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Abstract 
 
Test-based accountability as well as value-added assessments and much experimental and 

quasi-experimental research in education rely on achievement tests to measure student skills and 
knowledge. Yet we know little regarding fundamental properties of these tests, an important 
example being the extent of test measurement error and its implications for educational policy and 
practice. While test vendors provide estimates of split-test reliability, these measures do not account 
for potentially important day-to-day differences in student performance. In this paper, we 
demonstrate a credible, low-cost approach for estimating the overall extent of measurement error 
that can be applied when students take three or more tests in the subject of interest (e.g., state 
assessments in consecutive grades). Our method generalizes the test-retest framework by allowing 
for i) growth or decay in knowledge and skills between tests, ii) tests being neither parallel nor 
vertically scaled, and iii) the degree of measurement error varying across tests. The approach 
maintains relatively unrestrictive, testable assumptions regarding the structure of student 
achievement growth. Estimation only requires descriptive statistics (e.g., test-score correlations). 
With student-level data, the extent and pattern of measurement error heteroskedasticity also can be 
estimated. In turn, one can compute Bayesian posterior-means of achievement and achievement-
gains given observed scores – estimators having statistical properties superior to those for the 
observed score (score-gain).  We employ math and ELA test-score data from New York City to 
demonstrate these methods and estimate the overall extent of test measurement error is at least twice 
as large as that reported by the test vendor.
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Test-based accountability, teacher evaluation and much experimental and quasi-

experimental research in education rely on achievement tests as an important metric to assess 

student skills and knowledge. Yet we know little regarding the properties of these tests that bear 

directly on their use and interpretation. For example, evidence is often scarce regarding the extent to 

which standardized tests are aligned with educational standards or the outcomes of interest to 

policymakers or analysts. Similarly, we know little about the extent of test measurement error and 

the implications of such error for educational policy and practice. The estimates of reliability 

provided by test vendors capture only one of a number of different sources of error. 

 This paper focuses on test measurement error and demonstrates a credible approach for 

estimating the overall extent of error. For the achievement tests we analyze, the measurement error 

is at least twice as large as that indicated in the technical reports provided by the test vendor. Such 

error in measuring student performance results in measurement error in the estimation of teacher 

effectiveness, school effectiveness and other measures based on student test scores. The relevance 

of test measurement error in assessing the usefulness of metrics such as teacher value-added or 

schools’ adequate yearly progress often is noted but not addressed, due to the lack of easily 

implemented methods for quantifying the overall extent of measurement error. This paper 

demonstrates such a technique and provides evidence of its usefulness. 

Thorndike (1951) articulates a variety of factors that can result in test scores being noisy 

measures of student achievement. Technical reports by test vendors provide information regarding 

test measurement error as defined in classical test theory and item response theory (IRT). For both, 

the focus is on the measurement error associated with the test instrument (i.e., randomness in the 

selection of test items and the raw-score to scale-score conversion). This information is useful, but 

provides no information regarding the error from other sources, e.g., variability in test conditions. 

Reliability coefficients based on the test-retest approach using parallel test forms is viewed 
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in the psychometric literature to be the gold standard for quantifying measurement error from all 

sources. Students take alternative, but parallel (i.e., interchangeable), tests two or more times 

sufficiently separated in time to allow for the “random variation within each individual in health, 

motivation, mental efficiency, concentration, forgetfulness, carelessness, subjectivity or 

impulsiveness in response and luck in random guessing,”1 but sufficiently close in time that the 

knowledge, skills and abilities of individuals taking the tests are unchanged. However, there are 

relatively few examples of this approach to measurement error estimation in practice, especially in 

the analysis of student achievement tests used in high-stakes settings.  

  Rather than analyze the consistency of scores across tests close in time, the standard 

approach is to divide a single test into parallel parts. Such split-test reliability only accounts for the 

measurement error resulting from the random selection of test items from the relevant population of 

items. As Feldt and Brennan (1989) note, this approach “frequently present[s] a biased picture,” in 

that, “reported reliability coefficients tend to overstate the trustworthiness of educational 

measurement, and standard errors underestimate within-person variability” because potentially 

important day-to-day differences in student performance are ignored.  

In this paper, we show that there is a credible approach for measuring the overall extent of 

measurement error applicable in a wide variety of settings. Estimation is straightforward and only 

requires estimates of the variances and correlations of test scores in the subject of interest at several 

points in time (e.g., third-, fourth- and fifth-grade math scores for a cohort of students). Student-

level data are not needed. Our approach generalizes the test-retest framework to allow for  i) either 

growth or decay in the knowledge and skills of students between tests, ii) tests to be neither parallel 

nor vertically scaled and iii) the extent of measurement error to vary across tests. Utilizing test-

score covariance or correlation estimates and maintaining minimal structure characterizing the 

                                                 
1 Feldt and Brennan (1989). 
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nature of achievement growth, one can estimate the overall extent of test measurement error and 

decompose the test-score variance into the part attributable to real differences in achievement and 

the part attributable to measurement error. When student-level data are available, the extent and 

pattern of measurement-error heteroskedasticity also can be estimated. 

 The following section briefly introduces generalizability theory and shows how the total 

measurement error is reflected in the covariance structure of observed test scores. In turn, we 

explain our statistical approach and report estimates of the overall extent of measurement error 

associated with New York State assessments in math and English language arts (ELA), and how the 

extent of test measurement error varies across ability levels. These estimates are then used to 

compute Bayesian posterior means and variances of ability conditional on observed scores, the 

posterior mean being the best linear unbiased predictor of a student's actual ability. We conclude 

with a summary and a brief discussion of ways in which information regarding the extent of test 

measurement error can be informative in analyses related to educational practice and policy.  

1.0 Measurement Error and the Structure of Test-Score Covariances  

From the perspective of classical test theory, an individual’s observed score is the sum of 

two components: the true score representing the expected value of test scores over some set of test 

replications, and the residual difference, or random error, associated with test measurement error. 

Generalizability theory extends test theory to explicitly account for multiple sources of 

measurement error.2 Consider the case where a student takes a test at a point in time with the test 

consisting of a set of tasks (e.g., questions) drawn from some universe of similar conditions of 

measurement. Over a short time period there is a set of possible test occasions (e.g., dates) for 

which the student’s knowledge/skills/ability is constant.  Even so, her test performance typically 

will vary across such occasions. First, randomness in the selection of test items along with students 

                                                 
2 Many authors discuss classical test theory, e.g, Haertel (2006). See Cronbach et al. (1997) and Feldt and Brennan 
(1989) for useful introductions to Generalizability Theory and Brennan (2001) for more detail. 
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doing especially well or poorly on particular tasks is one source of measurement error. Temporal 

instability in student performance due to factors aside from changes in ability (e.g. sleepiness) is 

another. 

 Consider the case where students complete a sequence of tests in a subject or related 

subjects. Let ijS  in ij ij ijS     represent the ith student’s score on the exam taken on one occasion 

during the jth testing period.  For exposition we assume there is one exam per grade.3 The student's 

universe score, ij , is the expected value of ijS  over the universe of generalization (e.g., the 

universes of possible tasks and occasions). Comparable to the true score in classical test theory, ij  

measures the student’s skills or knowledge.  ij  is the test measurement error from all sources 

where 0ijE  , 0, ,ij ikE j k     and 0,ij ikE j k     ; the errors have zero mean, are not 

correlated with actual achievement and are not correlated over time. Allowing for heteroskedasticity 

across students, 2 2
ij ijE   is the test measurement-error variance for the ith student in grade j. Let 

2 2
j ij

E  

 represent the mean measurement-error variance for a particular test and test-taking 

population.  In the case of homoskedastic measurement error, 2 2 ,
ij j

i  


  . 

Researchers and policymakers are interested in decomposing the variance of observed scores 

for the jth test, jj , into the variance of universe scores, jj , and the measurement-error variance; 

2
jjj jj   


  . The generalizability coefficient, j jj jjG   , measures the portion of the test-

score variance that is explained by the variance of universe scores. 

i i iS        (1) 

 Vector notation is employed in Equation 1 where  1 2i i i iJS S S S   ,  1 2i i i iJ      , 

                                                 
3 Time intervals between tests need not be either annual or constant. For example, from a randomized control trial one 
might know test-score correlations for tests administered at the start, end and at a point during the experiment. 
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and  1 2i i i iJ       for the first through the thJ  tested grades.4 Equation 2 defines ( )i  to be 

the auto-covariance matrix for the ith student’s observed test scores, iS .  is the auto-covariance 

matrix for the universe scores in the population of students. i  is the diagonal matrix with the 

measurement-error variances for the ith student on the diagonal.  

     

1

2

'

2

11 12 1 11 12 1
2

21 22 2 21 22 2
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1 2 1 2

( ) ( )
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0 0

0

0 0 0
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i

iJ

i i i i i i i ii i i

i i i J J

i i i J J

iJ iJ iJJ J J JJ

i E S ES S ES E E E E







    

     
     

      

                 
    
    
            
    
      

 
 

         i 
    (2)  

E ( )i             (3) 

 The test-score covariance matrix for the population of test-takers,  , is shown in Equation 

3 where   is the diagonal matrix with 
1 2

2 2 2, ,...,
J    

  
on the diagonal.5 Note that corresponding 

off-diagonal elements of ( )i , ( ')i and  are equal; ,i jk jk jk     j k  . In contrast, 

corresponding diagonal elements 2

i jijj jj      and 2

jjj jj   


   are not equal when 

measurement error is heteroskedastic.   

