Format

Send to

Choose Destination
Mol Biol Cell. 2001 Nov;12(11):3328-39.

Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1.

Author information

1
Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Abstract

The Forkhead family of transcription factors participates in the induction of death-related genes. In NMuMG and 4T1 mammary epithelial cells, transforming growth factor beta (TGF beta) induced phosphorylation and cytoplasmic retention of the Forkhead factor FKHRL1, while reducing FHKRL1-dependent transcriptional activity. TGF beta-induced FKHRL1 phosphorylation and nuclear exclusion were inhibited by LY294002, an inhibitor of phosphatidylinositol-3 kinase. A triple mutant of FKHRL1, in which all three Akt phosphorylation sites have been mutated (TM-FKHRL1), did not translocate to the cytoplasm in response to TGF beta. In HaCaT keratinocytes, expression of dominant-negative Akt prevented TGF beta-induced 1) reduction of Forkhead-dependent transcription, 2) FKHRL1 phosphorylation, and 3) nuclear exclusion of FKRHL1. Forced expression of either wild-type (WT) or TM-FKHRL1, but not a FKHRL1 mutant with deletion of the transactivation domain, resulted in NMuMG mammary cell apoptosis. Evidence of nuclear fragmentation colocalized to cells with expression of WT- or TM-FKHRL1. The apoptotic effect of WT-FKHRL1 but not TM-FKHRL1 was prevented by exogenous TGF beta. Serum starvation-induced apoptosis was also inhibited by TGF beta in NMuMG and HaCaT cells. Finally, dominant-negative Akt abrogated the antiapoptotic effect of TGF beta. Taken together, these data suggest that TGF beta may play a role in epithelial cell survival via Akt-dependent regulation of FKHRL1.

PMID:
11694570
PMCID:
PMC60258
DOI:
10.1091/mbc.12.11.3328
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center