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Abstract

Purpose: To develop measures of segregation that are appropriate when either the groups or
organizational units are defined by ordered categories. These methods allow the measurement of
segregation among groups defined by ordered educational attainment categories or among ordered
occupational categories, for example.

Approach: | define a set of desirable properties of such measures; develop a general approach to
constructing such measures; derive three such measures; and show that these measures satisfy the
required properties.

Originality: Traditional methods of measuring segregation focus on the measurement of segregation
among groups defined by nominal categorical variables (e.g., race, gender) among organizational units
also defined by nominal categorical units (e.g., schools, neighborhoods). Such methods are not
appropriate to the measurement of occupational segregation, for example. The methods developed

here are widely applicable and appropriate for such cases.



Traditional measures of segregation are designed to measure segregation between two groups
(e.g., between black and white individuals, or males and females) among nominal categorical units (e.g.,
schools, neighborhoods) (James and Taeuber, 1985, Zoloth, 1976, Taeuber and Taeuber, 1976). More
recently, traditional measures have been extended to allow the measurement of segregation among
multiple unordered groups (e.g., multiple racial/ethnic categories) among nominal categorical units
(Reardon and Firebaugh, 2002). However, neither the binary nor the multiple group measures are
appropriate when either the groups or the units have an inherent ordering. For example, the study of
gender segregation among occupations requires the measurement of segregation of two groups among
ordered categorical units (occupations). Likewise, the study of residential segregation among groups
defined by educational attainment requires the measurement of multiple ordered categorical groups
(defined by ordered levels of educational attainment) among nominal categorical groups. In this paper, |
develop measures of segregation appropriate to such cases.

The paper proceeds as follows. In the first section, | provide two motivating examples to
illustrate the measurement problem. Section Il briefly discusses existing approaches of measuring
segregation among ordered groups, concluding that little useful work exists. Section Ill introduces the
notation used in the paper. In section IV | describe a set of desirable properties of ordinal segregation
measures. Section V derives a set of such measures and demonstrates their relation to existing binary
segregation measures. Section VI shows that three of the proposed measures satisfy the criteria
outlines in Section Ill. Section VII concludes with a discussion of the strengths and limitations of the

measures.

Motivating Examples
Consider the following patterns of occupational location by gender. Under Scenario A (top

panel of Table 1), of the 100 males and females in the labor market, males are disproportionately



located in the highest occupational category, while females are disproportionately in the lowest. In
Scenario B (bottom panel), the distributions in occupations 1 and 2 are switched, as are the distributions
in occupations 3 and 4. As a result, men and women are somewhat less concentrated at one extreme of

the occupational distribution.

Table 1 about here

A traditional (nominal) segregation measure—such as the dissimilarity index—would rank Scenarios A
and B as identically segregated. In each case, there is one occupation with a 40/10 male/female ratio;
one with a 30/20 ratio; one with a 20/30 ratio; and one with a 10/40 ratio. A good measure of
occupational segregation, however, should describe A as more segregated than B, given the more
dramatic segregation between males and females in A.

Likewise, consider the patterns of educational attainment by neighborhood described in Table 2.
In Scenario A (top panel), those with the lowest level of educational attainment are concentrated in
neighborhoods 1 and 2, where there are few individuals with the highest levels of education. In
Scenario B, the distributions of the lowest two educational categories are switched with one another, as
are the distributions of the highest two categories. Intuitively, educational attainment segregation is
lower in B than A, because those with the lowest and highest educational levels are more likely to

occupy the same neighborhoods.

Table 2 about here

As in Table 1, standard (nominal) segregation measures will rank Scenarios A and B identically

segregated, because they will treat the ordered educational attainment categories as unordered and



interchangeable. In both Tables 1 and 2, then, the need for measures of segregation that account for

the ordered nature of one of the two categories involved is apparent.

Prior Methods of Measuring Ordinal Segregation

There is little prior methodological work developing measures of ordinal segregation. Most
research on occupational segregation treats occupational categories as unordered (Charles and Grusky,
1995, Watts, 1992, Watts, 1997, Watts, 1998, Grusky and Pager, 1998, Hutchens, 1991, Silber, 1992,
Siltanen, 1990). Some research on economic segregation relies on ordered income categories, but
again, much of this work treats income as either binary or unordered (Telles, 1995, Fong, 2000). One
exception is a recent paper that modifies traditional exposure-type segregation indices by introducing a
“social difference coefficient”—a factor that accounts for the ordered nature of income categories
(Meng et al., 2006). This paper, however, relies on somewhat arbitrary definitions of social differences
(it assigns interval values to an ordinal scale) and derives exposure measures but not evenness measures
of segregation.

A second type of prior work comes from measures of nominal-ordinal association. Reardon and
Firebaugh argue that one way to conceptualize segregation measures is as measures of association
between categorical variables (Reardon and Firebaugh, 2002). While they were concerned with
segregation as association between two nominal categorical variables (e.g., racial groups and schools),
measures of association between a nominal and ordinal category might be thought of as segregation
measures. The generalized delta and alpha measures introduced by Agresti, for example, could perhaps
be seen as measures of ordinal segregation (Agresti, 1981), though | am aware of no work that has made
this link. Moreover, the properties of such measures are not clear.

