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Biomimetic Lung Surfactant
Replacements

Cindy W. Wu and Annelise E. Barron
Northwestern University, Evanston, illinois

. INTRODUCTION

Pulmonary surfactant, or lung surfactant (LS), is a natural biomaterial that
coats the internal surfaces of mammalian lungs and enables normal
breathing. It is a complex mixture composed of about 90% lipids and about
10% surfactant proteins (SPs). Both fractions are critical for its physiological
function, which is to decrease the work of breathing by regulating surface
tension at the air-liguid interface of the alveoli (the network of air sacs that
perform gas exchange within the lung) as a function of alveolar surface area
(1,2). A deficiency of functional LS in premature infants resulis in the
devetopment of neonatal respiratory distress syndrome (RDS) (3), a leading
cause of infant mortality. Two-thirds of infants born preterm are affected by
RDS, with 60% of the incidence in infants born before 28 weeks of gestation
(4). Left untreated, an infant with RDS will die. This has led to the
development of exogenous lung surfactant replacements that can, if
delivered within minutes of birth, either prevent RDS or mitigate its effects.

Exogenous surfactant replacement therapy (SRT) is now a standard
form of care in the clinical management of premature infants with RDS. The
impact of SRT on neconatal health was demonstrated by a dramatic
reduction of 31% in the RDS mortality rate in the United States between
1989 and 1990 (5). In terms of the number of infants involved, another study
showed that the incidence of deaths from RDS in the United States dropped
from 5498 in 1979 to 1460 in 1995 (6). Each year. about 40,000 infants in the
United States are afflicted with neonatal RDS (7), whereas worldwide the
number exceeds 2 million (8).

565
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Currently, there are eight different surfactant replacement formula-
tions commercially available for the treatment of RDS (4,9-14). These
formulations can be divided into two different classes: “‘natural” and
“synthetic” LS replacements. So-called natural LS replacements are
prepared from animal lungs by lavage or by mincing, followed by extraction
of surfactant materials with organic solvents and purification. Synthetic
surfactant replacements, on the other hand, are always protein free and are
made from a blend of synthetic phospholipids with added chemical agents
(generally, either lipid or detergent molecules) that facilitate adsorption and
spreading of the material at the surface of the lungs.

Motivated by concerns that natural LS replacements are amimal
derived and hence carry risks of pathogen transmission, whereas the
presently available synthetic formulations are less efficacious, extensive
research has been conducted on the development of a third, not-vet-
commercial class of formulations: biomimetic LS replacements. Formula-
tions of this class are designed to closely mimic the biophysical
characteristics and physiological performance of natural LS while not
sharing its precise molecular composition. To date, most biomimetic LS
formulations contain synthetic phospholipid mixtures in combination with
either recombinantly derived or chemically synthesized polypeptide ana-
logues of the hydrophobic surfactant proteins (8,15-33). The successful
creation of a good biomimetic LS replacement will facilitate better, and
safer, treatment of a medical syndrome that affiicts premature infants
throughout the world. A formulation that offers the efficacy of animal
surfactant, as well as the safety and relatively low cost of synthetic products,
would not only improve current treatment protocols but would offer a
feasible product for treating infants in nonindustrialized countries where the
cost of currently available replacements remains prohibitive. In addition,
there 18 evidence that a nonimmunogenic biomimetic LS would have
applications in the treatment of other lung diseases that have surfactant
dysfunction as an element of their pathogenesis, including meconium
aspiration syndrome, congenital pneumonia, and acute RDS (34-36).

. RESPIRATORY DISTRESS SYNDROME

Typically, the premature lungs of infants born after less than 32 weeks’
gestation will either have insufficient amounts of, or be completely devoid
of, pulmonary surfactant. This deficiency results in higher than normal
alveolar surface tension and alveolar instability, factors that lead to the
rapid development of respiratory distress syndrome, which is manifested as
an inability to breathe and an inability to be respirated without secondary
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lung trauma. RDS is a leading cause of infant mortality in the industrialized
world. Since the pioneering efforts of Fujiwara et al. (9), numerous clinical
trials have shown the efficacy of the administration of exogenous LS
replacements for the rescue of these infants. Surfactant replacement therapy
(SRT) improves lung compliance and oxygenation, and hence decreases the
requirements for inspired oxygen, reduces the incidence of pulmonary
complications, and, most importantly, increases the survival rate (9,37-43).

" Clearly, exogenous SRT is a successful means of treating premature infants
at risk of developing RDS. However, there is a percentage of neonates who
do not respond well to LS replacements, for reasons that we will briefly
discuss and that remain poorly understood (44,45). Hence, improvements in
the current therapeutic biomaterial and its method of administration are still
required. Toward this end, researchers have worked on the development of a
completely biomimetic LS replacement formulation that will be functional,
safe, and cost effective.

lil. HISTORICAL PERSPECTIVE ON THE PHYSIOLOGICAL
ROLE OF LS AND THE CAUSES OF RDS

The history of LS rescarch dates back to the late 1920s, when von Neergaard
tlustrated the significance of surface tension in pulmonary physiology. In
his demonstration, von Neergaard showed that a greater pressure is required
to expand an atelectatic (i.e., collapsed) lung with air, rather than a saline
solution, and surmised that this was a result of differences in the relative
magnitudes of surface tension forces on the alveoli (46). However, it was not
until the mid-1950s that Pattle (2) and Clement (1,47) showed the existence
of a surface-active material in the lungs that naturally reduces surface
tension.

Shortly after the initial discovery of surface-active agents in the lung in
1959, Avery and Mead demonstrated that a lack of surfactant was central to
the pathophysiology of RDS in neonates (3). Specifically, they showed that
the deficiency or dysfunction of surfactant reduces lung compliance by
increasing surface tension forces at the air-water interface of the alveoli.
This knowledge led to the isolation of pulmonary surfactant from calf lung
in 1961 (48). After it was recognized that dipalmitoylphosphatidyvicholine
(DPPC) 1s a major constituent of the LS mixture (48), clinical trials were
conducted fo test the efficacy of the first synthetic LS formulation, which
was composed of DPPC and delivered as an aerosol (49,50). However, trials
were unsuccessful; DPPC alone does not adequately mimic natural LS
because of the rigidity of the monolayer that it forms at the air-water
mmterface (51-53).
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It was not until 1980 that surfactant replacement therapy became a
reality in the treatment of neonatal RDS. That year, Fujiwara et al
successfully rescued 10 preterm infants who were suffering from severe RDS
by intratracheal bolus instillation of a bovine-derived LS (9). Although these
authors called their bovine surfactant replacement “‘semiartificial,” by
today’s convention it would be known as natural becausc it was extracted
from animal lungs. Since then, LS replacement treatment has become
standard care for preterm infants with RDS. If infants with RDS survive
surfactant replacement therapy (requiring up to 4 doses, every 6-8 h after
birth), they generally begin to secrete their own pulmonary surfactant within
96 h (54,55).

Although animal-derived LS replacements have been used with success
for neonate rescue, improvements to further increase survival rate and to
decrease the cost per patient are still needed. Toward this end, researchers
are working to develop a new class of biomimetic LS replacements that
capture the advantages of both natural and synthetic formulations. In order
to design a functional replacement for a complex biomaterial such as
pulmonary surfactant, it is necessary to understand the properties of the
natural substance and o recognize aspects of the current therapy that
require improvement. Therefore, we begin with an introduction to the
molecular composition and the biophysical functioning of LS. before
discussing strategies for and reviewing recent progress in the development of
a useful biomimetic LS replacement.

IV. BIOSYNTHESIS OF LS

Lung surfactant is synthesized in alveolar type 11 epithelial cells and is stored
intracellularly in dense, multilayered membrane structures, referred to as
lamellar bodies (56). The contents of the lamellar bodies are excreted into the
alveoli (57), where they undergo a transformation to lattice-like, tubular
double layers, referred to as wwbular myelin (58,59), the main reservoir of
surfactant (60), from which an LS monolayer at the air-liquid interface i3
formed (61,62) (Fig. 1). The efficient and rapid adsorption of the surfactant
to the air-liquid interface imparts a dramatic reduction in alveolar surface
tension, which is requisite for breathing.

V. PHYSIOLOGICAL ROLE OF LS

Pulmonary surfactant is a complex mixture of proteins and hpids that coats
the internal surfaces of healthy mammalian lungs to cnable normal
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Figure 1 A schematic diagram of natural pulmonary surfactant synthesis and
transport to the alveolar surface. Pulmonary surfactant is synthesized in type 11
alveolar cells as a complex mixture of hpids and surfactant proteins, and assembled
into lameliar bodies. These organelles are secreted and transformed into tubular
myelin, which then adsorbs to the air-liqud interface where it functions to control
the surface tfension throughout the breathing cycle. Surfactant materials are
eventually taken back into the type II cells for degradation and recycling. (From
Ref. 276, with permission.)

respiration (2). By virtue of its unique surface-active propertics, which we
will soon describe, lung surfactant reduces the pressure required for alveolar
expansion and decreases the work of breathing (1,63). Lung surfactant also
stabilizes the alveolar network, preventing its collapse upon exhalation
(53,64-06).

VI. MOLECULAR COMPOSITION OF LS AND COMPONENT
ROLES IN SURFACTANT ACTIVITY

Lung surfactant is composed of approximately 85-90% phospholipids, 5%
neutral lipids, and 8-10% proteins (see Table 1) (66-70). The most abundant
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Table 1 Molecular Composition of Lung Surfactant (66-70)

Components Percentage (%)
Phospholipids 85-90
Phosphatidylcholine (PC) 6872
Phosphatidylglycerol (PG) 8
Phosphatidylethanolamine 5
(PE)
Phosphatidvlinesitol (PT} 3
Phosphatidyiserine (PS) Trace
Lysophophatidylcholine Trace
Sphingomyelin Trace
Neutral lipids 5
Cholesterol
Cholesterol esters
Surfactant proteins (SP) 810
Hydrophilic Proteins
SP-A 3
SP-D 2
Hydrophobic Proteins 1.5
SP-B
Sp-C

component is phosphatidylcholine (PC), which is generally dipalmitoylated
and in the saturated form (DPPC). Phosphatidylglveerol (PG), an anionic
lipid, accounts for another 8%. Also present are phosphatidylethanolamine
(PE. about 3%}, phosphatidylinositol (P1, about 3%), and trace amounts of
phosphatidylserine (PS), lysophosphatidylcholine, and sphingomyelin.
Some neutral lipids are also present, and include both cholesterol and
cholesterol esters.

