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Abstract

The genetic basis of multiple phenotypes such as gene expression, metabolite

levels, or imaging features is often investigated by testing a large collection of hy-

potheses, probing the existence of association between each of the traits and hundred

of thousands of genotyped variants. Appropriate multiplicity adjustment is crucial

to guarantee replicability of findings, and False Discovery Rate (FDR) is frequently

adopted as a measure of global error. In the interest of interpretability, results are of-

ten summarized so that reporting focuses on variants discovered to be associated to

some phenotypes. We show that applying FDR-controlling procedures on the entire

collection of hypotheses fails to control the rate of false discovery of associated vari-

ants as well as the average rate of false discovery of phenotypes influenced by such

variants. We propose a simple hierarchical testing procedure which allows control

of both these error rates and provides a more reliable basis for the identification of

variants with functional effects. We demonstrate the utility of this approach through

simulation studies comparing various error rates and measures of power for mul-

tiple traits genetic association studies. Finally, we apply the proposed method to

identify genetic variants which impact flowering phenotypes in Arabdopsis thaliana,

expanding the set of discoveries.

1 Introduction

Biotechnological progress has enabled the routine measurement of thousands of pheno-

types that were beyond the reach of precise quantification just a couple of decades ago.

Together with the reduced costs of genotyping and sequencing, this motivates research

into the genetic basis of an unprecedented number of traits. Examples include eQTL

studies [1–3] that investigate the role of genetic variation on the expression of tens of

thousands of genes; genome-wide metabolomics studies [4, 5] that consider genetic in-

fluences on the levels of hundreds of metabolites; and proteomics studies investigating
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genetic regulation of protein abundances [6, 7]. At a more macroscopic level, neuroimag-

ing genetics [8] aims to identify DNA variants influencing brain structures, described in

thousands of voxels. Looking at even higher-level phenotypes, a number of large cohorts

with rich phenotypic information have been or are being genotyped and will be used

to map multiple traits. Notable examples are the RPGEH [9] of Kaiser Permanente that

has already genotyped 100,000 subjects with complete medical records, and the Million

Veterans Program [10] that is aiming to genotype a million veterans with available health

records.

Investigating the genetic basis of thousands of traits simultaneously offers exciting

possibilities, including the hope that a comprehensive and multifaceted description of

the health status of a subject can provide a strong foundation for understanding relevant

genetic underpinnings. Capitalizing on these possibilities requires appropriate statistical

approaches to address the challenges posed by these novel data sets. Here, we focus on

one such problem: namely, the development of multiple-testing procedures to identify

discoveries while controlling an appropriate measure of error. Two choices need to be

made up-front: (1) what notion of error to control; and (2) what is to be considered a

discovery. We discuss these at the beginning of our study. In what follows, the terms

‘trait’ and ‘phenotype’ are used interchangeably; similarly, and with a slight abuse, ‘SNP’

(Single Nucleotide Polymorphism) and ‘variant’ are considered synonymous.

The genetics community has been acutely aware of the necessity of accounting for

the “look across the genome” effect. Even before genome-wide linkage (or association)

studies were a possibility, sequential test procedures [11] and Bayesian arguments [12]

led to the adoption of very stringent significance cut-offs. Once large marker panels

became available and multiple-testing became a reality, efforts focused on controlling

the probability of making at least one erroneous finding, a criteria known as the fami-

lywise error rate (FWER) [13, 14]. This is well suited to investigate the genetic basis of

a single disease assumed to be substantially influenced by one or two loci, especially
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when following up a hit implies years of work. The nature of present-day multi-trait

investigations, however, is substantially different: when one explores the genetic basis of

tens of thousands of traits, as in eQTL studies, insisting on not making even one mistake

is overly severe. Indeed, on the heels of the experience in analysis of gene expression

data [15, 16], in eQTL and other -omics investigations, another more liberal criteria has

emerged as the dominant paradigm: the false discovery rate (FDR) [17]. The FDR is

defined as the expected proportion of findings that are erroneous, meaning that they

correspond to situations where the null hypothesis is actually true. The present work

adopts the point of view that such a criteria better reflects the goals of multi-phenotype

studies where one expects to make a sizable number of discoveries, and it is acceptable

to have a few false leads as long as these represent a small proportion of the findings

[2, 18].

