |αj |, and λ having value

λ = 0.37. (2.21)

The Laplace-type prior (2.20) results in the posterior mode of β given y coinciding with the lasso
estimate

α̂λ = arg min
α

{
‖y −Xα‖2/2 + λL1(α)

}
, (2.22)

as pointed out in Tibshirani (1996). The choice λ = 0.37 was obtained from marginal maximum
likelihood considerations. In this sense Park and Casella’s analysis is empirical Bayesian, but we
will ignore that here and assume prior (2.20)–(2.21) to be pre-selected.

An MCMC algorithm was used to produce (after burn-in) B = 10, 000 samples αi from the
posterior distribution π(α|y), under assumptions (2.19)–(2.21),

{αi, i = 1, 2, . . . , B = 10, 000}. (2.23)

From these we can approximate the Bayes posterior expectation θ̂ = E{γ|y} for any parameter of
interest γ = t(α),

θ̂ =

B∑
i=1

t(αi)/B. (2.24)
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We can then apply Theorem 1 to estimate the frequentist standard deviation of θ̂. In terms of
the general notation (2.2), α is the parameter µ and we can take the sufficient statistic β̂ = X ′y in
model (2.19) to be x. With ĉov defined as in (2.10) formula (2.6), using the MCMC sample (2.23),
gives

ŝd =
{

ĉov>G ĉov
}1/2 [

G = X>X
]
, (2.25)

since G = X>X is the covariance matrix of β̂. The fact that α in (2.19) can substitute for αx(µ) in
(2.6), easily verified from β̂|α ∼ N (Gα,G), is an example of the general exponential family result
in Theorem 2 of Section 3.

As a univariate “parameter of special interest,” consider estimating

γ125 = x125α, (2.26)

the diabetes progression for patient 125. (Patient 125 fell near the center of the y response scale.)
The 10,000 values γ̂125,i = x125αi were nearly normally distributed,

N (0.248, 0.0722). (2.27)

Formula (2.25) gave frequentist standard deviation 0.071 for θ̂125 = 0.248 =
∑
γ̂125,i/10, 000, almost

the same as the posterior standard deviation, but having a quite different interpretation. The near
equality here is no fluke, but can turn out differently for other linear combinations γ = xα; see
Remark 1 of Section 6. Note: It is helpful here and in what follows to denote the parameter of
interest as γ with θ̂ = E{γ|x} indicating its posterior expectation.

Suppose we are interested in the posterior cumulative distribution function (cdf) of γ125. For a
given value c define

tc(α) =

{
1 if x125α ≤ c
0 if x125α > c

(2.28)

so E{tc(α)|y} = Pr{γ125 ≤ c|y}. The MCMC sample (2.23) provides B = 10, 000 posterior values
tci, from which we obtain the estimated cdf(c) value

∑B
1 tci/B and its standard deviation (2.6); for

example c = 0.3 gives
Pr{γ125 ≤ 0.3|y} = 0.762± 0.304, (2.29)

0.304 being the frequentist standard deviation of the posterior Bayes cdf 0.762.
The heavy curve in Figure 1 traces the posterior cdf of γ125. Dashed vertical bars indicate ±

one frequentist standard deviation. If we take the prior (2.20) literally then the cdf curve is exact,
but if not, the large frequentist standard errors suggest cautious interpretation.

The cdf curve equals 0.90 at ĉ = 0.342, this being the upper endpoint of a one-sided Bayes 90%
credible interval. The frequentist standard deviation of ĉ is 0.069 (obtained from ŝd(cdf(ĉ)) divided
by the posterior density at ĉ, the usual delta-method approximation), giving coefficient of variation
0.069/0.342 = 0.20.

For θ125 itself we were able to compare the frequentist standard deviation 0.071 with its Bayes
posterior counterpart 0.072 (2.27). No such comparison is possible for the posterior cdf estimates:
the cdf curve in Figure 1 is exact under prior (2.20)–(2.21). We might add a hierarchical layer of
Bayesian assumptions in front of (2.20)–(2.21) in order to assess the curve’s variability, but it is
not obvious how to do so here. (Park and Casella, 2008, Section 3.2, make one suggestion.)

The frequentist error bars of Figure 1 extend below zero and above one, a reminder that standard
deviations are a relatively crude inferential tool. Section 4 discusses more sophisticated frequentist
methods.
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Figure 1: Heavy curve is posterior cdf of γ125 (2.26), Diabetes Data; vertical dashed lines indicate ± one
frequentist standard error. The estimated curve is quite uncertain from a frequentist viewpoint. The upper
0.90 value ĉ = 0.342 has frequentist standard error 0.069, as indicated by the horizontal bar.

Proof of Lemma 1. Write θ̂ = A(x)/B(x) where

A(x) =

∫
Ω
t(µ)π(µ)fµ(x) dµ and B(x) =

∫
Ω
π(µ)fµ(x) dµ. (2.30)

Denoting the gradient operator ∇x by primes, so αx(µ) = (log fµ(x))′ (2.4) we calculate

A′(x) =

∫
Ω
t(µ)αx(µ)π(µ)fµ(x) dµ,

B′(x) =

∫
αx(µ)π(µ)fµ(x) dµ.

(2.31)

Using (A/B)′ = (A/B)[A′/A−B′/B] gives

θ̂′ = θ̂ ·
[∫

Ω t(µ)αx(µ)π(µ)fµ(x) dµ∫
Ω t(µ)π(µ)fµ(x) dµ

−
∫

Ω αx(µ)π(µ)fµ(x) dµ∫
Ω π(µ)fµ(x) dµ

]

= θ̂ ·
[
E {t(µ)αx(µ)|x}
E {t(µ)|x}

− E {αx(µ)|x}
]

= E {t(µ)αx(µ)|x} − E {t(µ)|x}E {αx(µ)|x}
= cov {t(µ), αx(µ)|x} . �

An overly generous sufficient condition for the interchange of integration and differentiation
in (2.31) is that αx(µ) and t(µ) are bounded in an open neighborhood of x and in a set of π(µ)
probability 1. See Remark B of Section 6 for a more computational derivation of Lemma 1. An
equivalent bootstrap form of the lemma and theorem is the subject of the next section.
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3 A bootstrap version of the general formula

A possible disadvantage of Section 2’s methodology is the requirement of a posterior sample
{µ1, µ2, . . . , µB} from π(µ|x) (2.8). This section discusses a parametric bootstrap approach to
the general accuracy formula that eliminates posterior sampling, at the price of less generality: a
reduction of scope to exponential families and to priors π(µ) that are at least roughly uninforma-
tive. On the other hand, the bootstrap methodology makes the computational error analysis, i.e.,
the choice of the number of replications B, straightforward, and, more importantly, helps connect
Bayesian and frequentist points of view.

