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Abstract

Time to event is the clinically definitive endpoint in Phase III trials of new
treatments of cancer, cardiovascular and many other diseases. Because these
trials involve relatively long follow-up, their protocols usually incorporate
periodic interim analyses of the data by a Data and Safety Monitoring
Board/Committee. This paper gives a review of the major developments
in the design of these trials in the 21st century, spurred by the need for
better clinical trial designs to cope with the remarkable advances in cancer
biology, genomics and imaging that can help predict patients’ sensitivity or
resistance to certain treatments. In addition to this overview and discussion
of related issues and challenges, we also introduce a new approach to address
some of these issues.

Keywords: Adaptive design, Calendar time, Early stopping, Multiple
endpoints, Nonproportional hazards, Survival analysis

1. Introduction

Analysis of clinical studies with failure-time endpoints has been an impor-
tant topic in biostatistics and has also led to a number of major methodologi-
cal advances and important breakthroughs in statistical theory. A celebrated
example is Cox’s proportional hazards regression [1] that led to subsequent
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developments in partial likelihood, semiparametric efficiency, and statisti-
cal analysis of counting processes [2, 3, 4, 5, 6]. Although less renowned in
comparison, the design of clinical trials with failure-time endpoints has also
had important impact on clinical trial biostatistics and led to innovations
in data monitoring and interim analysis of clinical trials. These innovations
dated back to the seminal papers [7, 8] in 1982 on the Beta Blocker Heart
Attack Trial (BHAT) and have continued until today, although at a much
less spectacular pace than survival analysis. In this paper we give a review
of the major developments in the 21st century, hence the “fifteen years” in
the title. The “update” in the title refers to updating a previous review [9]
that also provides a computer program to determine the power and sample
size in the trial design; note that “design of clinical trials with failure-time
endpoints and interim analyses” in our title is also the main part of the title
of [9]. Since last year, we and our colleagues at Stanford University’s Center
for Innovative Study Design have been working to develop open-source soft-
ware, which can be considered as an update of [9] for the implementation of
some of the methods described in the next two sections. Section 2 reviews
several new trends and innovative methods after the publication of [9] in the
predecessor of this journal. In particular, it describes hybrid resampling for
valid inference on primary and secondary endpoints of a survival trial, choice
of stopping rules, adaptive designs including seamless phase II-III designs.

In his 2010 budget request, the Director of the National Cancer Institute
earmarked “re-engineering” cancer clinical trials as a research initiative. The
reason why re-engineering is needed is that although remarkable progress in
biomedical sciences raised new hope for cancer treatment, the hope did not
materialize because of the relatively small number of new anticancer agents
that were demonstrated to be efficacious in phase III clinical trials, for which
time to event (typically overall survival and occasionally progression-free sur-
vival) is a definitive endpoint. Besides choice of stopping boundaries, [9] also
considers choice of test statistics. Being able to choose appropriate test
statistics at terminal analysis can substantially increase the power of the
commonly used logrank statistics in current designs that are mostly based
on hazard ratios of treatment to control. In Section 3 we develop a new ap-
proach that allows adaptive choice of the test statistics at terminal analysis
while still maintaining the prescribed Type I error. This circumvents one of
the widely recognized difficulties with current survival trial designs that are
dominated by hazard ratios and logrank statistics, which are inefficient for
nonproportional hazards. The year 2010 also marked the appearance of the
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much awaited FDA Draft Guidance for Industry on Adaptive Design. Two
years later, the President’s Council of Advisors on Science and Technology
(PCAST) issued a report on “Propelling Inovations in Drug Discovery, Devel-
opment, and Evaluation” and argued for using “innovative new approaches
for trial design that can provide more information more quickly” as “it is
increasingly possible to obtain clear answers with many fewer patients and
with less time” by focusing studies on “specific subsets of patients most likely
to benefit, identified based on validated biomarkers.” Section 4 begins with a
review of ongoing work in this direction for drug development and confirma-
tory testing, some of which is related to the approach introduced in Section
3. It then proceeds with further discussion and several concluding remarks.

2. Stopping rules, adaptive designs, and hybrid resampling

In Section 2.1 we review developments in the choice of stopping rules
for time-sequential survival trials, in which “survival” refers to the failure-
time endpoint in the title and “time-sequential” encapsulates the “interim
analyses” that are carried out at prespecified calendar times. As pointed out
in [10], survival trials have two time-scales - calendar time t and information
time V (t), which is the null variance of the test statistic at t. The information
time V (t) is the intrinsic time-scale for interim data but is typically unknown
before time t unless restrictive assumptions are made a priori. In the past
fifteen years, seamless Phase II-III designs and Bayesian adaptive designs are
the most active area of research in innovative clinical trial designs. Section
2.3 gives a review of some of these developments in the context of time-
sequential survival trials. Another important development in this period is
hybrid resampling [11, 12, 13], which is reviewed in Section 2.2 and provides
a basic tool in the methodological development in Section 3.

2.1. Early stopping for efficacy or futility at interim analysis

This basic problem in time-sequential survival trials is already addressed
in [9], and we describe here subsequent developments. The censored rank
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statistics considered in [9] and its precursors [14, 15] have the general form

Sn(t) =
n′∑
i=1

δ′i(t)ψ (Hn,t (Xi(t)))

{
1−

m′n,t(Xi(t))

m′n,t(Xi(t)) +m′′n,t(Xi(t))

}

−
n′′∑
j=1

δ′′j (t)ψ (Hn,t (Yj(t)))
m′′n,t(Yj(t))

m′n,t(Yj(t)) +m′′n,t(Yj(t))
, (1)

where ψ is a nonrandom continuous function on [0, 1], n = n′ + n′′ is the
total sample size, with n′ patients assigned to treatment X and n′′ assigned
to treatment Y , m′n,t(s) =

∑n′

i=1 I (Xi(t) ≥ s), m′′n,t(s) =
∑n′′

j=1 I (Yj(t) ≥ s),
and Xi(t), Yj(t), δ

′
i(t), δ

′′
j (t) and Hn,t(·) are defined below. Let T ′i ≥ 0 denote

the entry time and Xi > 0 the survival time (or time to failure) after entry
of the ith subject in treatment group X and let T ′′j and Yj denote the entry
time and survival time after entry of the jth subject in treatment group Y .
The subjects are followed until they fail or withdraw from the study or until
the study is terminated. Let ξ′i (ξ′′j ) denote the time to withdrawal, possibly
infinite, of the ith (jth) subject in the treatment group X (Y ). Thus the data
at calendar time t consist of (Xi(t), δ