In vitro and in vivo biophysical experiments have shown that the most
critical lipid molecules for reduction of alveolar surface iension are DPPC
and PG. Although DPPC films are capable of reducing surface tension to
near zero upon compression (l.e.. DPPC monolayers can sustain high
surface pressures before collapse), these phospholipids are slow to adsorb to

in particular PG, has been shown to assist in the spreading of DPPC
molecules at the air-water interface (52). However, such lipid mixtures alone
are also ineffective as lung surfactant replacements because, under
physiological conditions and 1 the absence of other spreading agents,
DPPC and PG will not adsorb to the air—hquid interface with suofficient
quickness or respread as rapidly as needed for breathing as alveolar surface
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area changes cyclically (71). Instead, a unique combination of protein-based
surfactants function as the necessary spreading agents.

Actually, a total of four different surfactant-specific proteins (SP) are
known to be present with phospholipids on the alveolar hypophase (i.c., the
aqueous hning of the lung): SP-A, SP-B, SP-C, and SP-D (72). Thesc
proteins fall into two major subgroups; the hydrophilic surfactant proteins
(SP-A and SP-D), and the hydrophobic, amphipathic surfactant proteins
(SP-B and SP-C). SP-A and SP-D aid in the control of surfactant
metabolism and also have important immunological roles for defense
against inhaled pathogens (73,74). But for therapeutic LS replacements, it is
the biophysical properties of surfactant as they affect the mechanical
properties of the lung that are important for the treatment of RDS. Even
though SP-A is involved in the ordering of LS phospholipids in the presence
of calcium, it is typically omitted from LS replacements because it does not
have a significant role in reducing surface tension and is also immunogenic
(75). For the same reasons, SP-D is also omitted from surfactant
replacements (76).

SP-B and SP-C are required for proper biophysical functioning of LS
{77), enabling attainment of low surface tensions on the alveolar
hypophase and endowing proper dynamic behavior to the mixed lipid
monolayers and multilayers that are found there (78-80). It has been
suggested by one study that SP-B and SP-C function in a nonsynergistic
manner {81); vet, considering the strict conservation of both proteins in
mammals and the significant differences in their structures, which we will
discuss, it seems likely that each plays a role that is important and distinct
in facilitating easy breathing. However, it has been difficult to deconvolute
the individual roles of SP-B and SP-C (82). Both proteins have been found
to facilitate the rapid adsorption of phospholipids to an air-water interface
and to allow rapid respreading of phospholipids as the alveoli expand and
contract. Both have a dramatic influence on monolaver phase behavior
and reduce the surface tension on alveoli upon compression of surface area
(81,83). A wvariety of studies indicate that SP-B is more ecffective in
enhancing the adsorption rate and dynamic surface activity of phospho-
lipids (81,84-87), particularly in refining the films of surfactant to have
enriched DPPC content (88,89). It has been suggested that SP-C is more
effective at promoting respreading and film formation from the collapsed
phase (88-90).

Below we briefly describe the molecular structures and biophysical
properties of the SP-B and SP-C proteins. The reader is referred to recent

structure—function relationships.
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Vil. STRUCTURAL DESCRIPTION AND APPARENT
PHYSIOLOGICAL ROLE OF SP-B

SP-B is a small, hydrophobic protein, composed of 79 amino acids, that has
an unusually high cysteine content (Fig. 2A) (95-97). In the native SP-B
protein, seven cysteine residues form a unique disulfide pattern that includes
three mtramolecular bonds and one intermolecular bond, the latter of which
results in the formation of SP-B dimers (98-100). The numerous positively
charged side chains scattered throughout the SP-B sequence are essential for
its activity (33). Electrostatic interaction of these groups with negatively
charged PG molecules is known to enhance respreading of the phospholipid
film, as well as to cause refinement of the monolayer by the enrichment of
the DPPC content of the film through the “squeeze-out”™ of other lipids at
the air-liquid interface (52,101-106}. The hydrophobic amino acids in the
SP-B sequence are known (o interact with lipid acyl chains (33). Spectro-
scopic studies have shown that the secondary structure of SP-B is dominated
by = helices, which are likely to be amphipathic given their sequence
distribution. The detailed tertiary structure of the protein has vet to be
determined by nuclear magnetic resonance (NMR) or crystallographic
studies (20,21,107-111). :

In a structural model for SP-B that was proposed by Andersson et al.,
four amphipathic helices are aligned in an antiparaliel, left-handed hairpin
motif, where one helical face is hvdrophobic and the other relatively
hydrophilic. as illustrated in Figure 2B (110). With this tertiary structure,

Amino

¥ To another
SP-B molecule
{Residue 48)

Figure 2A Primary structure of SP-B (human sequence). The identity of each
amino acid is given by the one-letter code. Hyvdrophobic residues are shown in black,
and charged residues are identified. (Adapted from Ref. 277, with permission.)



Biomimetic Lung Surfactant Replacements 573

SP-B

Figure 2B Hypothetical mode!l of SP-B folded structure and its proposed mode of
interaction with a phospholipid bilayer. SP-B is suggested to be a dimer of two
identical 79-residue four-helix protein chains (cross-linked at Cys48, in the third
helix), with the polar face of the amphipathic helix interacting with the lipid
headgroups. (From Ref. 278, with permission.)

SP-B would be well suited to interact with a phospholipid monolayer or
bilayer (80.112-114), with its polar (mostly cationic) faces interacting with
lipid headgroups, particularly those of the anionic phospholipids (113), and
the apolar faces interacting with acyl chains in the regions of the headgroup
(91). Recently, another hypothetical structural model of SP-B, which reflects
the homodimeric structure of native SP-B, was proposed by Zaltash et al,
(116). In this model, the two SP-B monomers are linked by disulfide bond at
Cysd8, with the charged residues lying on one surface of the disk-like
structure. The dimer is thought to be stabilized by hydrogen bonds or by ion
pairs between GluS1 and Arg52 residues from each of the two monomers
{116). This hinged, dimerized structure would provide correlated motion of
SP-B monomers that interact with two different monolayers/bilayers,
creating “cross-talk” between these organized lipid films (116).

Apparently the main physiological function of SP-B protein is to
facilitate phospholipid adsorption to the air-liquid interface, thereby
allowing rapid spreading and respreading of the surface tension—lowering
phospholipids as alveoli expand and contract. In this way, SP-B has the
effect of stabilizing the surface film. It has been shown that the ability of SP-
B to induce rapid insertion of phospholipids into the monolayer is essential
for the maintenance of alveolar integrity (33,84,85,96,117,118). Hence, SP-B
may have a predominant role in facilitating the reduction of surface tension
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in the lungs. Besides these roles, SP-B may also serve the critical functions of
aiding the formation of tubular myelin structures (119-121) and inducing
the calcitum-dependent fusion of membranes (119,122).

In vivo rescue experiments with premature rabbits (123}, in vivo
blocking of SP-B with monoclonal antibodies (124), and studies with
genetically engineered SP-B-deficient mice {125,126) have all confirmed the
critical role of SP-B in functional LS. Furthermore, recent studies of SP-B
knockout mice revealed that the presence of covalently linked homodimers
of SP-B appears to be important for the optimal functioning of natural LS
(127,128). These studies, in addition to the fact that an inherited SP-B
deficiency tn infants is lethal (129,130), provide strong evidence for the
predominant tmportance of SP-B in LS.

Vill. STRUCTURAL DESCRIPTION AND APPARENT
PHYSIOLOGICAL ROLE OF SP-C

The smaller of the two hydrophobic surfactant proteins, SP-C, is composed
of 35 amino acids and has an unusual dipalmitoyl modification near the
carboxy terminus (Fig. 3A) (131,132). Two-thirds of the protein consists of
a long, continuous, valyl-rich hydrophobic stretch, which adopts an ¢-
helical secondary structure as evidenced by both circular dichroism (CD)
and NMR structure determination (Fig, 3B) (133-135). The length of this
helix, 37A, is perfect for the spanning of a fluid DPPC bilayer (136).
Consistent with this observation, it has been shown in other studies that the

Aming

Carboxy

Figure 3A Primary structure of hydrophobic surfactant protein SP-C (human
sequence). The identity of each amino acid 15 given by the one-letier code.
Hydrophobic residues are shown in black, and charged residues are identified. The
two cysteine residues are palmitoylated. (Adapted from Ref. 277, with permission.}
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Figure 3B Schematic presentation of SP-C secondary structure and its proposed
mode of imteraction with a phospholipid bilayer. This SP-C structure was deduced by
2D-NMR, and in this picture is artificially superimposed on a lipid bilayer. In this
transbilayer orientation, the hydrophobic part of the protein (residues 13-28)
interacts with the lipid acyl chains, while the basic residues at position 11 and 12
(indicated by positive charges) interact with the polar (anionic) lipid headgroup. The
two cysteine residues at positions 5 and 6 are palmitoylated; the role of these
palmitoyl chains is still disputed in the literature. (From Ref. 278, with permission.)

SP-C a-helix is a transbilayer protein, with the o-helix oriented roughly
parallel to the lipid acyl chains at the air—water interface (134,137). Other
evidence suggests that in interactions with a DPPC monolayer, SP-C is
situated to make a 707 ult relative to the normal of the monclayer plane
(138). The 1ssue of whether SP-C preferentially interacts with an LS
monolayver or with bilaver or multilayer structures is still under active
investigation {(82,114,139,140).

Palmitoylation of the two SP-C cysteines at positions 5 and 6 in the
sequence has been proposed to promote protein interactions with lipid acyl
chains in neighboring, stacked lipid bilayers (141), thereby facilitating SP-C
binding to the bilayer (142) and/or orienting the peptide (143}, However, the
physiological function of the two palymitoyl chains, as well as their necessity
for in vivo efficacy of LS replacements, remains to be fully understood
(142,144,145). The two adjacent, positively charged lysine and arginine
residues at positions 11 and 12 of SP-C most likely interact with the
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phospholipid headgroups and promote binding to the monolaver or bilaver
by ionic interactions (146).