A p-parameter exponential family F can be written as

F :
{
fα

(
β̂
)

= eα
>β̂−ψ(α)f0

(
β̂
)
, α ∈ A

}
. (3.1)

Here α is the natural or canonical parameter vector, and β̂ is the p-dimensional sufficient statistic.
The expectation parameter β = Eα{β̂} is a one-to-one function of α, say β = A(α), with β̂ being
the maximum likelihood estimate (MLE) of β. The parameter space A for α is a subset of Rp,
p-dimensional space, as is the corresponding space for β. The function ψ(α) provides the multiplier
necessary for fα(β̂) to integrate to 1.

In terms of the general notation (2.1)–(2.2), α is µ and β̂ is x. The expectation and covariance
of β̂ given α,

β̂ ∼ (β, Vα), (3.2)

can be obtained by differentiating ψ(α).
The general accuracy formula (2.6) takes a simplified form in exponential families, where the

gradient (2.4) becomes

∇β̂ log fα

(
β̂
)

= ∇β̂
{
α>β̂ − ψ(α) + log f0

(
β̂
)}

= α+∇β̂ log f0

(
β̂
)
.

(3.3)

The final term does not depend on α so, as in (2.12), what was called αx(µ) in (2.4) is now simply
α. Given prior distribution π(α) and parameter of interest t(α), we get this version of Theorem 1.

Theorem 2. The delta-method approximation for the frequentist standard deviation of θ̂ = E{t(α)
|β̂} in exponential family (3.1) is

ŝd =

[
cov

{
t(α), α|β̂

}>
Vα̂ cov

{
t(α), α|β̂

}]1/2

, (3.4)

where α̂, the natural parameter vector corresponding to β̂, is the MLE of α.

Parametric bootstrap resampling can be employed to calculate both θ̂ and ŝd, as suggested in
Efron (2012). We independently resample B times from the member of F having parameter vector
α equal α̂,

fα̂(·) −→ {β1, β2, . . . , βi, . . . , βB} (3.5)

(βi being short for the conventional bootstrap notation β̂∗i ). Each βi gives a corresponding natural
parameter vector αi = A−1(βi). Let πi = π(αi), and define the “conversion factor”

Ri = fαi

(
β̂
)/

fα̂(βi), (3.6)
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the ratio of the likelihood to the bootstrap density. (See (3.13)–(3.15) for the evaluation of Ri.)
The discrete distribution that puts weight

pi = πiRi

/
B∑
j=1

πjRj (3.7)

on αi for i = 1, 2, . . . , B, approximates the conditional distribution of α given β̂. To see this let
ti = t(αi) and θ̂ =

∑B
1 tipi, so

θ̂ =

[
B∑
i=1

tiπifαi

(
β̂
)/

fα̂(βi)

]/[
B∑
i=1

πifαi

(
β̂
)/

fα̂(βi)

]
. (3.8)

Since the βi are drawn from bootstrap density fα̂(·), (3.8) represents an importance sampling
estimate of [∫

A
t(α)π(α)fα

(
β̂
)
dα

]/[∫
A
π(α)fα

(
β̂
)]
, (3.9)

which equals E{t(α)|β̂}.
The same argument applies to any posterior calculation. In particular, cov{t(α), α|β̂} in (3.4)

is approximated by

ĉov =
B∑
i=1

pi (αi − ᾱ)
(
ti − θ̂

) [
ᾱ =

∑
piαi, θ̂ =

∑
piti

]
. (3.10)

Implementing Theorem 2 now follows three automatic steps:

1. Generate a parametric bootstrap sample β1, β2, . . . , βB (3.5).

2. For each βi calculate αi, ti = t(αi), and pi (3.7).

3. Compute ĉov (3.10).

Then θ̂ =
∑
piti approximates E{t(α)|β̂}, and has approximate frequentist standard deviation

ŝd =
[
ĉov>Vα̂ ĉov

]1/2
. (3.11)

(The matrix Vα̂ can be replaced by the empirical covariance matrix of β1, β2, . . . , βB or, with one
further approximation, by the inverse of the covariance matrix of α1, α2, . . . , αB.) Remark 3 of
Section 6 develops an alternative expression for ŝd.

An MCMC implementation sample {µi, i = 1, 2, . . . , B} (2.8) approximates a multidimensional
posterior distribution by an equally weighted distribution on B nonindependent points. The boot-
strap implementation (3.5)–(3.7) puts unequal weights on B i.i.d. (independent and identically
distributed) points.

Independent resampling permits a simple analysis of “internal accuracy,” the error due to stop-
ping at B resamples rather than letting B → ∞. Define Pi = πiRi and Qi = tiPi = tiπiRi. Since
the pairs (Pi, Qi) are independently resampled, standard calculations show that θ̂ =

∑
Qi/

∑
Pi

has internal squared coefficient of variation approximately

ĉv2
int =

1

B

[
B∑
i=1

(
Qi
Q̄
− Pi
P̄

)2
/
B

]
, (3.12)
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Q̄ =
∑
Qi/B and P̄ =

∑
Pi/B. See Remark 3 of Section 6.

The conversion factor Ri (3.6) can be defined for any family {fα(β̂)}, but it has a simple
expression in exponential families:

Ri = ξ(αi)e
∆(αi), (3.13)

where ∆(α) is the “half deviance difference”

∆(α) = (α− α̂)>
(
β + β̂

)
− 2 [ψ(α)− ψ (α̂)] , (3.14)

and, to a good approximation,
ξ(α) = 1

/
πJeff(α), (3.15)

with πJeff(α) = |Vα|1/2, Jeffreys invariant prior for α (Lemma 1, Efron, 2012). If our prior π(α) is
πJeff(α) then

πiRi = e∆(αi). (3.16)

The bootstrap distribution fα̂(·) locates its resamples αi near the MLE α̂. A working definition
of an informative prior π(α) might be one that places substantial probability far from α̂. In that
case, Ri is liable to take on enormous values, destabilizing the importance sampling calculations.
Park and Casella’s prior (2.20)–(2.21) for the Diabetes Data would be a poor choice for bootstrap
implementation (though this difficulty can be mitigated by recentering the parametric bootstrap
resampling distribution).

Table 1: Cell infusion data. Human cell colonies were infused with mouse nucleii in 5 different proportions,
over time periods varying from 1 to 5 days, and observed to see if they did or did not thrive. The table displays
number thriving over number of colonies. For example, 5 of the 31 colonies in the lowest infusion/days
category thrived.

1 2 3 4 5

1 5/31 3/28 20/45 24/47 29/35
2 15/77 36/78 43/71 56/71 66/74
3 48/126 68/116 145/171 98/119 114/129
4 29/92 35/52 57/85 38/50 72/77
5 11/53 20/52 20/48 40/55 52/61

Table 1 displays the cell infusion data, which we will use to illustrate bootstrap implementation
of the general accuracy formula. Human muscle cell colonies were infused with mouse nucleii. Five
increasing infusion proportions of mouse nucleii were tried, cultured over time periods ranging from
one to five days, and observed to see if they thrived or did not. The table shows, for instance, that
52 of the 61 colonies in the highest proportion/days category thrived.