In order to powerfully control FDR one needs to define a discovery. What constitutes

an interesting finding? the identification of a variant that influences a specific pheno-

type? the determination that there is a genetic component to the variability of a trait?

the discovery that one DNA variant is not neutral? all of the above? in which order of

importance? To resolve these questions it is useful to look at the typical multi-phenotype

genome-wide association study (GWAS): this consists in testing the hypothesis Hvt of no

association between variant v and trait t for all values of v and t. This rather simplistic

approach is often preferred for its limited computational cost, its robustness to miss-

ing data, and—most importantly—the ease with which results on different phenotypes

and SNPs can be compared across different studies. The collection of tested hypothe-

ses {Hvt v = 1, . . . , M; t = 1, . . . , P} can be considered as a single group, but it is

also quite natural to identify sub-groups of hypotheses that address one specific scien-

tific question, technically referred to as families. Note that—following the convention in

multiple comparison literature—we here use the term ‘family’ to indicate a collection of

hypotheses rather than a group of related individuals; given that pedigrees do not play
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a role in the discussion, this should not be confusing. One can consider the families

Pt = {Hvt v = 1, . . . , M} of all hypotheses related to the phenotype t, addressing the

existence of a genetic basis for the tth trait. Alternatively, one can focus on the families

Fv = {Hvt, t = 1, . . . , P} of all hypotheses involving SNP v, investigating the phenotypic

effect of each genetic variant v. To these families we can associate global null hypothe-

ses: Hv• = ∩P
t=1Hvt signifies that variant v does not affect any trait, while H•t = ∩M

v=1Hvt

states that trait t is not influenced by any variant. Identifying a relevant family structure

is important both because families are the appropriate universe for multiplicity adjust-

ment and because they define discoveries. Ultimately this choice is study specific, but

here we make one both in the interest of concreteness and to underscore a viewpoint

that is often relevant. In most multi-phenotype GWAS, scientists have solid reason to

believe that the traits under investigation have a genetic underpinning, so rejecting H•t

would not represent an interesting discovery. In contrast, we expect most genetic vari-

ants to have no effect on any trait, so identifying those that are ‘functional’ can arguably

be considered the most important discovery of multi-phenotype investigations. Con-

sider, for example, eQTL studies: the discovery of SNPs that influence the expression

of some genes is important as they are considered potential candidates for association

with a variety of other medically relevant traits. Indeed, the reported results from multi-

phenotype GWAS tend to be organized in terms of associated variants. In what follows,

then, we consider the hypotheses {Hvt v = 1, . . . , M; t = 1, . . . , P} as organized in M

families Fv defined by variants, and we identify the rejection of Hv• as an important dis-

covery. Once a decision has been made that the hypotheses under consideration can be

grouped in different families, it becomes relevant and meaningful to talk about a variety

of global error measures, as described in Section 2.
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F1 F2 F3 F4 F5
?

H11 H12
?

H13 H14 H15

H21 H22
?

H23 H24 H25
?

H31 H32
?

H33 H34 H35

H41
?

H42
?

H43 H44 H45

H51 H52
?

H53 H54 H55
?

H61 H62
?

H63 H64 H65

H71 H72 H73 H74 H75

H81 H82 H83 H84 H85

Table 1: Example of structured hypotheses: the 40 hypotheses H11, . . . , H85 are grouped
into families F1, . . . ,F5. Bold hypotheses are false null, and starred hypotheses corre-
spond to rejections.

2 Global error measures for structured hypotheses

2.1 Definitions of relevant error measures

We start by considering one simple example where we assume that we know the true

hypotheses status and we can measure the realized False Discovery Proportion (FDP).

Table 1 presents a total of 40 hypotheses, relative to 8 phenotypes and 5 variants, which

define families Fi, i = 1, . . . , 5. We use bold to indicate hypotheses that are false null

(where signal/ association is present) and asterisks to indicate hypotheses that are re-

jected. A variant is discovered if the corresponding family contains at least one rejected

hypothesis. In Table 1 there are a total of 10 individual hypotheses rejected and two of

these are true null: the global false discovery proportion (gFDP) equal to 2/10. Families

F1,F2,F3 are discovered, but all the hypotheses in F2 are true nulls: the proportion of

false family discoveries (FFDP) is 1/3. The average FDP (aFDP) across all families is

0.23̄ = (0 + 1 + 1/6 + 0 + 0)/5, but if we focus only on families that have been discov-

ered, the average FDP across selected families (sFDP) is 0.38̄ = (0 + 1 + 1/6)/3.
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With this example in mind, we can define a variety of error rates. Let P indicate

the collection of p-values associated with all the individual hypotheses tested. Let S(P)

be a selection procedure (which can depend on the observed p-values) that identifies

interesting variants. Let R be the total number of rejections and F the total number of

erroneous rejections across all hypotheses. Similarly, Fi and Ri count the false discoveries

and total discoveries in family i. We say that variant i is discovered if the corresponding

global null Hi• is rejected. We indicate with Rv and Fv, respectively, the total number

of rejections and the total number of false discoveries among the M global hypotheses

Hi•s, probing the role of variant i.

• gFDR = E
(
V/ max{R, 1}

)
is the global FDR that ignores the division of the hy-

potheses into families.

• FDRi =E
(
Vi/ max{Ri, 1}

)
is the FDR within family i.

• aFDR = 1
M ∑M

i=1 E
(
Vi/ max{Ri, 1}

)
is the average of the within-family FDRs.