′
i(t)), i = 1, . . . , n′, and (Yj(t), δ

′′
j (t)), j =

1, . . . , n′′, where Xi(t) = min (Xi, ξ
′
i, (t− T ′i )+), δ′i(t) = I (Xi(t) = Xi), and

Yj(t) and δ′′j (t) are defined similarly in terms of Yj, ξ
′′
j and T ′′j . Let Hn,t be

the left-continuous version of the Kaplan-Meier estimator of the distribution
function of the combined sample, defined by

1−Hn,t(s) =
∏
u<s

{
1−

∆N ′n,t(u) + ∆N ′′n,t(u)

m′n,t(u) +m′′n,t(u)

}
, (2)

whereN ′n,t(s) =
∑n′

i=1 I (Xi ≤ ξ′i ∧ (t− T ′i )+ ∧ s), N ′′n,t(s) =
∑n′′

j=1 I(Yj ≤ ξ′′j∧
(t−T ′′j )+∧s), ∆N(s) = N(s)−N(s−) and we use the convention 0/0 = 0. For
the time-sequential censored rank statistics (1), Gu and Lai [14] showed that
{Sn(t)/

√
n, t ≥ 0} converges weakly to a Gaussian process with independent

increments and variance function V (t) under the null hypothesis H0 : F = G
and contiguous alternatives. Two commonly used estimates of Sn are

V 1
n (t) =

∫ t

0

ψ2(Hn,t)(s)m
′
n,t(s)m

′′
n,t(s)

(m′n,t(s) +m′′n,t(s))
2

d
(
N ′n,t(s) +N ′′n,t(s)

)
, (3)
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or

V 2
n (t) =

∫ t

0

ψ2(Hn,t(s))

(m′n,t(s) +m′′n,t(s))
2

{(
m′′n,t(s)

)2
dN ′n,t(s) +

(
m′n,t(s)

)2
dN ′′n,t(s)

}
.

(4)
As a compromise between these two choices, Gu and Lai [14] also considered
V 3
n (t) = {V 1

n (t) + V 2
n (t)} /2. For any choice Vn(t) of the three estimates,

n−1Vn(t) converges in probability to V (t) under H0 and under contiguous
alternatives. When the patients are randomized to X or Y with probability
1/2, γ = 1/2, m′n,t ∼ m′′n,t under F = G. Therefore for the logrank statistic
for which ψ ≡ 1, V 1

n (t) and V 1
n (t) are asymptotically equivalent to Vn(t) =

(total number of deaths up to time t)/4, which is the standard formula for
the null variance estimate of the logrank statistic in randomized clinical trials.
The program in [9] allows the user to choose ψ from Self’s [16] beta family
ψ(u) = uρ(1 − u)τ by specifying the values of ρ ≥ 0 and τ ≥ 0. The case
τ = 0 yields the Gρ statistics proposed by Harrington and Fleming [17], with
ρ = 0 corresponding to the logrank statistic and ρ = 1 corresponding to the
Peto-Prentice generalization of of Wilcoxon’s statistic [18, 19].

With this choice of the test statistics Sn(t), [9] allows the user to choose
from three classes of stopping boundaries for either two-sided or one-sided
tests using the normalized statistics Wi = Sn(ti)/

√
Vn(ti), where t1, . . . , tk

are the calendar times of interim analysis. The first class is referred to
as Slud and Wei’s boundaries [20]. It requires the user to specify positive
numbers α1, . . . , αk such that

∑k
j=1 αj = α. The stopping boundaries bj can

be determined recursively by

PF=G

{
|W1| ≤ b1

√
V1, . . . , |Wj−1| ≤ bj−1

√
Vj−1, |Wj| > bj

√
Vj

}
= αj, (5)

in which the probability on the left-hand side can be computed by recursive
numerical integration [21, Section 4.3.1] in view of the aforementioned asymp-
totic normally (with independent increments) of (Sn(t1), . . . , Sn(tk)). How-
ever, there are no guidelines nor systematic ways to choose the user-specified
αj. The second class of stopping boundaries is called Lan-DeMets, named
after the authors of [22] that introduced the “error spending” approach to
specifying stopping boundaries. To apply the error spending approach to
time-to-event responses, one needs an a priori estimate of the null variance
of Sn(tk). Let v1 be such an estimate. Although the null variance of Sn(t) is
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expected to be nondecreasing in t under the asymptotic independent incre-
ments property, its estimate Vn(t) may not be monotone, and a simple fix is
to redefine Vn(tj) to be Vn(tj−1) if Vn(tj) < Vn(tj−1). Let π : [0, v1] → [0, 1]
be a nondecreasing function with π(0) = 0 and π(v1) = α, which can be
taken as the error spending function of a stopping rule τ (taking values in
[0, v1]) of a Wiener process. Letting αj = π(v1 ∧ Vn(tj)) − π(Vn(tj−1)) for
j < k and αk = α − π(Vn(tk−1)), the boundary values b1, . . . , bK are defined
recursively by (5), in which αj = 0 corresponds to bj = ∞. This test has
type I error probability approximately equal to α, irrespective of the choice
of π and the a priori estimate v1. Its power, however, depends on π and
v1. The requirement that the trial be stopped once Vn(t) exceeds v1 is a
major weakness of the preceding stopping rule. Since one usually does not
have sufficient prior information about the underlying survival distributions
and the actual accrual rate or the withdrawal pattern, v1 may substantially
over- or under-estimate the expected value of Vn(tk). Scharfstein, Tsiatis
and Robins [23, 24] have proposed re-estimation procedures during interim
analyses to address this difficulty, but re-estimation raises concerns about
possible inflation of the type I error probability.

