Pathophysiological hypoxia is an important modulator of gene expression in solid tumors and other pathologic conditions. We observed that transcriptional activation of the c-jun proto-oncogene in hypoxic tumor cells correlates with phosphorylation of the ATF2 transcription factor. This finding suggested that hypoxic signals transmitted to c-jun involve protein kinases that target AP-1 complexes (c-Jun and ATF2) that bind to its promoter region. Stress-inducible protein kinases capable of activating c-jun expression include stress-activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK) and p38 members of the mitogen-activated protein kinase (MAPK) superfamily of signaling molecules. To investigate the potential role of MAPKs in the regulation of c-jun by tumor hypoxia, we focused on the activation SAPK/JNKs in SiHa human squamous carcinoma cells. Here, we describe the transient activation of SAPK/JNKs by tumor-like hypoxia, and the concurrent transcriptional activation of MKP-1, a stress-inducible member of the MAPK phosphatase (MKP) family of dual specificity protein-tyrosine phosphatases. MKP-1 antagonizes SAPK/JNK activation in response to diverse environmental stresses. Together, these findings identify MKP-1 as a hypoxia-responsive gene and suggest a critical role in the regulation of SAPK/JNK activity in the tumor microenvironment.