• sFDR = E
[ 1

max{|S(P)|,1} ∑i∈S(P)
(
Vi/ max{Ri, 1}

)]
is the expected value of the aver-

age of the within-family FDPs, where the average is taken only across families that

have been selected.

• vFDR = E(Vv/ max{Rv, 1}) is the FDR for the discovery of variants (families).

Focusing on I[F > 0] rather than F/ max{R, 1} and the appropriate modifications of

these, one can define the corresponding set of FWERs.

Given these alternatives, what error rate is relevant and important to control? The

gFDR is a natural first choice as this is the error rate we would control if we had not

identified a family structure among our hypotheses. Despite the appeal of its simplicity,

there are caveats to be considered when targeting gFDR. As shown eloquently in Efron

[19], pooling hypotheses from multiple families that have different proportions of true

nulls and controlling gFDR can result in rather sub-optimal behavior: for families that
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contain none or very few false nulls, FDRi will not be controlled at the desired level,

while families with many false nulls will encounter a loss in power. If one targets FDRi

for each family separately, these difficulties are overcome but at the price of a large

number of false discoveries: while aFDR would be controlled, gFDR and sFDR would

not. In addition, it is important to note that if we consider Hi• rejected as long as one of

Hit, t = 1, . . . , P is, then neither of the two strategies above controls vFDR or sFDR.

2.2 Simulation: error levels of global and family wise BH

To illustrate these characteristics, we run a simulation with 300,000 hypotheses corre-

sponding to P=100 phenotypes and M=3000 variants. Families are defined by variants

and contain only true null hypotheses, with the exception of 60 variants each associated

to 25 phenotypes. P-values corresponding to the true null hypotheses are generated

independently from a uniform distribution on the [0, 1] interval. Test statistics for the

false null hypotheses are generated independently from the N (2, σ2) distribution, and

the corresponding p-values are computed as the two-tailed p-values under the N (0, σ2)

distribution. Since larger values of the standard deviation σ make these two distribu-

tions more difficult to distinguish, we can interpret σ as the noise level. Figure 1 shows

a set of global error measures as the noise level increases. We also provide two measures

of power: gPower represents global power, and vPower represents power to detect vari-

ants associated to at least one phenotype. We compare three approaches for the analysis

of the data sets: (a) the Benjamini-Hochberg (BH) method [17] applied to the pooled

collection of all p-values with target level q = 0.05 for gFDR; (b) BH applied to each

family separately with target level q = 0.05 for each FDRi; and (c) a hierarchical strategy

we will discuss in the following section and included here for reference. Figure 1 illus-

trates how both (a) and (b) control their target error rate (gFDR and aFDR, respectively),

but not vFDR or sFDR. When (a) BH is applied to the entire collection of hypotheses,

the false rejections are uniformly distributed across the true null hypotheses; in a con-

7



●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

gFDR aFDR gPower

vFDR sFDR vPower

0.0

0.1

0.2

0.3

0.4

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

1.00

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
Noise level

V
al

ue

Method
●

●

●

Pooled BH

Family−wise BH

Hierarchical BH

 

Figure 1: Global error achieved by different multiple comparisons controlling strategies
as noise level increases. M=3000; P=100; 60 variants are associated to 25 phenotypes
and the rest have no association (see Section 2.2). The lines indicate the average and the
shaded areas the standard error over 250 iterations.
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text where many variants affect no phenotypes, this results in false variant discoveries.

Furthermore, once we restrict attention to the families with at least one rejection, many

have a within-family FDP close to 1: we do not have control of the error we make when

declaring association between phenotypes and the selected SNPs.

If (b) we apply BH to each family separately, the aFDR is controlled: many families

lead to no discoveries, resulting in a FDRi = 0, which lowers the average aFDR. However,

the families associated with discovered variants tend to have very large FDRi: neither

sFDR or gFDR is controlled. From a certain point of view, applying BH to each family

separately can be considered as ignoring the multiplicity due to different variants, so it

is not surprising that vFDR is quite high with this approach. In summary, (b) does not

appear to be a viable strategy whenever M is large. We introduce now procedure (c) that

overcomes this impasse.

3 Hierarchical strategy

3.1 Proposed hierarchical testing procedure

Benjamini and Bogomolov [20] describe how to control vFDR when families are selected

according to a rather broad set of criteria. Here, we build upon their work and suggest

selecting families so as to control the vFDR: this allows us to provide both guarantees

on the discovered variants and on the identification of the phenotypes they influence.

To avoid clutter we assume that each family contains the same number of hypotheses,

although this is not necessary.

We aim to control FDR on the collection of M global null hypotheses Hv• = ∩P
t=1Hvt

{Hv• v = 1, . . . , M} at level q1. Once a set of interesting families {Fv, v ∈ S} has been

identified by controlling the vFDR, we aim to control the sFDR, the average FDR on the

selected families, at level q2.

Testing is carried out on the basis of the p-values pvt obtained for each of the indi-
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H1•

?

H11
H12
...
H1P

H2•

?