The third class of stopping boundaries is called “modified Haybittle-Peto”
(modHP) and depends on a user-specified value of b for b1 = · · · = bk−1 = b
in (5) so that bk = c can be determined by

P
{
|W (Vn(tj)) | ≥ bV 1/2

n (tj) for some j < k

or |W (Vn(tk)) | ≥ cV 1/2
n (tk)

∣∣∣Vn(t1), . . . , Vn(tk)
}

= α, (6)

which is in fact a modification of an earlier proposal by Haybittle [25] who
considered asymptotically normal test statistics Sn(ti) that behave like a nor-
mal random walk. Haybittle used some relatively large value of b, such as
3, and conventional critical values of c for the final analysis at tk in case the
trial does not stop at the earlier analyses. Peto et al. [26] subsequently ad-
vocated to use Haybittle’s design for randomized clinical trials that require
“prolonged observation for each patient.” Gu and Lai [15] proposed to de-
termine c by (6) to guarantee the prescribed level α for the type I error, and
noted that a major advantage of modHP over the error spending approach
is that it does not require an a priori estimate of Vn(tk) at interim analyses
prior to tk. Six years later, Lai and Shih [27] developed a theory of group
sequential tests of the one-sided hypothesis H0 : θ ≤ θ0, for the parameter
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θ of an exponential family of densities eθz−φ(z) (which includes the case of
normal densities with known variance as a special case), with significance
level α and a maximum number M of observations. This theory shows that
the modHP test has nearly optimal power and expected sample size under
the constraints α and M , which [27] also confirms in simulation studies that
show in particular its superiority over the error-spending approach, even in
this case of v1 being proportional to M .

2.2. Hybrid resampling and inference in time-sequential designs

A general framework for statistical inference, in particular the problem of
constructing confidence intervals in sequential experiments, was introduced
fifteen years ago by Chuang and Lai [11]. Let X be a vector of observations
from some family of distributions {F : F ∈ F}. For nonparametric prob-
lems, F is the family of distributions satisfying certain prespecified regularity
conditions. For parametric models with parameter η ∈ Γ, we can denote F
by {Fη : η ∈ Γ}. The problem of interest is to construct a confidence interval
for the real-valued parameter θ = θ(F ), and we next review these methods
for the construction. Let Θ denote the set of all possible values of θ.

Exact method : If F = {Fθ : θ ∈ Θ} is indexed by a real-valued parameter
θ, an exact equal-tailed confidence region can always be found by using the
well-known duality between hypothesis tests and confidence regions. Sup-
pose one would like to test the null hypothesis that θ is equal to θ0. Let
R(X, θ0) be some real-valued test statistic. Let uα(θ0) be the α-quantile of
the distribution of R(X, θ0) under the distribution Fθ0 . The null hypothesis
is accepted if uα(θ0) < R(X, θ0) < u1−α(θ0). An exact equal-tailed confi-
dence region with coverage probability 1− 2α consists of all θ0 not rejected
by the test and is therefore given by {θ : uα(θ) < R(X, θ) < u1−α(θ)}. This
method applies only when there are no nuisance parameters.

Bootstrap method : The bootstrap method replaces the quantiles uα(θ)
and u1−α(θ) by the following approximate quantiles u∗α and u∗1−α. Let F̂
be an estimate of F ∈ F based on X. The quantile u∗α is defined to be
α-quantile of the distribution of R(X∗, θ̂) with X∗ generated from F̂ and
θ̂ = θ(F̂ ). This yields the confidence region

{
θ : u∗α < R(X, θ) < u∗1−α

}
for

θ with approximate coverage probability 1 − 2α. In particular, when F̂ is
the empirical distribution of i.i.d. X1, . . . , Xn and R(X, θ) = (θ̂ − θ)/σ̂ for
some estimate σ̂ of the standard error of θ̂, the bootstrap confidence interval
is called the bootstrap-t interval.
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Hybrid resampling method : The hybrid confidence region is based on
reducing the family of distributions F to another family of distributions
{F̂θ : θ ∈ Θ}, which is used as the “resampling family” and in which θ is the
unknown parameter of interest. Let ûα(θ) be the α-quantile of the sampling
distribution of R(X, θ) under the assumption that X has distribution F̂θ.
The hybrid confidence region results from applying the exact method to
{F̂θ : θ ∈ Θ} and is given by

{θ : ûα(θ) < R(X, θ) < û1−α(θ)} . (7)

The construction of (7) typically involves simulations to compute the quan-
tiles as in the bootstrap method, and is called the hybrid resampling method
because it “hybridizes” the exact method (that uses test inversion) with the
bootstrap method (that uses the observed data to determine the resampling
distribution). Note that hybrid resampling is a generalization of the boot-
strap method, which uses the singleton {F̂} as the resampling family {F̂θ}.
In practice, it is often desirable to express a confidence set for θ as an interval.
Although (7) may not be an interval, it often suffices to give only the upper
and lower limits of the confidence set. An algorithm, based on method of
successive secant approximations, is given in [11] to find the upper or lower
limit of (7).

Since an exact or hybrid resampling method for constructing confidence
regions is based on inverting a test, it is implicitly or explicitly linked to
an ordering of the sample space of the test statistic used. The ordering
defines the p-value of a test as the probability (under the null hypothesis)
of more extreme values (under the ordering) of the test statistic than that
observed in the sample. Equivalently, the test rejects the null hypothesis,
one for each given θ, if the test statistic exceeds or falls below a specified
quantile of its null distribution. Let X1, X2, . . . be i.i.d. random variables,
Sn = X1 + · · · + Xn, and T be a stopping time. Under a total ordering
≤ of the sample space of (T, ST ), Lai and Li [12] call (t, s) a qth quantile
if P {(T, ST ) ≤ (t, s)} = q, assuming that the Xi have a strictly increasing
continuous distribution function. This is a natural generalization of the qth
quantile of a univariate random variable. For randomly stopped sums of
independent normal random variables with unknown mean θ, the bivariate
vector (T, ST ) is sufficient for θ. For the general setting where a stochastic
process Xu, in which u denotes either discrete or continuous time, is observed
up to a stopping time T , [12] defines x = (xu, u ≤ t) to be a qth quantile if
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P{X ≤ x} ≥ q and P{X ≥ x} ≥ 1 − q, under a total ordering ≤ for the
sample space of X = (Xu, u ≤ T ).