With , ,jk jk j k     and jj jj jG  , we have the following formula for  :    

11 12 13 1 11 1 12 13 1

22 23 2 22 2 23 2

33 3 33 3 3

J J

J J

J J

JJ JJ J

G

G

G

G

       
     

   

 



   
   
   
     
   
   
      

 

   
 .   (4) 

 
                                                 
4 For example, the third grade might be the first tested grade. To simplify exposition, we often will not distinguish 
between the ith grade and the ith tested grade, even though we will mean the latter.  
5   can be estimated using its empirical counterpart   ˆ

i i Si
S S S S N

     where SN  is the number of 

students with observed test scores. This corresponds to the case where one or more student cohorts are tracked through 
all J grades, a key assumption being that the values of the jk  are constant across cohorts. A subset of the jk  can be 

estimated when the scores for individual students only span a subset of the grades included; a particular jk  can be 

estimated provided one has test score data for students in both grades j and k.  
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Let jkr  and jk , respectively, represent the test-score and universe-score correlations for tests  j 

and k.  These correlations along with Equation 4 imply the test-score correlation matrix, R:  

1 2 12 1 3 13 1 4 14 1 5 1512 13 14 15

23 24 25 2 3 23 2 4 24 2 5 25

34 35 3 4 34 3 5 35

35
4 5 45

11

1 1

1 1 .
1 1

1 1

G G G G G G G Gr r r r

r r r G G G G G G

r r G G G GR
r G G

   

  

 



                             

 

 

   (5) 

The presence of test measurement error (i.e., 1jG  ) implies that each correlation of test scores is 

smaller than the corresponding correlation of universe scores. In contrast, ,jk jk  ,j k  as 

shown in Equation 4, so that the off-diagonal elements of the empirical test-score covariance matrix 

are estimates of the off-diagonal elements of the universe-score covariance matrix; ˆ ˆ
jk jk  .  

Estimates of the jk  or the jkr  alone are not sufficient to infer estimates of the jj  and jG , 

as there are J more parameters in both Equation 4 and Equation 5 than there are moments.6  

However, there is a voluminous literature in which researchers employ more parsimonious 

covariance and correlation matrix specifications to economize on the number of parameters to be 

estimated while retaining sufficient flexibility in the covariance structure.  For a variety of such 

structures one can estimate jj  and jG , though, the reasonableness of any particular structure will 

be context specific.   

As an example, suppose that one knew or had estimates of test-score correlations for parallel 

tests taken at times 1 2, , , Jt t t  where time intervals between consecutive tests can vary. 

Correlation structures that allow for changes in skills and knowledge over time typically maintain 

that the correlation between any two universe scores is smaller the longer is the time span between 

the tests. For example, one possible specification is k jt t
jk  
  with 1  . Here the correlation of 

                                                 
6 In Equation 4 there are ( 1) / 2J J   moments and ( 1) / 2 ( 3) / 2J J J J J     parameters. In Equation 5 there are 

( 1) / 2J J  moments and ( 1) / 2 ( 1) / 2J J J J J     parameters. 
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universe scores decreases at a constant rate as the time interval between the tests increases. 

Maintaining this structure and assuming , ,jG G j   andG   are identified with three tests, as 

shown in Equation 6.7   If 4J  , 1 2, , andJG G G   are identified.  

  3 21
13 12ˆ ˆ ˆ t t
r r           12 23 13

ˆ ˆ ˆ ˆG r r r    (6) 

This example generalizes the congeneric model analyzed by Joreskog (1971).  Tests are said 

to be congeneric if the true scores, ik , are linear functions of a common i   (i.e., true scores are 

perfectly correlated).  For this case, Joreskog shows that 1 2 3, , andG G G  are identified, which 

generalizes the test-retest framework where 1   and ,jG G j  .   

The structure k jt t
jk  
  has potential uses, but is far from general.  The central 

contribution of this paper is to show that the overall extent of test measurement error and universe-

score variances can be estimated maintaining far less restrictive universe-score covariance 

structures, thereby substantially generalizing the test-retest approach. The intuition is relatively 

straightforward. For example, in a wide range of universe-score covariance structures, jk  in 

Equation 4 can be expressed as functions of jj  and kk .8  In such cases, estimates of the 

, ,jk jk j k    can be used to estimate jj  and /j jj jjG   .  

Additional intuition follows from an understanding of circumstances in which our approach 

is not applicable. The primary case is where a universe score is multidimensional with at least one 

of the dimensions of ability not correlated with any of the abilities measured by the other tests.  For 

                                                 
7 These estimators are consistent, but biased as they are ratios of estimators. The same is true in several other examples 
discussed below. 
8 In general , , ,( )i j m i j m ij i j mE        where , 0i j m ijE   .  Utilizing a Taylor-series approximation for 

, 1( )i j ijE   ,  2
, 0 1 2 ,( ) ( )m m m

i j m ij j ij j i j ma a a              where j ijE   . Thus, 

, ,( )( )j j m ij j i j m j mE          3
1 2 j

m m
jja a     , where ,j j m   is a function of jj . 
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example, suppose the universe score for the second exam measures two abilities such that 

2 2 2
o

i i i     with 2( , ) 0i ikCov     and 2( , ) 0,o
i ikCov     2k  .9  Because 

2 2 2( , )o
k k i ikCov      is not a function of 2( )iV  , knowledge of the jk  does not identify 

2( )iV  , 22 2 2( ) ( )o
i iV V     or 2 2 2 22( ) ( )o

i iG V V      . Thus, in cases where tests measure 

multidimensional abilities, application of our approach is appropriate only if every skill and ability 

measured by each test is correlated with one or more skill or ability measured by the other tests. 

When this property does not hold, the extent of measurement error and the extent of variation in 2i  

measured by 2( )iV   are confounded. (Regarding dimensionality, it is relevant to note that IRT 

models used in test scoring typically maintain that each test measures ability along a single 

dimension, which can be, and often is, tested.)  

Note that an increase in the extent of measurement error in the jth test (i.e., a decrease in 

jG ), keeping other things constant, implies the same proportionate reduction in every test-score 

correlation in the jth row and column of R in Equation 5, but no change in any of the other test-score 

correlations, as jG  only appears in that row and column. Whether jG  is identified crucially 

depends upon whether a change in jG  is the only explanation for such a proportionate change in 

, ,jkr k  with no change in , ,mnr m n j .  Another possible explanation is the case where 2i  

represents an ability not correlated with any of the abilities measured by the other tests.  An increase 

in 2( )iV  would imply proportionate declines in 2k  and 2 , ,kr k  with mn  and , , 2,mnr m n   

unchanged.  However, in many circumstances analysts will find it reasonable to rule out this 

possibility, e.g., dismiss the possibility that the universe-score correlations for the first and second 

exams and the second and third exams could decline at the same time that the universe-score 

                                                 
9 An example might be a series of social-studies tests in which only one exam tests whether students know the names of 
state capitals, with this knowledge not correlated with any of the knowledge/abilities measured by the other tests. 
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correlation for the first and third exams remained unchanged. More generally, a variety of universe-

score correlation structures rule out the possibility of a proportionate change in every universe-score 

correlation in the jth row and column with no change in every other , ,mn m n j  .  In those cases, a 

proportionate change in the , ,jkr k  with no change in , , ,mnr m n j necessarily implies an equal 

proportionate change in jG .   

In Equation 5 note that 13 14 23 24 13 14 23 24( ) ( ) ( ) ( )r r r r     . In general, 

:gj hj gk hkr r r r  as :gj hj gk hk    . Also, often it is reasonable to maintain that the universe-

score correlation matrix follows some general structure, which implies functional relationships 

among the universe-score correlations. This, in turn, simplifies expressions such as 

13 14 23 24( ) ( )    . In this way, the relative magnitudes of the jkr  are key in identifying the jk . 

One example is the case of k jt t
jk  
  which implies that  1 m kt t

jk jmr r


 . More generally, 

the pattern of decline in ,j j mr   as m increases in the jth row (column) relative to the pattern of 

decline for ,k k mr   in other rows (columns) is key in identifying jk .   

Identification is not possible in the case of a compound symmetric universe-score 

correlation structure (i.e., correlations are equal for all test pairs). Substituting , ,jk j k    in 

Equation 5 makes clear that a proportionate increase (decrease) in   accompanied by an equal 

proportionate reduction (increase) in all the jG  leaves all the test-score correlations unchanged. 

Thus, our approach can identify the jG only if it is not the case that ,jk   ,j k . Fortunately, it 

is quite reasonable to rule out this possibility in cases where tests in a subject or related subjects are 

taken over time, as the correlations typically will differ reflecting the timing of tests. 

Note that the extent of test measurement error can be estimated whether or not tests are 

vertically scaled. Given the prevalence of questions regarding whether test scales in practice are the 
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same across grades and years,10 it is fortunate that our approach can employ test-score correlations 

as in Equation 5.  Each test must reflect an interval scale, but the scales can differ across tests. Even 

though the lack of vertical scaling has a number of undesirable consequences regarding what can be 

inferred from test scores, no problem arises with respect to the estimation of the extent of test 

measurement error for the individual tests, measured by jG . In analyses where tests are known, or 

presumed, to be vertically scaled, as in the estimation of growth models, the extent of test 

measurement error can be estimated employing either test-score covariances or the corresponding 

correlations.  However, in estimating the extent of measurement error and universe-score variances, 

nothing is lost by employing the correlations and there is the advantage that the estimator does not 

depend upon whether the tests are, in fact, vertically scaled. 