Similarly to SP-B, SP-C seems to promote phospholipid insertion into
the air-liquid interface (108), and thereby to enhance the rate of lipid
adsorption {145,147) and the respreading of the alveolar films upon
inhalation (83). SP-C also stabilizes the surfactant film during the expansion
and compression phases of breathing, apparently by regulating phospho-
lipid ordering in such a fashion as to increase the lateral pressure within the
bilayer (note that increased surface pressure, I, correlates with decreased
surface tension, y) (121,148,149). Interestingly, the results of one study have
suggested that a single SP-C molecule is capable of influencing the phase
behavior of 20-35 lipid molecules (135). In addition, SP-C has been found to
stimulate liposomal fusion in vitro (119) and to enhance the binding of lipid
vesicles to a cell membrane for endocytosis of lipids (150,151}

In vivo studies of genetically engineered SP-C knockout mice have
revealed that SP-C plays an important role in endowing function to LS but
1s seemingly less critical for breathing than SP-B. SP-C knockout mice are
viable at birth and grow normally without altered lung development or
function (152,153), but lung mechanics studies reveal abnormalities in lung
hysteresivity at low lung volume (153). Furthermore, studies have shown
that mutations in the human SP-C gene can result in the expression of an
altered proprotein, the precursor that undergoes proteolytic cleavage to
yield mature SP-C, which s believed to be involved in the development of
interstitial lung disease (152). The deficiency of SP-C in some Belgian blue
calves has been shown to increase the likelihood of RDS (154).

IX. INTERFACIAL PROPERTIES OF LS

The physiological roles of LS require it to adsorb and respread guickly upon
inhalation and to reduce surface tension upon exhalation. These require-
ments can be satisfied by envisioning the surface film as being composed of
monolayers highly enriched in DPPC, as well as bilayers/multilayers of
lipid/protein structures that remain closely attached to the film (80,88). Both
selective squeeze-out and insertion of lipids has been proposed to enrich the
monolayer with DPPC to enable the attainment of low surface tension
observed for LS during exhalation. However, upon reexpansion, DPPC is a
poor spreading material. Instead, it is the unsaturated lipids and surfactant
proteins that are responsibie for the rapid adsorption and respreading of LS
upon inhalation (114,140,157,163). These squeezed-out components are
stored In multilayers that remain closely associated with the film at the
interface (80,155) and respread into the surface film upon alveolar expansion
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(156). Replenishment of the surface film occurs by adsorption from the
subphase, and by respreading of collapsed phases and excluded material
(114,140). The transferring of the lipids to the interface and the formation of
surfactant film at the air-liquid interface is enhanced by the presence of the
surfactant proteins SP-B and SP-C (157), which perturb the packing of the
phospholipids (85,149,158,159).

X. RECONCILIATION OF L8’S DICHOTOMY OF ROLES AS
A SURFACE-ACTIVE MATERIAL

For lung surfactant to work ‘effectively, the films that are formed must be
fluid, so that the material adsorbs and respreads guickly and reversibly to
the alveolar interface, to form a monolayer upon ¢xpansion; yet it also needs
to be rigid as a surface film, so that it reaches near-zero surface tension
during the alveolar compression accompanying exhalation (82). Hence,
there is a dichotomy of the roles of LS. To reconcile the dual actions of LS,
the “squeeze-out” theory was postulated (52,53). This theory states that
adsorption is facilitated by the presence of the fluidizing agents, which are
subsequently removed upon compression, resulting in the formation of a
DPPC-enriched monolayer to promote low surface {ension (52,101-104).
However, this theory does not account for the presence of the surfactant
proteins or for their complex roles (80.83,105,160-162).

Recent investigations of LS phase behavior and surface film
morphology and 2D phase behavior of different LS components have led
to the development of the “monolayer-associated™ theory (82). Contrary to
the squeeze-out theory, this theory states that the surfactant proteins help to
retain the unsaturated fluidizing components of LS within or near
monolayers at all surface pressures, even at film cellapse (i.e., at high
surface pressures and low surface tensions) (82,163-166). Consistent with
this, experiments conducted have shown that SP-B and SP-C prevenr the
squeeze-out of unsaturated lipids by altering the film collapse mechanism
from a fracturing event to a more reversible buckling or folding of the
mounolayer (163,164). Particularly for SP-B, 1t appears that these folds
remain in close association with the surface film, thereby allowing facile
reincorporation of the material upon expansion (164). To a greater extent
for SP-C, it has been observed that the lipid components that are removed
from squeeze-out upon compression (83) are stored in a multilayered phase
that remains closely attached to the interface (80,155), which upon
expansion respreads into the surface film (156.157).
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Al. LS REPLACEMENTS FOR TREATMENT OF RDS

Clearly, a good understanding of the surfactant proteins, and their
structural links to the underlying mechanisms that endow lung surfactant
with its extraordinary surface-active properties, will be critical for successful
biocengineering design of a functional, biomimetic LS replacement. Elucida-
tion of the interactions between the various components of this complex
protein-lipid mixture entails deconvolution of the phase behavior of both
the lipid and protein components. Intense study of whole LS and various
fractions thercof in recent years has afforded a number of invaluable
insights into the structure-function relationships between proteins and lipids
(28.33,80,82,90.112,114,139,140,157,162,166-173}, and is beginning to
provide enough information to guide well-informed design of novel
biomimetic LS replacements.

Delivery of an exogenous LS replacement to a preterm infant 1s a
temporary intervention, intended to maintain respiratory function and to
minimize lung injury vntil maturation of type II cells occurs, generally
within 96 hours of birth, permitting an adequate amount of endogenous LS
to be produced and transported to the alveolar surface (54,55). A good
replacement must capture the physiological characteristics described earlier.
In vivo, the surfactant needs to be capable of improving the stability of
immature fetal lungs and of providing healthy pressure-volume character-
istics to the alveolar network. In terms of in vitro biophysical properties and
therapeutic characteristics, this translates to (a) rapid surface adsorption of
LS, to generate an equilibrium surface tension of about 25mN/m within
I min (60); (b) reduction of the minimal alveolar surface tension to nearly
zero upon cyclic compression, to prevent alveolar collapse and to maintain
the patency of terminal bronchioles at expiration (174,175); and (¢) effective
respreading of surfactant after compression beyond the collapse pressure, to
repienish surfactant materials during alveolar expansion and to ensure that
the maximum surface tension does not rise above an equilibrium level of
25mN/m during the breathing cycle (53,65,176). LS replacements must
provide these benefits and should also be pure, safe, and biocavailable (1.,
thev should have no viral, protein, or chemical contamination, and should
not elicit an immune response). From a production standpoint and to
facilitate wide availability, the ease of surfactant manufacturing, purifica-
tion, quality control, and cost must also be considered. Therefore, an 1deal
LS replacement would be highly similar in its properties to the natural
material and also cost effective. '

From a design perspective, it is not only important to understand the
physiological and biophysical activities of lung surfactant but also the
factors that can inhibit its performance. LS can be inactivated by the



Biomimetic Lung Surfactant Beplacements 879

presence of (a) plasma and blood proteins (albumin, fibrinogen, hemoglo-
bin, etc.) (177-180); (b} unsaturated cell membrane phospholipids (178);
{c) hysophospholipids (181); (d) cholesterol (182); (e) free fatty acids (183);
(f) lytic enzymes (proteases and phospholipases) (184); (g) reactive
radicals; and (h) meconium (first feces of a fetus) (185). Investigations of
these endogenous molecules have shown that inactivation by these
contaminants can, in general, be mitigated by increasing the LS concentra-
tion (177,186). This means that, potentially, a patient suffering from RDS or
ARDS could be helped by the delivery of additional LS or of a functional
replacement.

The design, testing, and benchmarking of any novel LS replacement
necessitates in vitro characterization of the material by a number of different
approaches, each of which evaluates surface activity in complementary
ways. Those formulations that show promise in in vitro studies then
undergo in vivo animal studies, including both pharmacological studies to
determine the effectiveness of the formulation for treatment of RDS and
toxicological studies to identify the proper dose regime. Only those
therapeutic agents that are found to be both efficacious and safe in animals
will progress to the next stage, in which human clinical trials are carried out
in neonates {187).

Xil. IN VITRO CHARACTERIZATION OF LS
REPLACEMENTS

Three different experimental tools are used extensively to evaluate the
surface-active properties of various natural and synthetic LS formulatiouns,
including (a) the Langmuir-Wilhelmy surface balance (LWSB), often used in
conjunction with fluorescence microscopy (FM) to observe surface phase
morphology; (b) the pulsating bubble surfactometer (PBS); and/or, (c) the
captive bubble surfactometer (CBS). The Wilhelmy surface balance, first
used by Clements for LS studies in 1957 (1), 18 designed to carry out cyclic
film compression on a Langmuir trough and to allow accurate measurement
of the very low surface fensions that are characteristic of LS at high levels of
monolayer compression. The major utility of the LWSB in the study of LS
replacements has been to allow the observation of surface pressure effects
that occur within films that are spread directly onto the air-water interface
(i.c., not adsorbed from the subphase), although adsorbed films are also
sometimes studied. LWSB experiments allow the generation of pressure—
area (IT-A) isotherms, as seen in Fig. 4, which are obtained during slow
cycling of film surface area at dynamic but nonphysiological rates (188). In
conjunction with the LWSB, FM can provide sensitive imaging of the phase
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Figure 4 Surface pressure-area (II-A) isotherm of the compression of a
hypothetical surfactant film that exhibits gaseous, liquid-expanded, liquid-con-
densed, and solid phases. As area decreases, the surface pressure increases until the
film collapses. Typical lift-off and collapse pressure values of lung surfactant are
depicted. (Adapted from Ref. 279, with permission.)

morphology of LS monolayers or multilayers as theyv undergo compression
and expansion on the trough. Interactions between different lipid
components and/or between lipids and surfactant proteins, as they influence
the film behavior and phase morphology, can be imaged and then correlated
with other measures of performance and surface activity, especially the IT-A
isotherms (155,171,189).