H21
H22
...
H2P

H3•

?

H31
H32
...
H3P

· · · HM•

?

HM1
HM2
...
HMP

vFDR ≤ q1

sFDR ≤ q2

BH(q1)

BB(q2)

Hypotheses ProcedureTarget error rate

Figure 2: Hierarchical structure of hypotheses.

vidual hypotheses Hvt. The p-values for the intersection hypotheses Hv• are defined as

the Simes’s p-values [21] for the respective families:

pv• = min
t=1,...P

Ppv(t)

t
(1)

where pv(t) represents the tth ordered element of the vector {pvt, t = 1, . . . , P} . The

hierarchical procedure is as follows:

Testing Procedure 1

Stage 0 Use Simes’s method to obtain p-values pv•s for the intersection hypotheses Hv•s.

Stage 1 Apply BH to the collection of p-values {pv•, j = 1, . . . , M} with an FDR target level

q1. Let S(P) indicate the set of v corresponding to rejected hypotheses Hv•.

Stage 2 Proceed to test the individual hypotheses Hvt only in families Fv with v ∈ S(P).

Within such families, apply BH with target level q2 × |S(P)|M , the appropriate adjustment

for the selection bias introduced in Stage 1.

Testing Procedure 1 guarantees vFDR control when the Simes’s p-values are valid

p-values for the intersection hypotheses and when BH applied to {pv•, v = 1, . . . , M}

controls FDR. It also guarantees control of sFDR when BH applied to each family Fv
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controls FDR within the family and the p-values in each family are independent of

the p-values in any other family, or when the pooled set of p-values satisfies a certain

positive dependence property (see Section 4 for more details regarding the control of

vFDR and sFDR of Testing Procedure 1 under dependence). Figure 1 illustrates how the

hierarchical procedure controls vFDR and sFDR in the setting of the simulation described

in the previous section. In the remainder of this paper, we will explore in some detail

when conditions for Testing Procedure 1 to control its target error rate are satisfied and

how applicable they are to the tests we encounter in GWAS with multiple phenotypes.

First, however, some remarks are useful.

• In Stage 0, we suggested using Simes’s p-value for three reasons: it can be eas-

ily constructed from the single hypothesis p-values; it is robust to most common

types of dependence between the test statistics in the family [22, 23]; and, finally,

its combination with BH leads to consistent results between stages, as will be dis-

cussed in more detail later. However, other choices are possible and might be more

effective in specific situations. For example, when the tests across phenotypes can

be considered independent, it might be advantageous to combine p-values using

Fisher’s rule [24]: this might lead to the identification of SNPs that have a very

modest effect on multiple phenotypes, so that their influence can only be gathered

by combining these effects. If appropriate distributional assumptions are satisfied,

another choice might be the Higher Criticism statistic [25], which has been shown

to mimic Fisher’s or Simes’s rules in the settings where each of these is optimal.

Finally, one might obtain a p-value pj• for the intersection hypothesis by means

other than the combination of the p-values for individual hypotheses. For exam-

ple, one can use a reverse regression approach as in O’Reilly et al. [26], in which

a regression is fit for each genetic variant treating the full set of phenotypes as the

predictors and the SNP genotype as an ordinal response.
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• Stage 1 focuses on the discovery of interesting families which correspond to genetic

variants associated with variability in phenotypes: a multiplicity adjustment that

controls the desired error rate on {Hv•, v = 1, . . . , M} needs to be in place. For

FDR control we rely on BH that has been shown to perform well under the types

of dependence across markers present in the GWAS setting [2]. The more conser-

vative Benjamini-Yekutieli procedure [27], with its theoretical guarantees, is also

possible. Some might prefer to control FWER at this level via a Bonferroni proce-

dure: this would be in keeping with the criteria routinely adopted in genome-wide

association studies. In the simulations that follow we explore the properties of this

approach as well.

• Stage 2 identifies phenotypes associated with interesting SNPs. It rests on the re-

sults in [20]: to control the average error rate across the selected families at level q2,

one has to perform a multiplicity adjustment within each family at a more stringent

level q2× |S(P)|M to account for the selection effect. Again, this result is more general

than implied in Testing Procedure 1. For example, one might want to control the

average FWER across selected families: this would be possible by using Bonferroni

at the appropriate level. It is useful to observe the interplay of selection penalty and

Bonferroni correction. If only one family is selected, the threshold for significance

is q2
MP , the same that would result from applying Bonferroni to the entire collection

of hypotheses. If all families are selected, the threshold for significance is simply
q2
P , and there is no price for multiplicity across families. When more than one fam-

ily is selected, the threshold is between these two. Controlling the average FWER

across selected families is then more liberal than controlling global FWER. It is not

possible to make such a general statement with respect to FDR, but it remains true

that the hierarchical procedure has the potential of increasing power by reducing

the multiple comparisons burden via relevant selection of which hypotheses to test.
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• Testing Procedure 1 controls sFDR in Stage 2 by controlling FDR within each se-

lected family at a more stringent level. One interesting aspect of this approach is

that BH is applied to each family separately: this allows for adaptivity to the family

specific proportion of true nulls, overcoming one of the limitations of BH applied

to the entire collection of hypotheses.