In summary, smaller test-score correlations can reflect either larger measurement error or 

smaller universe-score correlations, or a combination of both.  Fortunately, it is possible to 

distinguish between these explanations in a variety of settings, including situations in which tests 

are neither parallel nor vertically scaled.  In fact, the tests can measure different abilities, provided 

that, first, there is no ability measured by a test that is uncorrelated with all the abilities measured by 

the other tests, and, second, one can credibly maintain at least minimal structure characterizing the 

universe-score correlations for the tests being analyzed.  

 Our approach falls within the general framework for the analysis of covariance structures 

discussed by Joreskog (1978), the kernel of which can be found in Joreskog (1971).  Our method 

also draws upon that employed by Abowd and Card (1989) to study the covariance structure of 

individual and household earnings, hours worked and other time-series variables.  

2.0 Estimation Strategy 

To decompose the variance of test scores into the parts attributable to real differences in 

                                                 
10 See Ballou (2009) for an informative analysis. 
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achievement and measurement error requires estimates of test-score variances and covariances or 

correlations along with assumptions regarding the structure characterizing universe-score 

covariances or correlations.  One approach is to directly specify the jk  (e.g., assume k jt t

jk   ). 

We label this the reduced-form approach as such a specification directly assumes some reduced-

form stochastic relationship between the universe scores. An alternative is to assume an underlying 

structure of achievement growth, including random and nonrandom components, and infer the 

corresponding reduced-form pattern of universe-score correlations.   

Employing such a structural specification, we assume that academic achievement, measured 

by universe scores, is cumulative:  

     , 1 , 1i j j ij i j       .    (7) 

This first-order autoregressive structure models attainment in grade j+1 as depending upon the level 

of knowledge and skills in the prior grade,11 possibly subject to decay (if 1j  ) that can vary 

across grades. A key assumption is that decay is not complete, i.e., 0j  .  , ,j j    is a special 

case, as is 1j  . , 1i j   is the gain in student achievement in grade  j+1, gross of any decay. In a 

fully specified structural model one must also specify the statistical structure of the , 1i j  .12 For 

example, , 1i j   could be a function of a student-level random effect, i , and white noise, , 1i j  : 

, 1 , 1i j i i j     . Alternatively, , 1i j   could be a first-order autoregressive process or a moving 

average. Each such specification along with Equation 7 implies reduced-form structures for the 

covariance and correlation matrices in Equations 4 and 5.13 As demonstrated below, one can also 

employ a hybrid approach which continues to maintain Equation 7 but, rather than fully specifying 

the underlying stochastic structure of test-to-test achievement gains, assumes that the underlying 

                                                 
11 Todd and Wolpin (2003) discuss the conditions under which this will be the case. 
12 When ij  and , 1i j   are homoskedastic, as assumed above, the same must be true for ij  per Equation 7. 
13 Examples of such derivations are available upon request. 
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structure is such that  , 1 |i j ijE    is a linear function of ij . 

The relative attractiveness of these approaches will vary depending upon the particular 

application.  For example, when analysts employ test-score data to estimate models of achievement 

growth and also are interested in estimating the extent of test measurement error, it would be logical 

in the latter analysis to maintain the covariance or correlation structures implied by the model(s) of 

achievement growth maintained in the former analysis. At the same time there are advantages of 

employing the hybrid, linear model developed below.  For example, the framework has an intuitive, 

relatively flexible, and easy-to-estimate universe-score correlation structure so that the approach can 

be applied whether or not the tests are vertically scaled. The hybrid model also lends itself to a 

relatively straightforward analysis of measurement-error heteroskedasticity and also allows the key 

linearity assumption to be tested. Of primary importance is whether there is a convincing conceptual 

justification for the specification employed in a particular application.  Analysts may have greater 

confidence in assessing the credibility of a structural or hybrid model of achievement growth than 

assessing the credibility of a reduced-form covariance structure considered in isolation. 

2.1 A Linear Model 

 In general, the test-to-test gain in achievement can be written as the sum of its mean 

conditional on the prior level of ability and a random error having zero mean; , 1i j    

 , 1 , 1|i j ij i jE u    where  , 1 , 1 , 1 |i j i j i j iju E       and , 1 0i j ijE u   . The assumption that such 

conditional mean functions are linear in parameters is at the core of regression analysis. We go a 

step further and assume that  , 1 |i j ijE    is a linear function of ij ;  , 1 |i j ij j j ijE a b      where 

ja  and jb are parameters. Here we do not explore the full set of stochastic structures characterizing 

test-to-test learning, , 1i j  , for which a linear specification is a reasonably good approximation.  

However, it is relevant to note that the linear specification is a first-order Taylor approximation for 
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any  , 1 |i j ijE    and that ij  and , 1i j   having a bivariate normal distribution is sufficient, but not 

necessary, to assure linearity in ij .  Also, as discussed below, the assumption of linearity can be 

tested. 

Equation 7 and , 1 , 1i j j j ij i ja b u      imply that , 1i j     , 1j j ij i ja c u    where 

j j jc b  ; the universe score in grade j+1 is a linear function of the universe score in the prior 

grade.  The two components of coefficient jc  reflect i) part of the student’s proficiency in grade j+1 

having already been attained in grade j, attenuated per Equation 7, and ii) the expected growth 

during year j+1 being linearly dependent on the prior-year achievement, ij . 

 The linear model , 1 , 1i j j j ij i ja c u      implies that , 1 1, 1j j j jj j jc      (e.g., 

12 1 11 22/c   ). In addition, , 2 , 1 1, 2j j j j j j       (e.g., 13 2 1 11 33/c c     

1 11 22 2 22 33 12 23/ /c c       ),  , 3 , 1 1, 2 2, 3j j j j j j j j         ,  etc.. This structure along with 

Equation 5 implies the following moment conditions:  

1 2 12 1 3 12 23 1 4 12 23 3412 13 14

23 24 2 3 23 2 4 23 34

34 3 4 34

G G G G G Gr r r

r r G G G G

r G G

     

  



  
  
      
  
    


 
 
 

.   (8)    

Because 1G  and 12  only appear as a multiplicative pair, the parameters are not identified, but 

*
12 1 12G   is identified. The same is true for *

1, 1,J J J J JG   where J is the last grade for 

which test scores are available. After substituting the expressions for *
12  and *

1,J J  , the 

 1 / 2mN J J   moments in Equation 8 are functions of the 2J 3N    parameters in    

* *
2 3 1 12 23 2, 1 1,J J J J JG G G        

   , which can be identified provided that 4J  . With one 

or more additional parameter restrictions, 3J   is sufficient for identification.  For example, when 
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jG G , estimates of the test-score correlations for J = 3 tests imply the following estimators:  

12 13 23 23 13 12 12 23 13
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ .r r r r G r r r     (9) 

 In general, estimated test-score correlations together with assumptions regarding the 

structure of student achievement growth are sufficient to estimate the universe-score correlations 

and the relative extent of measurement error measured by the generalizability coefficients.  In turn, 

estimates of jG  and the test-score variance, jj , imply the variance of test measurement error 

estimator 2 ˆˆˆ (1 )
j jj jG 


   as well as the universe-score variance estimator ˆˆ ˆ

jj jj jG   measuring 

the dispersion in student achievement in grade j.    

The equations in (9) illustrate the general intuition regarding identification discussed in 

Section 1.0.  Consider the implications of 12r̂ , 23r̂ , and 13r̂  being smaller.  First, this need not imply 

an increase in the extent of test measurement error.  The last equation in (9) implies that 

12 12 23 23 13 13
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆdG G dr r dr r dr r   .  Thus, Ĝ  would remain constant if the proportionate change 

in 13r̂  equals the sum of the proportionate changes in 12r̂  and 23r̂ . In such cases, the magnitude of 

the proportionate reduction in 13r̂  equals or exceeds the proportionate reduction in 12r̂  ( 23r̂ ). With 

strict inequalities, 12̂  and 23̂  will decline, as shown in the first two formulae in (9).  If the 

proportionate reduction in 13r̂  equals the proportionate reductions in both 12r̂  and 23r̂ , 12̂  and 23̂  

would remain constant, but Ĝ  would have the same proportionate reduction. In other cases, 

changes in 12r̂ , 23r̂ , and 13r̂  will imply changes in Ĝ as well as a change in either 12̂  or 23̂ , or 

changes in both. 

 Whether the parameters are exactly identified as in Equation 9 or over-identified, the 

parameters can be estimated using a minimum-distance estimator. For example, suppose the 

elements of the column vector ( )r   are the moment conditions on the right-hand-side of Equation 8 
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after having substituted the expressions for *
12  and *

1,J J  . With r̂  representing the corresponding 

vector of mN  test-score correlations for a sample of students, the minimum-distance estimator is 

ˆ ˆ[ ( )]' [ ( )]argmin r r r r      where   is any positive semi-definite matrix.    is locally 

identified if 0

P

BB  and 0rank[ ( ) ]B r N     , MN N  being a necessary condition. 