The PBS was developed in 1977 by Enhorning (190) and applied to the
study of LS behavior with the goal of obtaining more physiologically
relevant data on the surface tension-lowering ability of dispersed pulmonary
surfactants. Experiments carried out on a PBS can provide information on
both equilibrium adsorption and dynamic film compression and expansion
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characteristics of a-surfactant. Continuous measurements of surface tension
are made on a cyclically expanding and contracting bubble surface covered
with surfactant, and can be acquired at a physiological temperature (37°C),
cycling rate (20 cycles/min), and film compression ratio (up to 50% area
compression). This access 1o conditions mimicking those of the human lung
is a major advantage of the technique. The resultant data are generally
plotted as shown in Fig. 5, which shows a curve of surface tension as a
function of bubble surface area (168). Particularly important are the low
values of the minimal and maximal surface tensions observed during bubble
compression and expansion, respectively, as well as the dramatic hysteresis
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Figure 5 Schematic diagram of a typical surface tension (y) versus interfacial
bubble area (4) loop observed for calf lung surfactant (CLS) in 5mM CaCl; and
0.15M NaCl at 37°C, as measured during dynamic oscillations by a pulsating bubble
surfactometer (PBS) at a frequency of 20cycles/min and a bulk surfactant
concentration of I mg/ml. (Adapted from Ref. 168, with permission.)
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seen in the data curve. Here, of course. the bubble (typically ranging from
about 0.8 to 1.0mm in diameter) mimics a single alveolus. In addition to
generating these curves that depict dynamic surface tension, one can also use
the PBS to map out adsorption isotherms for LS (i.e., to create plots of
surface tension y versus time ¢), if the instrument is run in static mode (190-
192).

Because of some initial concerns about a possible leakage of surfactant
from the bubble surface to the capillary tube from which the bubble is
suspended in a PBS, the CBS was developed in 1989 by Schiirch et al. (193)
to provide similar data with a lower likelihood of surfactant leakage
(192,194,195). Therefore, many consider CBS data to be more reliable than
PBS data (194). However, disadvantages of the CBS include its unavail-
ability as a commercial instrument, and the time-consuming and complex
nature of data analysis (192). In vitro characterization using the LWSB,
PBS, and CBS can provide complimentary information. Standards for good
in vitro performance have been established for these instruments and can
now be used as evaluative parameters for biomimetic surfactant formula-
tions under development.

Xiil. INVIVO CHARACTERIZATION OF LS REPLACEMENTS

Animal studies provide a necessary link between in vitro biophysical studies
and clinical therapy. Multiple animal models of RDS have been established
and have proven invaluable in the testing and evaluation of surfactant
performance. Important evaluation parameters include (a) pressure-volume
(P-V) lung mechanics (see Fig. 6); (b) lung functional parameters [i.e,
arterial partial pressure of oxygen (Pa0,), arterial partial pressure of carbon
dioxide (PaCo0;), and arterial/alveolar partial pressure of oxygen (a/A0,);
and (¢) ventilator-associated parameters [i.e., ventilator rate, fraction of
inspired oxygen (Fi0,), mean airway pressure (MAP), peak inspiratory
pressure (PIP), and positive end-expiratory pressure (PEEP)]. Some
common animal models used to evaluate the efficacy and safety of LS
formulations include rats (196) and prematurely born rabbits (197), as weli
as premature lambs (198-200), baboons {(201), and monkeys (202).
Typically, in vivo studies evaluate lung function for either short or extended
periods of time; clinically relevant procedures and manipulations are also
tested.

Building on successful in vitro experiments and animal studies, the
efficacy of exogenous LS replacements is evaluated in clinical trials with
human infants to determine the onset and duration of the therapeutic action
of the LS replacement. Incidence of mortality from RIS, typical severity of
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for Exosurf. (Adapted from Ref. 276, with permission.)

RDS, rate of recovery, and incidence and severity of bronchopulmonary
dysplasias (BPD) and other chronic lung disorders, as well as any safety-
related outcomes, are determined (11,203-207). The criteria assessed in
human trials of LS replacements are the same as those listed above for the
animal studies.

Utilizing these benchmarks for evaluation, surfactant replacement
therapies have been developed and are used to effectively minimize alveolar
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collapse at end-expiration and to increase lung compliance, allowing safe
respiration of prematurely born infants. Current LS treatments fall into two
main categories: natural and syathetic. A third, promising but not yet
available class of formulations is the biomimetic lung swrfacrant replace-
ments, which will be covered later in this chapter.

XIV. NATURAL LS REPLACEMENTS
A. Animal-Derived Replacemenis

Natural surfactant replacements are prepared from animal lungs, either by
lavaging or mincing followed by organic phase extraction of the
phosphopholipids and hydrophobic surfactant proteins. A number of
different natural surfactant replacements have been commercialized (Table
2). From bovine lungs, there are surfactant TA (Surfacten, Tokyo Tanabe,
Japan) (9), beractant (Survanta, Abbott Laboratories, Columbus, Ohio)
(10), Alveofact (Thomae, Biberach/Riss, FRG) (11}, and BLES (BLES
Biochemicals, Ontario, Canada} (208.209). Both surfactant TA and
beractant are obtained from minced cow lung and are spiked with added
synthetic lipids [DPPC, palmitic acid (PA), and tripalmitin] to standardize
the composition and to improve the physical and physiological properties of
the material. From calf lungs, there is calf lung surfactant extract, CLSE
(Infasurf, Forest Laboratories) (4). whereas from porcine lungs there is
Curosurf (Chiesi Farmaceutici. Parma) (12). CLSE, Alveofact, and BLES
are obtained by lung washing and subsequent extraction of the lavage fluid
with organic solvents. Curosurf is obtained by mincing of the lung, followed
by washing, chloroform-methano! extraction, and liguid—gel chromatogra-
phy. As a result of this sample preparation, Curosurf is devoid of
triglycerides, cholesterol, and cholesteryl esters; it is not really known to
what extent this lack may change the manner in which it functions.

In vitro biophysical characterization experiments have shown that
natural surfactants generally provide virtually instant surfactant adsorption,
efficient surface spreading and respreading, good film compressibility, and
the achievement of low surface tension during cyelic film compression and
expansion {78,180,210). For example, preparations of surfactant TA and
Curosurf rapidly spread to an equilibrium surface tension of 24-27 mN/m,
vielding a minimal surface tension upon compression that 1s below SmN/m.
(For comparison, the surface tension of a clean water surface at 37°C 1s
about 70 mN/m.) Films of CLSE require only 20% compression to achieve a
similarly low surface tension (180). Furthermore, evaluations of material
performance based on animal models of RDS have shown that natural
surfactants typically provide good oxygenation, pulmonary pressure—
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volume characteristics, and survival rates upon treatment (211). Finally, and
more importantly, clinical trials have demonstrated the efficacy of natural
surfactants to treat or prevent RDS in premature infants (12,212-215).

Although natural LS formulations are both functional and relatively
safe, there are definitely a few potentially grave risks associated with
sourcing a human medicine directly from animals. Because natural
surfactants are extracted from animal lungs, it is impossible to eliminate
the possibility of cross-species transfer of antigenic or infectious agents, such
as scrapie prion {(216), or other unforeseeable biological contamination
(187.217). In addition, because the bovine and porcine sequences of SP-B
and SP-C are only about 80% homologous to the human sequences, these
animal proteins have the potential to be recognized as foreign by the human
immune system (124,218.219). Antibodies developed to these homologous
protein sequences could potentially inactivate the natural human proteins
and lead to respiratory failure (124). This has not yet been found to occur in
newborns, but for adults with ARDS, production of such antibodies could
be a serious problem (216). Furthermore, the isolation of LS from animals is
an expensive process that can produce variability in LS composition as a
result of animal-to-animal inconsistencies. Animal-derived preparations
(e.g., porcine Curosurf) are generally two to three times as expensive as
some currently available synthetic surfactants {e.g., ALEC) (187,216).
Finally, because of limited supply, the clinical use of natural surfactant may
be restricted (34).

B. Human-Derived Replacements

As an alternative to animal-derived replacements, human lung surfactant
can be harvested from the amniotic fluid of full-term pregnancies. Lung
surfactant is secreted by a maturing fetus into the amniotic fluid in utero,
and is present along with contaminating lipids and proteins. Whole human
surfactant, obtamed under sterile conditions from term amniotic fluid, has
been used successfully in several studies with premature infants (212,220).
However, human LS collected by this method has been shown to have
reduced activity in comparison with extracts of animal lung surfactant, for
reasons that are not completely understood (221). While the immunogenic
risks are reduced as compared to animal-derived substances, they are
nevertheless still present in human-derived LS. Furthermore, there is a
possibility of disease transmission. Finally, a low supply of good-quality
amniotic fluid—derived LS drastically limits its clinical use and makes it
commercially unfeasible as a therapeutic replacement.
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XV. SYNTHETIC REPLACEMENTS

To obviate the risks associated with natural surfactant replacements,
synthetic formulations have been developed. Currently there are two
synthetic products commercially available: ALEC (Pumactant, Britanma
Pharmaceuticals, Redhill, UK) {13) and Exosurf (Glaxo Wellcome,
Research Triangle Park, NC, USA) (14) (Table 2). The “‘artificial lung
expanding compound,” ALEC, is composed of DPPC and PG in a ratio of
7:3 and is suspended in saline at 100 mg/mL. In this formulation, PG serves
the purpose of promoting the spreading of DPPC at the air-liquid interface
(52). In Exosurf, hexadecanol and tyloxapol are added to DPPC to serve as
spreading agents, creating a suspension consisting of 13.5:1.5:1 (DPPC:hex-
adecanol:tyloxapol) by weight in a saline solution, with a DPPC
concentration of 13.5mg/mL. Britannia Pharmaceutical has voluntarily
suspended the marketing and distribution of Pumactant (222) pending
further investigations of clinical trial results that indicated the inadequacy of
this synthetic formulation in comparison with natural surfactant (223).