• Stages 1 and 2 are governed by two separate testing procedures. Generally speak-

ing, this could imply that the set of discoveries in the two steps are not in perfect

correspondence: one could reject the intersection null hypothesis corresponding to

a variant, but not reject any of the single hypotheses on the association between

that variant and the individual phenotypes. The set-up of Testing Procedure 1—

where p-values for the intersection hypotheses are obtained with Simes’s rule and

Stages 1 and 2 use BH—assures that this is not be the case whenever q2 ≤ q1: as

long as the global null corresponding to one variant is rejected, this is declared to

be associated wih at least one phenotype.

3.2 Simulations with independent tests

To illustrate the operating characteristics of the hierarchical procedure, we rely first on

simulations with all tests independent. Exploration of typical GWAS dependence is

delayed to Section 4. Figure 3 summarizes the results of two scenarios: M= 3000, P=100

and in (A) 60 variants are associated with 25 phenotypes (as in Figure 1), while in (B)

1500 variants are associated with 5 phenotypes. P-values were generated as for Figure 1.

Four strategies are compared: (1) gFDR control with BH ("pooled BH"); (2) Bonferroni

targeting gFWER ("pooled Bonferroni"); (3) Testing Procedure 1 ("hierarchical BH"); (4)

hierarchical testing targeting vFWER, via Bonferroni applied on the Simes’s p-values,

and sFDR ("hierarchical Bonferroni"). The target for all error rates is 0.05.

All procedures control their respective targeted error rates, and the two hierarchical
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Figure 3: Error rates and power for four multiple-testing strategies. M=3000, P = 100
and test statistics are independent. In (A) 60 variants are associated with 25 traits each
and in (B) 1500 variants are associated with 5 phenotypes each. The lines show the
average, the shaded areas represent the standard error over 250 iterations, and the dotted
horizontal lines mark the level 0.05.
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procedures also control gFDR. The power of the hierarchical procedure that controls

vFDR is comparable to that of applying BH to the entire collection of hypotheses, and

the power of the procedure that targets vFWER is comparable to or better than that

of Bonferroni on the entire collection. The hierarchical procedures show an advantage

when the families with non-null hypotheses are a small subset of the total families.

In such cases, BH applied to the pooled collection of p-values fails to control vFDR and

sFDR. This is precisely the situation we expect to hold in GWAS: only a small proportion

of SNPs are associated to any phenotype. The substantial increase in power of strategy

(4) over pooled Bonferroni in (A) is due to the adaptivity of BH to the proportion of false

null hypotheses in the families: when a SNP is selected which has effects on multiple

phenotypes, it becomes easier to detect these associations.

Given that the relative advantages of the procedures we are considering depend on

the number of families and the number of true null hypotheses they contain, we run

a simulation with dimensions that should resemble that of a GWAS involving multiple

traits: 100,000 SNPs and 100 phenotypes. In Figure 4 most of the families contain only

true null hypotheses, except for 1000 variants that are associated with 25 phenotypes

and 500 variants that are associated with one phenotype each. This last type of family

is included both to account for phenotype specific effects and to evaluate the possible

loss of power in detecting these variants for the hierarchical strategy: in addition to the

global power (gPower), we report power to detect variants (vPower) and power to detect

variants that affect only one phenotype (SingletonPower).

As expected, simply applying BH to the entire collection of hypotheses results in

a substantial increase of the vFDR and sFDR, with no substantial power advantage.

Indeed, the overall power is better for the hierarchical strategy, even if this encounters a

loss of power to detect SNPs that are associated with only one phenotype.
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Figure 4: Error rates and power for four multiple-testing strategies. M=100,000, P=100,
1000 variants are associated with 25 traits and 500 variants are associated with 25 traits
each. The solid lines show the average, the shaded areas represent the standard error
over 250 iterations, and the dotted horizontal lines mark level 0.05.
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4 Performance of the hierarchical strategy in multi-phenotype

GWAS

The end of the previous section underscored how the dimension of the problem in multi-

phenotype GWAS is such that the hierarchical procedure can lead to substantial benefits;

however, the validity of these results is limited by the fact that those simulations were

based on independent test statistics. In practice there are multiple sources of dependence

and we now explore their effects on the hierarchical procedure.

Sources of dependence and their implications for multiple-testing

The markers typed in GWAS are typically chosen to span the entire genome at a high

density. SNPs in the same neighborhood are not independent, but in linkage disequilib-

rium. This redundancy assures that the typed markers can effectively act as proxies for

untyped variants and is one of the sources of dependency relevant for our study.

