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Bioinspired polymeric materials: in-between proteins

and plastics

Annelise E Barron* and Ronald N Zuckermannt

Chemical and biological researchers are making rapid
progress in the design and synthesis of non-natural oligomers
and polymers that emulate the properties of natural proteins.
Whereas molecular biologists are exploring biosynthetic routes
to non-natural proteins with controlled material properties,
synthetic polymer chemists are developing bioinspired
materials with well-defined chemical and physical properties
that function or self-organize according to defined molecular
architectures. Bioorganic chemists, on the other hand, are
developing several new classes of non-natural oligomers that
are bridging the gap between molecular biology and polymer
chemistry. These synthetic oligomers have both sidechain and
length specificity, and, in some cases, demonstrate capability
for folding, self-assembly, and specific biorecognition.
Continued active exploration of diverse backbone and
sidechain chemistries and connectivities in bioinspired
oligomers will offer the potential for self-organized materials
with greater chemical diversity and biostability than natural
peptides. Taken together, advances in molecular
bioengineering, polymer chemistry, and bioorganic chemistry
are converging towards the creation of useful bioinspired
materials with defined molecular properties.
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Abbreviation
CD circular dichroism

Introduction

Information encoded in the sequences of natural proteins is
sufficient to drive the adoption of complex three-dimension-
al architectures. Although they are based upon unique linear
arrangements of just 20 different monomers, folded proteins
nonetheless achieve a tremendous breadth of physical and
chemical activities, ranging from exquisitely specific room-
temperature catalysis to the formation of unusually strong
and tough biomaterials such as collagen and spider silk.
Active, folded proteins are typically challenging to produce
in commodity amounts. By contrast, man-made polymers are
typified by random monomer arrangements and broad mole-
cular-weight distributions, and can be manufactured in bulk
at low cost with a wide diversity of backbone and sidechain
chemistries and high molecular weights. Without precise
control over sequence and chain length, however, complex
folded architectures cannot be designed.
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The spectrum of polymeric materials, ranging from proteins that are
sequence-specific and monodisperse, to polymers that have random
sequences and are polydisperse. Non-natural, sequence-specific
oligomers represent a new ‘middle ground’ between these extremes.

As shown schematically in Figure 1, polymeric materials
can be considered to fall along a ‘spectrum’ of increasing
chemical diversity on one hand (greatest for man-made
polymers), and increasing capacity for adoption of sec-
ondary and tertiary structures on the other (greatest for
biological polymers). Molecular biologists, polymer
chemists, and bioorganic chemists are taking different
approaches to the development of new materials with con-
trolled properties intermediate between those of biological
heteropolymers (proteins) and man-made homopolymers
(plastics). In this review, we discuss some converging
advances in these fields that promise an improved class of
non-natural, bioinspired polymers that can effectively
mimic protein structures, activities, and/or material proper-
ties, and yet can be obtained at lower cost and with greater
chemical diversity and biological stability. We give special
attention to the progress of synthetic bioorganic chemists
toward the creation of folded, sequence-specific oligomers
with novel backbone and sidechain chemistries.

Molecular bioengineering

Molecular bioengineers are working to design and pro-
duce proteins with polymer-like properties, exploiting
the biosynthetic machinery of microorganisms to produce
non-natural ‘protein polymers’ with defined structural
and folding propensities. This can be achieved through
bacterial expression of synthetic genes produced by end-
to-end enzymatic linking (concatemerization) of
synthetic oligonucleotides, yielding repetitive protein
polymers [1]. This approach was first taken by Ferrari
and Cappello (see [2] and references therein) to produce
novel silk-like materials. An advantage of the biosynthet-
ic approach is that gram quantities of monodisperse,
sequence-controlled polypeptides comprising more than
250 monomers (with a typical oligomeric repeat being
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Examples of non-natural oligomers composed of a specific sequence
of diverse monomers. These are primarily of interest for combinatorial
drug discovery efforts.

20-25 amino acids) are produced at low cost. These
methods have been used recently to produce protein
polymer mimics of spider silk [3,4] and elastin [5,6], as
well as protein-based hydrogels with tunable properties
[7°]. Repetitive heteropolymers are primarily of interest
for their properties as biomimetic and biocompatible
materials [8], rather than as folded protein catalysts.