The advantages of synthetic surfactant replacements include their
lower cost as well as a reduced potential for antigenicity, viral and protein
contamination, and product variability. Clinically, some synthetic surfac-
tants have been shown to be reasonably effective in the rescue of premature
infants. For-example, in a 10-center trial of ALEC, mortality was reduced
from 30% in control infants to 19% in treated infants (224). However,
ALEC has been shown 1o be less effective in the treatment of babies with
established RDS, often taking several hours to produce the desired
response, whereas natural surfactants take effect much more rapidly.
Similarly, Exosurf also improves lung function in babies with RDS, but the
therapeutic response appears to be irregular and may lag material
administration by several hours (225). Hence, in comparison with natural
surfactant replacements, synthetic surfactant replacements lacking surfac-
tant proteins give inferior performance, with the reported loss of one
additional infant per 42 treated (213,216}, This increased mortality rate has
been attributed to the absence of the surfactant proteins SP-B and SP-C,
which are known to potently improve surfactant activity (211).

A meta-analysis of seven clinical trials involving more than 3000
infants was carried out to allow a comparison of the efficacy of natural
surfactant replacements {(mainly Survanta) with that of the synthetic
surfactant replacement Exosurf. The meta-analysis revealed that natural
surfactant replacements typically show a slightly superior performance, as
observed 1in the generally lower posttreatment oxygen requircments of
treated infants, and a lower risk of neonatal mortality when the natural

oy

biomaterial is administered (226,227).
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XV]. BIOMIMETIC SURFACTANT REPLACEMENTS UNDER
DEVELOPMENT

In light of the disadvantages present in both natural and synthetic surfactant
replacements, researchers are working to develop biomimetic surfactant
replacements as an improved treatment not only for neonatal RDS but for a
broader class of patients and respiratory disorders. From a molecular design
aspect this is a tractable biocengineering problem, as a reasonably good
understanding of the composition and function of LS, as well as the
deficiencies of current LS replacements, has been established. It seems clear
that biomimetic LS replacements should be designed to capture the
advantages of synthetic products (i.e., to be nonimmunogenic, to exclude
all infectious agents and biological risks, and to be chemically pure,
consistently formulated, and cost effective) while truly mimicking the
performance and efficacy of natural surfactants. Up until this point, the
most promising design avenues have focused on utilization of a combination
of lipids with spreading agents that somehow mimic the hydrophobic
surfactant proteins. Typically, the lipid fraction will include DPPC, PG, and
PA. However, the selection of the lipid composition will depend on which
SP-B and/or SP-C analogues are used as spreading agents in formulating the
LS replacement (160).

Since the inferior performance of synthetic LS has been attributed to
the absence of the surfactant proteins, various groups are working to design
biomimetic versions of SP-B and SP-C. Approaches being taken range from
the use of recombinant molecular biology to direct chemical synthesis of
these proteins or fragments thereof, with sequences that are either similar to
or completely different from the native human sequence. In all cases, present
knowledge of the structure-function relationships of the proteins is taken
mnto account in order to design SP-B and/or SP-C analogues that can serve
as effective spreading agents in an LS replacement formulation.

A. Hecombinant Surfactant Proteins

One approach to biomimetic LS replacement design is the development of
recombinant proteins, with the goal of creating SP analogues that are highly
similar to the natural proteins. However, the isolation of recombinant
human SP-B and SP-C proteins from a cell culture broth is a nontrivial task.
Recombinant SP-C proteins (rSP-C) with the natural human sequence have
been expressed in E. coli (15,16,228,229.298), but recovery of the protein can
be difficult, probably at least in part because of the extreme hydrophobicity
and its resultant strong tendency to aggregate with itself (16). This rSP-C 1s
currently being manufactured and researched by Scios-Nova (Sunnyvale,
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CA). To increase the chances of good protein recovery, the human SP-C
sequence also has been redesigned by some researchers, incorporating amino
acid substitutions via standard oliogonucleotide-directed mutagenesis, In
the mutant rfSP-C (Cys— Ser), the cysteines at positions 4 and 5 (Fig. 3a) are
repiaced with serines to reduce the likelihood of protein oligomerization via
the formation of disulfide bonds (15). Similarly, in the mutant rSP-C
{Cys—Phe and Met—lle), phenylalanines replace the cysteines at positions
4 and 5, whereas isoleucine replaces methionine at position 32 (16,228) to
reduce the tendency to aggregate (16). This rSP-C is manufactured by Byk
Gulden Pharmaceuticals (Konstanz, Germany) and is currently being
investigated (16).

Biomimetic LS replacement formulations that include recombinant
SP-C have shown good biophysical activity in vitro and in vivo. However, in
animal studies, comparison of these biomimetic formulations, including SP-
C only with natural surfactants that include both hvdrophobic proteins,
revealed that the recombinant surfactant formulations show poorer
performance, as indicated by a lower mean PO, value and a higher mean
10, value (15,16). 1t is unclear whether this drop in performance results
from a lack of SP-B in the biomimetic formulation, from differences in the
SP-C mimic sequence, or {rom a higher incidence of SP-C protein
aggregation and misfolding than in the natural material.

In an alternative approach, the expression of rSP-C has been
performed in eukaryotic systems such as baculovirus to enable postiransla-
tional modification of the cysteine residues with the palmitoyl chains that
arc naturally present in human SP-C. Palmitoylated SP-C was expressed and
purified by this method; however, the yield of the desired material was only
15% of the total product isolate (17). In addition, because of the
hydrophobicity of the protein and other problems inherent to eukaryotic
systems, prolein expression levels were low. The activity of this palmitoy-
lated rSP-C in comparison fo nonacylated SP-C has not yet been
mvestigated (17). Significant improvements are required to make protein
production in insect cells a cost-cffective means of producing SP-C for a
commercial surfactant replacement. Moreover, although rSP-C-based LS is
much safer than animal-derived LS replacements, there still exists the
possibility of an unfavorable immure response from foreign proteins present
in the vector (e.g., E. coli or baculovirus) used for the expression of rSP-C.

Regarding the larger and more complicated hydrophobic surfactant
protein, SP-B, attempts have been made to express its mature form in E. coli
using a truncated haman SP-B ¢cDNA (18). This recombinant protein, which
ended up to be approximately eight residues larger than natural SP-B, was
produced in E. ¢oli, but expression levels were extremely low and it was not
known to what extent the correct disulfide bonds had formed (Fig. 2Za). The



g92 Wu and Barron

limited recovery of this longer length SP-B version most likely relates to the
hydrophobicity and surface activity of the protein {18,230). Future efforts to
produce the correct sequence in high yield will involve the use of fusion
proteins {e.g., fusion of SP-B with f-zalactosidase) (18). To date, there has
been no publication describing the expression of a functional, active,
recombinant SP-B protein. Without a method that vields the correct
sequence (with the correct fold and disulfide bonds) in sufficient quantity,
the production of recombinant SP-B for therapeutic purposes will not be
feasible. Therefore, the development of biomimetic SP mimics by other
means is a worthwhile and important bioengineering goal.

B. Synthetic Polypeptides as Surfactant Protein Mimics

A more feasible solution for the development of biomimetic spreading
agents 1s the use of organic chemical methods to synthesize polypeptide
versions of SP-B and SP-C. Results from structural and physical
experiments that provide structure-function correlations have been invalu-
able in the efforts to create successful SP mimics by this route
(90,107,118,133-135,148.156,162,171.231). Designs for synthetic SP-B
analogues have focused on 11";11111(:1&113(ﬂr the mmportant structural features of
the protein, including its amphipathic helices with opposing polar (i.e.,
positively charged) and hydrophobic faces (19,20,32). In the case of SP-C,
designs have been created to mimic its hydrophobic helix, with attention
also being paid to the two adjacent positive charges near the C terminus
(146), palmlto\;}auon of the cystemes (28,145,180), and the length of the
ralyl-rich helix (37 r%) which supposedly spans a lipid bilayer (27-29,232).

Sym.hmca}l} engineered peptides circumvent many of the problems
associated with current purification procedures for antmal-derived surfac-
tants, and should facilitate the production of sufficient quantities of material
for its usc as a therapeutic agent for treatment of other respiratory diseases,
most particularly in children and adults. Moreover, a significant number of
these synthetic, biomimetic polypeptide variants (some quite dissimilar in
sequence from the natural SP-B and SP-C, as we will discuss) have been
found to be biophysically functional in vitro and i vivo. A variety of
synthetic polypeptide-based SP mimics have been successful to some degre
in promoting the achievement of low surface tensions upon film compres-
ston, rapid respreading of surfactant lipids at an interface, and the rescue of
prematurely born animals with RDS.
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C. Polypeptide Anaiogues of SP-B

Because the SP-B protein is relatively large (with regard to what can be
made on a peptide synthesizer) and structurally complex with its numerous
disulfide bonds. both recombinant and chemical synthesis of the full-length
human SP-B sequence are challenging endeavors. Based on a strong
conservation of the SP-B sequence in various mammalian systems, peptide
analogues have been templated on the human SP-B sequence, based on a
desire to retain the correct structural configuration of the molecule (see
Table 3 for SP-B designs). Resecarchers have designed, synthesized, and
characterized synthetic peptide mimics of the full-length human SP-B
protein, as well as truncated peptide sequences that represent different
regions or domains of the protein (19-21,163,233,234). Because synthetic
versions of full-length SP-B produced so far do not reproduce the three
physiological disulfide bridges, heterogeneity and oligomerization of these
peptides is highly likely. Nevertheless, this as well as other SP-B analogues
based on synthetic peptides have been shown to have respectable
biophysical activity both in vitro and in vivo. LS preparations that contain
these synthetic peptides provide improved oxygenation and lung compliance
in surfactant-deficient animal models (19,235).