Letting (sjk, njk) be the number of successes and number of colonies in the jkth cell, we assume
independent binomial variation,

sjk
ind∼ Bi(njk, ξjk) j = 1, 2, . . . , 5, k = 1, 2, . . . , 5. (3.17)

An additive logistic regression model fit the data reasonably well,

logit(ξjk) = α0 + α1Ij + α2I
2
j + α3Dk + α4D

2
k, (3.18)
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with Ij the infusion proportions 1, 2, . . . , 5, and Dk the days 1, 2, . . . , 5. Model (3.18) is a five-
parameter exponential family (3.1).

For our parameter of special interest t(α) we will take

γ =
5∑
j=1

ξj5

/
5∑
j=1

ξj1, (3.19)

the ratio of overall probability of success on Day 5 compared to Day 1, and calculate its posterior
distribution assuming Jeffreys prior πJeff(α) on α.

B = 2000 parametric bootstrap samples were generated according to

s∗jk
ind∼ Bi

(
njk, ξ̂jk

)
, j = 1, 2, . . . , 5, k = 1, 2, . . . , 5, (3.20)

where ξ̂jk is the MLE of ξjk obtained from model (3.18). These gave bootstrap MLEs α1, α2, . . . , αi,
. . . , α2000 and corresponding bootstrap estimates γi = t(αi) as in (3.19). The weights pi (3.7) that
convert the bootstrap sample into a posterior distribution are

pi = e∆i

/
2000∑
j=1

e∆j (3.21)

according to (3.7) and (3.16). Here ∆i is the half binomial deviance difference; see Remark 5,
Section 6.
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Figure 2: Posterior density of ratio γ (3.19) given the cell infusion data; binomial model (3.17)–(3.18),
Jeffries prior πJeff(α). From B = 2000 parametric bootstrap replications (3.20), posterior expectation 3.34

has frequentist ŝd = 0.273. Solid line segment shows central 0.90 credible interval [2.92, 3.80]. Frequentist
sd of 0.90 content is 0.042. Light dashed line is unweighted bootstrap density.

The heavy curve in Figure 2 is the estimated posterior density, that is, a smoothed version of
the discrete distribution putting weight pi on γi = t(αi). Its expectation

θ̂ =

B∑
1

pit(αi) = 3.34 (3.22)
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is a Monte Carlo estimate of the posterior expectation of γ given the data. (B = 2000 resamples
was excessive, formula (3.12) giving internal coefficient of variation only 0.002.)

How accurate is θ̂? Formula (3.11) yields ŝd = 0.273 as its frequentist standard deviation. This
is almost the same as the Bayes posterior standard deviation [

∑
pi(γi − θ̂)2]1/2 = 0.266.

In this case we can see why the Bayesian and frequentist standard deviations might be so similar:
the Bayes posterior density is nearly the same as the raw bootstrap density (weight 1/B on each
value γi). This happens whenever the parameter of interest has low correlation with the weights
pi (Lemma 3 of Efron, 2013). The bootstrap estimate of standard deviation [

∑
(γi− γ̄)2]1/2 equals

0.270, and it is not surprising that both the Bayes posterior sd and the frequentist delta-method
sd are close to 0.270.

Integrating the posterior density curve in Figure 2 gives [2.92, 3.80] as the 0.90 central credible
interval for γ. Defining ti to be 1 or 0 as γi does or does not fall into this interval, formula (3.11)
yields ŝd = 0.042 for the frequentist standard deviation of the interval’s content. The two endpoints
have sd’s 0.22 and 0.31. More interestingly, their frequentist correlation (calculated using (2.17);
see Remark 6 of Section 6) is 0.999. This strongly suggests that replications of the muscle data
experiment would show the 0.90 credible interval shifting left or right, without much change in
length.

4 Improved inferences

The general accuracy formula of Theorem 1 and Theorem 2 computes frequentist standard devia-
tions for Bayesian estimates. Standard deviations are a good start but not the last word in assessing
the accuracy of a point estimator. A drawback is apparent in Figure 1, where the standard error
bars protrude beyond the feasible interval [0, 1].

This section concerns bootstrap methods that provide better frequentist inference for Bayesian
estimates. A straightforward bootstrap approach would begin by obtaining a preliminary set of
resamples, say

fα̂(·) −→ b̂∗1, b̂
∗
2, . . . , b̂

∗
K (4.1)

in the exponential family setup (3.1); for each b̂∗k calculating θ̂∗k = Ê{t(α)|b̂∗k}, the posterior ex-

pectation of t(α) given sufficient statistic b̂∗k; and finally using {θ̂1, θ̂2, . . . , θ̂K} to form a bootstrap

confidence interval corresponding to the point estimate θ̂ = E{t(α)|β̂}, perhaps the BCa interval
(Efron, 1987). By construction, such intervals would not protrude beyond [0, 1] in the equivalent of
Figure 1, and would take into account bias and interval asymmetry as well as standard deviation.

The roadblock to the straightforward approach is excessive computation. Bootstrap confidence
intervals require K, the number of replicates, to be on the order of 1000. Each of these would require
further simulations, {µ1, µ2, . . . , µB} as in (2.8) or {β1, β2, . . . , βB} as in (3.5), B also exceeding
1000, in order to accurately calculate the θ̂∗k.

A shortcut method for bootstrap confidence calculations that, like Theorems 1 and 2, requires no
additional replications, will be developed next. The shortcut requires exponential family structure
(3.1), but otherwise applies equally to MCMC or bootstrap implementation (2.8) or (3.5).

Bayes theorem says that the posterior density g(α|β̂) corresponding to exponential family den-
sity fα(β̂) (3.1) is

g
(
α|β̂
)

= π(α)fα

(
β̂
)/

f
(
β̂
) [

f
(
β̂
)

=

∫
A
π(α)fα

(
β̂
)
m(dα)

]
(4.2)

(with m(·) the underlying measure for the family F , often Lebesgue measure or counting measure
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on a discrete set). Suppose now we change the observed sufficient statistic vector β̂ to a different
value b.

Lemma 2. The posterior distributions corresponding to exponential family F form an exponential
family G,

G =

{
g(α|b) = e(b−β̂)

>
α−φ(b)g

(
α|β̂
)

for b− β̂ ∈ B̂
}
, (4.3)

where

eφ(b) =

∫
A
e(b−β̂)

>
αg
(
α|β̂
)
m(dα). (4.4)

G is a p-parameter exponential family with roles reversed from F ; now α is the sufficient statistic
and b the natural parameter vector; B̂ is the convex set of vectors b − β̂ for which the integral in
(4.4) is finite.

(G is not the familiar conjugate family, Diaconis and Ylvisaker, 1979, though there are connections.)