T'here are limitations to using the unmodified biosynthet-
ic apparatus for the production of non-natural protein
polymers. For reasons that are often not well understood,
some non-natural genes are incompatible with high-level
expression in FEscherichia coli (e.g. pure homopolypeptides
are difficult to express) [2]. Furthermore, unless special
provisions are made, protein polymers are restricted to the
20 natural amino acids. To expand the range of properties
achievable in protein-based materials, Tirrell and
co-workers [9°,10] have developed methods to incorporate
non-natural amino acid analogs with structural similarity to
natural amino acids. This strategy relies upon mutant bac-
terial strains unable to synthesize a particular amino acid.
The bacteria can then be fed the synthetic amino acid ana-
log of interest. Recently, Van Hest and Tirrell [9°] have
selectively introduced analogs with allyl functionalities,
complementing previous introductions of non-natural
sidechains that are selenated, fluorinated, electroactive,
conformationally constrained, and olefinic [10]. In a differ-
ent approach, Schultz and co-workers (see [11°°]) have
worked to modify the biosynthetic machinery of E. co/i to
include an additional, engineered codon that will enable iz
vivo synthesis of proteins containing non-natural amino
acids. Recently, Liu and Schultz [11°°] have succeeded in
synthesizing a non-natural tRNA and aminoacyl-tRNA
synthetase pair orthogonal to any existing natural pairs.
The development of novel technologies for the introduc-
tion of non-natural amino acids into proteins and protein
polymers will expand the range of useful and interesting
molecules that can be obtained by harnessing biosynthesis.

Polymer chemistry

Whereas molecular biologists work to increase diversity
in biosynthesis, polymer chemists are developing poly-
mers with more protein-like properties. In particular,
they strive to narrow polymer molecular-weight distribu-
tions, control monomer sequence, and develop
functionalized polymers with well-defined molecular
architectures and conformations.

In order to control molecular weight and to some degree
the monomer sequence, polymer chemists have developed
the method of ‘living’ polymerization [12]. With this
method, chain initiation events are well-controlled, while
chain-transfer and chain-termination reactions are sup-
pressed. Under ideal living polymerization conditions,
polymer chains grow at a uniform rate until the supply of
monomer is exhausted, yielding relatively narrow molecu-
lar weight ranges (though distributions are still quite broad
compared to natural proteins) [12]. Different ‘blocks’ of a
given monomer can be added sequentially, with the aver-
age block length controlled by the amount of monomer
that is added. Although much of this work has been done
with hydrophobic polymers, the technique is now being
used for protein mimicry. Recently, Deming [13,14°] has
found the first clean route to the synthesis of high molec-
ular weight block copolypeptides with relatively tight
molecular weight distributions, employing living, ring-
opening polymerization reactions with improved catalysts.
His group is presently investigating block copolypeptides
for their ability to mimic mussel adhesive proteins, which
form an underwater ‘glue’ with properties that promise to
make them useful as surgical adhesives [15].

Polymer scientists are also seeking to mimic natural pro-
teins by incorporating protein-like secondary structural
elements. Helical polymers have been designed by intro-
ducing chirality into monomer sidechains [16]. In
particular, Green and co-workers [17,18] have used circu-
lar dichroism (CD) spectroscopy to show that the achiral
backbone of polyalkyl isocyanates can respond coopera-
tively to the presence of a small fraction of chiral
sidechains, forming populations of conformational iso-
mers with an easily measurable excess of one helical
sense. Maeda and Okamoto [19] have additionally shown
that polyphenyl isocyanates respond sensitively and
cooperatively to chiral information encoded at sidechain
positions quite distal to the backbone.

Polymer chemists are mimicking another fundamental
property of proteins, namely their self-organization into
objects of discrete shape and size. In one approach, living
polymerization has been used to create low molecular
weight, self-assembling oligomers with tri-block architec-
tures [20°]. The self-assembling oligomers themselves
comprise fewer than 30 monomers (in three different
blocks ranging from 8-12 residues each), and associate to
form discrete ‘mushroom’ structures that then further
assemble into highly ordered, supramolecular arrays.
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In a second route to discrete architecture formation,
polymer backbones are hyper-branched in a highly con-
trolled fashion to generate dendrimeric structures [21].
These spherical dendrimers are synthesized one ‘shell’
at a time, enabling the controlled display of multiple,
identical bioactive chemical moieties on the surface [22].
Particular dendrimer designs have been demonstrated
that inhibit viral adhesion [23°] and transport DNA into
mammalian cells [24].

Bioorganic chemistry

In contrast to polymer chemists, who accept some degree of
randomness and polydispersity in order to access diversity
and high molecular weights, bioorganic chemists keep tight
control over sequence and chain length with iterative syn-
theses in which monomers are added one at a time. The
price of this control is that high degrees of polymerization
are not achieved in acceptable yield. Solid-phase methods
allow iterative syntheses to be performed efficiently, and in
the case of synthetic peptides and nucleic acids, solid-phase
synthesis enables routine and automated preparation of
sequence-specific polymers of 75-100 residues. However,
most proteins and useful polymeric materials are comprised
of chains much longer than 100 monomer units, so the iter-
ative de novo syntheses of true protein and polymer analogs
is currently not feasible. This limitation can be surpassed
for relatively small proteins by chemical ligation of peptide
fragments that are synthetically [25] or biosynthetically
[26°°] produced (see Kochendoerfer and Kent, in this issue,
pp 665-671). Recently developed ligation methods allow
site-specific introduction of non-natural amino acids
[27,28], and coupling of unprotected peptides directly from
a solid support [29,30].