To understand other departures from independence, it is useful to look at the re-

lationship between phenotypes and genotypes and the methods with which these are

analyzed. In its simplest form, the data-generating model considered by geneticists to

link each phenotype t to genotypes is yit = x′iβ + εi, where εi are uncorrelated and i

indicates subjects. The coefficient vector β is thought to be sparse (that is with a small

proportion of non-zero elements) or effectively sparse in the sense that a small portion

of the coefficients have appreciable size. When considering multiple phenotypes and n

subjects, this translates into

Y = XB + E, (2)

where Yn×P, Xn×M, BM×P and En×P are matrices containing, respectively, phenotypes,

genotypes, coefficients, and error terms. While most of the rows of B are full of zeros,

some rows are expected to contain more than one non-zero element, corresponding to
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genomic locations that influence multiple phenotype (pleiotropy): the resulting pheno-

types are not independent, even when the elements of the error matrix are iid.

GWAS data is generally analyzed using a collection of univariate regressions linking

each phenotype t to one genetic variant v:

Ŷ[,t] = α̂ + X[,v] β̂vt + Ê[,t], (3)

and the hypothesis Hvt translates into H : βvt = 0, tested with the standard t-statistics.

Clearly, the discrepancy between even the theoretical model (2) and the regression (3)

used for analysis leads to a number of consequences. For example, as the error terms Ê[i,t]

cannot be expected to be uncorrelated across individuals, linear mix models are often

used in single phenotype analysis [28]. Moreover, the combination of spatial dependence

existing across SNPs and the univariate testing approach (3) induces spatial structure

among both the test statistics and the hypotheses. Consider the case of a complete null

where the phenotypes under study have no genetic underpinning. If by random chance

one variant appears to have some explanatory power for one phenotype, the p-values

of neighboring SNPs will also tend to have lower values—this is dependence among

the test statistics. Consider now a data-generating model (2) where variant v has a

coefficient different from zero while its neighbors do not. With respect to model (2) Hvt

is false and the Hlt for neighboring SNPs l are true. However, once we decide to look

at the data through the lenses of (3), the hypotheses Hlt are redefined to mean the lack

of any association between SNP l and phenotype t and—as long as SNP l can act as a

reasonable proxy for one of the causal variants—Hlt is false. We expect clusters of null

hypotheses corresponding to neighboring SNPs to be false or true together. Indeed, in

GWAS studies it is common to find a number of nearby variants significantly associated

with the trait: this is interpreted as evidence for the presence of one or more causal

variants in the specific genomic region. Looking at multiple phenotypes that might
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share genetic determinants adds another layer to this phenomenon.

On the one hand, dependence between test statistics can be problematic for multi-

plicity adjustment strategies. The Bonferroni approach controls FWER even if tests are

dependent; the Benjamini-Hochberg procedure, instead, is guaranteed to control FDR

under independence or positive regression dependence on a subset (PRDS) [27], even

if it has been empirically observed to provide FDR control under broader conditions.

When the BH procedure controls FDR under the dependence of the p-values within each

family and the p-values in each family are independent of the p-values in any other fam-

ily, the Testing Procedure 1 controls vFDR and sFDR. These error rates remain controlled

when the p-values across the families are not independent provided that certain overall

positive dependence properties hold. In particular, when the pooled set of p-values is

PRDS, sFDR is controlled (see Theorems 3 in [20]; note that this is the same condition

needed for pooled BH to control gFDR). In addition, it can be concluded from the simu-

lation results of [29] that when {pvt, v = 1, . . . , M} are PRDS for each t ∈ {1, . . . , P}, and

{pvt, t = 1, . . . , P} are PRDS for each v ∈ {1, . . . , M}, vFDR is controlled.

On the other hand, the fact that tested hypotheses Hvt are defined with respect to

(3) rather than the data generative model (2) makes it challenging to evaluate the error

made by a multiple-testing procedure: if we use (2) as ground truth, we expect many

false rejections that really do not correspond to a mistake with reference to (3). In order

to avoid this problem, we will consider all the hypotheses relative to variants that are

sufficiently close to a causal variant in the generative model as correctly rejected.

4.1 Simulation using actual genotypes

For the simulations below we use genotype data obtained from 1966 Northern Finland

Birth Cohort (NFBC) [30]. We exclude copy number variants and markers with p-values

for Hardy-Weinberg equilibrium below 1e-5, with minor allele frequency (MAF) less

than 0.01, or with call rate less than 95%. This screening results in M = 334, 103 SNPs on
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n = 5, 402 subjects. We code SNPs by minor allele count and impute missing genotypes

by average variant allele count. We simulate P = 100 traits. In each iteration, we select

130 SNPs at random and use them to generate phenotypes, as follows: the first 10 SNPs

affect 50 phenotypes, the next 10 affect 25, the next 10 affect 10 and the final 100 each

affect 5 phenotypes, always chosen at random. In this set up, each trait reflects the

contribution of 13.5 SNPs on average. The remaining more than 300,000 SNPs have no

functional role. To generate the simulated traits, we follow the linear model in equation

(2) where Btv is 1 in presence of an association between variant v and trait t and 0

otherwise.