Proof. From (3.1) we compute

g(α|b) = π(α)fα(b)/f(b)

=

π(α)fα

(
β̂
)

f
(
β̂
)

 fα(b)

fα

(
β̂
)
f

(
β̂
)

f(b)

 . (4.5)

But

fα(b)/fα

(
β̂
)

= e(b−β̂)
>
α
[
f0(b)

/
f0

(
β̂
)]
, (4.6)

yielding

g(α|b) = g
(
α|β̂
)
e(b−β̂)

>
α

 f0(b)f
(
β̂
)

f0

(
β̂
)
f(b)

 . (4.7)

The final factor does not depend on α and so must equal exp(−φ(b)) in (4.3)–(4.4) in order for
(4.7) to integrate to 1. �

In Sections 2 and 3, g(α|β̂) was approximated by a discrete distribution putting weight pi on
αi, say

ĝ
(
αi|β̂

)
= pi for i = 1, 2, . . . , B; (4.8)

pi = πiRi/
∑B

1 πjRj in bootstrap implementation (3.5)–(3.9); and pi = 1/B in the MCMC imple-
mentation (2.8) where the µi play the role of the αi.

Substituting ĝ(α|β̂) for g(α|b) in (4.3) produces the empirical posterior family Ĝ. Define

Wi(b) = e(b−β̂)
>
αi . (4.9)

Then Ĝ can be expressed as

Ĝ :

ĝ(αi|b) = Wi(b)pi

/
B∑
j=1

Wj(b)pj for i = 1, 2, . . . , B

 , (4.10)
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b ∈ Rp, i.e., the discrete distribution putting weight proportional to Wi(b)pi on αi. (Note: Ĝ differs
from the empirical exponential family in Section 6 of Efron, 2013.)

We can now execute the “straightforward bootstrap approach” (4.1) without much additional
computation. The kth bootstrap replication θ̂∗k = Ê{t(α)|b̂∗k} is estimated from ĝ(αi|b̂∗k) as

θ̂∗k =

B∑
i=1

tiWi

(
b̂∗k

)
pi

/
B∑
i=1

Wi

(
b̂∗k

)
pi [ti = t(αi)] . (4.11)

Aside from step (4.1), usually comparatively inexpensive to carry out, we can obtain θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
K

from just the original calculations for θ̂ =
∑
tipi, and use the θ̂∗k values to construct a bootstrap

confidence interval. (In particular, there is no need for new MCMC simulations for each new b̂∗k.)
Section 6 of Efron (2013) carries out this program under the rubric “bootstrap after bootstrap.”

It involves, however, some numerical peril: the weighting factors Wi(b̂
∗
k) can easily blow up, desta-

bilizing the estimates θ̂∗k. The peril can be avoided by local resampling, that is, by considering

alternate data values b very close to the actual β̂, rather than full bootstrap resamples as in (4.1).
This brings us to the abc system of confidence intervals (“approximate bootstrap confidence,”

DiCiccio and Efron, 1992, not to be confused with “Approximate Bayesian Computation,” as in
Fearnhead and Prangle, 2012). The abc algorithm approximates full bootstrap confidence intervals
using only a small number of resamples b in the immediate neighborhood of the observed sufficient
statistic β̂.
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Figure 3: Vertical bars are 68% central abc confidence limits for patient 125’s posterior cdf, Figure 1.
They remain within the feasible interval [0, 1], unlike Figure 1’s standard deviation bars, shown here as light
dashed vertical lines.

Figure 3 shows again the posterior cdf from Figure 1 for γ125, the progression parameter for
patient 125 in the diabetes study. The heavy vertical bars indicate abc 68% central frequentist
confidence limits for the Bayes posterior cdf values. Now the confidence limits stay within [0, 1].
Remark 6 of Section 6 discusses the details of the abc calculations.

Standard confidence intervals, say θ̂± ŝd for approximate 68% coverage, require only the original
point estimate θ̂ and its accuracy estimate ŝd, which in our case is what the general accuracy formula
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efficiently provides. The standard intervals are “first order accurate,” with their actual coverage
probabilities converging to the nominal value at rate n−1/2 as sample size n grows large.

The abc algorithm provides second order accuracy, that is, coverage errors approaching zero at
rate n−1. This is more than a theoretical nicety. As the examples in DiCiccio and Efron (1992)
show, the abc intervals often come close to exact small-sample intervals when the latter exist.
Three corrections are made to the standard intervals: for bias, for acceleration (i.e., changes in
standard deviation between the interval endpoints), and for nonnormality. The algorithm depends
on exponential family structure, provided by Ĝ the empirical posterior family (4.10), and a smoothly
varying point estimate.

In our situation the point estimate is the empirical posterior expectation (4.11) of t(α) given
sufficient statistic b, say θ̂ = s(b),

θ̂ = s(b) =
B∑
i=1

tiWi(b)pi

/
B∑
i=1

Wi(b)pi. (4.12)

For b near β̂, the values explored in the abc algorithm, the smoothness of the kernel Wi(b) (4.9),
makes s(b) smoothly differentiable.

What parameter is the intended target of the abc intervals? The answer, from DiCiccio and
Efron (1992), is θ = s(β), the value of s(b) if sufficient statistic b equals its expectation β. It is not
γ = t(α), the true value of the parameter of special interest.

Abc’s output includes bias, an assessment of the bias of θ̂ = s(β̂) as an estimator of θ, not as
an estimate of γ. The more interesting quantity definitional bias,

θ − γ = E
{
t (α̂) |β̂ = β

}
− t(α) (4.13)

depends on the prior π(α). It seems reasonable to ask that an uninformative prior not produce
large definitional biases. The parameter γ125 (2.26) has MLE and standard deviation 0.316±0.076,
compared with its Bayes estimate and frequentist standard deviation 0.248±0.071, giving a relative
difference of

δ̂ =
θ̂ − γ̂
sd (γ̂)

=
0.248− 0.316

0.076
= −0.90. (4.14)

In other words, the Park and Casella prior (2.20) shifts the estimate for patient 125 about 0.9
standard deviations downward, a quite substantial effect.

Figure 4 shows the relative difference estimates for all 442 diabetes patients. Most of the δ̂’s
are less extreme than that for patient 125. Even though prior (2.20) looks like a strong shrinker,
and not at all uninformative, its overall effects on the patient estimates are moderate.

5 Hierarchical and empirical Bayes accuracy

Modern scientific technology excels at the simultaneous execution of thousands, and more, parallel
investigations, the iconic example being microarray studies of genetic activity. Both hierarchical
and empirical Bayes methods provide natural statistical tools for analyzing large parallel data sets.
This section compares the accuracy of the two methods, providing some intuition as to why, often,
there is not much difference.

A typical hierarchical model begins with a hyperprior π(α) providing a hyperparameter α, which
determines a prior density gα(δ); N realizations are generated from gα(·), say

δ = (δ1, δ2, . . . , δk, . . . , δN ); (5.1)
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Figure 4: Relative differences (4.14) for the 442 diabetes patients, Park and Casella prior (2.20): Bayes
estimate minus MLE, divided by MLE standard deviation.

finally, each parameter δk provides an observation zk according to density hδk(zk), yielding a vector
z of N observations,

z = (z1, z2, . . . , zk, . . . , zN ). (5.2)

The functional forms π(·), gα(·), and hδ(·) are known, but not the values of α and δ. Here we will
assume that the pairs (δk, zk) are generated independently for k = 1, 2, . . . , N . We wish to estimate
the parameter δ from the observations z.