Synthetic methods for producing non-natural protein mim-
ics are at a much earlier stage of development than peptide
and oligonucleotide synthetic methods, and are under
active investigation. Although much synthetic work has
been done to produce conformationally — or ‘solvophobi-
cally’ — structured non-sequence-specific homo-oligomers
(recently reviewed in [31]), we focus on non-natural
oligomers that have specific sequences of diverse
sidechains (Figures 2 and 3).

Unstructured sequence-specific oligomers

Several families of sequence-specific oligomers have been
developed for combinatorial drug discovery (Figure 2).
Schultz and co-workers [32] used solid-phase methods to
synthesize a library of oligocarbamates with a variety of
sidechains, and screened for binding to a monoclonal anti-
body that was raised with a related peptide. A number of
ligands with ICs, values of 60-180 nM were discovered in
this manner. Wang, Huq and Rana [33] found that bio-
mimetic oligocarbamates can bind specifically to HIV
trans-activation mRNA (TAR), a 59-base stem-loop structure
located at the 5’ end of the nascent HIV-1 transcripts. In
recent work, cyclic and acyclic oligocarbamate libraries based
on 27 diverse monomers were synthesized and screened for

Figure 3
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Examples of non-natural oligomers composed of a specific sequence
of diverse monomers, which additionally have been shown to exhibit
stable secondary structures in solution.

binding to integrin GPIIb/I11a [34]. Two cyclic trimeric and
tetrameric ligands had activities within a factor of 3 of kistrin,
a 68-residue snake venom protein that effectively inhibits
platelet aggregation [34], a problem in patients with arterial
thrombotic diseases. Nanomolar inhibitors of 0-adrenergic
and opiate receptors (which modulate arterial blood pressure
and pain response, respectively) have also been discovered
from a diverse, 5000-member, combinatorial oligo-/V-
substituted glycine (peptoid) library (Figure 3) [35].

Oligoureas are another class of non-natural oligomers that
are of interest for drug discovery because they can be
made with a diversity of sidechains; two different solid-
phase routes to these molecules have been described
[36,37]. Tamilarasu, Huq and Rana [38] have made a bio-
mimetic oligourea decamer and shown that it binds
specifically to its intended RNA target. Another family of
sequence-specific oligomers are the azatides [39]. Azatide
pentamers have been made with inclusion of five differ-
ent N-pendant sidechains. One such pentamer was
synthesized with a biomimetic sequence mimicking
leucine—enkephalin; its lack of binding activity was
attributed to differences in allowed backbone conforma-
tions in comparison to the natural peptide [39]. Hall and
Schultz [40] have investigated the ability of sequence-
controlled oligoethers to specifically bind metal ions.
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Three ethoxyformacetal tetramers have been prepared,
incorporating four different chiral sidechains.

Structured sequence-specific oligomers

By introducing a variety of structure-inducing elements
into the constituent monomers, several groups have iden-
tified oligomers that adopt defined secondary structures
(Figure 3). Chiral vinylogous aminosulfonic acids are struc-
tured peptide mimics with an extended non-natural
backbone that carries a strong negative charge. Gennari ¢z a/.
[41] have synthesized vinylogous sulfonamidopeptides up
to four residues in length, incorporating specific sequences
of chiral sidechains. Conformational studies of oligomers in
both the solution and solid phase provide evidence of an
ensemble of structures predominated by hydrogen-
bonded rings.

Oligopyrrolinones (Figure 3) have a stiffened backbone
that incorporates 5-membered rings. Solution-phase meth-
ods have been employed to synthesize sequence-specific
pentamers with a limited alphabet of proteinogenic
sidechains [42,43]. Short oligopyrrolinones adopt defined
conformations. X-ray crystallography has shown that the
oligopyrrolinone imino group can form intramolecular
hydrogen bonds with the carbonyl group of an adjacent
five-membered ring to give a structure that mimics
[B-strands, or can form intermolecular hydrogen bonds with
the carbonyl on another oligomer to mimic a B-sheet [43].
N-methylated 3,5-linked pyrrolin-4-ones have been shown
to adopt a novel helix in solution and in the solid phase, as
predicted by molecular modeling [43].