The third strand of related work is the development of methods for measuring segregation

along a continuously-measured variable, such as income. A considerable body of such work exists in the



literature on residential household income segregation. For example, some work relies on ordered
income categories and computes two-group segregation measures for many or all possible pairs of
income categories, and then constructs some average or summary measure of these multiple pairwise
indices (Massey and Eggers, 1990, Farley, 1977, Telles, 1995). This approach is rather ad hoc in nature,
and depends heavily on the number of income categories used. Other measures compute a ratio of the
between-neighborhood variation to overall variation, constructing measures of the proportion of
variation in incomes that lies between neighborhoods (Davidoff, 2005, Wheeler, 2006, Wheeler and La
Jeunesse, 2006, Jargowsky, 1996, Jargowsky, 1997, loannides, 2004, loannides and Seslen, 2002,
Hardman and loannides, 2004, Watson, 2006). While there are many more examples of such measures,
it is not clear how they inform the measurement of segregation along an ordinal variable, since they
depend on the interval scale of income to compute between- and within-neighborhood variation.

In this paper, | develop a new approach to the measurement of ordinal segregation that is
derived from the variation ratio approach described in Reardon and Firebaugh (2002) and similar to that
used in many of the income segregation papers referred to above. This approach is based in the idea
that segregation can be thought of as a measure of the extent to which variation within organizational
units (unordered categories) is less than total variation in the population. By using well-defined
measures of ordinal variation, the Reardon and Firebaugh approach is readily adapted to the case of

ordinal segregation.

Notation

Let k be a variable denoting ordered categories 1, 2, ..., K, and let m index unordered categories
1,2,...,M. For example, k might index K ordered educational attainment categories (less than high
school, high school diploma, bachelor’s degree, graduate degree) and m might index neighborhoods.

Conversely, m might index (unordered) racial groups and k might index (ordered) occupational status



categories (manual labor, technical, professional). These two cases may seem conceptually quite
different —in the first case, the ordered educational attainment category is a fixed characteristic of
individuals (for the purposes of this example) and the unordered neighborhood category is changeable;
while in the second, the opposite is true — but we shall see that they are mathematically identical.
Moreover, suppose we have a population of size T where each individual is cross-classified by m
and k. Let t,,., t., and t,,; indicate the total population in category m, category k, and both,
respectively. Within each unordered category m, denote the cumulative proportion of the population in

m who are in ordered category k or below as ¢,,;; i.e.,

k )
=) o
j=1
(1]
Now we can write the distribution of individuals in category m as the K-tuple ¢,, =
(¢m1» Cmzs > Cmi)- (Note that ¢,,x = 1 for all m, so we need only the [K-1]-tuple
Cim = (cml, Cm2y > Cm[K—l]) to fully characterize the distribution in m). Likewise, we let ¢, indicate the
cumulative proportion of the population who are in category k or below, and write the distribution of
individuals in the population as the [K-1]-tuple ¢ = (cl, Cyy weey C[K_l]).
One additional piece of terminology will be useful in the following sections. We say that the
distribution in m dominates the distribution in n over categories h to j (where 1 < h < j < K) if

Cmk < Cni forallk € (h, ...,J). In other words, m dominates n over h to j if there is a greater

proportion of the population of n than m at or below each category from h to j.

Desirable Properties of an Ordinal Segregation Measure
The goal of this paper is to define a class of ordinal segregation indices that measure what is

generally termed the “evenness” dimension of segregation. That is, we wish to measure the extent to



which ordered groups are evenly distributed across unordered categories. In the case of occupational
segregation, this corresponds to measuring the extent to which ordered occupational categories are
proportionately represented among unordered groups (typically gender or racial/ethnic groups). In the
case of educational residential segregation, this corresponds to measuring the extent to which different
educational attainment groups are evenly distributed among residential locations (e.g., neighborhoods).
In order to define a set of properties that a measure of ordinal segregation should satisfy,
it is useful to consider several simple examples. Below we describe a set of desirable properties of an
ordinal segregation measure, using examples of residential educational segregation or of racial

occupational segregation in order to make the properties concrete.

Scale Interpretability. A segregation index is maximized iff within each unordered category m, all

individuals occupy a single ordered category (if ¢, € {0,1} for all m and k). A segregation index is
minimized iff within each unordered category m, the distribution of individuals is identical to that in the
population (if ¢, = ¢y, for all m and k).! The intuition here is that maximum segregation occurs when
there is no variation in ordered category k within each unordered unit, and minimum segregation occurs
when the distribution of k within each unit m mirrors that of the population as a whole, as illustrated in
Scenarios A and B of Table 3.