Equalities imply the parameters are exactly identified with the estimators implicitly defined in 

ˆ ˆ( )r r  and unaffected by the choice of  . Equation 9 is one such example. We employ the 

identity matrix so that ˆ ˆˆ [ ( )]' [ ( )]argminMD r r r r     .14 The estimated generalizability 

coefficients, in turn, can be used to infer estimates of the universe-score variances, ˆˆ ˆ
jj j jjG  , and 

measurement-error variances 2 ˆ ˆ ˆˆ ˆˆ (1 ) (1 )
j

jj j j j jjG G G     


.  Rather than estimating jj   and 

2

j 
 in such a second step, the moment conditions jj jj jG   and 2(1 )

jjj jG  


   can be 

included in ( )r  and r , yielding parameter estimates and standard errors of jj  and 2

j 
, in 

addition to the other parameters in ( )r  .  

The variance of the minimum-distance estimator is   1 1ˆ ˆ[ ' ] ' ( ) [ ' ]MDV Q Q Q V r Q Q Q    

where Q  is the matrix of derivatives ( )Q r     . ˆ( )V r  enters the formula because sample 

moments, r̂ , are employed as estimates of the corresponding population moments, or , where the  

limit distribution of r̂  is  0ˆ ˆ[0, ( )]d
SN r r N V r . The precision of the estimator ˆMD  is affected 

by random sampling error which also can be assessed using bootstrapping; computing ˆMD  for each 

of a large number of bootstrapped samples will provide information regarding the distribution of the 

                                                 
14 See Cameron and Trivedi (2005) for a more detailed discussion of minimum-distance estimators. The equally-

weighted minimum-distant estimator, ˆMD ,  is consistent but less efficient than the estimator corresponding to the 

optimally chosen  . However, ˆMD  does not have the finite-sample bias problem that arises from the inclusion of 

second moments. See Altonji and Segal (1996).   
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ˆMD , including an estimate of  ˆMDV  . 

2.2 Additional Points 

 Estimation of the overall extent of measurement error for a population of test-takers only 

requires descriptive statistics and correlations of test scores, an attractive feature of our approach. 

Additional inferences are possible when student-level data are available, an important example 

being the analysis of the extent and pattern of heteroskedasticity.  The linear model , 1i j    

, 1j j ij i ja c u    and the formula ik ik ikS     imply that , 1 , 1i j j ij i jc u      , 1i j j j ijS a c S   .  

The variances of the expressions before and after the equality being equal implies Equation 10.   

, 1

2 2 2

iji j
jc  


    1

2
, 1 ji j j ij uV S c S 

      (10) 

Here , 1j j j jjc    and 
1

2 2
1, 1 , 1ju j j j j jj   

     .15   By specifying a functional relationship 

between 
, 1

2

i j 
and 2

ij , Equation 10 can be used to explore the nature and extent of measurement-

error heteroskedasticity. 
, 1

2 2

iji j  

  is an example, but is of limited use in that it does not allow 

for either i) variation in common factors affecting 2

ij  for all students (e.g., a decrease in 

2 2
j ij

E  

  resulting from an increase in the number of test items) or ii) variation between 2

ij  and 

, 1

2

i j 
 for individual students, holding 2

j 
 and 

1

2

j  
 constant.  To allow for differences in the 

population mean measurement-error variance across tests one could employ the specification 

1, 1

2 2

ji j  
 

  2 2

jij  


 or, equivalently, 
, 1

2 2

iji j
jK  


  where 

1

2 2

j j
jK   

  
 . Here the 

proportionate difference between 
, 1

2

i j 
 and 

, 1

2

j  
for the ith test-taker is the same as that between 

                                                 
15 The equations , 1 , 1i j j j ij i ja c u      and , 1 0i j ijE u    imply that , 1 , 1cov( , )j j ij i j j jjc       and, in turn, 

, 1j j j jjc   .  With , 1 , 1i j i j j j iju a c     , it follows that 
1

2 2 2
1, 1 , 1 1, 1 , 12

ju j j j jj j j j j j j j jjc c      
           . 
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2

ij  and 2

j 
.  To meaningfully relax this assumption we assume that 

, 1

2

i j 
  2

ij
j ijK    where 

the random variable ij  has zero mean. This formulation along with Equation 10 implies Equation 

11. Thus, the mean measurement-error variance for a group students represented by C  can be 

estimated using Equation 12. One can also employ the noisy student-level estimate in Equation 13 

as the dependent variable in a regression analysis estimating the extent to which 2

ij varies with the 

level of student achievement or other variables, as employed below.  

   1

2 2 2
, 1 jij

i j j ij u ij j jV S c S K c  


          (11) 

     1

22 2 2
, 1

ˆˆ ˆ ˆ ˆ1
jC j

C i j j ij u j ji C
N S c S K c 


         (12) 

   1

22 2 2
, 1

ˆˆ ˆ ˆ ˆ
jij

i j j ij u j jS c S K c 


      
   (13) 

 The parameters entering the universe-score covariance or correlation structure can be 

estimated without specifying the distributions of ij  and ij , but additional inferences are possible 

with such specifications. When needed, we assume that ij  and ij  are normally distributed. If ij  is 

either homoskedastic or heteroskedastic with 2
ij  not varying with the level of ability, ij  and ijS  

are bivariate normal, which implies that the conditional distribution of ij  given ijS is normal with 

moments  ij ijE S   (1 )ij j ij ijG G S   and   (1 )ij ij ij jjV S G    where   j ij ijE ES .  In the 

homoskedastic case, ij jG G . With heteroskedasticity and 2
ij  not varying with ability, ijG   

 2
ijjj jj    . The Bayesian posterior mean of ij  given ijS ,  ij ijE S , is the best linear 
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unbiased predictor (BLUP) of the student's actual ability. 16  ij ijV S  and easily computed 

Bayesian credible bounds (confidence intervals) can be employed to measure the precision of the 

best-linear-unbiased estimator for each student.   

 Computing posterior means and variances as well as credible bounds are somewhat more 

complicated when the extent of test measurement error systematically varies across ability levels, as 

in our application (i.e., ( )
ij j ij    ) .  The normal density of ij  is  j

ij ijg     

 ( ) ( )      
j jij ij ij  where ( )  is the standard-normal density. The joint density of ij  and ij , 

shown in Equation 14, is not bivariate normal, due to 
ij  being a function of ij . 

   , ( )j j j
ij ij ij ij ijh g f         1

( ) ( )
( )




       
  

 
j

j

ij ij ij j jj

ij jj

  (14) 

  j
ijk S   ,  




 j

ij ij ij ijh S d    ( )j j
ij ij ij ij ijg S f d   




    (15) 

   * *

1

Mj j
ij ij mj mjm

k S g S M 


    (16) 

 ij ijE S   
   * * *

1

1 M j
mj ij mj mjj m

ij

g S
k S M

  


   (17) 

 ij ijP a S    
   

*

* *1

mj

j
ij mj mjj

aij

g S
k S M 

 


   (18) 

The conditional density of ij  given ijS  is    ,j j
ij ij ij ijh S k S   where  j

ijk S is the density of 

ijS . As shown in Equation 15, ijS  is a mixture of normal random variables. Given ( )
ij j ij    , 

                                                 
16 Even though  ˆ

ij ijE S  is the best linear unbiased predictor for the ability of any individual test-taker, the 

distribution of the  ˆ
ij ijE S  is not the BLUP for the distribution of abilities.  Neither is the rankings of the  ij ijE S  

the BLUP for ability rankings.  See Shen and Louis (1998) .  However, the latter two BLUPs can be computed 

employing the distribution of observed scores and the parameter estimates used to compute  ˆ
ij ijE S . 
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the integral can be calculated using Monte Carlo integration with importance sampling as shown in 

Equation 16 where * , 1, 2, , ,mj m M    is a sufficiently large set of random draws from the 

distribution ( )j
ijf  . Similarly, the posterior mean ability level given any particular score can be 

computed using Equation 17. Also, the formula for the cumulative posterior distribution of ij  in 

Equation 18 can be used to compute Bayesian credible bounds. For example, the 80 percent credible 

interval is (L, U) such that  ij ijP L U S  =0.80. Here we choose the lower- and upper-bounds 

such that   0.10ij ijP L S    and   0.90ij ijP U S   . 

The linear model is a useful tool for estimating the overall extent of test measurement error. 

Estimation is straightforward and the key requirement that  , 1i j ijE    is a linear function of ij  

will be reasonable in a variety of circumstances. However, this will not always be the case. Exams 

assessing minimum-competency are one possible example. Thus, in assessing the applicability of 

the linear model in each possible use, one must assess whether the assumptions underlying the 

linear model are likely to hold.  Fortunately, whether , 1i j   is a linear function of ij  can be tested, 

as demonstrated below in Section 3.1.  

Finally, it is important to understand that the linear model is only one of the specifications 

that fall within our general approach. One can carry out empirical analyses employing fully-

specified statistical structures for the ij . Furthermore, rather than inferring the correlation structure 

based on a set of underlying assumptions, one can start with an assumed covariance or correlation 

structure. A range of specifications for the structure of correlations are possible, including 

k jt t
jk  
  and variations on the specification shown in Equation 8.  Again, the reasonableness of 

any particular structure will be context specific.  
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3.0 An Empirical Application 

 We estimate the parameters in the linear model employing test-score moments (e.g., 

correlations) for the third- through eighth-grade New York State math and ELA tests taken by the 

cohort of New York City students who were in the third grade during the 2004-2005 school year. 