If α were known then Bayes theorem would directly provide the conditional distribution of δk
given zk,

gα(δk|zk) = gα(δk)hδk(zk)
/
fα(zk), (5.3)

where fα(zk) is the marginal density of zk given α,

fα(zk) =

∫
gα(δ)hδ(zk) dδ. (5.4)

The empirical Bayes approach estimates the unknown value of α from the observed vector z, often
by marginal maximum likelihood,

α̂ = arg max
α

{
N∏
i=1

fα(zk)

}
, (5.5)

and then infers the individual δk’s according to gα̂(δk|zk). Hierarchical Bayes inference aims instead
for the full posterior distribution of δk given all the observations z,

g(δk|z) =

∫
gα(δk|zk)π(α|z) dα. (5.6)

We will employ the general accuracy formula to compare the frequentist variability of the two
approaches.

As a working example we consider the prostate cancer microarray data (Singh et al., 2002).
Each of 102 men, 52 prostate cancer patients and 50 controls, has had the activity of N = 6033
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genes measured, as discussed in Section 5 of Efron (2012). A test statistic zk comparing cancer
patients with controls has been calculated for each gene, which we will assume here follows a normal
translation model

zk ∼ N (δk, 1), (5.7)

where δk is genek’s effect size (so hδ(z) in (5.3)–(5.4) is the normal kernel φ(z − δ) = exp{−(z −
δ)2/2}/

√
2π). “Null” genes have δk = 0 and zk ∼ N (0, 1), but of course the investigators were

looking for nonnull genes, those having large δk values, either positive or negative.
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Figure 5: Prostate data: dots are log counts for 49 bins (5.8)–(5.9). Dashed quadratic curve would fit the
dots if all genes were null, δk = 0 in (5.7). Eighth-degree polynomial, heavy curve, gives a much better fit,
indicating that some genes have large effect sizes.

Binning the data simplifies the Bayes and empirical Bayes analyses. For Figure 5 the data has
been put into J = 49 bins Zj , each of width 0.2, with centers cj ,

cj = −4.4,−4.2, . . . , 5.2. (5.8)

Let yj be the count in bin Zj ,
yj = #{zk ∈ Zj}. (5.9)

The dots in Figure 5 are the log counts log(yj). The dashed quadratic curve would give a good fit
to the dots if all the genes were null, but it is obviously deficient in the tails, suggesting some large
effect sizes.

An eighth-degree polynomial, the solid curve, provided a good fit to the data. It was obtained
from a Poisson regression GLM (generalized linear model). The counts yj (5.9) were assumed to
be independent Poisson variates,

yj
ind∼ Poi(µj), j = 1, 2, . . . , J = 49, (5.10)

with
µj = Eα{yj} = ex(cj)α. (5.11)

Here x(cj) is the nine-dimensional row vector

x(cj) = (1, cj , c
2
j , . . . , c

8
j ), (5.12)
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the cj being the bin centers (5.8), while α is an unknown parameter vector, α ∈ R9. There is a
small loss of information in going from the full data vector z to the binned counts that we will
ignore here.

Model (5.10)–(5.12) is a nine-parameter exponential family fα(β̂) (3.1) with α the natural
parameter vector. Its sufficient statistic is

β̂ = X>y, (5.13)

whereX is the 49×9 matrix having jth row x(cj), and y is the 49-vector of counts; β̂ has covariance
matrix

Vα = X> diag(µα)X, (5.14)

diag(µα) the diagonal matrix with diagonal elements (5.11).
We are now ready to apply the accuracy formula in the exponential family form of Theorem 2

(3.4). A crucial feature of our hierarchical model is that the parameter of interest t(α) is itself a
posterior expectation. Let τ(δ) be an “ interesting function” of an individual parameter δ in (5.1),
for instance the indicator of whether or not δ = 0,

τ(δ) = I0(δ). (5.15)

Letting (δ0, z0) represent a hypothetical (parameter, observation) pair, we define t(α) to be the
conditional expectation of τ(δ0) given z0, α, and the sufficient statistic β̂,

t(α) = E
{
τ(δ0)|z0, α, β̂

}
. (5.16)

In the prostate study, for example, with τ(δ) = I0(δ) and z0 = 3, t(α) is the conditional
probability of a gene being null given a z-value of 3. However, α is unobserved and t(α) must be
inferred. The hierarchical Bayes estimate is

θ̂ = E
{
t(α)|β̂

}
= E

{
τ(δ0)|z0, β̂

}
, (5.17)

as compared to the empirical Bayes MLE estimate t(α̂).
The hyperprior π(α) is usually taken to be uninformative in hierarchical Bayes applications,

making them good candidates for the bootstrap implementation of Section 3. Let α̂ be the MLE of
hyperparameter α, obtained in the prostate study by Poisson regression from model (5.10)–(5.12),
glm(y ∼ X, poisson)$coef in language R. From α̂ we obtain parametric bootstrap samples y∗i ,
i = 1, 2, . . . , B,

y∗ij
ind∼ Poi (µ̂j) , j = 1, 2, . . . , J, (5.18)

where µ̂j = exp(x(cj)α̂). The y∗i vector yields βi and αi, (3.5) and (3.6): βi = X>y∗ and αi =
glm(y∗ ∼X, poisson)$coef.

If for convenience we take π(α) to be Jeffreys prior, then the weights πiRi in (3.7) become

πiRi = e∆(αi) (5.19)

(3.16), where, for Poisson regression, the half deviance difference ∆(αi) is

∆i = (αi − α̂)>
(
βi + β̂

)
− 2

J∑
j=1

(µij − µ̂j) , (5.20)
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µ̂j = exp(x(cj)α̂) and µij = exp(x(cj)αi) (Efron, 2012, Sect. 5). Letting ti be the conditional
expectation (5.16),

t(αi) = E
{
τ(δ0)|z0, αi, β̂

}
, (5.21)

the hierarchical Bayes estimate θ̂ (5.17) is

θ̂ =

B∑
i=1

piti

[
pi = e∆i

/
B∑
k=1

c∆k

]
, (5.22)

and has frequentist standard ŝd (3.11) from Theorem 2.
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Figure 6: Hierarchical Bayes estimate θ̂ = E{δ0|z0, β̂} as a function of z0, prostate study data. Vertical bars

indicate ± one frequentist standard deviation ŝd (3.11). Calculated from B = 4000 parametric bootstrap
samples (5.18).

Figure 6 applies to the prostate data, taking τ(δ), the function of interest, to be δ itself; that
is, the hierarchical Bayes estimate (5.17) is

θ̂ = E
{
δ0|z0, β̂

}
, (5.23)

the posterior expected effect size for a gene having z = z0. The calculations assume Poisson
regression model (5.10)–(5.12), beginning with Jeffreys prior π(α). B = 4000 bootstrap samples
(5.18) provided the Bayesian estimates, as in (5.19)–(5.22).