It is important to note that this definition of maximum segregation does not depend on the
overall amount of ordinal variation in the population, but only on the relative distribution among
categories. This is a necessary requirement for defining evenness measures of segregation. In Scenario
C of Table 3, for example, there is less variation in educational attainment than in Scenario A (everyone
in C has either a HS diploma or a BA; no one has less than a HS diploma or more than a BA), yet by the

definition here, Scenarios A and C are equally segregated, because in each case the unordered groups

! Note that in the case where the number of non-empty ordinal categories is greater than the number of groups,
maximum segregation is not possible by this definition.



are as unevenly distributed among neighborhoods as possible (there is no neighborhood with any
diversity of educational attainment). Conversely, to claim that Scenario A is more segregated than
Scenario C would be to confound the extent of variation in educational attainment in the population
with the unevenness of their distribution among neighborhoods. Given our interest in measuring the

evenness dimension of segregation, this would be undesirable.

Table 3 about here

Unordered Category Equivalence. If the populations in two unordered categories m and n have the

same distribution over k, and m and n are combined, segregation is unchanged. This is analogous to the
standard organizational equivalence condition used in nominal measures of segregation (James and
Taeuber, 1985, Reardon and Firebaugh, 2002). The intuition here is that two identically distributed
unordered categories are not segregated from one another, so combining them does not alter overall
segregation patterns. In Table 4, for example, Black and Hispanic individuals have the same distribution
among occupations, so combining them in to a “minority” group should not alter conclusions about the

levels of segregation.

Table 4 about here

Size invariance. If the number of members of each category k in each category m is multiplied by a

positive constant, segregation is unchanged. The intuition here is simply that the total population

counts do not matter, but only the distributions among categories.

Null group effects. If an ordered category j with no population (so that t,,,; = t;. = 0 for all m) is added




to the vector of possible ordered categories k = 1, 2, ..., K, the following conditions should yield
unambiguous results. First, if j = 0 (i.e, category j is lower than each of the K ordered categories) or
j =K + 1 (i.e, category j is higher than each of the K ordered categories), then segregation is
unchanged. Second, if 1 <j < Kandcp; € {0,1} for all m (in each unordered category m, all the
population has k < j or k > j), and there exist some unordered categories m and n where ¢;,; = 0 and
cnj = 1, then segregation will increase, unless segregation is already at its maximum possible value.
The intuition here is that the ordinal categories have some inherent meaning. Adding a null
category at the extremes doesn’t change the separation of groups, since it introduces no additional
distance between any two individuals. But adding a null category that unambiguously increases the
distance between higher and lower ordered categories (because for each unordered category m, all
individuals are above or below the new ordered category), should increase segregation (unless it is

already at its maximum).

Exchanges. If the distribution in category m dominates that in category n over categories j to k, and if
an individual of category j is moved from n to m while an individual of category k is moved from m to n,
then segregation is reduced. Likewise, if an individual in m is moved from category k to j, while an
individual in n is moved from j to k, then segregation is reduced.’

The intuition here is that if we exchange individuals of different ordered categories in a way that
makes the distributions of individuals in two unordered categories more similar to one another,
segregation should be reduced. For example, if neighborhood m has a lower proportion of its
population at or below each education level than neighborhood n, and if a highly-educated individual in
neighborhood m swaps houses with a less educated individual in n, then segregation should be

reduced—because we have raised the education levels in n and lowered them in m. Likewise, if there

? Note that we could specify transfer properties, but the exchange properties have the advantage of leaving the
margins constant.
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are more females than males at or below each occupation status level, and if a man in a high-status
occupation changes jobs with a woman in a low status occupation, segregation should be reduced. This
latter is illustrated in Table 4. In Scenario A, the male occupational distribution dominates the female
distribution over categories 1-3 (there are a greater proportion of females than males at or below each
occupational level from 1-3). If a male moves from occupation 3 to 2, while a female moves from 2 to 3,
we expect segregation to be reduced, because it has reduced the disparity in cumulative proportions at

or below income categories 2 and 3, while leaving the others unchanged.

Table 5 about here

Ordered Exchanges. If the distribution in unordered category m dominates that in category n over

categories j to [ (with j < k < 1), and if an individual of category j is moved from n to m while an
individual of category [ is moved from m to n, then the resulting reduction in segregation will be greater
than that resulting if an individual of category j is moved from n to m while an individual of category k is
moved from m to n. Likewise, if an individual in m is moved from category [ to j, while an individual in
n is moved from j to [, then the resulting reduction in segregation will be greater than that resulting if
an individual in m is moved from category k to j, while an individual in n is moved from j to k.

The intuition here is that the principal of exchanges ought to be sensitive to the ordering of the
categories involved. Exchanges of individuals who are farther apart (in their ordered category levels)
should change segregation more than exchanges of individuals who are closer. If a male doctor switches
jobs with a female janitor, segregation should be reduced more than if a male doctor switches jobs with
a female nurse. This is illustrated in the bottom panel of Table 4. Scenario Cis obtained from A by
having a category 3 male switch occupations with a category 1 female. By the principle of exchanges,

segregation C is less than B, and B is less than A, so segregation in C should be less than in A.

11



Additive Unordered Group Decomposability. If M unordered categories are clustered into N clusters,

then segregation is decomposable into a sum of independent within- and between-cluster components.
The intuition here is that we would like to be able to decompose segregation into between- and within-

category components, as described by Reardon and Firebaugh (2002).