For applications to confidence intervals of a real parameter θ, the choice
of the total ordering should be targeted towards the objective of interval
estimation. Let Ur (r ≤ T ) be real-valued statistics based on the observed
process Xs(s ≤ T ). For example, let Ur be an estimate of θ based on {Xs, s ≤
r}. A total ordering on the sample space of X can be defined by

X ≥ x if and only if UT∧t ≥ uT∧t, (8)

where T ∧ t = min(T, t) and (ur, r ≤ t) is defined from x = (xr, r ≤ t) in the
same way as (Ur, r ≤ T ) is defined from X. In particular, consider the case
of independent normal Xn and let Un be the sample mean X̄n of X1, . . . , Xn.
In this case, (8) yields the ordering

(T, ST ) ≥ (t, st) if and only if X̄T∧t ≥ sT∧t/(T ∧ t),

which is equivalent to the ordering scheme introduced by Siegmund [28] to
construct exact confidence intervals for the mean of a normal distribution
with known variance in a sequential design. Lai and Li [12] show how the
ordering scheme (8) can be applied in conjunction with hybrid resampling to
construct confidence intervals of the hazard ratio following time-sequnetial
tests in the proportional hazards model. Lai, Shih and Su [13] apply (8) to
construct hybrid resampling confidence intervals for secondary endpoints in
group sequential or time-sequential trials for which the stopping rule is based
on a primary endpoint, an example of which is the commonly used hazard
ratio in survival trials.

2.3. Bayesian approach and adaptive seamless designs of time-sequential sur-
vival trials

As pointed out in [8], BHAT was actually designed as a fixed-duration (in-
stead of time-sequential) trial. It was stopped early by the Data and Safety
Monitoring Board eight months before the prescheduled of the trial by argu-
ments involving stochastic curtailment of the fixed-duration trial. The basic
idea is to stop a nonsequential level-α test of H0 : θ = θ0 if the conditional
power pt(θ

′) = Pθ′(Reject H0|Dt) at a given alternative θ′ given the data Dt

up to time t falls below some threshold 1− ρ1, resulting in the acceptance of
H0, or if the conditional type I error Pθ0(Reject H0|Dt) exceeds ρ0, leading
to rejection of H0. It is shown in [29] that for i.i.d. normally distributed
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observations with unknown mean θ and known variance, the curtailed test
has type I error ≤ α/ρ0 and type II error α′/ρ1, where α′ is the type II error
(at θ′) of the original nonsequential test. Lin, Yao and Ying [30] discuss sev-
eral subtle issues in the definition and implementation of conditional power
for censored survival data in time-sequential trials. One issue is that the
conditional distribution of Sn(t∗) given Sn(t) may not be the same as that
given D(t), where Sn(t) is the censored rank statistic (1) and t∗ denotes the
prescheduled termination time of the trial. Another issue is that the actual
accrual, failure and censoring patterns may differ substantially from those
anticipated at the design stage, making it necessary to re-evaluate certain
quantities in the weak convergence theory of {Sn(t), t ≤ t∗}, under the null
hypothesis and contiguous alternatives, which they use for the implementa-
tion of stochastic curtailment.

Conditional power and stochastic curtailment basically involve prediction
of Sn(t∗), under the null hypothesis and a specified alternative (which is used
for sample size determination at the design stage), given all the data up to
the time t of interim analysis. Spigelhalter, Freedman and Blackburn [31]
advocated to use a Bayesian approach for such prediction instead. Assum-
ing a prior distribution on θ, Bayesian prediction is based on the posterior
distribution π(θ|Dt) and the predictive power is defined by

Pt = P (Reject H0|Dt) =

∫
pt(θ)dπ(θ|Dt). (9)

For censored survival data from time-sequential trials, the posterior distri-
bution π(θ|Dt) is complicated but can be evaluated by Markov Chain Monte
Carlo (MCMC) methods when parametric or semiparametric models are as-
sumed on the survival distributions, with θ representing the parameter vector;
see [32, 33], [34, Section 4], [35, Sections 5.6–5.8]. As pointed out in Section
2.5 of [35], the Bayesian approach to stochastic curtailment uses predictive
power instead of conditional power. This approach to early stopping of a
clinical trial for futility or efficacy does not have type I error probability
guarantees. Acknowledging that type I error probability guarantees are im-
portant to gain regulatory approval of a new treatment, “frequentist twists”
are used to satisfy the type I error constraint at some chosen parameter
configuration in the null hypothesis by Monte Carlo simulations at the con-
figuration and thereby adjusting the rejection threshold of the Bayesian test
[35, 36]. However, as pointed out in [37], there is no guarantee that the type
I error is maintained at other parameter configurations for a composite null
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hypothesis, as in semiparametric models for survival outcomes. In contrast,
the modified Haybittle-Peto stopping boundary applied to commonly used
censored rank statistics in comparing the survival distributions of two treat-
ments has frequentist validity besides efficiency, flexibility and ease of use
in time-sequential survival trials, showing its advantages over the preceding
Bayesian approach to early stopping.

The Bayesian approach, however, has been applied to develop innovative
clinical trial designs for much more complex settings involving survival out-
comes than early stopping before the prescheduled termination date as in
BHAT, which was the focus of [9]. One such setting is adaptive design of
Phase II-III oncology trials. The majority of Phase II studies in oncology
leading to Phase III clinical trials are are single-arm studies with a binary
tumor response endpoint and the most commonly used phase II designs are
Simon’s [38] single-arm two-stage designs for testing H0 : p ≤ p0 versus
H1 : p ≥ p1 where p is tumor response rate. Whether the new treatment is
declared promising in a single-arm Phase II trial, however, depends strongly
on the prespecified p0 and p1. As noted by Vickers et al. [39], uncertainty in
the choice of p0 and p1 can increase the likelihood that (a) a treatment with
no viable positive treatment effect proceeds to Phase III, for example, if p0
is chosen artificially small to inflate the appearance of a positive treatment
effect when one exists, or (b) a treatment with positive treatment effect is
prematurely abandoned at Phase II, for example, if p1 is chosen optimisti-
cally large. To circumvent the problem of choosing p0, [39] and [40] have
advocated randomized Phase II designs. In particular, it is argued that ran-
domized Phase II trials are needed before proceeding to Phase III trials when
(a) there is not a good historical control rate, due to either incomparable con-
trols (causing bias), few control patients (resulting in large variance of the
control rate estimate), or outcome that is not “antitumor activity”, or when
(b) the goal of Phase II is to select one from several candidate treatments
or several doses for use in Phase III. However, few Phase II cancer studies
are randomized with internal controls. The major barriers to randomization
include that randomized designs typically require a much larger sample size
than single-arm designs and that there are multiple research protocols com-
peting for a limited patient population. Being able to include the Phase II
study as an internal pilot for the confirmatory Phase III trial may be the
only feasible way for a randomized Phase II cancer trial of such sample size
and scope to be conducted.