Another family of structured, sequence-specific oligomers
under active investigation for their ability to mimic natural
proteins are the B-peptides (Figure 3), which have a back-
bone differing from normal peptides by the presence of an
additional methylene unit. Gellman and co-workers
[44,45,46°°,47] taken the approach of reducing the number
of allowed backbone conformations of this extended pep-
tide by including cyclopentane and cyclohexane rings in
the backbone (producing conformationally rigidified B-pep-
tides; Figure 3) [44]. Oligomers of these molecules made by
solution-phase methods have been found to form two novel
types of hydrogen-bonded helical structures, in either
aqueous or organic solvents. Structures of these helices in
both solvent systems have been solved by two-dimensional
NMR [45,46°°], while organosoluble structures were
recently determined by crystallography [47].

Seebach and co-workers [48-54,55°] have generated a
family of enantiopure B-amino-acid monomers by homolo-
gation of the cognate O-amino acids [48,49]. This has
facilitated the synthesis of B-peptides up to 12 monomers
in length with incorporation of a variety of proteinogenic
sidechains at either or both of the backbone methylene
carbons [50,51]. Short B-peptides form a variety of stable
hydrogen-bonded secondary structures in solution, includ-
ing novel helices, pleated sheets, and turns [52,53].

Different secondary structures are generated by position-
ing sidechains on either o or B carbons, or by cyclization
[54]. Recently, cyclic, structured B-peptide tetramers have
been found to bind with micromolar affinities to human
somatostatin receptors [55°]. Hence, they have some abili-
ty to mimic somatostatin, an endogenous peptide that
plays important physiological roles as a neurotransmitter
and as an inhibitor of hormone secretion.

The Seebach and Hanessian groups have recently found
stable secondary structures in Yy-peptide oligomers with
specific sidechain sequences ([56°,57°°]; Figure 3). These
molecules have two additional backbone methylene units,
in comparison with natural peptides, and hence allow
sidechain substitution of two different positions per
monomer unit. Reverse-turn and right-handed helical
structures have been determined by two-dimensional
NMR in two different solvent systems [58]. The helices
appear to have greater conformational stabilities than
either a-peptide or B-peptide helices [57°°], which might
not have been predicted given the highly flexible nature of
the extended y-peptide backbone. The structures are sta-
bilized by amide proton-to-carbonyl hydrogen bonds
between neighboring residues.

N-substituted glycines (peptoids; Figure 3) are presently
unique among structured, sequence-specific, non-natural
oligomers in that their convenient, automated synthesis
can be achieved up to lengths of at least 48 monomers.
Peptoids containing a diversity of alkyl, aromatic, hetero-
cyclic, cationic, and anionic N-substituents have been
synthesized and characterized [59°°]. Although these mol-
ecules are structurally similar to 0-amino-acid polymers,
their backbone lacks both chiral centers and hydrogen
bond donors. As for polyalkyl isocynates [17], however, the
inclusion of chiral sidechains is sufficient to drive peptoids
into stable, chiral helices [59°°]. Oligomers as short as five
residues form helical structures in organic solvents, as
demonstrated by two-dimensional NMR [60]. A variety of
peptoid sequences exhibit intense CD spectra, in both
aqueous and organic solvents, that resemble those of pep-
tide a-helices [59°°]. Robotic peptoid synthesis efficiently
generates diverse combinatorial libraries, allowing the
screening of multiple sequences for a desired structure or
activity. For example, 36mer cationic peptoid sequences
that facilitate the delivery of DNA to cells have been dis-
covered from a combinatorial library [61].

Conclusions

Several different areas of research are converging on the
development of a new class of bioinspired materials that
capture the advantages of both protein and polymer sys-
tems. While polymer chemists and molecular bioengineers
push the limits of their synthetic methods, a new field in
bioorganic chemistry has emerged between these disci-
plines. This field is still in its infancy; however, researchers
have made remarkable advances. Although surprisingly
short oligomers can adopt stable secondary structures and
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exhibit potent biological activities, longer sequence-spe-
cific chains can also be efficiently synthesized and provide
access to the realm of proteins and polymers. Continued
interdisciplinary progress will enable scientists to exercise
an unprecedented degree of control over the structures of
polymeric materials.

Note added in proof

Two papers that describe new sequence-specific oligomer
systems have recently been published [62,63]. Oligomers
of chiral a-aminoxy acids up to six residues in length have
been synthesized bearing a variety of aliphatic sidechains
[62]. These oligomers are shown to form intramolecular
hydrogen bonds that stabilize a novel helical structure.
Another group has used a submonomer synthesis approach
to generate a variety of trimeric hydrazinoazopeptoids [63].
These achiral oligomers were synthesized in solution using
bromoacetyl bromide and a substituted hydrazine.
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