Additive Ordered Group Decomposability. If K ordered categories are clustered into J supercategories

through the combination of adjacent categories, then segregation is decomposable into a sum of
independent within- and between-supercategory components. For example, we might like to be able to
describe segregation among occupations as a sum of a component of segregation between professional
and non-professional occupations, a component of segregation among non-professional occupations,

and a component of segregation among professional occupations.

Measuring Segregation by an Ordinal Category

Reardon and Firebaugh (2002), Watson (2006), and Jargowsky and Kim (THIS VOLUME) suggest
that one way of constructing a segregation measure is to think of it as a measure of the ratio of
between-category inequality/variation to total inequality/variation. In this framework, segregation is
the proportion of the total variation of some characteristic in a population that is due to differences in
population composition of different categorical units (e.g., schools or census tracts). For an unordered
categorical variable (such as race), population variation may be measured by diversity or entropy, but
for an ordered (ordinal or continuous) variable, variation is typically measured using some index of the
spread of the distribution (e.g., the variance or standard deviation, in the case of an interval-scaled

variable). Following Reardon and Firebaugh (2002, Eq. 9, p. 45), if we have a suitable measure of ordinal

variation v (a measure of the variation in ordinal variable k) we can define A® —an ordinal segregation

12



measure based on the ordinal variation measure v—as follows:

M

t
A®) = Z T_T:;(v - V)

m=1
(2]
where m indexes unordered categories, t,,, and v, are the population count and ordered variation of k
within category m, respectively, and T is the total population. Note that if v is the variance function
(treating k as an interval-scale variable), then A®) is equivalent to 772 (or the R? from a regression of k
on a set dummy variables for categoriesm = 1, 2, ..., M).
One way to construct a measure of ordinal segregation, then, is to define a suitable measure of

ordinal variation (I define ‘suitable’ below), and then use it to construct a segregation measure as above.

Ordinal variation

Measuring the variation in a population of a quantity measured with an ordinal variable requires
us to define what we mean by variation. For an ordinal variable k that can take on any of K ordered
categories 1, 2, ..., K, we define variation as having a maximum (which we can normalize to equal 1)
when half the population has k = 1 and half has k = K. Variation is at a minimum (normalized to equal
0) when all observations have k = ¢ for some ¢ € (1, 2, ..., K). Measuring ordinal variation then
amounts to measuring how close the distribution of x is to these minimum and maximum variation
states.

As described above, we can express the distribution of values of x in a sample as a [K-1]-tuple of
cumulative proportions, ¢ = (cl, Cpy wees C[K_l]), where ¢; is the cumulative proportion of the sample
with values of k in category j or below (note that cx = 1 by definition, so is not needed to characterize
the distribution of k). A distribution of k has maximum variation when ¢ = ¢g = (Y, %2, %, ..., %2),

corresponding to the case where half the population has the lowest possible value and half has the

13



highest possible value of k. There are K possible distributions of k such that there is no variation in k,
corresponding to the K cases of the pattern ¢ = (0,0, ...0,0,1,1, ... 1,1) (where all observations have the
same value of k = ¢, so that ¢; = 0 forj < kand ¢; = 1 forall j = k).

Blair and Lacy (1996) suggest that it is helpful to think of ¢ as a point in [K — 1]-space, which
leads to the insight that variation can be measured as an inverse function of the distance from c to ¢y,
the point of maximum variation (it is easier to define variation in terms of the distance from the single
point of maximum variation rather than from one of the K points of zero variation). Alternately, we can
think of ¢ as describing a cumulative density function of an ordinal variable, where variation is measured
as a function of the closeness of ¢ to the line ¢, = %. This suggests a general form of a variation

measure as:

3]
where f(c) is a continuous function defined on the interval [0,1] such that f(c) is increasing for
cE (0,%) and decreasing for c € G, 1), maximized on the interval [0,1] at f(%2) = 1, and minimized
on the interval [0,1] at £(0) = f(1) = 0. Four such possible functions f are defined below:*
f1(c) = —[clogzc + (1 — ¢)log, (1 — )]
fa(c) = 4c(1—c)
f3(@ =2Jc1-0)
fal) =1—12¢c—-1|
(4]

Substituting these functions into [3] above yields four potential measures of ordinal variation,

* Note that we define 0 - log,(0) = lim,_q x log, x = 0.
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which are denoted 4, 1, V3, and v, respectively.* Each of these ordinal variation measures equals its
maximum value, 1, if and only if the distribution of k is such that k = 1 for half the observations and

k = K for the other half (corresponding to the cumulative proportion vector ¢ = (%, %, %, ..., %2, 1)),
and each equals its minimum value of 0 if and only if all observations have the same value of k

(corresponding to a cumulative proportion vector ¢ = (0,0, ...0,1, ...,1,1)).

