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Mimicry of bioactive peptides via non-natural, sequence-specific

peptidomimetic oligomers

James A Patch and Annelise E Barron*

Non-natural, sequence-specific peptidomimetic oligomers are
being designed to mimic bioactive peptides, with potential
therapeutic application. Cationic, facially amphipathic helical
B-peptide oligomers have been developed as magainin
mimetics. Non-natural mimics of HIV-Tat protein, lung
surfactant proteins, collagen, and somatostatin are also being
developed. Pseudo-tertiary structure in B-peptides and
peptoids may herald the creation of entirely artificial proteins.
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Introduction

Peptides are short, sequence- and length-specific
oligomers composed of amino acids. These familiar bio-
molecules are ubiquitous in living cells and assume myriad
roles, including cell receptor ligand, endogenous antibiotic,
and even components of pulmonary surfactant. Each role
assumed by a bioactive peptide will typically correspond to
a unique three-dimensional structure. In this way, nature
has exquisitely refined bioactive peptide sequences and
activities through evolution and, naturally, there has been
significant interest in exploiting these molecules as
pharmaceutical lead compounds. Unfortunately, peptides
themselves provide inferior drug candidates because of
their low oral bioavailability, potential immunogenicity and
poor metabolic stability 7z vive [1].

Recent efforts to ameliorate disadvantageous peptide
characteristics, and thus generate viable pharmaceutical
therapies, have focused on the creation of non-natural
peptide mimics. These ‘peptidomimetics’ can be based on
any oligomer that mimics peptide primary structure
through use of amide bond isosteres and/or modification of
the native peptide backbone, including chain extension or
heteroatom incorporation. Peptidomimetic oligomers are
often protease-resistant, and may have reduced immuno-
genicity and improved bioavailability relative to peptide
analogues. In addition to primary structural mimicry, a
select subset of the sequence-specific peptidomimetic
oligomers, the so-called ‘foldamers’ [2], exhibits well-defined
secondary structural elements such as helices, turns and
small, sheet-like structures. When peptide bioactivity is

contingent upon a precise 3-D structure, the capacity of a
biomimetic oligomer to fold can be indispensable.
Examples of simple peptidomimetics (Figure 1) include
azapeptides, oligocarbamates and oligoureas, and common
foldamer examples include B-peptides, y-peptides,
oligo(phenylene ethynylene)s, vinylogous sulfonopeptides
and poly-N-substituted glycines (peptoids) [2—4].

Sequence-specific peptidomimetics are beginning to find
important application in the mimicry and optimization of
natural peptide products for therapeutic use. This review
showcases several of the more significant and recent devel-
opments, including HIV-Tat biomimicry, with an emphasis
on the expanding field of antibacterial peptide mimicry.
Finally, the significance of recent reports suggesting the
accessibility of tertiary structure in -peptides and peptoids
is discussed in the context of bioactive peptide mimicry.

Antibacterial peptide mimicry

Antibacterial peptides are found in many organisms, ranging
from bacteria through mammals [5,6]. Most antibacterial
peptides share a simple structural motif; they are most
commonly short (<40 residues) linear, cationic, amphi-
pathic a-helices [7°°]. They exert antibacterial activity by
cell membrane permeabilization and lysis, although the
precise lytic mechanism has not been conclusively deter-
mined [8]. Selectivity for the bacterial cell appears to be
mediated by favourable electrostatic interaction between
positively charged peptides and the negatively charged
bacterial cell surface [9,10]. Mammalian cells, typified by a
largely zwitterionic (and net-neutral) cell surface, are less
favourable targets. However, because an excessively
hydrophobic peptide can bind indiscriminately to any cell
membrane [11], antibacterial peptide selectivity is contin-
gent upon a precise balance of peptide hydrophobicity and
electrostatic charge. In general, studies suggest that the
overall physico-chemical parameters of antibacterial peptides,
rather than any specific receptor-ligand interactions, are
responsible for antibacterial activity [11]. As a result,
antibacterial peptides are attractive targets for biomimicry
and peptidomimetic lead development, as reproduction of
critical peptide biophysical characteristics in an unnatural,
sequence-specific oligomer should presumably be suffi-
cient to endow antibacterial efficacy, while circumventing
the limitations associated with peptide pharmaceuticals [1].