Interestingly, the amino-terminal, amphipathic domain of human SP-
B (amuno acids 1-25) has been shown to adopt a helical conformation (236)
and to possess many of the important surface-active properties of full-length
SP-B protein, when added to biomimetic lipid mixtures such as the so-called
Tanaka lipids [1.e., DPPC:PG:PA in a ratio of 68:22:9 by weight (160)].
Specifically, upon compression, an SP-B (1-25)/Tanaka lipid formulation
reached low surface tension and was shown to improve oxygenation in rats
in vivo (19,20,233). Interactions of this amino-terminal fragment of SP-B
with anionic lipids is believed to induce the coexistence in the film of flat and
buckled monolayers upon collapse, thereby reducing surface tension and
improving respreading during film compression and expansion (163,164).
However, the synthetic system including SP-B (1-25) in place of real SP-B
protein has been shown to have a significantly slower rate of adsorption
than natural surfactant, a disadvantage that reduces its therapeutic value
(19,25.29).

Modification of the natural SP-B amino terminus (1-23), with
substitutions of hydrophobic, charged, andjor oligomerizable residues
targeted to potentially improve its surface activity, was not found to
improve the adsorption rate of the molecule (20). To address this issue,
peptides matching sequential, overlapping regions of SP-B were synthesized
systematically, and each prepared with a lipid mixture of DPPC:PG (3:1 by
weight). In vivo studies in fetal rabbit lung revealed that some of these



Wu and Barron

594

(RETSELTT)

(SxaNARiY

10 WOl Y0 /e sessadoul

sk ysiys ¢ 0}

$URYIIW A-g PUB TOJ v/

saa0udwl YOOI Ddd

(841} g-dS 1BYL panoys
s1ed paBear] Jo SOIPIIS 0AlA U]

(tz

(§6~D1L %) V.1 JuEpRng

s¥ OFH wo-1 pue

O wo ¢ 11 sengea Kioede)

FunT RIOL % IB[IUIS

aney (09-1) €-dS Pu® (8/

~1) g-4% 1213 Pamots sdunj
RJ POSIONS YIIM SIPMS OAlA U

(z7) (arm ¢) W g'pg S(umu )

“ufpjur g ~ P g ueseIng
(IRL G ) U/ NI S |)
w/Nw L~ PE{09-1) 4-dS
(upw ¢} w/Nurge H(ug i)
wiNw ey~ A8L-1) 9-dS
(JS J0] UORBIASD PIRpUR}S
o818 9108)) sonoury wondrospy
/N g~ 4
{11 1urpelmg
ENZE 60 ~ ¥uukp
w/Nwzg ~ " (091 9-dS
.E.—LZE WM,T ~ %mﬁ.\w‘.
wf N g~ T (R -dS
%1 1% SHd
Em_..z,g ot~ LU
Sy p~ L oy L ueioriing
E\Zﬂ: W.wv i~ kmmﬁam
/N g~ Y (D9-1) 8-S
Hm\"fmgh m:m.w ~ Y,mﬁyuﬂ
wiNw gy~ " H8L-1) €-dS
(eary %001-0p) %1 18 dSMT
W1 JUBPELNG 01 uosiiediuoo
uy soneury uondrospe Iood aoys
sopridad {-48 POq ‘I0ABMOH
I01ARYRq drueUAp Joyieq Buravy
(84-1) g-dS yum ‘sprdi] wyeury,
03 Ananor [eorsdijdorng 1oguon
(09-1) 9-dS pue (3,~1) §-d§ w0

N T~

H-4% pejesuniy

{P1O] SPYIMSIP 1021103 DALY JOU 50D 8101)
WSOWTATIDATOd TNED T
LATTASATIV IDODIDDVATIAAYDAOVA
VAVTYVO NI VOTA ATV D TMD AL 1d1dd

SADUITY

ssurizolrad oAl Uy

{1/ NTU) AHALOR S0REIIS OJHA U]

aananbas udisag]

sapndag g-ds jo susiseq € sjqgel



585

Biomimetic Lung Surfactant Replacements

IO} ST ~ BulAGg
LI010¢1 ~ 29 19

1103109 ~ spidry

WU ¢/ IO (99-6p) H-dS
pue (S7-{) g-dS 0ques 3y
M f0Bg W yuotaaciduug
PSMOYS S10X JupE

{61) poBeAR] Yl SAIPTIS OALA UY

E/ g~ PR
N E-pp~ T
far/nur g —g ~ " euiaog
/N g~ P
WiN W66 ~ Y
N a7~ T g ‘rg
P g 18 SH PUE HEMT
81
FUWAOY 01 HOSLIBAIUOD Ul SOIAULY
uondiospr Mok aavy sapidad
4-dS Y1 JIAIMOH] (817:89)
VDDA Jo samxi pidy jo
Buipeaads seacxdun (99681548
PUe (S7-1) g-dS Jo aonepuIquioo syy.
{ciz) owore spidiy o1
parediuos voym $3ams noiswedxo
~gopssarditon Jo sisarsisiy
a4l sespalom (8211 §-4S
ST U0 (6:77:69)
YA OJOd Dddd Yhm-sapnig

CHNOD TIHIOTILATHASAYEY T
(99-6¥) €-dS
ple
ONAINYOTINITY YD TADAd TdIdA
{¢7-1) §-J§ UBWINY JO SUUILLIS}-p




Wu and Barron

{02)

SIRIBAE 10N

W/ N g ~ MY
/N gy, ~ T
spidy] o GSMT
E\__wfms m<. ~ n_wﬁu&(
w/Nw o~ " 1g-ds Jo gSm1
UL f ¢ ~ XY
N ¢~ M (k) d-dS
DA £ ¢~ XY
fwaar g~
Hy+1 ") 8-dS
g&\zg mn " Mr;.:nm.
/N s~y D) g-ds
WY NG 96 ~ ¥
/g gg ~ ML rg-gS
Y81y [0S sl HOISUS) 30BJINS
WNMIXB 841 1ng ‘sjqeidesoe
JI8 JRY SONFEA O] ‘HOWU] sovLInS
WG 913 seonpal Apuesyradis
(S7-1) 4-dS jo uonippe
Unﬁrﬁ .mumsmﬂvm m;nmm wﬁOm.:ﬁf
Jo adussaid o) i (AnyTys)
pasoxdun armm somunu 7 e spidy
exeur [ jo Juspeards pus nondiospy

(=¥ “¥) g-48
(S~ o) g-48
(M) g-d8
(ve1 “1) g9-dS
(v<D) g-48
q-ds
(§2-1) g-dS UBWMY [RUILLIDI-N] JO SIUBLIBA

S30UAIJOY

aouruiopad oala uj

(/N AJ1ANOR SORJINS OINA U

ouenbos udsagg

596

penunuo’y ¢ ajgel



597

tic Lung Surfactant Replacements

omime

B

syRd podeary
10 spgqer ammewaad YIS
1 uonoun) Junj saaosdu
(6:7T°69) Vd'DAOI DAL
(§91'¢91°28°5T) H (ST T) €G-dS DHRWOUOR

(z9) Wi gg ~ “u-spidy] pus uy
INW Q9 ~ 2~8L-1) g-dS 10 (ST
=1) g-dS “1:¢€) DI04 Dddd
01 A31A1300 aovjIns JuilRjuco
w {g-1) g-d8 01 ajqerediod
Alanoe seg (§7-1) g-dS %M 0l
{691 €91} DT 12 vd Jo (PIo)
A[QISIAAD] 2I0WL B O] Y SIBHE)
21t BE} SOSPAIUL {S71) ddS %Iv ¢
(€91) (vorw
ySnoa 261 ~w/Nwpg jo *u
pu® 3¢t~ Jjoiyy ‘auope spidiyy)
vaie y8nox 406 ~ Ul NI §g
3O "x pue paIE YSNOI %O~
Hoy (61089 vaindddd
10 Buyosy wodn sy sueial
PUEB SAIND -4 JO SIS2I0)8AY
oy saseaIoul (71 g-dS %M
(#91) A PUR GSMT UO PaaIasqo
se ssdeqoo Jo odLy ouy sk
pur amssaid ssdeijos sasealouy
-Suipraidsal Qs 01 QQISIAANI
0w 24 0 1 Funksie pue (Uosuy
20rLms wnwgw Fumomapar o)
aanssaad asdeyjon oyl Suwsealous
&g Ananoe adeins ssaoidwy
(§T-1) €-dS 1BY) SMoys oy OAJTAVOTIAT TV A TMD AL Td1dA
pidy snotiea qus HONRENSeAU] {Cz-1) 9-4§ vewny Jo SMULIa-N



Wu and Barron

588

(cz) AABIBAR JON
(08—+9) 4-ds
10} TUBIOBRLINS UBWINY 2AljRU
o1 pasedwos aoueyduos
Funy ur ywawasoxiug
SO NG ondIospe PM0g
(18-99) g-d5
puR (18-75) f-dS Yl 1gel
Jo sBung wyey ul aourdmos

Fung oneis wustwoaoadury

waids s
fi

DIV ()7 WL WE/NUIG] ~ P

S 7 ~ TR g euraoy opnany

008 (T Ut/ Nurgg ~ "

N g ~ P g-dg sunaog
OHEF | U W NG ~ PR

WG U W Ny~ TR ie-gg

395 (39 UL U/ RO (§9 ~ PEESE

spRys

T g Ut w/Nw ey~ g%

(1°¢) DDA Depd Awpypam
595 ¢
Ul wiNwe ~ g-ds sanen
ﬁMﬁH m QM
/N £~ M (08-6S) H-dS
SM.FS <
up w/nur g~ " (08-49) 4-dS
Fara (]
Qs B gl (1:6) DdOddd 'Sad
spidn Jjo Buipsaxds payridpooy
(§0) W/NwW 9Tz ~"'4 g-dsy %1
W/NWGOp~ T4 071 g-dS %]
G HO PRINSEIU ST “§AISaA
(78} DIOI DA 0V peppe
uayMm g-J5 aaneu 0} nosuednos
MS Sw:@ o0l m_ E,»uwmﬁuyﬁ Duﬁﬂuﬂm
uondIospe JWBUAD “JoAsMOH