The heavy curve in Figure 6 shows θ̂ as a function of z0. It stays near zero for z0 in [−2, 2),
suggesting nullity for genes having small z values, and then swings away from zero, indicating
nonnull effect sizes for large |z0|, but always with strong “regression to the mean” behavior: |θ̂| <
|z0|. The vertical bars span plus or minus one frequentist standard deviation ŝd (3.11).

There was very little difference between the hierarchical and empirical Bayes results. The graph
of the empirical Bayes estimates

t (α̂) = E
{
δ0|z0, α = α̂, β̂

}
(5.24)
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Table 2: Comparison of hierarchical and empirical Bayes estimates for expected effect sizes in the prostate
study. (1) Bayes estimate θ̂ (5.23); (2) empirical Bayes estimate E{δ0|z0, α = α̂, β̂}; (3) Bayes posterior sd

[
∑
pi(ti − θ̂)2]1/2; (4) frequentist sd of θ̂ (3.11); (5) bootstrap sd (5.25).

z0 −4 −3 −2 −1 0 1 2 3 4

1. Bayes est −2.221 −1.480 −.329 −.093 −.020 .127 .357 1.271 3.042
2. Emp Bayes est −2.217 −1.478 −.331 −.092 −.020 .126 .360 1.266 3.021

3. Bayes sd .756 .183 .074 .036 .030 .039 .071 .131 .336
4. Bayes freq sd .740 .183 .075 .035 .029 .038 .068 .131 .349
5. Emp Bayes sd .878 .187 .074 .037 .030 .039 .072 .139 .386

follows the curve in Figure 6 to within the line width. Table 2 gives numerical comparisons for
z0 = −4,−3, . . . , 4. The estimated standard deviations for the empirical Bayes estimates, line 5,
are a little bigger than those on line 3 for hierarchical Bayes, but that may just reflect the fact that
the former are full bootstrap estimates while the latter are delta-method sd’s.

Particularly striking is the agreement between the frequentist sd estimates for θ̂ (3.11), line 4,
and the posterior Bayes sd estimates, line 3. This is the predicted asymptotic behavior (Berger,
1985, Sect. 4.7.8) if the effect of the prior distribution has indeed been swamped by the data. It
cannot be assumed, though, that agreement would hold for estimates other then (5.23).

The empirical Bayes estimate t(α̂) = E{δ0|z0, α = α̂, β̂} had its standard deviation sd, line 5 of
Table 2, calculated directly from its bootstrap replications,

sd =

[
B∑
1

(ti − t̄)2 /B]1/2 [
t̄ =

B∑
1

ti/B

]
, (5.25)

as compared with the Bayes posterior standard deviation, line 3,

ŝd =

[
B∑
1

pi

(
ti − θ̂

)2
]1/2 [

θ̂ =

B∑
1

piti

]
. (5.26)

(See Remark 8 of Section 6 concerning the calculation of ti.) The difference comes from weighting
the B bootstrap replications ti according to pi (3.7), rather than equally. Lemma 3 of Efron (2012)
shows that the discrepancy, small in Table 2, depends on the empirical correlation between pi and
ti.

There is a similar relation between lines 4 and 5 of the table. Remark 9 shows that sd, line 5,
is approximated by

sd
.
=
[
cov>Vα̂cov

]1/2
, (5.27)

where cov is the unweighted bootstrap covariance between αi and ti,

cov =

B∑
1

(αi − ᾱ) (ti − t̄) /B

[
ᾱ =

B∑
1

αi/B

]
. (5.28)

This compares with the weighted version (3.10)–(3.11) of line 4. Weighting did not matter much
in Table 2, leaving the three standard deviations more alike than different.
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Table 3: Polynomial model selection for the prostate study data. Row 1 : raw bootstrap proportions for
best polynomial fit, AIC criterion; row 2 : corresponding Bayes posterior probabilities, Jeffreys prior; row 3 :
frequentist standard deviations for the Bayes estimates.

m 4 5 6 7 8

1. Bootstrap % 32% 10% 5% 1% 51%
2. Bayes exp 36% 12% 5% 2% 45%
3. Freq sd ±32% ±16% ±8% ±3% ±40%

The eighth-degree polynomial fit used in Figure 5 might be excessive. For each of the B = 4000
bootstrap samples y∗i , the “best” polynomial degree m∗i was selected according to the AIC criterion,
as detailed in Section 5 of Efron (2012). Only degrees m = 0 through 8 were considered. The top
row of Table 3 shows that 32% of the 4000 bootstrap samples gave m∗i = 4, compared to 51% for
m∗i = 8. (None of the samples had m∗i less than 4.)

Let t
(m)
i be the indicator for model m selection,

t
(m)
i =

{
1 if m∗i = m

0 if m∗i 6= m.
(5.29)

Then

θ̂(m) =
B∑
i=1

pit
(m)
i (5.30)

is the posterior probability of the region R(m) in the space of possible α vectors where degree m is
best; for instance, θ̂(4) equals 36% on row 2.

We can apply Theorem 2 (3.11) to obtain frequentist standard deviations for the θ̂(m). These
are shown in row 3. The results are discouraging, with θ̂(4) = 36% having ŝd = 32% and so on.
(These numbers differ from those in Table 2 of Efron, 2012, where the standard deviations were
assessed by the potentially perilous “bootstrap after bootstrap” method.) There was a strong
negative frequentist correlation of −0.84 between θ̂(4) and θ̂(8) (using (2.17)). All of this suggests
that the MLE α̂ lies near the boundary between R(4) and R(8), but not near the other regions.
Bayesian model selection, of the limited type considered above, is frequentistically unstable for the
prostate data.

6 Remarks

This section presents remarks, details, and extensions of the previous material.

Remark 1. Relation of Bayes and frequentist standard deviations In several of our examples
the posterior Bayes estimate θ̂ had its posterior standard deviation ŝdBayes quite close to ŝdfreq, the
frequentist sd. Why this might happen, or might not, is easy to understand in the diabetes data
example (2.26)–(2.27).

Let α̃ be the 10, 000× 10 matrix with ith row αi − ᾱ, so

Σα = α̃>α̃/B (B = 10, 000) (6.1)
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is the empirical covariance matrix of the αi vectors. For any fixed row vector x we define as our
parameter of special interest γx = xα (x = x125 in (2.26)). Each αi gives ti = xαi, with average
t̄ = xᾱ. The vector t̃ of centered values t̃i = ti − t̄ is given by

t̃ = α̃x>. (6.2)

Then

ŝd
2

Bayes =
B∑
1

t̃2/B = xΣαx
>. (6.3)

Also, from (2.10),
ĉov> = t̃α̃/B = xΣα, (6.4)

yielding

ŝd
2

freq = xΣαGΣαx
> (6.5)

from (2.25).
The variance ratio rat(x) equals

rat(x) =

(
ŝdfreq

ŝdBayes

)2

=
xΣαGΣαx

>

xΣαx>
. (6.6)

Suppose H = Σ
1/2
α GΣ

1/2
α has spectral decomposition H = ΓdΓ>, d the diagonal matrix of eigen-

values. Then (6.6) reduces to

rat(x) =

p∑
1

div
2
i

/∑
v2
i

(
v = xΣ1/2

α Γ
)
. (6.7)

Table 4: Eigenvalue di for the variance ratio rat(x) (6.7).