Students who made normal grade progression were in the eighth grade in 2009-2010. The exams, 

developed by CTB-McGraw Hill, are aligned to the New York State learning standards and are 

given to all registered students, with limited accommodations and exclusions. Here we analyze IRT 

scale-scores, but our approach can be used to analyze raw-scores as well.  

 Table 1 reports descriptive statistics for the sample of students. Correlations for ELA and 

Math are shown below the diagonals in Tables 2 and 3. Employing these statistics as estimates of 

population moments results in sampling error, as discussed at the end of Section 2.1. In the case of 

sampling completely at random, the sample correlations will equal those for the population except 

for differences due to sampling error. However, the extent of such error will be relatively small in 

cases where most students in the population of interest are tested (e.g., state-wide assessments), 

with missing scores primarily reflecting absences on test days due to random factors such as illness. 

Individuals in the population of interest also may not be tested due to non-random factors, e.g., a 

student subpopulation being exempt from testing. More subtle problems also can arise. For 

example, across grades and subjects in our sample of NYC students, roughly seven percent of the 

students having scores in one grade have missing scores for the next grade. There would not be a 

problem if the scores were missing completely at random. (See Rubin (1987) and Schafer (1997).) 

However, this is not the case as students who have missing scores typically score relatively low in 

the grades for which scores are present.  The exception is that there are missing scores for some 

very high-scoring students who skip the next grade. Dropping observations with any missing scores 

would yield a sample not representative of the overall student population. Pair-wise computation of 
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correlations would reduce, but not eliminate, the problem.  Imputation of missing data, which we 

employed prior to computing the descriptive statistics reported in Tables 1, 2 and 3, is a better 

solution for dealing with such systematic patterns of missing data.17   

3.1 Testing Model Assumptions 

The simple correlation structure in Equation 8 follows from assuming that  , 1 |i j ijE    is 

linear in ij . Whether linearity is a reasonably good approximation can be assessed using test-score 

data. The lines in Figures 1(a) and 1(b) are nonparametric estimates of  8 7|i iE S S  for ELA and 

math, respectively, showing how eighth-grade scores are related to scores in the prior grade. The 

bubbles with white fill show the actual combinations of observed 7th and 8th grade scores, with the 

area of each bubble reflecting the relative number of students with that score combination.  

 The dark bubbles toward the bottoms of Figures 1(a) and 1(b) show the IRT standard errors 

of measurement (SEMs) for the 7th grade tests (right vertical axis) reported in the test technical 

reports.18 Note that the extent of measurement error associated with the test instrument is 

meaningfully larger for both low and high abilities, reflecting the nonlinear mapping between raw 

and scale scores. Each point of the conditional standard errors of measurement plot corresponds to a 

particular scale score as well as the corresponding raw score; movements from one dot to the next 

(left to right) reflect a one-point increase in the raw score (e.g., one additional correct answer), with 

the scale-score change shown on the horizontal axis. For example, starting at an ELA scale score of 

709, a one point raw-score increase corresponds to a 20 point increase in the scale score to 729. In 

contrast, starting from a scale score of 641, a one point increase in the raw score corresponds to a 

two point increase in the scale score. This varying coarseness of the raw- to scale-score mappings – 

                                                 
17 We impute values of missing scores using SAS Proc MI. The Markov Chain Monte Carlo procedure is used to impute 
missing-score gaps (e.g., a missing fourth grade score for a student having scores for grades three and five). This 
yielded an imputed database with only monotone missing data (e.g., scores included for grades three through five and 
missing in all grades thereafter). The monotone missing data were then imputed using the parametric regression method.   
18 As an example, see CTB/McGraw-Hill (2009). 
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reflected in the varying spacing of points aligned in rows and columns in the bubble plot – explains 

why the reported scale-score SEMs are substantially higher for both low and high scores. Even if 

the variance were constant across the range of raw scores, the same would not be true for scale 

scores. 

 The fitted nonparametric curves in Figures 1(a) and (b), as well as very similar results for 

other grades, provide strong evidence that  , 1 |i j ijE S S  is not a linear function of ijS . Even so, this 

does not contradict our assumption that  , 1 |i j ijE    is a linear function of ij ; test measure error 

can explain  , 1 |i j ijE S S  being S-shaped even when  , 1 |i j ijE    is linear in ij . It is not 

measurement error per se that implies  , 1 |i j ijE S S will be an S-shaped function of ijS ; 

 , 1 |i j ijE S S  will be linear in ijS  if the measurement-error variance is constant (i.e., 

2 2 ,
ij j

i  


  ). However,  , 1 |i j ijE S S  will be an S-shaped function of ijS  when ij  is 

heteroskedastic with ( )
ij j ij     having a U-shape (e.g., the SEM patterns shown in Figure 1). 

The explanation and an example are included in the Appendix, along with a discussion of how 

information regarding the pattern of test measurement error can be used to obtain consistent 

estimates of the parameters in a polynomial specification of  , 1 |i j ijE   . We utilize this approach 

to eliminate the inconsistency of the parameter estimates resulting from the measurement-error 

reflected in the SEMs reported in the technical reports. Even though this does not eliminate any 

inconsistency of parameter estimates resulting from other sources of measurement error, we are able 

to adjust for the meaningful heteroskedasticity reflected in the reported SEMs.19  

                                                 
19 As discussed below, how the reported SEMs vary with the level of ability is similar to our estimates of how the 
standard deviations of the measurement-error from all sources vary with ability.  If true, by accounting for the 
heteroskedasticity in the measurement error associated with the test instrument, we are able to roughly account for the 

effect of heteroskedasticity, increasing our confidence in the estimated curvature of  , 1 |i j ijE    for each grade and 
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 Results from using this approach to analyze the NYC test-score data are shown in Figure 2 

for ELA and math, respectively. The thicker, S-shaped curves correspond to the OLS estimate of 

8iS  regressed on 7iS  using a cubic specification. The third-order polynomial is the lowest-order 

specification that can capture the general features of the nonparametric estimates of  , 1 |i j ijE S S  in 

Figure 1. The dashed lines are cubic estimates of  , 1 |i j ijE    obtained using the approach 

described in the Appendix to avoid parameter-estimate inconsistency associated with that part of 

test measurement error reflected in the SEMs reported in the technical reports. For comparison, the 

straight lines are the estimates of  , 1 |i j ijE    employing this approach and a linear specification. It 

is striking how close the consistent cubic estimates of  , 1 |i j ijE    are to being linear.20 Similar 

patterns were found for the other grades. Overall, the assumption that  , 1 |i j ijE    is a linear 

function of ij  appears to be quite reasonable in our application.   

3.2 Estimated Model 

Parameter estimates and standard errors are reported in Table 4. The predicted correlations 

implied by the estimated models, shown above the diagonals in Tables 2 and 3, allow us to assess 

how well the estimated models fit the observed correlations shown below the diagonals. To evaluate 

goodness of fit, consider the absolute differences between the empirical and predicted correlations. 

The average, and average proportionate, absolute differences for ELA are 0.001 and 0.002, 

respectively. For math, the differences are 0.003 and 0.005. Thus, the estimated linear models fit the 

                                                                                                                                                                  
subject.  At the same time, not accounting for other sources of measurement error will result in the estimated cubic 

specification generally being flatter than  , 1 |i j ijE   . 

20 The cubic estimates of  , 1 |i j ijE    in the graphs might be even closer to linear if we had accounted for all 

measurement error.  This was not done to avoid possible circularity; one could question results where the estimates of 
the overall measurement-error variances are predicated maintaining linearity and the estimated variances are then used 

to assess whether  , 1 |i j ijE    is in fact linear. 
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New York data quite well.  

 The estimated generalizability coefficients in Table 4 for math are meaningfully larger than 

those for ELA, and the estimates for ELA are higher in some grades compared to others. These 

differences are of sufficient size that one could reasonably question whether they reflect estimation 

error or a fundamental shortcoming of our approach, or both, rather than underlying differences in 

the extent of test measurement error. Fortunately, we can compare the estimates to the reliability 

measures reported in the technical reports for the New York tests, to see whether the reliability 

coefficients differ in similar ways. The top two lines in Figure 3 show the reported reliability 

coefficients for math (solid line) and ELA (dashed line). The lower two lines show the 

generalizability coefficient estimates reported in Table 4. It is not surprising that the estimated 

generalizability coefficient are smaller than the corresponding reported reliability coefficients, as 

the latter statistics do not account for all sources of measurement error. However, consistencies in 

the patterns are striking. The differences between the reliability and generalizability coefficients 

vary little across grades and subjects, averaging 0.117. The generalizability coefficient estimates for 

math are higher than those for ELA, mirroring corresponding difference between the reliability 

coefficients reported in the technical reports. Also, in each subject the variation in the 

generalizability coefficient estimates across grades closely mirrors the corresponding across-grade 

variation in the reported reliability coefficients. This is especially noteworthy given the marked 

differences between math and ELA in the patterns across grades.  

 The primary motivation for this paper is the desire to estimate the overall extent of 

measurement error motivated by concern that the measurement error in total is much larger than that 

reported in test technical reports. The estimates of the overall extent of test measurement error on 

the NY math exams, on average, are over twice as large as that indicated by the reported reliability 

coefficients. For the NY ELA tests, the estimates of the overall extent of measurement error average 
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130 percent higher than that indicated by the reported reliability coefficients. The extent of 

measurement error from other sources appears to be at least as large as that associated with the 

construction of the test instrument. 