WSO TATIDATOL TN +-dS
QASOYTATIOATOLTIAY €-dS
[5154 ﬁﬁ.ﬁ A UBn H
OSOUTITODNINGTY (T-d5
OSOYTYTIODIAINGTIOTT (1-d48
SIUBLIRA MIIA0Y
(1$-99) g-d$
(18-2¢) g-d$
(0%-+9) 4-dS
(03-6¢) 94-d8
fww‘vmu
GONSOTTATIDATOL TN O TIL
OTHASATIVIDONODOVA TIAAYDADVA
VAVIVONdINVOIIMTITVI D TMDAd T
Q miz m_anmw uriny jo mwmmﬁmxﬁk

S0UBIATANM auewirojzed OAlA U]

{va/pyury A3ATIOV SomJINs oA Uy

ssuanbas ufisa(g

ﬁu:@:ﬁ@@ £ ajgel



599

tic L.ung Surfactant Replacements

Biomime

&1

4-dsy o) poredurod
USGA UOISUA] DIVIMSE 0137
yoral o} uowssarduros JaRivy sanbay
slqrpEAR 10N /N g~
“wyf N~ EE)
fg-gSy J0) wiNuIgz ol aredoion)
W WU ~ PR 9po1saa

(1L VD404 Dddd S80D

afqRAR 10N A[qEIEAR 10N

ONIAVORINTITVE VY IMDAd TdIdd
OYdTAVOTE I TVE VIMD A TdIdd

ﬁ\mﬂi_.v g-dS R M,mxw.ﬁiuw-z UW,EEWQ
THNODEADIDOSTHIBSAdAA Y A0V (g
CHNODPFSADIDOVATIAASAD (AN

w:ﬁu A DUR mcwlmmww muzmc_ q ;mw URTHNE]



600 Wu and Barron

synthetic peptide surfactants did provide an increase in lung compliance but
that their adsorption rates were still substantially slower than that of native
human surfactant (233). Other studies of the activity of different regions of
SP-B peptide have revealed that peptide fragments including the carboxyl-
terminal residues and composed of at least 17 amino acids accelerate
surfactant spreading and improve static lung compliance in premature
rabbits (21,22,233). Other modified, truncated SP-B fragments derived from
both bovine and human sequences have been synthesized and characterized,;
the surface activities of these peptides have been studied on an LWSB.
Interestingly, higher activity was observed in analogues that also showed
greater overall helicity by circular dichroism (CD) spectroscopy (23).

Since the natural, dimeric form of SP-B protein is considered to be of
importance for optimal function of LS replacements, a dimeric version of
the N-terminal segment of SP-B has been synthesized. In particular, a
dimeric form of SP-B (1-25) was engineered by the replacement of the
cysieine at position 11 with an alanine, whereas the remaining cysteine at
position 8 was used for dimerization via disulfide bonding. Comparison of
monomeric and dimeric SP-B (1-25) in premature rabbit and lavaged rat
models show that the dimeric form is more efficient than the monomer in
improving lung function (25). However, natural SP-B is dimerized through
residue 48 in its sequence, distal from the 1-25 sequence used in this mimic,

D. Polypepiide Analogues of SP-C

In contrast to SP-B, the SP-C protein i1s monomeric and quite small;
therefore, it 1s feasible to chemically synthesize a full-length version of it. SP-
- C analogues have been designed to mimic both the sequence and the folded
conformation of the human protein (see Table 4). A challenging aspect
the synthesis of human SP-C is engineering the attachment of the two
adjacent palmitoyl groups at positions 5 and 6, the absence of which can
lead to the formation of irreversible ff-shect aggregates of SP-C {237) and to
an accompanying reduction in surface activity (142). Two different
approaches that have been taken for synthetic SP-C palmitovlation are (a)
use of succanylamidyl palmitate derivatives (238) and (b) formation of a
thioester linkage via a palmitoyl chlonde reaction (239).

Full-length and truncated nonpalmitovlated versions of human SP-C
protein have already been evaluated as components of an artificial
surfactant (26). These SP-C mimics, in conjunction with a DPPCPGPA
lipid mixture (75:25:10 by weight), display promising activity in vitro on an
LWSB, as well as in vivo in lung pressure-volume curves obtained for
premature rabbits treated with the material. Moreover, it was shown that a
nonpalmitoylated core sequence containing residues 5-31 or 6-32 of the
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total 35 amino acids seems to be sufficient to mimic virtually full biophysical
activity both in vitro and in vivo (26). However, other researchers have
synthesized the full-length SP-C peptide and palmitoviated it with
succinylamidyl palmitate, and have reported that the hexadecyl modification
of cysteine residues 5 and 6 is critical for the protein’s surface activity and
biophysical function (145,147). Furthermore, modified, dipalmitoylated SP-
C peptide in combination with the Tanaka lipid formulation was also shown
to improve lung function in lavaged rats (235) and in premature rabbits
(240).

in the canine SP-C protein, a phenylalanine residue is substituted for
one of the palmitoylated cysteines {28,98). Hence, another approach to the
synthesis of SP-C mimics has been the replacement of palmitoylated cysteine
residues with phenyvlalanine residues, 2 mimic that has been called SP-Cff
{28). Other analogues have introduced serine substitutions for the two
cysteine residues (28); however, in vitro results that differ substantially from
natural SP-C performance have been reported. Specifically, both Ser- and
Phe-substituted SP-C analogues, in combination with the Tanaka lipid
mixture, were found to have inferior spreading properties in comparison to
a formulation that contains natural or native SP-C (28).

Studies have shown that the «-helical conformation of SP-C protein is
mmportant for the rapid spreading and low surface tension that are exhibited
by lung surfactant (28,232). Thus, the poor performance generally observed
for LS replacements that contain synthetic SP-C has been attributed to a
low o-helical content of the polypeptide (28) due to incorrect folding of
chemically synthesized SP-C (241). In its physiological environment, SP-C
protein exists in complexation with a high concentration of lipids, which
enable the proper folding and subsequent structural stability of the natural
chain configuration. In the absence of lipids, the native polyvaline stretch,
which is extraordinarily hydrophobic, has a strong tendency to misfold into
f§ sheets and aggregate in nonphysiological environments (241).

To overcome these challenges in synthetic SP-C production, several
SP-C analogues have been designed with modified sequences in the
hyvdrophobic stretch to maximize helicity and minimize f-sheet formation
and aggregation. In one design, the polyvaline stretch was replaced with the
transmembrane helical region (42-64) of bacteriorhodopsin (BR), report-
edly resulting in an SP-C/BR analogue with secondary structure and
spreading kinetics similar to native SP-C (28). In other SP-C analogues,
replacement of the valine residues with either polyleucine or polynorleucine
residues was shown to enable the rapid surface spreading activity of the
natural protein in vitro, and to improve static lung compliance in preterm
rabbits to levels comparable with that of natural lung surfactant (e.g.,
Beractant) (27). Another design approach prescribed the replacement of all
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the valine residues with leucine residues, the substitution of both
palmitoylcysteines with serines, and the deletion of histidine from the
sequence. This SP-C (Val—Leu; Cys—S8er) analogue was determined to
have a helical, transbilayer orientation by Fourier transform infrared
spectroscopy (29) and reportedly to exhibit in wvitro surface activity
resembling that of native SP-C (29,30). In vivo studies of this SP-C mimic,
in combination with the Tanaka lipid cocktail in rabbits, showed 30%
improvement in dynamic lung compliance when compared with unireated
premature rabbits (29). However, unlike modified natural surfactant (242),
this SP-C analogue did not succeed in restoring dynamic compliance to
healthy levels (29). Then again, the material that was tested lacked SP-B,
having only a mimic of SP-C, so this may not have been a fair comparison to
patural LS, which contains both SPs.

Part of the problem with the modified SP-C (Val—Leu; Cys-»Ser)
peptide may arise from its ability to aggregate via hydrophobic association
of the polyleucine stretch (29). To circumvent this difficuity, one group
mtroduced lysine residues at positions 17, 22, and 27 of this region to locate
positive charges around the helical circumference and thus prevent
hydrophobic aggregation by ionic repulsion. This SP-C (LKS) analogue
showed good surface activity but was inferior to native surfactant,
and showed a particularly high dynamic maximum surface tension
(v ~ 42mN/m) (30).

What is striking about these studies is that many groups have designed
peptide mimics of surfactant proteins B and C, and all have achieved some
degree of success in creating useful LS replacements using these diverse SP
mimics (Tables 4 and 5). This provides strong evidence that this biomaterial
system is tolerant to modification, at least for its use in acute replacement
therapy. This is perhaps to be expected, since it seems that surfactant
proteins interact primarily with lipids, which is likely to be an interaction
with much less specificity than many types of biomolecular associations.
Researchers are also making progress in the development and characteriza-
tion of stmplified peptide mimics of SP-B and SP-C for use as biomimetic
spreading agents in exogenous LS replacements.

E. Simplified Peptide Mimics of SP-B and SP-C

Strict sequence conservation may not be necessary to retain the proper,
helical secondary structure and surface activity of the native surfactant
proteins. Some groups have created simplified, amphipathic peptides and
tested them as mimics of SP-B and SP-C (Table 5). Small peptides offer the
advantages of being less immunogenic (243), easier to produce, and less
costly than long-chain peptides.
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Taking the advantages of small peptides into account, water-soluble
synthetic peptides have been designed with sequences unrelated to native
protein SP-B, but also coding for helical amphipathic structures, in the hope
that these molecules will have suitable physical properties for an LS
replacement. An amphipathic o-helical peptide called 18As (a 24-residue
peptide from the lipid binding region of plasma apoelipoprotein) was
designed and was shown, in combination with DPPC. to be reasonably
effective as an LS replacement both in vitro and in vivo (31). The success of
this DPPC/18As formulation led McClean et al. (32) to develop a series of
model amphipathic z-helical peptides (MAP) to be tested as potential
spreading agents for DPPC. Of these, WMAPI10 (succinyl-LLEKLLEWLK
amide) has shown the greatest promise as a spreading agent, purportedly
because it was designed to be optimally helical, by (a) facilitating the
formation of salt bridges between side chains; (b) neutralizing the negative
charge on the C terminus; and (¢) introducing a negative charge at the N
terminus, In vivo testing of WMAPI0 function demonstrated the restora-
tion of acceptable pulmonary compliance (32), but in vitro experiments
showed slow spreading of the material at the air-liquid interface (reaching
Vspread ~ 45 MN/m, which is also a relatively high surface tension for an LS
replacement) (29,32).