Although tumor response is an important treatment outcome, the clin-
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ically definitive endpoint in Phase III cancer trials is usually time to event
(death or recurrence). The go/no-go decision to Phase III is typically based
on tumor response because the clinical time-to-failure endpoints in Phase III
are often of long latency. Seamless Phase II-III trials with bivariate endpoints
consisting of tumor response and time to event are an important accomplish-
ment of the Bayesian approach, introduced by Inoue, Berry and Thall [41]
and Huang et al. [42] to relate survival to response. Let zi denote the treat-
ment indicator (0=control, 1=experimental), τi denote survival time, and yi
denote the binary response for patient i. The Bayesian approach assumes
that the responses yi are independent Bernoulli variables and the survival
time τi given yi follows an exponential distribution, denoted Exp(λ) in which

1/λ is the mean: yi | zi = z
i.i.d.∼ Bern(πz), τi | {yi = y, zi = z} i.i.d.∼ Exp(λz,y).

It then follows that the conditional distribution of τi given zi is a mixture of
exponentials:

τi | zi = z
i.i.d.∼ πzExp(λz,1) + (1− πz)Exp(λz,0). (10)

Instead of the parametric assumption of Exp(λz,y) for the conditional
distribution of τi, semiparametric methods such as Cox regression, however,
are often preferred for reproducibility considerations and because of the rel-
atively large sample sizes in phase III studies. This led Lai, Lavori and
Shih [43] to develop an alternative seamless phase II-III design that uses a
semiparametric model to relate survival to response and is directly targeted
toward frequentist testing with generalized likelihood ratio (GLR) or partial
likelihood statistics. Their basic idea is to replace the stringent parametric
model involving exponential distributions by a semiparametric counterpart
that generalizes the Inoue-Thall-Berry model. Let y denote the response
and z denote the treatment indicator, taking the value 0 or 1. Consider the
proportional hazards model λ(t | y, z) = λ0(t) exp(αy+βz+γyz). The Inoue-
Thall-Berry exponential model is a special case with λ0(·) being the constant
hazard rate of an exponential distribution. Let π0 = pr(y = 1 | control) and
π1 = pr(y = 1 | treatment). Let a = eα, b = eβ and c = eγ, and let S be
the survival function and f be the density function associated with the haz-
ard function λ0 so that λ0 = f/S. In this augmented proportional hazards
model, the survival distribution of τ is

P(τ > t) =

{
(1− π0)S(t) + π0(S(t))a for the control group (z = 0),
(1− π1)(S(t))b + π1(S(t))abc for the treatment group (z = 1).

(11)
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The hazard ratio of the treatment to control survival varies with t because of
the mixture form in (11). Let π = (π0, π1), ξ = (a, b, c). Lai, Lavori and Shih
[43] formulate the null hypothesis as H0 : π0 ≥ π1, or π0 < π1 and d(π, ξ) ≤
0, and use time-sequential GLR and partial likelihood ratio statistics to test
H0, where d(π, ξ) is the limiting hazard ratio (which does not depend on t)
as a→ 1 and c→ 1.

3. A new approach to the design and analysis of time-sequential
survival trials

The power calculations at the design stage of a time-sequential trial with
survival endpoint typically assume a working model of survival functions
F̄ = 1− F and Ḡ = 1− G, the accrual pattern and the censoring rates per
year. The working model embeds the null case F̄ = Ḡ in a semiparametric
family whose parameters are fully specified for the alternative hypothesis,
under which the study duration and sample size of the two-sample semi-
parametric test are shown to have some prescribed power. The two-sample
test statistic Sn(t) is usually chosen to be an efficient score statistic or its
asymptotic equivalent in the working model. The asymptotic null variance
nV (ti) of Sn(ti) depends not only on the survival distribution but also on
the accrual rate and the censoring distribution up to the time ti of the ith
interim analysis. The observed patterns, however, may differ substantially
from those assumed in the working model for the power calculations at the
design stage. In addition, the working model under which the test statistic
is semiparametrically efficient may not actually hold. In this case, as the
sample size n approaches ∞, the limiting distribution of Sn(t)/

√
n is still

normal with mean 0 and variance V (t) under F = G and has independent
increments, but under local alternatives, the mean µ(t) of the limiting nor-
mal distribution of Sn(t)/

√
n may not be linear in V (t), and may level off or

even decrease with increasing V (t), as shown in [15].
In the past decade, the logrank statistic and the closely related hazard

ratio together with the proportional hazards model have become the most
widely used test statistic and endpoint for survival trials. Their popularity
in the medical literature is partly due to the conceptual simplicity of the
hazard ratio as a summary measure to compare two survival distributions,
whose Kaplan-Meier estimates are typically also plotted in the report of a
survival trial. Although the logrank statistic Sn(t) is indeed asymptotically
efficient under the proportional hazards model, it can have a flattening or
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eventually decreasing drift
√
nµ(t) under local alternatives, as pointed out

above. In this case, some other functionals of the survival distributions are
more appropriate than the hazard ratio which is no longer constant with-
out the proportional hazards assumption. These functionals are given in
Section 3.1 in which we describe how they can be used in conjunction with
the logrank statistic for the analysis at the prescheduled end t∗(= tk) of a
time-sequential survival trial whose early stopping rule involves the logrank
statistic and the modified Haybittle-Peto boundary. Thus, at the planning
stage and at interim analyses, we follow the popular practice of carrying out
repeated logrank tests. Even when interim data show clear departures from
the proportional hazards model, early efficacy stopping of the time-sequential
logrank test may have both increase in power and reduction in sample size if
the mean µ(t) of Sn(t)/

√
n decreases with increasing V (t), as shown in [15].

What can really hurt by using the inefficient logrank statistic in such cases
is when early stopping has not occurred during interim analyses and one can
end up with substantial loss of power with the logrank test at the presched-
uled end t∗ of the trial. However, our new approach salvages the power loss
by bringing in other functionals of the survival descriptions. This approach
makes use of certain ideas in Section 2.2 for its implementation. Section 3.2
presents simulation results on the performance of this new design.