 Estimates of the variances of actual student achievement can be obtained employing 

estimates of the overall extent of test measurement error together with the test-score variances. 

Universe-score variance estimates for our application are reported in column 3 of Table 5. It is 

possible to infer estimates of the variances of universe-score gains shown in column 6. Because 

these values are much smaller than the variances of test-score gains, the implied generalizability 

coefficient estimates in column 7 are quite small. We estimate that only 20 percent of the variance 

in math gain scores is actually attributable to variation in achievement gains.  Gain scores in ELA 

are even less reliable. 

 Estimation of the overall extent of measurement error for a population of students only 

requires test-score variances and correlations. Additional inferences are possible employing student-

level test-score data. In particular, such data can be used to estimate 2 2 ( )
ij j

ij ij       

characterizing how the variance of measurement error varies with student ability. ( ij  is a random 

variable having zero mean.) Here we specify 2 ( )
j

ij   to be a third-order polynomial, compute 2ˆ
ij  

using Equation 13 and employ observed scores as estimates of ij . Regressing 2ˆ
ij  on ijS  would 

yield inconsistent parameter estimates since ijS  measures ij  with error. However, consistent 

parameter estimates can be obtained using a two-stage least-squares, instrumental-variables 

estimator where the instruments are the scores for each student not used to compute 2ˆ
ij .   In the 

first stage ijS  for grade j is regressed on , , 1,ikS k j j   along with squares and cubes, yielding 

fitted values ˆ
ijS .  In turn, 2ˆ

ij  is regressed on ˆ
ijS  to obtain consistent estimates of the parameters in 
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2 ( )
j

ij  .   

 The bold solid lines in Figure 4 show ˆ ( )
j

ij  . The dashed lines are the IRT SEMs reported 

in the test technical reports. Let a b
ij ij ij     where a

ij  is the measurement error associated with 

test construction, b
ij  is the measurement error from other sources and 2 2 2

a b
ij ij ij      , assuming 

that a
ij  and b

ij  are uncorrelated.  For a particular test, ˆ ˆ( ) ( )a
j j

ij ij      can be used to estimate 

of ( )b
j

ij  . The thin lines in Figure 4 show these “residual” estimates.  The range of ability levels 

for which ˆ ( )b
j

ij   is shown roughly corresponds to our estimates of the ranges containing 99 

percent of actual abilities.  In Figure 4(b), for example, it would be the case that 

7(608 715) 0.99iP     if our estimates of the ability distribution were correct. 

 There are a priori explanations for why ( )a
j

ij   would be a U-shaped function for IRT-

based scale-scores and an inverted-U-shaped function in the case of raw scores. A speculative, but 

somewhat believable, hypothesis is that the variance of the measurement error unrelated to the test 

instrument is relatively constant across ability levels.  However, this begs the question as to whether 

the relevant “ability” is measured in raw-score or scale-score units.  If the raw-score measurement-

error variance were constant, the nonlinear mapping from raw-scores to scale-scores would imply a 

U-shaped scale-score measurement-error variance – possibly explaining the U-shaped patterns of 

ˆ ( )b
j

ij   in Figure 4. Whatever the explanation, values of ˆ ( )a
j

ij   and ˆ ( )b
j

ij   are roughly 

comparable in magnitude and vary similarly over a wide range of abilities.  We have less 

confidence in the estimates of ˆ ( )b
j

ij   for extreme ability levels.  Because ˆ ( )b
j

ij   is the square 
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root of a residual, computed values of ˆ ˆ( ) ( )a
j j

ij ij      can be quite sensitive to estimation error 

when ˆ ˆ( ) ( )a
j j

ij ij      is close to zero.  Here it is relevant to note that for the case corresponding 

to Figure 4(a), our estimate is that only 1.8 percent of students have universe scale-scores exceeding 

705.  In Figure 4(d), the universe-scores of slightly less than five percent of students exceed 720. 

3.3 Inferences Regarding Universe Scores and Universe Score Gains 

 Observed scores typically are used to directly estimate student achievement and 

achievement gains. More precise estimates of universe scores and universe-score gains for 

individual students can be obtained employing observed scores along with the parameter estimates 

in Table 4 and the estimated measurement-error heteroskedasticity reflected in ˆ ( )
j

ij  . As an 

example, the solid S-shaped lines in Figure 5 show the values of  ˆ
ij ijE S  for 5th and 7th grade 

ELA and math.  Referencing the 45o line, the estimated posterior-mean ability levels for higher-

scoring students are substantially below the observed scores while predicted ability levels for low-

scoring students are above the observed scores. This Bayes "shrinkage" is largest for the highest and 

lowest scores due to the estimated pattern of measurement-error heteroskedasticity. The dashed 

lines show 80-percent Bayesian credible bounds for ability conditional on the observed score. For 

example, the BLUP of the universe-score for fifth-grade students scoring 775 in ELA is 737, 38 

points below the observed score. We estimate that 80 percent of students scoring 775 have universe 

scores in the range 719 to 757;  718.8 757.2 775 0.80ij ijP S    . In this case, the observed 

score is 18 points higher than the upper bound of the 80-percent credible interval. Midrange scores 

are more informative, reflecting the smaller standard deviation of test measurement error. For an 

observed score of 650, the estimated posterior mean and 80-percent Bayesian credible bounds are 

652 and (638, 668), respectively. The credible bounds range for a 775 score is 30 percent larger 
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than that for a score of 650. 

 Utilizing test scores to directly estimate students' abilities clearly is problematic for high- 

and, to a lesser extent, low-scoring students. To explore this relationship further, consider the root 

of the expected mean squared errors (RMSE) associated with estimating student ability using i) 

observed scores and ii) estimated posterior mean abilities conditional on observed scores.21 For the 

New York City fifth-grade math exam, the RMSE associated with using  ˆ
ij ijE S  to estimate 

students' abilities is 14.9 scale-score points. In contrast, the RMSE associated with using ijS  is 17.2, 

15 percent larger. This difference is meaningful given that  ˆ
ij ijE S  differs little from ijS  over the 

range of scores for which there are relatively more students. Over the range of actual abilities 

between 620 and 710, the RMSE for  ˆ
ij ijE S  and ijS  are 14.9 and 15.1, respectively. However, 

for ability levels below 620 the RMSEs are 13.4 and 20.9, respectively, the latter being 57 percent 

larger. For students whose actual abilities are greater than 710, the RMSE associated with using ijS  

to estimate 
ij  is 26.6, which is 62 percent larger than the RMSE for  ˆ

ij ijE S . By accounting for 

test measurement error from all sources, it is possible to compute estimates of student achievement 

that have statistical properties superior to those corresponding to the observed scores of students. 

 Turning to the measurement of ability gains, the solid S-shaped curve in Figure 6 shows the 

posterior-mean universe-score change in math between grades five and six conditional on the 

observed score change.22  Again, the dashed lines show 80-percent credible bounds. For example, 

                                                 
21 The expected values are computed using Monte Carlo simulation described in Section 2.2 and assuming the 
parameter estimates are correct. 
22 The joint density of , 1 , 1, , , and ij i j ij i j      is      1

, 1 , 1 , 1 , 1 , 1, , , ( , )j j j
ij i j ij i j ij ij i j i j ij i jh g g f         

     .  With 

1j j     and  1 1j j j jD S S          , the joint density of , , , and ij ij D     is  , , ,j
ij ij ij ijh D        .  

Integrating over  and ij ij   yields the joint density of and D ; 

     1 2 1
, 1, ( ) ( )j j

ij i j ij ij ij ij ij ij ijz D g D f g f d d           
  

 
      where 1( )ijf   is the marginal density of  
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among students observed to have a 40-point score increase between the fifth and sixth grades, their 

actual universe-score changes are estimated to average 12.7. Eighty percent of all students having a 

40-point score increase are estimated to have actual universe score changes falling in the interval  

-2.3 to 27.0. It is noteworthy that for the full range of score changes shown ( 50  points), the 80-

percent credible bounds include no change in actual ability. 

 Many combinations of scores yield a given score change. Figure 6 corresponds to the case 

where one knows the score change but not the pre- and post-scores. However, for a given score 

change, the mean universe-score change and credible bounds will vary across known score levels 

because of the pattern of measurement-error heteroskedasticity. For example, Figure 7 shows the 

posterior-mean universe-score change and credible bounds for various scores consistent with a 40-

point increase. For example, students scoring 710 on the grade-five exam and 750 on the grade-six 

exam are estimated to have a 10.3 point universe-score increase on average, with 80 percent of such 

students having actual changes in ability in the interval (-11.4, 31.7). For students scoring at the 

fifth-grade proficiency cut-score (648), the average universe-score gain is 19.6 with 80 percent of 

such students having actual changes in the interval (-1.15, 37.4). (Note that a 40 point score increase 

is relatively large in that the standard deviation of the score change between the fifth- and sixth-

grades is 26.0.) The credible bounds for a 40-point score increase include no change in ability for all 

fifth-grade scores other than those between 615 and 645. 