In work along the same lines, Cochrane ¢t al. (33) developed the 21-
residue peptide KL4, with a repeat sequence of lysine followed by four
leucine residues. The design of KL4 was patterned after the amphipathic
characteristics of the SP-B helical domain (SP-B 59-80), which had been
shown in prior experiments to be biophysically active as a peptide fragment
(233). K14 is also reasonably active as an LS spreading agent. It has been
proposed that the K14 peptide associates with the peripheral regions of the
lipid bilayer in such a way that positively charged residues interact with the
polar lipid headgroup while the hydrophobic stretch interacts with lipid acyl
side chains (33). Contrary results, which seem more likely to be correct,
suggest that the K14 peptide 1s in a transbilayer orientation in a lipid
environment (244). Regardless of the orientation of KL4, in combination
with a lipid mixture of DPPC:POPG (3:1), the peptide has been shown to
create an active exogenous surfactant for the treatment of immature
newborn rabbits (33) and rhesus monkeys (245,246). However, concerns
about the poor spreading kinetics of the KL4/lipid mixture (10 Yypead ~
37 mN/m) have been raised. and are evidenced by a reduced efficiency of this
novel formulation in comparison with native SP-C and SP-C/BR in
combination with a Tanaka lipid mixture (244). This may explain why,
when KL4 was added to a bovine-derived LS with low SP-B content
(Survanta), oxygenation was not improved in lavaged adult rats as
compared to the use of Survanta alone (24), Nevertheless, and more
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mnportantly, premature infants treated with a mixed KL4-Surfacten
formulation (DPPC:POPG with a ratio of 3:1 with 15% PA and 3% K14,
by weight) do show restoration of arterial-to-alveolar oxygen tension ratios
to a normal range within 12 h, suggesting a reasonably good efficacy of this
surfactant replacement {247). Though promising, the clinical efficacy and
safety of this formulation has vet to be fully established because of the
Iimited number of patients in which it has been studied. Furthermore,
comparisons with other commercially available surfactants are so far
unavailable, Currently, this formulation is referred to as Surfaxin (U.S.-
adopted name Sinapultide) and is produced by Discovery Laboratory
(Doylestown, PA). Pivotal phase 3 trials are now being established to
evaluate the efficacy and safety of Surfaxin for treatment of premature
infants with idiopathic RDS (8). This trial will study approximately 1500
premature infants in Latin America and 1s designed to compare Surfaxin
with currently available surfactant replacements (248).

F. Polypeptoid-Based SP Mimics

A more unusual approach to biomimicry of the SP proteins is to develop
analogues based on nonnatural peptide mimics that offer greater in vivo
stability and easier production while still mimicking the helical, amphipathic
structure of the natural molecules. Along these lines, an alternative and
novel ‘biomimetic surfactant replacement currently under development in
our laboratory 1s based on the use of poly-N-substituted glycine, or
polvpeptoid, SP mimics as additives to lipid mixtures. Polypeptoids are
nonnatural, sequence-specific polymers that are based on a peptide
backbone but differ from peptides in that their side chains are appended
to the tertiary amide nitrogen rather than to the o carbon (Fig. 7) (249). This
difference in structure has been shown to result in virtually complete
protease resistance for peptoid analogues (250). Peptoids also offer the
advantages of low immunogenicity (251), facile production on a peptide
synthesizer (252), and a low cost relative to synthetic peptides. Peptoids with
a-chiral side chains have been designed and shown to form stable, helical,
secondary structures by CD (252,253), 2D-NMR (254), and molecular
modeling (255). Because peptoids are N-substituted and hence lack amide
hydrogen bonds, they cannot form fl-sheets. Previous studies have
established that polypeptoid helices are extremely stable and monomeric,
with no tendency to misfold and aggregate (252.253,256). Therefore,
peptoids seem to be quite promising for the development of effective
spreading agents for LS formulations.

Exploiting similar strategies as have been used in the design of peptide-
based SP-B and SP-C analogues, sequence-specific peptoid-based SP mimics
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Figure 7 Comparison of the structures of peptide and peptoid trimers with
arbitrary side chains R;, Rs, and R;. Peptoid structure differs from peptides in that
the side chains are appended to the backbone nitrogen instead of the « carbon,
{Adapted from Ref. 249, with permission.)

have been designed to capture both the amphipathic and three-dimensional
structural characteristics of these proteins that are critical for their proper
biophysical functioning. Studies so far have focused on SP-C analogues,
which have been designed with a hydrophobic, helical stretch that spans a
DPPC bilayer and that conserves the patterning of charged and hydrophilic
residues found in natural protein. These peptoid-based SP mimics have been
shown to be stably helical by CD and highly surface active by LWSB. In
conjunction with various lipid mixtures (e.g., DPPC:POPG, 7:3, or Tanaka
lipids), peptoid-based SP mimics have shmm promise in vitro on the
Langmuir-Wilthelmy surface balance and pulsating bubble surfactometer
(257). Further investigations are necessary for evaluation of the efficacy and
safety of these nonnatural materials, but these biostable analogues hold
promise for treatment not only of RDS but of other respiratory diseases
caused by the deficiency and dysfunction of LS.

XVHi. FUTURE DIRECTIONS IN THE DEVELOPMENT OF
BIOMIMETIC LS REPLACEMENTS

The development of a functional, reliable, safe, less immunogenic, and lower
cost biomimetic lung surfactant replacement will be beneficial for the
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effective prevention and improved treatment of preterm infant RDS (258).
The eventual impact of such a formulation on neonatal and perinatal health
could ‘be great (34-36), as it is likely that the indications for surfactant
replacement therapy in infants will expand in the future to include other
fung diseases that have surfactant dysfunction as an element of their
pathogenesis (259,260}, including meconium aspirafion syndrome (261),
congenital pneumonia (262), pulmonary hypoplasia, and pulmonary
hemorrhage. To make the use of surfactant replacement therapy feasible
for an expanded list of infant respiratory disorders and a greater number of
patients worldwide, both the immunogenicity and the cost of exogenous
surfactant replacements must be minimized (259). '

Adults and children will also benefit from the development of a less
immunogenic and less expensive synthetic formulation (34-36). The
dystfunction of lung surfactant is a major contributor to the lethal “acute
RDS (ARDS),” which can occur in adults and children after shock,
bacterial sepsis, hyperoxia, near-drowning, or apiration (263-265). RDS is
the leading cause of death in intensive care units, and there is no generally
effective and economically viable treatment for it (266-268). The dysfunc-
tion of lung surfactant in adults and children most typically results from the
encroachment of blood serum or other foreign fluids into the lungs. Serum
proteins can disrupt and inhibit the spreading of the natural surfactant
monolayer by a number of mechanisms (71,269). There has been indication
in a few studies that LS replacement therapy may be effective for {reatment
of adult and child ARDS (270-273). However, adult therapy requires much
larger dosage, making this treatment prohibitively expensive and unfeasible
(274}, In addition, there are mportant issues of LS inactivation and
immunogenicity using LS replacements in adults because of their highly
developed adaptive immune systems. Recent clinical work also suggests that
surfactant dyvsfunction may play a role in the pathogenesis of cystic fibrosis
and that specially designed surfactant replacements could prove beneficial to
cystic fibrosis patients (275).

XVill. CONCLUSIONS

The design of biomaterials that effectively mimic the structure and function
of natural materials but that have the advantages of low immunogenicity
and good bioavailability is a challenging area of bicengineering. An
important and tractable problem in biomaterials research is the need for
more effective and bioavailable LS replacements for the treatment of
respiratory disease.
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Before venturing into the development of complex material such as a
biomimetic LS replacement, we must begin by recognizing both the need for
this material and the specific areas for improvement in the present therapy.
An integral step in the development process is to exploit knowledge of the
structure~function relationships of the natural system to provide the design
criteria. In vitro and in vivo studies are providing a better understanding of
the role of LS components. The saturated lipids, particularly DPPC, are
involved in reducing surface tension to near zero, whereas the unsaturated
lipids and proteins have a role in facilitating adsorption and respreading of
the LS films. In particular, the surfactant proteins B and C are responsible
for enhancing lipid adsorption, respreading, and for stabilizing the surface
film.

We are beginning to understand the composition and functions of LS,
allowing improved designs of novel LS replacements. Researchers are
currently developing biomimetic LS replacements based on recombinant
and chemical production of SP-B and SP-C analogues. Successful
expression and isolation of recombinant SP offers the advantage of
producing a large quantity of material, potentially at a relatively low cost.
However, production of recombinant SP mimics is challenging because of
the difficulty in expressing these proteins with the correct conformation and
in purifying them in high yield due to their highly hydrophobic nature. An
alternative approach has been to chemically synthesize full-length,
truncated, and modified versions of the SP. The chemical synthesis route
offers ease of production and has enabled the investigation of numerous
peptide analogues. Additionally, this synthetic route otfers the reduction/
elimination of viral contamination and immunogenicity risks. It is
chemically challenging to synthesize peptide analogues of SP-B and/or SP-
C with the correct fold, but this may not necessarily be requisite for a
functional LS replacement. It is interesting to note that a number of
different amphipathic peptide designs have been successful in mimicking the
biophysical and physiological roles of LS, to some extent. Most of the LS
formulations have been based on the use of either SP-B or SP-C mimics (not
both). Since both SP-B and SP-C are present in natural LS, biomimetic LS
formulations most likely would be improved by the presence of both SP
analogues. In addition, a better understanding of the individual roles of SP-
B and SP-C would facilitate the design of improved biomimetic LS
replacements.

An exciting aspect of developing these biomimetic LS replacements is
the capacity to tailor their formulation to treat respiratory diseases with
varying degrees of surfactant deficiency, insufficiency, and inactivation.
There is an indication that LS therapy may also be effective for treating
adult RDS, meconium aspiration syndrome, and pneumonia. However, the
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use of current commercially available LS replacements (natural and
synthetic) is not yet viable for the treatment of adults; treatment of adult
respiratory dysfunction will be one major application of a biomimetic LS
replacement.
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