Recent studies in which B-peptides were designed to mimic
the magainin antibacterial peptides [12] have helped to
illustrate which physical characteristics are critical for ideal
antibacterial efficacy and biocompatibility in non-natural
oligomers. B-Peptides have more conformational freedom
than o-peptides, because of an additional methylene unit
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Representative sequence-specific peptidomimetic oligomers.

present in the polymer backbone. Consequently, whereas
a-peptide helices most commonly adopt the o-helix con-
formation, B-peptide sequences have been shown to adopt
several distinct helical conformations, the choice of which
depends largely upon the substitution pattern at backbone
Cg and CB atoms [13°,14,15]. Of these, the B-peptide
12-helix and the 14-helix have been successfully employed
as magainin mimics (Figure 2). The terms ‘12-helix’ and
‘14-helix’ correspond to the number of atoms participating
in a ring created by intrachain hydrogen bonds.

DeGrado and co-workers [16] first reported the de novo
design of amphipathic, cationic, monosubstituted B-peptide
14-helices as antibacterial compounds against the Gram-
negative bacterium K91 Escherichia coli. Although potent
antibiotics, these B-peptides displayed poor selectivity for
bacteria, as evidenced by extensive mammalian red blood
cell lysis (haemolysis). Assuming that excessive side-chain
hydrophobicity was responsible for the poor selectivity
observed, DeGrado and colleagues [17] modified their
original 14-helix designs to substitute a valine-like (3-HVal)
residue with a less hydrophobic alanine-like (B-HAla)
residue. In support of their original hypothesis, this modi-
fication abolished haemolytic activity, while retaining good
antibacterial efficacy in both 12- and 15-residue oligomers.

Simultaneously and independently, Seebach’s group [18]
synthesized quite similar mono-substituted B-peptides,
also designed to adopt the B-peptide 14-helix. For a
hydrophobic moiety, Seebach selected a phenylalanine-like
residue (B-HPhe) in lieu of the B-HVal residue employed
by DeGrado. Interestingly, although haemolytic activity

lllustration of hydrogen bonding in o-peptide and B-peptide helices.

was comparable, this sequence difference alone resulted in
a one order of magnitude reduction in antibacterial activity
relative to DeGrado’s refined oligomers.

Whereas DeGrado and Seebach have focused on the
14-helix, Gellman’s group has reported a 17-residue B-peptide
12-helix, which they call ‘B-17’, that possesses potent
antibacterial activity against a variety of Gram-positive and
Gram-negative bacteria and exhibits minimal haemolysis
[19°°] (Figure 3). Unlike DeGrado’s monosubstituted
14-helices, B-17 is disubstituted at G, and Cg to form intra-
residue five-membered rings and consequently possesses
significantly less conformational freedom than either
DeGrado’s or Seebach’s oligomers. Therefore, conforma-
tional rigidity does not appear to adversely affect activity or
selectivity. In fact, Gellman’s group has recently described
a B-peptide 12-helix with both mono- and di-substituted
residues, with activity comparable to B-17 and magainin [20].

Although oligomer hydrophobicity was implicated as perhaps
the primary factor responsible for antimicrobial selectivity,
precisely which molecular characteristics are responsible
for B-peptide antibacterial action remained ambiguous.
This is well-illustrated by the large and intriguing differ-
ence in efficacy between DeGrado’s and Seebach’s similar
oligomers. Thus, to better define precisely which molecular
characteristics do in fact affect antibacterial activity and
selectivity in non-natural oligomers such as B-17, Gellman’s
group synthesized a series of B-17 (12-helix) analogues in
which molecular characteristics such as amphipathicity and
the ratio of cationic to hydrophobic residues were system-
atically varied [21°]. They conclusively demonstrated that