Ordinal segregation

We can substitute v, 15, 13, and v, into Equation [2] above to produce measures of ordinal

segregation Ay, Ay, A3, and Ay:

1 t
A = z tmoe,
1 To, w1 — vim)
m=1
M
M= Y 2 (0 = o)
= (v, —
2 Tv, 2~ Vom
m=1
M
Mo= Y 2 (0 = vam)
3= Tv, U3 — VUsm
m=1
M
M= Y 2 (0= )
= — (v, — v
4 Tv, 4 4m

1

3
I

(5]
The index A, is an ordinal generalization of the information theory index H, so we will denote A; as H?,

and call it the ordinal information theory index. In the case where K = 2, H? is identical to H, the

* The second of these, v,, is the index of ordinal variation (IOV), which has been derived in a number of alternate,
but equivalent forms (Berry and Mielke, 1992a, Berry and Mielke, 1992b, Blair and Lacy, 1996, Kvalseth, 1995a,
Kvalseth, 1995b). The other three indices of ordinal variation are new, to my knowledge. Note that, in the case
where K = 2, several of these variation measures collapse to familiar measures of binary variation. When K = 2,
v, = —[clog,c + (1 — ¢) log, (1 — c)], which is the entropy (Theil, 1972) of a two-group population when one
group makes up c percent of the population. Likewise, when K = 2, v, = 4c(1 — c¢), which is twice the Simpson
interaction index diversity measure for a two-group population when one group makes up c percent of the
population.
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conventional two-group information theory index (Theil, 1972, Theil and Finezza, 1971, Zoloth, 1976).
Similarly, A, is an ordinal generalization of the variation ratio index R (which goes by many names in the
literature—see, e.g., James and Taeuber, 1985, Reardon and Firebaugh, 2002), and is identical to that
index when K = 2, so we will denote A, as RO, and call it the ordinal variation ratio index. In addition,
A5 is an ordinal generalization of Hutchen’s square root index (Hutchens, 2001, Hutchens, 2004), and is
identical to that index when K = 2, so we will denote A as §9, and call it the ordinal square root index.
Finally, A, might be termed the ordinal absolute difference index, denoted D°. Unlike the other three
indices, however, D? does not correspond to any standard binary index when K = 2; in particular, it is
not equivalent to the dissimilarity index (James and Taeuber, 1985, Taeuber and Taeuber, 1976), despite
its apparently similar form. Each of these four indices is interpreted as the average difference between
overall and within-unit ordinal variation, expressed as a ratio of the overall ordinal variation of the

population. They differ only in the functional forms of the ordinal variation measures each employs.

Alternate formulations of the ordinal segregation measures

The ordinal segregation measures can be written in another form that illustrates their relation
to existing measures. First, we require some additional notation. Let v; = f(¢;) and vi,; = f(Cj);
these can be thought of as measures of the (ordinal) variation in the population and in category m,
respectively, in the case where the population is divided into only two categories—those with k < j and
those with k > j. Note that Equation [3] implies {‘;_11 v = v(K — 1). In addition, let A indicate the
segregation (as defined in [2]) when the population is similarly divided into two categories at j. With

some substitution and algebraic manipulation, Equation [2] can be written as
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5 %chj) ~ Flemy)]

K-1 M .
= Z K —1) Tp. Ui — vmf)
= v(K—-1) m=1Tv]
K-1

=1

~.

6]

where w; = —and Zﬁ-(:_f w; = 1. The key insight to be gained from [6] is that a measure of ordinal

TSt vi
segregation defined by Equation [2] (as a function of the difference between the ordinal variation of the
population and the average ordinal variation within each category m) can be rewritten as the weighted
average of K-1 binary (non-ordinal) segregation indices. The weights are proportional to v; = f(cj), the
variation in k when collapsed into two categories corresponding to those above and below category j.
Because f(cj) is defined to have its maximum at ¢; = %, Equation [6] weights segregation defined by
categories that most evenly split the population.

For three of the four ordinal measures defined in [4], the pairwise indices A/ in Equation [6] are
familiar indices: A]1' = H/ (the two-group Theil information theory index); Aé = VJ (the two-group
variance ratio index); and Aé = 0/ (the two-group Hutchens square root index). This means that the
properties of A in these cases can be derived easily from known properties of the corresponding A/’s.
The index defined by A{L, however, corresponds to no existing pairwise index. Moreover, as we shall
see, it fails to satisfy the scale interpretability and principle of exchanges properties desired in a

segregation index.
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Properties of the ordinal segregation measures

Scale interpretation. Each of the four indices we describe are bounded between 0 and 1, obtaining their

maximum when segregation is complete and their minimum when each unordered category has an
identical distribution of members of the ordered categories. For three of indices (except A,), this
follows most obviously from Equation [6] and the fact that each of their corresponding binary indices
are bounded between 0 and 1 (Hutchens, 2001, Hutchens, 2004, James and Taeuber, 1985, Reardon and
Firebaugh, 2002). For A,4, the minimum value of segregation can be obtained even when segregation is
not complete (that is, when members are not evenly distributed among categories). To see this,
consider the example in Table 6. The value of A, in this example is 0, despite the fact that the
distribution of males and females among occupations is not equal. Thus, A, does not meet the scale

interpretability criterion.

Table 6 about here

Unordered category equivalence. Each index of the form defined in Equation [2] satisfies this property.