Whereas Section 3.1 focuses on early stopping for efficacy and terminal
analysis at t∗, we consider early stopping for futility in Section 3.3. He, Lai
and Liao [44] have recently developed a theory for futility stopping using the
idea of an “implied alternative” introduced by Lai and Shih [27] in connection
with the efficiency theory of modified Haybittle-Peto tests. In time-sequential
survival trials, this implied alternative depends on V (t∗), which [44] uses a
Bayesian approach to estimate during the course of the trial. Combining
Sections 3.1 and 3.3 yields a new time-sequential design that updates previous
works in Section 2.1.

3.1. Cumulative hazard differences to supplement the logrank statistic at t∗

As noted above, when the trial results are published to show the sur-
vival benefits of the new treatment, the Kaplan-Meier curves of the treat-
ment and control groups are usually included in the report. We consider
here the possibility of combining some key features of the survival curves
with the logrank statistic at the prescheduled end of the trial to enhance
the power of the test in the case of non-proportional hazards. Instead of
Kaplan-Meier curves, it may be more convenient to consider the Studentized
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cumulative hazard differences at selected survival times s1, . . . , sL (e.g., 1-
year, 2-year, 5-year survival). Using the same notation as in Section 2.1, let
Λ̂X(s) = Σu≤s

(
∆N ′n,t∗(u)/m′n,t∗(u)

)
, Λ̂Y (s) = Σu≤s

(
∆N ′′n,t∗(u)/m′′n,t∗(u)

)
be

the Nelson-Aalen estimators of the cumulative hazard functions of the two
groups at the prescheduled termination time t∗ of the trial. Let VX(s) =
Σu≤s∆N

′
n,t∗(u)/(m′n,t∗(u))2 be the estimate of Var(Λ̂X(s)) and define VY (s)

similarly. Define the Studentized cumulative hazard difference at sl (l =
1, . . . , L) by

∆l =
(

Λ̂X(sl)− Λ̂Y (sl)
)
/ (VX(sl) + VY (sl))

1/2 . (12)

Instead of the estimated cumulative hazards, one can use the Kaplan-Meier
estimates ŜX and ŜY of the survival functions at sl that are usually graphed
in reporting the trial results, replacing Λ̂X(sl) − Λ̂Y (sl) by ŜX(sl) − ŜY (sl)
in (12) so that VX(sl) is now given by the Greenwood formula

Ŝ2
X(sl)Σu≤s∆N

′
n,t∗(u)/{m′n,t∗(u)[m′n,t∗(u)−∆N ′n,t∗(u)]},

and VY (sl) is given by its corresponding Greenwood formula. We call this
modification the “survival variant” of (12).

The test statistics ∆1, . . . ,∆L defined by (12) or its survival variant are
used to supplement the Studentized logrank statistic Sn(t∗)/σ̂n(t∗), where
σ̂2
n(t) = (total number of deaths up to time t)/4. Thus, the time-sequential

test statistics Wi now take the form

Wi =

{
Sn(ti)/σ̂n(ti) for i ≤ i < k,

max(Sn(t∗)/σ̂n(t∗),∆1, . . . ,∆L) for i = k.
(13)

We apply the modified Haybittle-Peto stopping rule in Section 2.1 to the test
statistics (13), in which Sn(t) is the logrank statistic at calendar time t.

3.2. Implementation and a simulation study

The determination of b in the modified Haybittle-Peto test proceeds as
in [9, 15] for the symmetric boundaries and as in [27, 44] for asymmetric
boundaries b and b̃. The determination of c becomes much more difficult
after introducing the additional test statistics ∆1, . . . ,∆L in (13) because
(∆1, . . . ,∆L, Sn(ti)/σ̂n(ti), 1 ≤ i ≤ k) does not have an independent incre-
ments correlation structure. Instead of multivariate integration after ap-
plying the joint limiting normal distribution of the random vector under
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F = G to evaluate the probability in (6), we compute the probability by
Monte Carlo simulations, using the procedure in [12, p.644]. Moreover, the
threshold c in the modified Haybittle-Peto test does not need to be computed
explicitly because checking whether the observed values W obs

k of Wk exceeds
c if the trial has not stopped prior to tk is equivalent to checking whether
P̂{(ti∗ ,W ∗

i∗) > (tk,W
obs
k )} ≤ α, where the ordering > is the Lai-Li ordering

(8), i∗ represents the time index of the interim analysis at which the modi-
fied Haybittle-Peto test based on the random variables W ∗

i (generated from
P̂ ) stops, and P̂ is the probability measure corresponding to the estimated
common survival distribution of the two groups.

We apply this procedure to implement the proposed design in the fol-
lowing comparative study of its performance. The study simulates a clinical
trial that enrolls 450 patients uniformly over a 6-year period. Interim anal-
yses are performed at t = 2, 4, 6 years, and the prescheduled end of the trial
is t∗ = 8 years. There are four scenarios in the simulation study, in which
Y is exponential with mean 3 and represents the survival time of a patient
drawn at random from the control group.

Scenario A: X has the same distribution as Y , representing a particular
model in the composite null hypothesis.

Scenario B (proportional hazards): Hazard ratio of X to Y is 2/3.
Scenario C: The hazard ratio of X to Y varies with the survival time s

and is 0.4 for s ≤ 0.8 and increases to 1 for s > 0.8.
Scenario D: The hazard ratio of X to Y is 0.4 for 1 ≤ s ≤ 3 and is 1

elsewhere.
The proposed design, labeled Design 1, or Design 2 for its survival variant,
is compared with three other designs described below. Design 1 (or Design
2) chooses L = 2, s1 = 1 and s2 = 3, and therefore combines the Studentized
cumulative hazard differences (or Studentized survival differences) at 1 and 3
years with the Studentized logrank statistic at terminal analysis. Designs 3, 4
and 5 involve only the time-sequential logrank statistics, and use the modified
Haybittle-Peto boundary and the Pocock and O’Brien-Fleming stopping rules
(as in Example 2 of [15]) respectively. Table 1 gives the type I error and power
P (Reject H0) of the five designs in each scenario. Each result is based on 2000
simulations. The table shows that all five designs maintain the type I error
of 0.05 (Scenario A), and that Designs 1 and 2, have power comparable to
the other three designs in the proportional hazards model (Scenario B), but
are substantially more powerful in the non-proportional settings of Scenarios
C and D. Since Designs 1 and 2 use the same stopping rule at the interim
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analyses as Design 3 whose expected study duration performance has been
more extensively studied in [15], we do not include in Table 1 results on
expected durations. Figure 1 plots the survival distributions of the treatment
and control groups for Scenarios B, C and D.