874 Biopolymers

Figure 3

NH;
@)
o o
H
N N N
H H H

4

(c)
H H H H H H H
N N N N N N N NH,
H H
hgysayd pailh gy=<h VN GysAh g
(0] (@] O (@] O (0] (@] O,
3

(b)
NH>
0} (¢] (0]
H /k/“\
OH N N N OH
H H H
4

Current Opinion in Chemical Biology

Chemical structures of select antibacterial B-peptides. (a) DeGrado [16]. (b) Seebach [18]. (c) Gellman B-17 [19°°].

facial amphipathicity is requisite for bactericidal activity in
12-helix B-peptide magainin mimics, while a ratio of 40%
cationic to hydrophobic residues provides optimal selectivity.
More recently, Gellman and co-workers [22] have begun to
examine 14-helical antibacterial B-peptides, and the
relationship between their folded structure and activity.
Such studies hopefully will facilitate oligomer design by
providing a clear correlation between physico-chemical
properties and the biophysics of the antibacterial mechanism.

As a result of this work, it might seem that any cationic and
facially amphiphilic helical oligomer with the appropriate
balance of charge to hydrophobicity would be potentially
capable of antibacterial activity and selectivity. Correspondingly,
several groups have recently reported such peptidomimetics,
perhaps with the intent of future antibiotic development.
For instance, Arnt and Tew [23] reported membrane-
active oligo(phenylene ethynylene)s with cationic, facially
amphipathic structure. Although these oligomers may
prove capable of bacterial membrane lysis, their water
insolubility and very hydrophobic nature will probably
require modification before they can serve as a viable,
selective antibiotic. Based on the B-peptides, water-soluble
hydrazino peptides are predicted on the basis of molecular
mechanics to have stable, helical structure [24], and may
be good candidates for development. Poly-N-substituted
glycines, or peptoids [25], with certain organo-soluble
[26,27] and facially amphipathic, cationic, water-soluble
[28°] sequences have also been shown to form very stable
helices. Since peptoids are easily synthesized and
highly customizable [25,29], molecular characteristics such
as hydrophobicity and charge are readily modified. In
tandem with demonstrated protease resistance [30],

peptoids are particularly amenable to development as
biomimetic antibiotics.

Regardless of the particular oligomer identity, it is clear that
the repertoire of peptidomimetic antibiotics will soon expand
beyond the exclusive realm of B-peptides. DeGrado’s group
has already developed an easily and inexpensively synthe-
sized class of water-soluble polyarylamides with facially
amphiphilic structure (as predicted by computational studies)
[31°]. Polymers of eight monomeric units had effectiveness
comparable to that of B-peptide antibiotics against Gram-
positive and Gram-negative bacteria. Although these polymers
are haemolytic, reduction of the molecular hydrophobicity in
subsequent redesigns should not be difficult. Other examples
of magainin-mimetic, sequence-specific polymers such as
these should be forthcoming.

HIV-Tat mimics

The mimicry of peptides that interact with nucleic acids
has important implications for molecular biology and med-
icine. DNA- and RNA-binding peptidomimetics can affect
gene transcription and replication in a predictable way for
therapeutic benefit. In a prime example, HIV-1 replication
is contingent upon the interaction of HIV-Tat protein with
a 59-base RNA stem-loop structure, termed the #7ans-acti-
vation responsive region (‘TAR), located at the 5” end of all
HIV-1 mRNA molecules [32]. Disruption of this interaction
would have obvious impact on AIDS therapy and, thus,
research has been directed at the development of small-
molecule Tat protein mimics that are capable of
competitive inhibition of the Tat-TAR interaction
(Figure 4). For instance, Rana and co-workers have devel-
oped both oligourea and oligocarbamate mimics of the
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HIV-Tat47-57 analogues. (a) Oligourea [33,35°]. (b) Oligocarbamate [34,35°]. (c) B-peptide [39°].