1.014 1.009 .986 .976 .961 .944 .822 .710 .482 .098

Table 4 shows the eigenvalues di. We see that rat(x) could vary from 1.014 down to 0.098. For
the 442 diabetes patients, rat(xi) ranged from 0.991 to 0.670, averaging 0.903; rat(x125) = 0.962
was near the high end. A spherically uniform choice of v in (6.7) would yield an average rat(x) of
0.800.

The fact that the eigenvalues in Table 4 are mostly less than one relates to the Park and Casella
prior (2.20). A flat prior for model (2.19) has cov(α) = G−1, giving H = I and eigenvalues di = 1
in (6.7). The Park and Casella prior (2.20) is a “shrinker,” making Σα and H less than I.

A more general but less transparent formula for (ŝdfreq/ŝdBayes)
2 is available for possibly nonlin-

ear parameters t(α). As before, let pi be the weight on αi, with pi equaling 1/B or (3.7) in Sections
2 and 3, respectively, giving t̄ =

∑
piti and ᾱ =

∑
piαi. Define si =

√
pi(ti − t̄) and matrix M ,

M = diag(p
1/2
i )α̃Vα̂α̃

> diag(p
1/2
i ), (6.8)

where α̃ has rows αi − ᾱ and Vα̂ is as in (3.11). The spectral decomposition M = ΓdΓ′ has p =
rank(α̃) nonzero eigenvalues di, with corresponding eigenvectors Γi, giving, after straightforward
calculations, (

ŝdfreq

ŝdBayes

)2

=

∑p
1 dis

2
i∑p

1 s
2
i

(
si = s> Γi

)
(6.9)
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for θ̂ =
∑
piti; the ratio can range from a high of d1 to a low of dp, depending on how t(α) aligns

with the eigenvectors of M .

Remark 2. A computational verification of Lemma 1 Working directly with the implementation
values µi, αi, and ti (2.8)–(2.9), we can verify Lemma 1 in the form in which it is actually used
computationally. For x̃ any point in the sample space of the sufficient statistic, define

Wµ(x̃) = fµ(x̃)/fµ(x), (6.10)

x the observed statistic. Letting x̃ = x+ dx with dx→ 0,

Wµ(x̃) =
fµ(x) + f ′µ(x)dx+ o(dx)

fµ(x)
= 1 + αx(µ)dx+ r(x) (6.11)

where the remainder r(x) = o(dx)/fµ(x). Here we are assuming that fµ(x) has continuous gradient
f ′µ(x̃) in a neighborhood of x, and that fµ(x) > 0.

The importance sampling estimate of E{t(µ)|x̃} is

θ̂(x̃) =

B∑
i=1

tiWi(x̃)

/
B∑
i=1

Wi(x̃)

=

∑
ti(1 + αidx+ ri)∑
(1 + αidx+ ri)

,

(6.12)

with Wi = Wµi(x̃), αi = αx(µi), and ri = oi(dx)/fµi(x). Denoting t̄ =
∑
ti/B, tα =

∑
tiαi/B,

etc., (6.12) gives

θ̂(x+ dx) =
t̄
[
1 +

(
tα/t̄

)
dx+ tr/t̄

]
1 + ᾱdx+ r̄

. (6.13)

Since t̄ = θ̂(x) and tr and r̄ are o(dx), letting dx→ 0 yields

θ̂(x+ dx) = θ̂ +
(
tα− t̄ᾱ

)
dx+ o(dx)

= θ̂ + ĉov · dx+ o(dx),
(6.14)

ĉov as in (2.10). This verifies Lemma 1 as employed in the computational form of Theorem 1:
ŝd = (ĉov>Vµ̂ĉov)1/2 (3.11).

Remark 3. An alternative form of Lemma 1 Lemma 1 assumes the computational form ∇β̂ θ̂ =

ĉov(t, α) (3.10) in an exponential family (3.1). Defining

Oi = Qi/Q̄− Pi/P̄ (6.15)

as in (3.12), an equivalent expression for ĉov turns out to be

ĉov = θ̂ · cov∗(O,α), (6.16)

where cov∗ is the usual unweighted bootstrap covariance

cov∗ =
B∑
i=1

(αi − ᾱ)Oi/B

[
ᾱ =

B∑
1

αi/B

]
. (6.17)

(Notice that Ō = 0.) This leads to a convenient formula for the frequentist coefficient of variation
ŝd/|θ̂| of θ̂,

ĉv =
(

cov>∗ Vα̂ cov∗

)1/2
; (6.18)

as compared with the internal cv sd∗(O)/
√
B (3.12).
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Remark 4. Bias correction for ŝd Monte Carlo calculation of ŝd, either by MCMC or bootstrap
methods, can be improved by a downward internal bias correction. Define Ŏi = θ̂Oi (6.15), ᾰi =

V
1/2
α̂ αi, and vector

CB = cov∗

(
Ŏ, ᾰ

)
=

B∑
i=1

ᾰiŎi
/
B. (6.19)

Then formula (6.18) can be reexpressed as

ŝd
2

= ‖CB‖2. (6.20)

Let C∞ denote the limit of CB as the number of parametric bootstrap replications B →∞. The
last expression in (6.19) suggests that CB has approximate bootstrap expectation and covariance

CB ∼ (C∞, DB), (6.21)

with DB the component of covariance from stopping at B replications rather than going on to
infinity. Combining (6.20) and (6.21) gives

ŝd
2

= ŝd
2

∞ + tr(DB) (6.22)

(ŝd∞ being the ideal sd estimate when B →∞), indicating an upward bias in ŝd.
The bias-corrected sd estimate for θ̂ is given by

s̆d
2

= ŝd
2
− tr(DB). (6.23)

Jackknife calculations provide a convenient estimate of tr(DB): the B bootstrap replications are
divided into J groups of B/J each (e.g., J = 20); CBj is computed as in (6.19) but with the jth
group of replications removed, giving the J × p matrix C with rows CBj ; finally the p× p sample
covariance matrix of C gives the estimate

tr(DB) =
(J − 1)2

J
tr(covC). (6.24)

DB decreases at rate 1/B, and the large choices of B in our examples made the bias correction
(6.23) insignificant.

Remark 5. Binomial deviance difference The binomial GLM for the cell infusion data analysis
(3.17)–(3.18), has half deviance difference

∆ =
5∑

j,k=1

{
(ηjk − η̂jk)

(
ξjk + ξ̂jk

)
− 2 log

[
(1 + eηjk)

/(
1 + eη̂jk

)]}
, (6.25)

where ηjk = log(ξjk/(1− ξjk)). Here we have suppressed subscript i.