This follows readily from the definition in [2] and the fact that v depends only on cumulative
proportions and not cell totals. Let r be the unordered category formed by combining unordered
categories p and q, where ¢p, = Cgx forallk € {1,2, ..., K}. From Equation [1], we then have

Crk = Cpr = Cqi forallk € {1,2, ..., K}, and thus v, = v, = v;. Now

t t t
A= Z T—T)(v—vm)+T—f](v—vp)+T—Z)(v—vq)

m+p,q
tm t, +t,
= —W—-vy)+ V-V
> @)+ E - )
m#p,q
t t,
= —Ww-vrvy)t+—Ww—7v
Z Tv ( m) Tv ( r)
m#p,q
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(7]
Size invariance. Each index of the form defined in Equation [2] satisfies this property. This follows
readily from the fact that each ¢, and ¢, is unchanged if the number of members of each category k in
each category m is multiplied by a constant. As a result, v and each v, are unchanged as well. It

follows that Equation [2] is unchanged under scalar multiplication of all cell sizes.

Null group effects. Recall from [3] that ordinal variation is the average

K-

V= Z 1()

=
If we add a null category i below category 1 (i = 0) or above K (i = K + 1), the cumulative proportion in

category iwillbe O (ifi = 0) or 1 (ifi = K + 1) for the population as a whole and for each group m. Asa
result, both v and v,,, are multiplied by a factor of% (because f(c;) = f(cmi) = 0); these factors will

cancel in Equation [2], leaving A unchanged.

If we add a null category i suchthat 1 <i < K,0 < ¢; <1, and c,; € {0,1} for all m, each v,

will be multiplied by a factor of% as well. The overall ordinal variation in the population, v, will be

multiplied by a factor greater than =2 because f(c;) > 0. As aresult, A will increase. If, however,

0< Cmj < 1 for some m, then, in general, A may increase, decrease, or remain unchanged.

Exchanges. To investigate the exchange property, it is simplest to use the form of A in Equation [6].

T
[

-
Il
Juy

Under an exchange, the marginal distributions of individuals among the categories does not change;
that is, the ¢;’s and the t,,,’s do not change (and because the ¢;’s are unchanged, so are the v;’s and v).

As a result, A can change only if the A/’s change.
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Recall that A/ measures the segregation of those with x > j from those with x < j. Inan
exchange involving individuals of category j and k (where j < k), there will be no change in the
cumulative proportions c,,;, where i < j ori > k. As a result, there will be no change in A’ Now
consider categories i such that j < i < k. If the distribution in category m dominates that in category n
from j to k, then ¢,;;; < c,,; for all these i. Exchanging an individual of category j from n with an
individual of category k from m will increase c,,; and decrease c,,; for j < i < k. If Al is a binary
segregation index satisfying the principle of exchanges, then A? will decrease for each j < i < k in such
a case. As aresult, A will decrease as well.

Three of the AJ’s described correspond to binary segregation indices satisfying the principle of
exchanges. The Information Theory Index, Variance Ratio Index, and Square Root Index each satisfy the
principle of exchanges (James and Taeuber, 1985, Hutchens, 2001, Hutchens, 2004, Reardon and
Firebaugh, 2002). The fourth index does not satisfy the principle of exchanges except when the
exchange involves transfers from categories whose cumulative proportion is above .5 to those whose
cumulative proportion is less than .50, or vice versa. In other cases, exchanges will leave the index

unchanged. To see this, consider the example in Table 7.

Table 7 about here

In this example, Scenario B is obtained from Scenario A by the exchange of a male in category 1 with a

female in category 2 (a male moves from occupation category 1 to category 2, while a female moves

from category 2 to category 1). Intuitively, this should increase segregation, because this exchange

exacerbates the disproportionate representation of females in the lowest category. However, in both
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cases, A, = 0.> Thus, A, does not meet the exchange criterion.

Ordered Exchanges. Following the logic above, an exchange between ordered categories j and [, where

j <k < I, will reduce each Al fori € {j, ..., 1}. An exchange between categories j and k will reduce only
the A”s where i € {j, ..., k}. Asaresult, an index which can be written as in Equation [6] and which

satisfies the principle of exchanges will also satisfy the principle of ordered exchanges.

Additive Unordered Group Decomposability. If the binary index A’ is additively decomposable in the

sense described by Reardon and Firebaugh (2002), then so is A. Let the M unordered categories be
combined into some smaller number of supercategories, indexed by g. Then for an additively

decomposable index, we can write:

(8]

Thus, A can be written as a sum of a component due to segregation among the supercategories and a

> The failure of A, to meet the scale interpretability and exchange criteria is a direct result of the fact that the
variation function v, is not a concave down function of the c;.
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weighted sum of the segregation within each supercategory.

Additive Ordered Group Decomposability. None of the four indices described here satisfy the ordered

group decomposability criterion. While this is a desirable analytic property, it is not clear whether any

index can satisfy it.