3.3. Bayesian prediction of future Vn(t)

The Bayesian prediction approach in [44] to estimating at time ti the null
variance Vn(t) of the score statistic Sn(t) for t > ti uses Dirichlet process
priors for the distribution function (F +G)/2 and for the censoring (i.e., pa-
tient withdrawal or loss in follow-up) distribution. Note that the null variance
Vn(t) is generated by the accrual rate, the censoring distribution, and the sur-
vival distributions F and G that are assumed to be equal. The parameter α,
which is a finite measure on R+ = (0,∞), of the Dirichlet process prior for
1−H, where H = (F̄ + Ḡ)/2, can be chosen to be some constant κ times the
assumed parametric model, which is typically a proportional hazards model,
used for power calculation at the design stage, where κ = α(R+) that reflects
the strength of this prior measure relative to the sample data. At the ith
interim analysis, let ni be the total number of subjects who have been ac-
crued and let Z

(i)
j , j = 1, . . . , ni, denote the combined sample of Xl(ti), Yh(ti),

using the same notation as that in Section 2.1. Let δ
(i)
j be the censoring

indicator δ′l(ti) or δ′′h(ti) associated with Z
(i)
j , and mi(s) be the correspond-

ing m′n,t(s) or m′′n,ti(s). By re-arranging the observations, assume without

loss of generality that Z
(i)
1 , . . . , Z

(i)
k are the uncensored observations, and let

Z
(i)
[k+1] < · · · < Z

(i)
[m] denote the distinct ordered censored observations. Let

m+
i (s) =

∑ni

j=1 I{Z(i)
j >s}, λi(s) =

∑ni

j=1 I{Z(i)
j =s,δj=0}, Z

(i)
[k] = 0, Z

(i)
[m+1] =∞. As

shown in [45], for Z
(i)
[l] ≤ u < Z

(i)
[l+1], the Bayes estimate of H(u) at the ith

interim analysis is given by

Ĥi(u) =
α(u,∞) +m+

i (u)

α(R+) + ni
×

l∏
j=k+1

{
α[Z

(i)
[j] ,∞) +Ni(Z

(i)
[j] )

α[Z
(i)
[j] ,∞) +mi(Z

(i)
[j] )− λi(Z

(i)
[j] )

}
.

Similarly, for updating the estimate Ĉ of the censoring distribution, [44]
interchanges the roles of τj and ξj above and replaces α by αc that is as-
sociated with the specification of the censoring distribution at the design
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Table 1: P (Reject H0) for five designs in Scenarios A, B, C and D.

Scenario
Design

1 2 3 4 5
A 0.047 0.048 0.049 0.050 0.049
B 0.905 0.890 0.932 0.902 0.939
C 0.853 0.858 0.658 0.672 0.651
D 0.671 0.707 0.522 0.395 0.543

stage. At the ith interim analysis, the accrual rates for the period prior to
ti have been observed and those for the future can use what is assumed at
the design stage. Since Vn(t) = Vn(ti) + [Vn(t) − Vn(ti)], we can estimate
Vn(t) by Vn(ti) + E[V ∗n (t)−V ∗n (ti)|Ĥ, Ĉ], in which the expectation E assumes
the updated accrual rates and can be computed by Monte Carlo simulations
to generate the observations (Z∗j , δ

∗
j ) that are independent of the (Z

(i)
j , δ

(i)
j )

observed up to time ti.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No Change Points

Time

S
ur

vi
va

l D
is

tr
ib

ut
io

n

treatment  
control 

(a) Scenario B
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(b) Scenario C
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(c) Scenario D

Figure 1: Survival distributions of the treatment and control groups

4. Discussion

4.1. Flexibility and efficiency of the new approach to early stopping

Combining the commonly used logrank statistics with other statistics to
increase power in the case of non-proportional hazards is a well-known robust
method in survival analysis, dating back to [46, 47, 48] in the 1980s. A recent
review of these developments is provided by Ganju, Yu and Ma [49], who also
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propose a bootstrap method, which they call “permutations”, to evaluate the
null distribution of the combined statistic. These works, however, assume a
fixed-duration design. For time-sequential designs, the major novelty of our
approach lies in (13), in which we use the “adaptive statistic” only at the
prescheduled termination time t∗ of the trial to attain power similar to that
of a fixed-duration trial using such statistic. The modified Haybittle-Peto
boundary for the time-sequential logrank test, which spends only εα for the
type I error in the interim analyses prior to t∗, also helps to achieve this by
choosing ε suitably; see [27]. Because only a fraction ε of the type I error
is spent at interim analyses, we do not want to pay for combing test statis-
tics for combining statistics in stopping for efficacy, hence (13) only uses the
logrank statistics for early stopping prior to t∗. Although we have focused
on cumulative hazard or survival differences at s1, . . . , sL in (13), other Stu-
dentized statistics such as those in [46, 47, 48, 49] can be used instead. The
choice of survival times s1, . . . , sL depends on domain knowledge about the
disease. For example, for cardiovascular diseases, early-stage survival dif-
ferences between treatment and control are usually important to consider,
whereas for certain types of cancer, later-stage survival differences are im-
portant. Different choices of ψ in the censored rank statistics (1) weight
the early and later failures differently. In particular, the logrank statistic
gives equal weight as the proportional hazards assumption underlying the
test statistic implies that the hazard ratio remains the same for the early
and late events.

Early stopping for futility is discussed in [44] and Section 3.3 for the
logrank or more general test statistic. For the logrank statistic, it involves
predicting the total number of events by the prescheduled termination date
t∗. Clearly, if too few events are predicted to occur, then the trial should
either stop for futility or extend the termination date. On the other hand,
the effect size

√
nµ(t) also plays an important role in the theory of futility

stopping in [44] . According to this theory , evidence of futility of continuing
with the logrank test only supports stopping the logrank test, but not the
other tests to be carried out at time t∗ that supplement the logrank test. A
similar problem is considered in the next section, in which stopping for futility
of testing one null hypothesis (related to patient subgroup) redirects the trial
to test other relevant null hypotheses in a multiple testing framework.
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4.2. Emerging trends in adaptive design of time-sequential survival trials
As noted in [37], adaptive seamless designs represent an important trend

of innovations in clinical trial designs to address the need for more efficient
and effective drug development processes in translating the breakthroughs
in biomedical sciences into treatments of complex diseases. In particular,
whereas traditional Phase III trials are inefficient “stand-alone” trials whose
analyses ignore the information from previous phases, [50] argues for com-
bining Phase II and Phase III into a single trial conducted in two stages,
which is the basic idea of seamless Phase II-III designs. Although the seam-
less Phase II-III in Section 2.3 is one such example, what [50] focuses on for
the initial stage (Phase II) is to choose a treatment regimen (such as dose)
or a patient subgroup for continuation in the second stage (Phase III) of the
adaptive seamless trial.