                                                                                                                                                                  

ij  and 2
, 1( )i j ijf    is the conditional density of , 1i j   given ij .  This integral can be computed using 

     1 * * 2 * *

1
, 1 ( )

J j
ij ij ij ijj

z D J g D f       


      where * *( , ), 1, 2, , ,ij ij j J     is a sufficiently large number 

of draws from the joint distribution of ( , )ij ij  .  In turn, the density of the posterior distribution of   given D  is 

     , /v D z D l D   where      1 * * * *
, 1 , 11

1
J j

i j ij ij i jj
l D J g D    

 
     is the density of  D . The cumulative 

posterior distribution is      * *
, 1

1 * * * *
, 1 , 11 ( )

i j ij

j
i j ij ij i ja

P a S J l D g D
 

    



  

     .  Finally, the posterior mean 

ability given D  is        * * 1 * * * *
, 1 , 1 , 11

1 ( )
J j

i j ij i j ij ij i jj
E D J l D g D      

  
     . 
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 A striking feature of Figure 7 is that the posterior mean universe-score change, 

 6 5 5 6
ˆ ,E S S       6 5 6 5 5 6

ˆ ˆ, ,E S S E S S  , is substantially smaller than the observed-score 

change. Consider  6 5 5 6
ˆ 710, 750 10.3E S S     , which is substantially smaller than the 40-

point score increase. First, 6 6
ˆ ( 750) 734.0E S    is 16 points below the observed score due to the 

Bayes shrinkage toward the mean.  6 5 6
ˆ 710, 750  E S S  729.5  is even smaller. Because 6S  is 

a noisy estimate of 6  and 5  is correlated with 6 , the value of 5S  provides information regarding 

the distribution of 6  that goes beyond the information gained by observing 6S . (  6 5 6,E S S  

would equal 6 6( )E S  if either the sixth-grade exam were not subject to measurement error or the 

fifth- and six-grade universe scores were not correlated.) 5 5
ˆ ( 710) 705.3E S    is less than 710 

because the latter is substantially above 5iE . However, 5 5 6
ˆ ( , ) 719.2E S S  is meaningfully larger 

than 5 5
ˆ ( ) 707.5E S   and larger than 5 710S  , because 6 750S   is substantially larger than 5S . 

In summary, among New York City students scoring 710 on the fifth-grade math exam and 40 

points higher on the sixth grade exam, we estimate the mean gain in ability is little more than one-

fourth as large as the actual score change;    6 5 6 5 5 6
ˆ ˆ, ,E S S E S S    729.5 719.2 10.3  . The 

importance of accounting for the estimated correlation between ability levels in grades five and six 

is reflected in the fact that the mean ability increase would be two and one-half times as large were 

the ability levels uncorrelated;    6 6 5 5
ˆ ˆE S E S   734.0 705.3 28.7  . 

4.0 Conclusion 

We show that there is a credible approach for estimating the overall extent of test 

measurement error using nothing more than test-score variances and non-zero correlations for three 

or more tests. Our approach is a meaningful generalization of the test-retest method and can be used 
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in a variety of settings. First, substantially relaxing the requirement that the tests be parallel, our 

approach does not require tests to be vertically scaled. The tests even can measure different abilities 

provided that there is no ability measured by a test that is uncorrelated with all the abilities 

measured by the other tests. Second, as in the case of congeneric tests analyzed by Joreskog (1971), 

the method allows the extent of measurement error to differ across tests.  Third, the approach only 

requires some persistence (i.e., correlation) in ability across the test administrations, a requirement 

far less restrictive than requiring that ability remains constant.  However, as with the test-retest 

framework, the applicability of our approach crucially depends upon whether a sound case can be 

made that the tests to be analyzed meet the necessary requirements.   

As the analysis of Rogosa and Willet (1985) makes clear, commonly observed covariance 

patterns can be consistent with quite different models of achievement growth; the underlying 

correlation structures implied by different growth models can yield universe-score correlation 

patterns and values that are indistinguishable. Rather than identifying the actual underlying 

covariance structure, our goal is to estimate the extent of measurement error as well as values of the 

universe-score variances and correlations.  We conjecture that the inability to distinguish between 

quite different underlying universe-score correlation structures actually is advantageous given our 

goal in that the estimated extent of test measurement error will be robust to a range of underlying 

covariance structure misspecifications.  This conjecture is consistent with our finding that estimates 

of measurement-error variances are quite robust across a range of structural specifications. Monte 

Carlo simulations using a wide range of underlying covariance structures could provide more 

convincing evidence, but goes beyond the scope of this paper. 

 We illustrate the general approach employing a model of student achievement growth in 

which academic achievement is cumulative following a first-order autoregressive process: 

1 , 1ij j i j ij       where there is at least some persistence (i.e., 1 0j   ) and the possibility of 
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decay (i.e., 1 1j   ) that can differ across grades. An additional assumption is needed regarding the 

stochastic properties of ij . Here we have employed a reduced-form specification where 

 , 1 |i j ijE    is a linear function of ij , an assumption that can be tested. Fully specified structural 

models also could be employed. In addition, rather than inferring the correlation structure based on 

a set of underlying assumptions, one can directly assume a correlation structure where there are a 

range of possibilities depending upon the tests being analyzed.  

Estimation of the overall extent of measurement error for a population of students only 

requires test-score descriptive statistics and correlations; neither student-level test scores nor 

assumptions regarding functional forms for the distribution of either abilities or test measurement 

error are needed.  However, one can explore the extent and pattern of measurement error 

heteroskedasticity employing student-level data. Standard distributional assumptions (e.g., 

normality) allow one to make inferences regarding universe scores and gains in universe scores. In 

particular, for a student with a given score, the Bayesian posterior mean and variance of ij  given 

ijS ,  ij ijE S  and  ij ijV S , are easily computed where the former is the best linear unbiased 

predictor of the student's actual ability. Similar statistics for universe-score gains also can be 

computed. We show that using the observed score as an estimate of a student's underlying ability 

can be quite misleading for relatively low- or high-scoring students. However, the bias is eliminated 

and the mean-square-error substantially reduced when the posterior mean is employed. 

In any particular analysis, estimation will be based on empirical variances and correlations 

for a sample of test-takers, yet the analysis typically will be motivated by an interest in the extent of 

measurement error or the variance of abilities, or both, for some population of individuals.  Thus, an 

important consideration is whether the sample of test-takers employed is representative of the 

population of interest. In addition to the possibility of meaningful sampling error, subpopulations of 
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interest may be systematically excluded in sampling, or data may not be missing at random. Such 

possibilities need to be considered when assessing whether parameter estimates are relevant for the 

population of interest.  Issues of external validity can also arise. Just as the variance of universe 

scores can vary across populations, the same often will be true for the extent of test measurement 

error, possibly reflecting differences in test-taking environments.  The population measurement 

error variance, 2

j 
, typically will vary across populations as well, even if the relationship between 

individuals’ measurement-error variances and their abilities, 2 ( )
j

ij  ,  is unchanged, due to ability 

differences between populations. 

Estimates of the overall extent of test measurement error have a variety of uses that go 

beyond merely assessing the reliability of various assessments. Using  ij ijE S , rather than ijS , to 

estimate ij  is one example.  Judging the magnitudes of the effects of different causal factors 

relative to either the standard deviation of ability or the standard deviation of ability gains is 

another. Bloom et al. (2008) discuss the desirability of assessing the magnitudes of effects relative 

to the dispersion of ability or ability gains, rather than test scores or test-score gains, but note that 

analysts often have had little, if any, information regarding the extent of test measurement error.  

As demonstrated above, the same types of data researchers often employ to estimate how 

various factors affect educational outcomes can be used to estimate the overall extent of test 

measurement error. Based on the variance estimates shown in columns 1 and 3 of Table 5, for the 

tests we analyze, effect-sizes measured relative to the standard deviation of ability will be ten to 18 

percent larger than effect-sizes measured relative to the standard deviation of test scores. In cases 

where it is pertinent to judge the magnitudes of effects in terms of achievement gains, effect sizes 

measured relative to the standard deviation of ability gains will be two to over three times larger 

compared to those measured relative to the standard deviation of test-score gains. 
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 Estimates of the extent and pattern of test measurement error can also be used to assess the 

precision of a variety of measures based on test scores, including binary indicators of student 

proficiency, teacher- and school-effect estimates and accountability measures such as No Child Left 

Behind adequate-yearly-progress requirements. It is possible to measure the reliability of such 

measures as well as employ the estimated extent of test measurement error to calculate more 

accurate measures, useful for accountability purposes, research and policy analysis. 