Due to the large number of hypotheses under consideration, we rely on MatrixEQTL

[31] to allow efficient computation of the p-values of association. This software, origi-

nally designed for the analysis of eQTL data, utilizes large matrix operations to increase

computational speed and has the option to reduce the required memory by saving only

p-values beneath a given threshold. As long as this threshold is above the p-value cut-off

for selection under all error control methods, this shortcut does not affect the results. In

applying MatrixEQTL, we use a threshold of 5e-4 for saving output and include the

first 5 principal components of the genotype data as covariates to adjust for the effects

of population structure.

Under varying levels of noise σ, we compare four adjustment strategies studied be-

fore. When analyzing the results, we consider a discovery a true positive if it lies within

1Mb and has correlation at least 0.2 to the truly causal SNP. The results, given in Fig-

ure 5, show that even with this allowance, there are still settings where some of the

methods under consideration fail to control their target error rates. In particular, pooled

Bonferroni fails to control gFWER and hierarchical Bonferroni fails to control vFWER

for settings with higher levels of power. In addition, gFDR is somewhat above 0.05 for

pooled BH and vFDR exceeds 0.05 for hierarchical BH in the setting with highest power.

Rather than a failure of the multiple comparisons procedure, this is to be attributed to
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the confusion induced by the use of model (3) to analyze data generated with model

(2); when we re-run the analysis using phenotypes adjusted for the effects of variables

omitted by the univariate model, these errors appear appropriately controlled. FWER

is more sensitive to these misspecification errors simply because one single mistake is

enough to raise the realized FWE to 1; in contrast, as long as these mistakes are accom-

panied by a number of true discoveries, the realized false discovery proportion will only

be marginally inflated. Focusing on the performance of hierarchical methods compared,

we again conclude that they appear to control their targeted error rates whenever the

corresponding pooled approach control gFDR or gFWER.

5 Case study: Flowering in Arabidopsis thaliana

We use Testing Procedure 1 to re-analyze a data on the genetic basis of flowering phe-

notypes in Arabidopsis thaliana, [32] online at [33]. While the original study includes 109

different traits, we focus on 23 phenotypes related to flowering including days to flow-

ering under different conditions, plant diameter at flowering, and number of leaves at

flowering, etc.; the results in [32] indicate that a shared genetic basis is likely for at least

some of these traits. Genotypes are available for 199 inbred lines at 216,130 SNPs.

To obtain p-values of association, we follow the steps described in [32]: exclude SNPs

with a MAF ≤ 0.1, transform certain phenotypes to the log scale, and fit the variance

components model implemented in [34], which allows us to account for population

structure. The original analysis underscored the difficulties of identifying true positives

only on the basis of statistical considerations and did not attempt formal multiplicity

adjustment. While these challenges clearly still stand, here we compare the results of

applying BH across the full set of p-values targeting gFDR at level 0.05, with those of

Testing Procedure 1 targeting vFDR and sFDR, each at level 0.05. This means that for

the hierarchical procedure, we have M = 216, 130 families corresponding to SNPs, each
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Figure 5: Error rates and power for four multiple-testing strategies applied to simulated
data starting from real genotypes as described in Section 4.1. The lines show the average,
the shaded areas report the standard error over 100 iterations, and the dotted horizontal
lines mark the 0.05 level.
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Table 2: Families with differential results from pooled BH and hierarchical BH for the
case study given in Section 5. Discoveries under both methods are marked with •,
discoveries made only under pooled BH are marked with "-", and discoveries made only
under hierarchical BH are marked with "+".

consisting of 23 hypotheses.

Hierarchical BH identifies 131 variants versus the 139 of pooled BH, reflecting a

tighter standard for variant discovery. At the same time, hierarchical BH increases global

power over pooled BH, resulting in a total of 174 discoveries vs. 161: an increase of 8%.

The variants that pooled BH discovers in excess of hierarchical BH are declared associ-

ated to one phenotype only (there are 7% fewer such SNPs according to the hierarchical

procedure). Table 2 presents variants with different results under the two methods: 8

SNPs discovered by pooled BH as associated with only one phenotype are not selected

by hierarchical BH, while several SNPs discovered under pooled BH are associated to

a larger number of phenotypes by hierarchical BH. For example, the SNP in column 1

of Table 2 corresponds to a particular location in the short vegetative phase (SVP) gene,

that is known to be involved in flowering and associated to two additional phenotypes

under the hierarchical method.
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6 Conclusions

Contemporary genomic investigations result in testing very large number of hypothe-

ses, making it vital to adopt appropriate strategies for multiplicity adjustment: the risk

of lack of reproducibility of results is too high to be overlooked. When the collection

of tested hypotheses has some structure, discoveries often occur at multiple levels and

reports typically do not focus on the rejection of hypotheses at the finest scales. In the

hope of increasing both power and interpretability, scientists often attempt to outline an

overall picture with statements that are supported by groups of hypotheses. We consid-

ered one example of such situations: in genome-wide association studies concerning a

large number of phenotypes the primary object of inference is often the identification of

variants that are associated to any trait.