The development of imatinib, the first drug to target the genetic defects
of chronic myeloid leukemia (CML) while leaving healthy cells unharmed,
has revolutionized the treatment of cancer. Most new targeted treatments,
however, have resulted in only modest clinical benefit, with less than 50%
remission rates and less than one year of progression-free survival, unlike a
few cases such as trastuzumab in HER2-positive breast cancer, imatinib in
CML, and gefinitib and erlotinib in non-small cell lung cancer. While the
targeted treatments are devised to attack specific targets, the “one size fits
all” treatment regimens commonly used may have diminished their effective-
ness and genomic-guided and risk-adapted personalized therapies that are
tailored for individual patients are expected to substantially improve the ef-
fectiveness of these treatments. Of particular interest to the pharmaceutical
industry is how personalized biomarker data can be used in a phase III trial
for regulatory approval of a new treatment, particularly for treating cancer
by attacking specific targets. There are two important preliminaries prior
to designing the trial. One is to identify the biomarkers that are predictive
of response, and the other is to develop a biomarker classifier that identi-
fies patients who are sensitive to the treatment, denoted Dx+. An example
is trastuzumab, for which strong evidence of the relationship between the
biomarker, HER2, and the drug effect was found early and led to narrowing
the patient recruitment to HER2-positive patients in the phase III trial. In
the ideal setting that the biomarker classifier can partition the patient pop-
ulation into drug-sensitive (Dx+) and drug-resistant (Dx-) subgroups, it is
clear that Dx- patients should be excluded from the clinical trial. In practice,
however, the cut-point for the Dx+ group is often based on data from early
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phase trials with relatively small sample sizes and has substantial statistical
uncertainty (variability). Thus, a dilemma arises at the design stage of the
Phase III trial. Should the trial only recruit Dx+ patients who tend to have
larger effect size, or should it have broad eligibility from the entire intended-
to-treat (ITT) patient population but a diluted overall treatment effect size?
The former has the disadvantage of an overly stringent exclusion criterion
that misses a large fraction of patients who can benefit from the treatment if
the classifier imposes relatively low false positive rate for Dx+ patients, while
the latter has the disadvantage of ending up with an insignificant treatment
effect by including patients that do not benefit from the treatment.

Brannath et al. [51] point out the difficulties with using traditional de-
signs to address this dilemma:

Selecting a spurious sub-population could lead to wrongly limiting ac-
cess to the treatment for only a fraction of the benefiting population.
Generating the evidence to support such a development strategy tra-
ditionally requires (i) a hypothesis generating (exploratory) study to
identify a sub-population, (ii) the confirmation of the sensitivity of this
sub-population in an independent second(e.g. phase II) study, before
(iii) running a phase III study in the selected target population. The
formal claim of efficacy in the target population is to be based on the
later phase III study results. Consequently, the traditional approach is
very time consuming and resource intensive and does not facilitate effi-
cient use of accumulating evidence to support the final claim of efficacy
in the relevant population.

Recognizing that the adaptive seamless designs proposed in [50] can be used
to “combine into a single study the objectives (ii) and (iii)”, Brannath et
al. [51] extend these two-stage designs to time-to-event data that may be
censored at interim analysis. As in [50], they consider multiple testing of the
two null hypotheses H0 (for the ITT population) and H0+ (for the Dx+ sub-
population), and follow the p-value combination approach introduced in [52]
and [53] to combine the first-stage p-value with the second-stage p-value that
is based exclusively on the second-stage data. Using the logrank statistics
for time-to-event data, they extend the independent increments property of
the asymptotic distribution of Sn(t) in Section 2.1 to the “stratified logrank
test” with different strata for the sub-population and its complement so that
the ideas of [50, 52, 53] for independent normal observations can be applied.
The interim analysis uses Bayesian posterior probabilities to decide whether
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to continue only with Dx+ (if the posterior probability that Dx- patients
can benefit from the new treatment is low), or to stop the study for futility
if the posterior probabilities of benefit for ITT and for Dx+ are both low;
the posterior probabilities are computed by using normal approximations to
logrank statistics and Bayesian conjugate priors for normal random walks.

Jenkins, Stone and Jennison [54] have introduced a further refinement
of [51] while still using the p-value combination approach. They treat ITT
and Dx+ as “co-primary populations” of the two-stage trial. The interim
analysis at the end of the first stage decides whether to continue with both
co-primary populations, or with the Dx+ subpopulation only, or with ITT
only, or to stop for futility. The decision is based on intermediate endpoint,
progression-free survival (PFS) , that is correlated with the primary endpoint,
overall survival, of the trial. It argues for a “simple, unequivocal” interim
decision rule based on the estimated hazard ratios for PFS within the ITT
and Dx+ groups. “Target values are set and the trial only continues in those
groups for which the hazard ratio exceeds the target. Simulations of the
clinical trial design can be used to choose the thresholds for this decision
rule so as to ensure the design has higher power”, and simulation studies of
the design in [54] show that the proposed design does not inflate the type I
error.

As noted in [37], it is widely recognized that this p-value combination
approach is inefficient, and more efficient seamless Phase II-III designs in-
corporating patient subgroup selection are long-standing open problems. In
fact, Section 4.3 of [37] and the recent paper [55] have developed such de-
signs for comparing a new method against standard medical care for stroke
patients. The endpoint of that trial is the Rankin score, which is much easier
to handle than the censored failure-time endpoint in survival trials. Lai, Liao
and Tsang have recently extended the approach in [55] to survival outcomes,
and the method and results will be presented elsewhere. An important in-
novation of their work is that unlike [51] and [54] which rely heavily on the
logrank statistic, a more flexible and powerful statistic of the type (13), after
stratification into subgroups, is used at the prescheduled end of the trial.
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