Overall, this paper has methodological and substantive implications. Methodologically, it 

shows that the total measurement-error variance can be estimated without employing the limited 

and costly test-retest strategy. Substantively, it shows that the total measurement error is substan-

tially greater than that measured using the split-test method, suggesting that much empirical work 

has been underestimating the effect sizes of interventions that affect student learning.  
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Table 1 Descriptive Statistics for Cohort  

 ELA  Math 
  standard   standard 
 mean deviation  mean deviation 

Grade 3 626.8 37.3  616.5 42.3 
Grade 4 657.9 39.0  665.8 36.0 
Grade 5 659.3 36.1  665.7 37.5 
Grade 6 658.0 28.8  667.8 37.5 
Grade 7 661.7 24.4  671.0 32.5 
Grade 8 660.5 26.0  672.2 31.9 

 N = 67,528  N = 74,700 
 
 
 
 

 
Table 2  Correlations of Scores on the NYS ELA Examinations 

 in Grades Three Through Eight (Computed values below  
the diagonal and fitted-values above) 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 
Grade 3  0.7416 0.6934 0.6937 0.6571 0.6332 
Grade 4 0.7416  0.7342 0.7346 0.6958 0.6705 
Grade 5 0.6949 0.7328  0.7173 0.6794 0.6548 
Grade 6 0.6899 0.7357 0.7198  0.7309 0.7044 
Grade 7 0.6573 0.6958 0.6800 0.7303  0.6923 
Grade 8 0.6356 0.6709 0.6514 0.7050 0.6923  
 
 
 
 
 

 
Table 3  Correlations of Scores on the NYS Math Examinations 

in Grades Three Through Eight (Computed values below 
the diagonal and fitted-values above) 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 
Grade 3  0.7286 0.7003 0.6603 0.6393 0.6119 
Grade 4 0.7286  0.7694 0.7254 0.7023 0.6722 
Grade 5 0.6936 0.7755  0.7597 0.7355 0.7039 
Grade 6 0.6616 0.7248 0.7592  0.7964 0.7623 
Grade 7 0.6480 0.6998 0.7323 0.7944  0.7929 
Grade 8 0.6091 0.6685 0.7077 0.7643 0.7929  
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Table 4 Correlation and Generalizability 

Coefficient Estimates, New York City 
  

Parameters+ ELA Math 
*
34  0.8369 0.8144 
 (0.0016) (0.0016) 

45  0.9785 0.9581 
 (0.0013) (0.0012) 

56  0.9644 0.9331 
 (0.0012) (0.0011) 

67  0.9817 0.9647 
 (0.0012) (0.0011) 

 *
78  0.8168 0.8711 
 (0.0013) (0.0013) 
   

4G  0.7853 0.8005 
 (0.0025) (0.0024) 

5G  0.7169 0.8057 
 (0.0018) (0.0020) 

6G  0.7716 0.8227 
 (0.0019) (0.0019) 

7G  0.7184 0.8284 
 (0.0019) (0.0020) 

     + The parameter subscripts here correspond to the grade tested. For example, 
                                *

34  is the correlation of universe scores of  students in grades three and four. 
 
 

Table 5:  Variances of Test Scores, Test Measurement Error, Universe Scores, Test-Score Gains, 
Measurement Error for Gains, and Universe Score Gains and Generalizabiltity Coefficient for 

Test-Score Gain, ELA and Math  

 (1) (2) (3)  (4) (5) (6) (7) 
        2 2ˆ ˆ ˆ

j j
j S

G


 
 


 


ELA  

grade 7 1520.8 326.5 1194.3  763.8 695.3 68.4 0.090 
grade 6 1303.0 368.8 934.2  646.2 558.9 87.3 0.135 
grade 5 832.1 190.0 642.1  407.4 357.6 49.8 0.122 
grade 4 595.1 167.6 427.5      

         

Math         
grade 7 1297.6 259.0 1038.6  661.9 532.8 129.1 0.195 
grade 6 1409.5 273.8 1135.7  677.9 523.8 154.1 0.227 
grade 5 1409.5 250.0 1159.5  527.8 431.0 96.8 0.183 
grade 4 1054.9 181.0 873.9      

2

jS




2ˆ
j




2ˆˆ
j

jj j S
G 


 2ˆ

jS



2ˆ

j




2ˆ
j



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Figure 1: Nonparametric Regression of Grade 8 Scores on Scores in Grade 7, Bubble Graph 
Showing the Joint Distribution of Scores and Standard-Error of Measurement for 7th Grade Scores  
         

                             (a) ELA                                                                    (b) math 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 2: Cubic Regression Estimates of  , 1 |i j ijE S S as well as consistent  

     estimates of cubic and linear specifications of  , 1 |i j ijE   ,  Grades 7 and 8                           

  
Figure 3: Generalizability and Reliability Coefficient  

Estimates for New York Math and ELA Exams by Grade 
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Figure 4: Estimated Standard Errors of Measurement Reported in Technical Reports, ˆ a
j , Estimates for the  

Measurement Error from All Sources, ˆ
j ,  and Estimates for the  Residual Measurement Error, ˆ b

j  

 
Figure 5:  Estimated Posterior Mean Ability Level Given the Observed Score 
and 80-Percent Bayesian Confidence Bounds, Grades 5 & 7 ELA and Math 
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Figure 6:  Estimated Posterior Mean Change in Ability Given the Score  
Change and 80-Percent Credible Bounds, Grades 5 and 6 Mathematics 

 
 
 

Figure 7:  Estimated Posterior Mean Change in Ability for the Observed Scores in  
Grades Five and Six Mathematics for S6 - S5 = 40 and 80-Percent Credible Bounds 
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Appendix 
 

 Measurement error can result in  , 1 |i j ijE S S  being a nonlinear function of ijS  even when 

 , 1 |i j ijE    is linear in ij .  , 1 0 1|i j ij ijE         implies that , 1 0 1 , 1i j ij i ju        where 

, 1 0i jEu    and , 1 0ij i jE u   .  With , 1 , 1 , 1    i j i j i jS ,  , 1 0 1 , 1 , 1i j ij i j i jS u          and, in 

turn,     , 1 0 1    i j ij ij ijE S S E S .  Thus, the nonlinearity of  , 1i j ijE S S depends upon 

whether   ij ijE S  is nonlinear in ijS . Consider the case where 2( , )
jij jN     and 

2(0, ) 
ijij N  and the related discussion in Section 2.2.   When ij  is either homoskedastic or 

heteroskedastic with 2
ij  not varying with the level of ability, ij  and ijS  will be bivariate normal 

so that  ij ijE S  (1 )ij j ij ijG G S  , implying that  , 1i j ijE S S  is also linear in ijS .  Thus, it is 

not measurement error per se that implies  , 1 |i j ijE S S  is nonlinear. Rather,  , 1 |i j ijE S S  is 

nonlinear in ijS when ij  is heteroskedastic with the extent of measurement error varying with the 

ability level (i.e., ( )
ij j ij    ). When ( )

j ij   is U-shaped, as in Figure 1,  , 1 |i j ijE S S  is an 

S-shaped function of ijS , even when  , 1 |i j ijE    is linear in ij . 

 When ( )
ij j ij    , ijS  and  ij  are not bivariate normal, and   ij ijE S  can be 

computed using simulation as discussed in Section 2.2. Consider the following example which is 

roughly consistent with the patterns found for the NYC test scores: (670, 900)ij N   and 

 20, ( )
jij ijN     with 2( ) ( )

jn ij o ij j         and ( ) 15
jn n ij o jjE     


    .  The 

three cases in Figure A.1 differ with respect to the degree of heteroskedasticity: the homoskedastic 

case ( 15o   and 0.0  ), moderate heteroskedasticity ( 12 and 0.00333o   ) and more 
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extreme heteroskedasticity ( 3 and 0.01333o    ). For each cases the simulated values of 

   , 1 0 1    i j ij ij ijE S S E S are shown in Figure A.2, with 0 0   and 1 1  .  , 1i j ijE S S  is 

linear in the homoskedastic case and the degree to which  , 1i j ijE S S  is S-shaped depends upon 

the extent of this particular type of heteroskedasticity. 

 Knowing that the S-shape patterns of  , 1i j ijE S S  in Figure 1 can be consistent with 

 , 1 |i j ijE    being linear in ij  is useful, but of greater importance is whether  , 1 |i j ijE    is in 

fact linear for the tests of interest.  This can be explored employing the cubic specification 

2 3
, 1 0 1 2 3 , 1i j ij ij ij i j               where 2 3 0    implies linearity.  Substituting 

ij ij ijS     and regressing , 1i jS   on ijS  would yield biased parameter estimates.  However, if 

  , 1, 2,3k k
ij ij ijE S k   ,  were known for each student, regressing , 1i jS    on 1 2, ,ij ij   and 3

ij   

would yield consistent estimates.23   

 Computing , 1, 2,3k
ij k  , for each student requires knowledge of the overall extent and 

pattern of measurement error. It is the lack of such knowledge that motives this paper.  However, 

we are able to compute  ˆ ˆk k
ij ij ijE S    accounting for the meaningful measurement-error 

heteroskedasticity reflected in the reported SEMs24, even though this does not account for other 

sources of measurement error.  Computation of  ˆ k
ij ijE S  also requires an estimate of jj  which 

can be obtained by solving for ˆ jj  implicitly defined in 

   2 2ˆ ˆ ˆ ˆˆ ˆ ,
jjj jj jj j jjf d              

. Using Monte Carlo integration with importance 

                                                 
23 See the discussion of the "structural least squares" estimator in Kukush et. al (2005) . 
24 Because SEM values are reported for a limited set of scores, a flexible functional form for  2

   was fit to the 

reported SEM. This function was then used in computation of moments. 
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sampling   2 *1
ˆ ˆ

j

M

jj jj mj
mM        where the *

mj  are random draws from the distribution 

 ˆ ,j jjN    and jj  is an initial estimate of jj . This yielded an updated value of jj  which can be 

used to repeat the prior step. Relatively few iterations are needed for converge to the fixed-point – 

our estimate of jj .  The estimate ˆ jj  allows us to compute values of ˆk
ij  and, in turn, regress 

1i jS    on 1 2 3ˆ ˆ ˆ, , andij ij ij   . 

 

 

Figure A.1 Examples Showing Different Degrees of Heteroskedastic Measurement Error  
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Figure A.2  How the Relationship Between  2 1i iE S S  and 1iS   

Varies with the Degree of Heteroskedasticity 
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