Remark 6. A vector parameter example The joint frequentist behavior of the 0.90 credible
interval endpoints [0.292, 0.380] in Figure 2 involved the vector parameter form (2.17) of the general
accuracy formula, carried out by the bootstrap sampling method of Section 3.

With Ic(γ) the indicator function of γ ≤ c, we define the bivariate parameter replication ti =
(I2.92(γi), I3.80(γi)) for i = 1, 2, . . . , B = 2000. Then ĉov (3.10) is a 2 × 2 matrix, as is v̂ar (3.11).
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The weighted bootstrap density f̂(γ) had numerical derivatives (dlo, dup) = (0.466, 0.330) at the
interval endpoints; (

dlo 0
0 dup

)−1

v̂ar

(
dlo 0
0 dup

)
=

(
.0476 .0678
.0678 .0968

)
(6.26)

is the usual delta-method covariance matrix estimate for the endpoints, giving them frequentist
standard deviations 0.218 and 0.311, and correlation 0.999.

Remark 7. Abc calculations for the diabetes data The abc algorithm (DiCiccio and Efron, 1992)
provides second-order accurate confidence intervals for scalar parameters θ = T (β) in p-parameter
exponential families (3.1) It does this by recomputing the MLE θ̂ = T (β̂) for values of b near β̂
(only 4p+4 recomputations are needed), calculating 2p+2 numerical second derivatives, and using
these to make second-order adjustments to the standard intervals θ̂± c · ŝd. An R version of abc is
available from the author.

The solid bars in Figure 3 are abc intervals for the point estimates

θ̂c = P̂r
{
γ125 ≤ c|β̂

}
(6.27)

(2.26). Here Ĝ (4.10) was the p-parameter exponential family, p = 10, with αi (2.23) the B = 10, 000
MCMC vectors, weights pi = 1 in (4.8). Taking Ĝ’s reversed roles of α and β into consideration,
the abc call was

abc(TT, ahat, S, bhat, mu) (6.28)

where mu was the function

mu(b) =

B∑
i=1

Wi(b)αi

/
B∑
i=1

Wi(β)

[
Wi(b) = e(b−β̂)

>
αi

]
, (6.29)

bhat= β̂ = X>y, ahat=mu(bhat), and S the p×p covariance matrix of the αi; TT was the function

TT(a) =
B∑
i=1

Wi(b)tci

/
B∑
i=1

Wi(b), b = mu−1(a), (6.30)

where tci = tc(αi) (2.28), while mu−1(·) was the inverse function of mu(·), calculated to accuracy
10−11 using Newton–Raphson iteration. (The inversion is necessary because θ̂ = s(b) (4.12) is a
function of the natural parameter b of Ĝ, but abc requires θ̂ stated in terms of the expectation
parameter, a in the case of Ĝ.)

Table 5 displays a portion of the abc output going into Figure 3. Besides θ̂ and ŝd, it shows
the three second-order correction coefficients described in DiCiccio and Efron (1992): acceleration
a and bias-correction z0 are mostly ignorable, but the quadratic coefficient cq is not. It has a major
effect on the abcq limits, a version of abc that is purely local in the sense of only recomputing T (b)
for b near β̂.

The abc limits in Figure 3 involve one nonlocal recomputation. They enjoy tranformation in-
variance, monotone transformations of the parameter of interest producing the same transformation
of the interval endpoints, which might be helpful for parameters like θc restricted to interval [0, 1].
However in this case they were not much different than the abcq versions.

Remark 8. Tweedie’s formula for the prostate data Both Bayes and empirical Bayes hierar-
chical analyses require evaluation of ti = E{τ(δ0)|z0, αi, β̂} (5.21) for i = 1, 2, . . . , B. This is
straightforward when τ(δ) = δ as in Figure 6. Tweedie’s formula (Efron, 2011) says that

E{δ0|z0, α} = z0 + d
dz log fα(z)

∣∣
z0
, (6.31)
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Table 5: abc calculations for the diabetes data, Figure 3; (a, z0, cq) are the three coefficients that adjust

the standard limits θ̂ ± ŝd to second-order accuracy (DiCiccio and Efron, 1992). The abc limits, columns 7
and 8, were not much different than the purely local abcq limits, columns 9 and 10.

abc abcq

c θ̂ ŝd a z0 cq lo up lo up

.04 .00 .01 .00 .27 1.50 .00 .06 .00 .03

.08 .01 .03 .01 .21 1.17 .00 .13 .01 .09

.12 .04 .08 .00 .12 .88 .00 .25 .02 .22

.16 .11 .19 .00 .05 .60 .02 .44 .03 .45

.2 .25 .32 .00 .02 .33 .05 .63 .04 .68

.24 .46 .40 .00 −.02 .05 .13 .80 .08 .86

.28 .67 .36 .00 −.02 −.23 .28 .92 .23 .95

.32 .84 .24 .00 −.03 −.50 .49 .98 .47 .96

.36 .94 .12 .00 −.03 −.78 .71 .99 .73 .97

where fα(z) is the marginal density (5.4). In terms of notation (5.11)–(5.12),

ti = cj0 + ẋj0αi, (6.32)

where j0 is the bin index (5.9) for z0, and

ẋj = (0, 1, 2cj , 3c
2
j , . . . , 8c

7
j ). (6.33)

Theoretically there is a version of Tweedie’s formula applying to any function τ(δ) (called
“Bayes rule in terms of f” in Efron, 2013). The case τ(δ) = δ, however, is particularly favorable
to GLM modeling of the marginal density f(z) (5.4). Other choices of τ(δ) may require non-GLM
models for f , returning hierarchical Bayes analysis to the general, nonexponential family framework
of Section 2.

Remark 9. Empirical Bayes sd formula The empirical Bayes standard deviation formula (5.27)
is easy to derive in exponential families. We assume, for convenience, that the sufficient statistic x
takes on only a finite number J of possible values, so that the marginal density fα(·) is represented
by a J-vector fα. Let Q be the gradient of t(α) = E{τ(δ0)|z0, α} with respect to f (specific
formulas for Q are given in Efron, 2013), and ḟα the J × p derivative matrix (∂fαj/∂αk). Then a
first-order Taylor expansion gives

t(α̂)− t(α)
.
= Q>ḟα(α̂− α). (6.34)

This yields
sd (t(α̂))2 .

= Q>ḟαΣαḟαQ [Σα = covα(α̂)] (6.35)

and
cov (t(α̂), α̂)

.
= Q>ḟαΣα, (6.36)

so
sd (t(α̂))2 .

= cov (t(α̂), α̂)>Σ−1
α cov (t(α̂), α̂) . (6.37)

But Σ−1
α

.
= covα(β̂) = Vα in exponential families, giving

sd (t(α̂))2 .
= cov (t(α̂), α̂)> Vα cov (t(α̂), α̂) . (6.38)

Formula (5.27) for sd is the bootstrap evaluation of (6.38).
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