Discussion and Conclusion

The approach | have described above yields four potential measures of segregation along an
ordered dimension. Of these, three of the measures satisfy the set of criteria described at the outset.
The characteristics of each measure are described in Table 8 below. Each of the measures can be
interpreted in two ways: 1) as a measure of relative ordinal variation (a measure of the difference in the
ordinal variation of the population to the average ordinal variation within each unordered category);
and 2) as a weighted average of the binary segregation between those above and below each threshold
of the ordered variable. The first interpretation links the measures to the analysis of within- and
between-group variation; the measures are analogous to n?-type statistics, denoting the proportion of
variation in a population that lies between, rather than within, organizational units. The second
interpretation links the measures to traditional binary segregation measures. It shows that we can
compute ordinal segregation by computing binary segregation measures between the groups of
individuals above and below each threshold of an ordered categorical variable, and then computing a
weighted average of these binary measures over all thresholds. In each case, the weights are greatest
for thresholds that divide the ordered variable such that half the population is above and half below the
threshold.

Table 8 here

The weights w; in Equation [6] have intuitive interpretations in some cases. In the case of the
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ordinal information theory index, the weight w; assigned to H7 in [6] can be interpreted as a the
expected information content contained in H/ about a randomly chosen individual from the population,
where information is defined as log; c;, where ¢; is the proportion of the population in or below the jtI
ordered category (Theil, 1972, Pielou, 1977). If ¢jis near O or 1, then H/ contains little information
about the segregation experienced by an individual, since it distinguishes among individuals only at one
extreme of the income distribution. Conversely, if ¢; is near 0.5, then H/ contains maximal information,
since it distinguishes at the median of the population.

In the case of the ordinal relative variation index, the weight w; likewise has an appealing
interpretation. For a given threshold j, the probability that two randomly-selected individuals from the
population will have incomes on opposite sides of threshold j is 2cj(1 - cj), which is proportional to
f(cj). Since the segregation level R/ describes the extent of segregation between individuals on either
side of the j"* ordinal threshold, we can interpret Equation [6] in this case as a weighted average of the
segregation between individuals on either side of the j* ordinal threshold, where the segregation level
at each threshold is weighted by how informative segregation measured at that threshold is for a
randomly chosen pair of individuals in the population.

In the case of the ordinal square root index, the weights have no clear intuitive interpretation
(they are the square root of the weights in the ordinal relative variation index). Nonetheless, because

each of the variation functions in Equation [4] have their maximum at G =3 and their minima at ¢; = 0

and ¢; = 1, each of the ordinal segregation measures weight binary segregation between groups
defined by the median of the ordinal distribution most heavily, and segregation between the extreme
groups and the remainder least heavily. Intuitively, this makes sense, since a segregation level
computed between those in a small extreme ordinal category and all others, for example, tells us very

little about the segregation between two randomly chosen individuals, while segregation between those
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above and below the median income tells us more about overall income segregation.

Although the weights in some cases have intuitive interpretations, it is important to note that
the class of ordinal segregation measures described here were not derived originally as a weighted sum
of K — 1 pairwise segregation indices and thus do not rely on the interpretation of the weights for their
derivation. Rather, the weights derived in Equation [6] are simply a consequence of the definition of
ordinal segregation as a function of the ratio of within-unit to overall ordinal variation. If the weights
are less intuitive than one might like, they can nonetheless be understood as a useful as providing a
means of computing the ordinal segregation measures from easily computed and familiar pairwise
indices. One could perhaps imagine an alternate class of segregation measures defined explicitly as a
weighted average of pairwise measures, where the weights were based on some preferred value
function rather than derived from the approach here. Weighting each of the pairwise measures equally,
for example, might be appealing under some circumstances.

In some cases, one might prefer a segregation measure that is not normalized by the variance in
the population. Some recent papers have argued that measures of absolute, rather than relative,
deviation, such as the mutual information index (Theil, 1971), are preferable to normalized indices
because of their superior decomposition properties (Frankel and Volij, 2008, Mora and Ruiz-Castillo,
2003).° In fact, Equation [6] can be easily rewritten to suggest that the ordinal segregation measures
here can be understood as normalized unweighted averages of pairwise segregation measures that are

not normalized by population variation. Rearranging the terms in the third line of Equation [6] yields

-1
1
A=-
v

Jj=1

viN
(K—-1)

® The choice between measures like the mutual information theory index M (which is not normalized by the
population variation) and the information theory index H (which is) lies more in how one believes indices should
compare segregation between populations that differ in their overall variation. The decomposition differences
are, in my opinion, a minor issue compared to this issue. A fuller discussion of the comparison is beyond the scope
of this paper.
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1 A
v

(K-1

j=1

(o]
where A*) = v/ AJ is a measure of pairwise segregation that is not normalized by dividing it by v (see
Equation [2]). The mutual information theory index M is such an index. Because M/ = v, H/ by
definition (see Theil, 1971), Equation [9], in fact, can be readily used to show that the ordinal
information theory index HO is easily transformed into an alternate index one might call the ordinal

mutual information theory index, M?:

K-1 )
HO — 1 M/
41 (K-1)
_iMO
1

(10]
where M/ is the mutual information theory index when the population is divided into two categories at
j; and where M? is the (unweighted) average of M7 over the K — 1 ordered thresholds. Thus, the
approach described in this paper easily produces a set of measures that are not based on normalized
measures. These measures would not satisfy the scale interpretability and null group effects properties
described above (though advocates of the mutual information theory index typically discard scale
interpretability in any case). A full investigation of the properties of this set of measures, however, is

beyond the scope of the present paper.