TAR-binding portion of the Tat protein (*SGRKKRRQRRR57),
which compete with Tat for TAR binding. Both oligourea
and oligocarbamate mimics have dissociation constants
comparable to that of a synthetic Tat*3-57 [33,34], binding
quite tightly to HIV-1 TAR. Rana and co-workers [35°]
have also demonstrated that both oligocarbamate and
oligourea versions of Tat*-57 are in fact capable of
suppressing HIV-1 gene expression 7z vivo.

Apart from its critical role in HIV-1 replication, Tat protein
has been shown to rapidly cross cellular membranes, aggre-
gating in the nucleus [36]. Membrane translocation activity
appears to be dependent upon small motifs within the Tat
protein, particularly the basic sequence contained in
residues 48-60 [37]. Wender er a/. [38] have designed an
oligoguanidine peptoid sequence, derived from the cationic
Tat*9-57 motif, that exhibits membrane translocation activity
superior to that of Tat#9-57 itself. Gellman and colleagues
[39°] have synthesized a B-peptide sequence mimic of

Tat#7-57 but with activity merely comparable to that of the
native peptide. Conceivably, these sequences may soon be
incorporated into other non-natural peptidomimetic
oligomers to facilitate cellular uptake, providing crucial
access to the intracellular environment.

Other applications

Researchers are currently developing many different
non-natural oligomers for use in the mimicry of diverse
bioactive peptides. Non-natural azapeptide [40] and
peptoid ligands [41] for MHC-II are being developed
to help modulate immune system response, and possibly
provide therapy for auto-immune disorders. Novel
somatostatin analogues incorporating peptoid [42]
and B-peptide [43-45] residues have been reported.
Helical peptoid mimics of lung surfactant protein C are
the first non-natural synthetic replacements reported
[46,47]. Even peptoid-based collagen mimics have been
generated [48,49].
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Tertiary structure

Although simple secondary structural motifs have so far been
adequately mimicked by a variety of peptidomimetic
oligomers, the more complex tertiary structural elements have
remained outside the reach of biomimetics. While true tertiary
structure has not yet been observed, recent developments
suggest that such non-natural, compact conformations may be
accessible. In a series of analytical centrifugation experiments,
Gellman and colleagues [50°°] have reported the formation
of tetrameric or hexameric bundles (dependent upon buffer
choice) of amphipathic B-peptide 14-helices in aqueous
solution. Similarly, after synthesizing and screening a 3400-
member combinatorial library, Burkoth ez /. [51°°] discovered
an amphiphilic 15-mer peptoid that appears to form tetrameric
aggregates capable of binding a fluorescent dye. This inter-
molecular aggregation of hydrophobic portions of amphipathic
B-peptide and peptoid helices seems analogous to the
intramolecular hydrophobic collapse in proteins that leads to
tertiary structure. Presumably, non-natural tertiary structure
could be obtained by intramolecular incorporation of several
adjacent amphipathic helices, spaced with appropriate
linkers to allow hydrophobic collapse. Such peptidomimetics,
rendered capable of forming compact tertiary structure, would
transcend mere peptide mimicry to become truly ‘protein-
mimetic’ oligomers. Needless to say, the potential therapeutic
applications of entirely artificial proteins are boundless.

Conclusions

The extensive work that has been done to determine the
preferred three-dimensional conformations of foldamers,
especially of the B-peptides, has begun to prove immensely
useful in bioactive peptide mimicry. The knowledge linking
primary sequence to secondary structure in peptidomimetic
oligomers is being exploited to create mimics of many
diverse natural products. Experience gained from the
synthesis of these relatively simple mimics has revealed
the possibility of tertiary structure in non-natural
oligomers, which in turn raises the exciting prospect of
entirely artificial proteins. In short, these successful
attempts at relatively facile projects in peptide mimicry
illustrate that as the field of biomimicry matures, so does
our understanding of the intricate relationship between
sequence, folded structure and function, not only in non-
natural systems, but also in peptides and proteins.
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