The simulations presented make clear that in these settings it is necessary to identify

what is to be considered a discovery and to perform a multiplicity adjustment that allows

one to control measures of global error defined on the discoveries of interest. By adapting

the work in [20], we outline one such strategy and explore its performance and relative

advantages in the context of GWAS studies involving multiple phenotypes.

Our hierarchical strategy aims at (1) identifying SNPs which affect some phenotypes

(while controlling errors at this level) and (2) detecting which phenotypes are influenced

by such SNPs (controlling the average error measure across selected SNP). We consider

two error measures: FDR and FWER. We show that while our strategy achieves these

goals, applying FDR controlling rules (as BH) on the entire collection of hypotheses

(“pooled BH”) does not control the FDR of the discoveries in (1) and (2): whenever

the reporting of results emphasizes these, other multiplicity adjustments need to be in

place. On the other hand, the “hierarchical BH” procedure is not guaranteed to control

the global FDR (gFDR) in general, but it effectively appears to do so in the situations

we simulated. Applying Bonferroni to the pooled collection of hypotheses does control
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FWER for the discoveries in (1) and (2), but it is excessively conservative if these are

the target error rates. Conversely, the "hierarchical Bonferroni” strategy does not control

global FWER.

To complete this summary of results, we shall make a few remarks. First, while the

application to GWAS studies has motivated us and guided the exposition of material

as well as some specific implementation choices, it is important to note that Testing

Procedure 1 is applicable to much broader settings: it simply rests on the possibility of

organizing the entire collection of tested hypotheses in groups of separate families, each

probing a meaningful scientific question.

Secondly, it is worth noting that the hierarchical strategy represents one example of

valid selective inference. More and more, as the modalities of data collection become

increasingly comprehensive rather than targeted, scientists tend to “look at the data first

and ask questions later." In other words, initial exploratory analyses are used to iden-

tify possible meaningful patterns and formulate precise hypotheses for formal statistical

testing. When this is the case, however, the traditional rules for determining significance

are inappropriate and procedures that account for the selection effects are called for. The

work of Benjamini and Bogomolov [20] that we adapt here is an important step in this

direction.

Moving on to the specific implications for multi-phenotype GWAS, the results of our

simulations using actual genotypes can contribute to the debate on whether to choose

FDR or FWER as targeted error rate. The combination of correlation between SNPs and

misspecification of the linear model that is routinely used in GWAS applications can

result in the rejection of hypotheses of no association between a SNP and a phenotype

even when the SNP has no causal effect and is reasonably far from any causal variants.

In procedures that target FDR control, these “false” rejections are accompanied by a

number of correct ones and their effect on the error rate is modest. Conversely, the

presence of even one such wrong rejection equates the realized FWE to one: this makes

25



it very hard to really control FWER in situations other than global null.

Because of the disparities in targeted error rates, it is difficult to contrast the power

of the hierarchical and pooled strategies as this comparison is most meaningful across

procedures that guarantee the same error level. However, it is of practical relevance

to contrast the number and characteristics of true findings that a researcher can expect

when adopting the pooled and the hierarchical procedure targeting the respective error

rates at the 0.05 level. Both the BH strategies appear to control global FDR and our sim-

ulations indicate that overall power is quite similar: the pooled approach discovers more

SNPs that truly affect a single phenotype and the hierarchical approach discovers more

SNPs that affect multiple phenotypes. The same trend is evident in the real-data anal-

ysis. Note that the false discovery rate among SNPs that are declared associated with

one phenotype by the pooled BH strategy can be very high. Both Bonferroni strategies

control the FWER of SNP discoveries and the average FWER for SNP-phenotype asso-

ciations across selected SNP: the hierarchical approach (which does not control global

FWER) has greater power, once again thanks to the increased discovery of SNPs associ-

ated to multiple phenotypes.

A final remark is in order with reference to the application of the proposed approach

to multi-phenotype GWAS studies. In our simulations we have accounted for inter-

marker dependence and dependence across phenotypes due to shared genetic causes.

We have not explored the results of dependence across phenotypes due to environmental

components. Consider eQTL studies where the traits are measurements of expression

levels of multiple genes: it has been repeatedly observed that experimental batch effects

can result in strong dependence between traits. If such correlation between phenotypes

is present, it would be crucial to account for it in the method of analysis used to define p-

values. In absence of this, it is quite possible that some of the environmental effects might

be accidentally correlated with the genotype value of some of the SNPs in the study

resulting in a number of false positives which would be exacerbated by the hierarchical
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approaches. Indeed, the procedures we outlined here are valid as long as the p-values

used as input are accurate; obtaining such p-values is clearly of paramount importance,

but the topic of another report.
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