In this paper, | have described an approach to measuring segregation among groups defined by
ordered categories. The approach described here combines the appealing features of defining
segregation as a ratio of variation within categories to variation in a population and those of averaging
binary segregation measures among pairs of categories defined by an ordered variable. Three measures
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of ordinal segregation derived from this approach—the ordinal information theory index (H?), the
ordinal variation ratio index (R?), and the ordinal square root index (S®)—each satisfy the set of desired
characteristics for such measures defined here. In addition to the characteristics described above, each
of the indices described here can easily be adapted to incorporate spatial proximity, using the methods
described by Reardon and O’Sullivan (2004). This may be useful, for example, if one wished to measure
the spatial residential segregation among groups defined by ordered categories of educational

attainment.
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Table 1: Stylized Occupational Distribution Patterns

Occupational Level

1 2 3 4 Total
Scenario A
Male 10 20 30 40 100
Female 40 30 20 10 100
Total 50 50 50 50 200
Scenario B
Male 20 10 40 30 100
Female 30 40 10 20 100
Total 50 50 50 50 200




Table 2: Stylized Educational Neighborhood Distribution Patterns

Neighborhood
1 2 3 4 Total
Scenario A
Less than HS 50 40 10 0 100
HS Diploma 40 30 20 10 100
BA 10 20 30 40 100
BA+ 0 10 40 50 100
Total 100 100 100 100 400
Scenario B
Less than HS 40 30 20 10 100
HS Diploma 50 40 10 0 100
BA 0 10 40 50 100
BA+ 10 20 30 40 100

Total 100 100 100 100 400




Table 3: Maximum and Minimum Segregation Patterns

Neighborhood
1 2 3 4 Total
Scenario A
Less than HS 0 100 0 0 100
HS Diploma 100 0 0 0 100
BA 0 0 0 100 100
BA+ 0 0 100 0 100
Total 100 100 100 100 400
Scenario B
Less than HS 25 25 25 25 100
HS Diploma 25 25 25 25 100
BA 25 25 25 25 100
BA+ 25 25 25 25 100
Total 100 100 100 100 400
Scenario C
Less than HS 0 0 0 0 0
HS Diploma 100 100 0 0 200
BA 0 0 100 100 200
BA+ 0 0 0 0 0
Total 100 100 100 100 400




Table 4: Unordered Category Equivalence

Occupational Level

1 2 3 4 Total
Scenario A
White 10 20 30 40 100
Black 20 20 10 0 50
Hispanic 10 10 5 0 25
Total 40 50 45 40 175
Scenario B
White 10 20 30 40 100
Minority 30 30 15 0 75

Total 40 50 45 40 175




Table 5: Exchange Properties of Segregation

Occupational Level

1 2 3 4 Total
Scenario A
Male 10 20 30 40 100
Female 40 30 20 10 100
Total 50 50 50 50 200
Scenario B
Male 10 21 29 40 100
Female 40 29 21 10 100
Total 50 50 50 50 200
Scenario C
Male 11 20 29 40 100
Female 39 30 21 10 100
Total 50 50 50 50 200




Table 6: Scale Interpretability Example

Occupational Level

1 2 3 4 Total

Scenario A
Male 10 40 25 25 100
Female 40 10 25 25 100

Total 50 50 50 50 200




Table 7: Principle of Exchanges Example

Occupational Level

1 2 3 4 Total
Scenario A
Male 10 40 25 25 100
Female 40 10 25 25 100
Total 50 50 50 50 200
Scenario B
Male 9 41 25 25 100
Female 41 9 25 25 100
Total 50 50 50 50 200




Table 8: Measures of Ordinal Segregation

Two-Group
Ordinal Index Symbol Variation Formula Analog Weight
dinal Inf 1 v
Ordinal Information -
Theory Index HO v, = 1 Z [cilogz ¢j + (1= ¢j)log,(1 —¢f)] H v; = —[c;logs ¢ + (1 = ¢j) log,(1 — ¢;)]
j=1
dinal 4w
Ordinal Variation 0 _ Z (1 o
Ratio Index R L) £, ¢(1-¢) R v = 4ci(1—-¢)
]=
dinal 2
Ordinal Square 0 _ (1 _
Root Index S Vs =% _1 ' 1401(1 C]) S v =2 ’cj(l—cj)
J:
dinal Absol 1«
Ordinal Absolute 0 4 Z o
Difference Index D vp=1l-973 : 1|ZC] 1| none n/a
]=

Note: H is the Theil Information Theory Index (Theil, 1972, Theil and Finezza, 1971); R is the Relative Variation Index (which goes by many names in the
literature—see, e.g., James and Taeuber, 1985, Reardon and Firebaugh, 2002); S is Hutchens’ Square Root Index (Hutchens, 2001, Hutchens, 2004).



