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Practical Issues in Estimating Achievement Gaps from Coarsened Data 
 

Abstract 

Ho and Reardon (2012) present methods for estimating achievement gaps when test scores 

are coarsened into a small number of ordered categories, preventing fine-grained distinctions 

between individual scores. They demonstrate that gaps can nonetheless be estimated with minimal 

bias across a broad range of simulated and real coarsened data scenarios.  In this paper, we extend 

this previous work to obtain practical estimates of the imprecision imparted by the coarsening 

process and of the bias imparted by measurement error.  In the first part of the paper, we derive 

standard error estimates and demonstrate that coarsening leads to only very modest increases in 

standard errors under a wide range of conditions.  In the second part of the paper, we describe and 

evaluate a practical method for disattenuating gap estimates to account for bias due to 

measurement error.  



Introduction 

 Ho and Reardon (2012) consider the challenge of measuring the “achievement gap” 

between two population groups when achievement is reported in a small number of ordinal 

categories, rather than on a many-valued, more continuous scale.  Examples of such “coarsened” 

data include, for example, situations when we do not know students’ exact test scores, but instead 

know only in which of, say, four or five ordered proficiency levels their scores fall.  These levels may 

have descriptors similar to the National Assessment of Educational Progress (NAEP) achievement 

levels: “below basic,” “basic,” “proficient,” and “advanced,” or they may simply be numeric, as in the 

1 to 5 scale of the Advanced Placement examinations.  More generally, the problem Ho and Reardon 

consider is that of constructing a summary measure that describes the difference between two 

distributions measured on a common, continuous scale when only the coarsened data are available.  

In such cases, familiar measures for comparing two distributions, such as the standardized 

difference in means, are not available, because the means and standard deviations of the continuous 

distributions cannot be readily estimated from the observed data.  Coarse data scenarios are 

common beyond education as well, from political science, where opinions are routinely measured 

on ordered scales, to health, where Apgar scores, cancer stages, and health questionnaires, for 

example, all represent coarse measurement scales. 

To address this problem, Ho and Reardon (2012) propose an approach to constructing a 

readily interpretable measure of the difference in two distributions given only coarse ordinal data.  

In their approach, the target parameter for comparing two distributions of some random variable 𝑥𝑥 

is 𝑉𝑉, defined as a monotone transformation of 𝑃𝑃𝑎𝑎>𝑏𝑏, the probability that a randomly chosen 

observation from distribution 𝑎𝑎 has a higher value of 𝑥𝑥 than that of a randomly chosen observation 

from distribution 𝑏𝑏: 

𝑉𝑉 = √2Φ−1(𝑃𝑃𝑎𝑎>𝑏𝑏), 

(1) 
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where Φ−1 is the probit function, the inverse of the cumulative distribution function for the 

standard normal distribution.  The measure 𝑉𝑉 has several desirable features.  First, it is invariant 

under monotone transformations of 𝑥𝑥, because 𝑃𝑃𝑎𝑎>𝑏𝑏 depends only on the ordered nature of 𝑥𝑥.  

Second, if 𝑥𝑥 is normally distributed in both distributions, with equal or unequal variances, then 𝑉𝑉 is 

equal to 𝑑𝑑, the standardized mean difference between the two distributions.  That is,  

𝑉𝑉 = 𝑑𝑑 ≡
𝜇𝜇𝑎𝑎 − 𝜇𝜇𝑏𝑏
𝜎𝜎𝑝𝑝

, 

(2) 

where 𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑏𝑏 are the mean of the two groups’ distributions and 𝜎𝜎𝑝𝑝 ≡ �𝜎𝜎𝑎𝑎2+𝜎𝜎𝑏𝑏
2

2
 is the pooled 

standard deviation (Ho & Reardon, 2012). This connection between 𝑑𝑑 and 𝑉𝑉 supports an 

interpretation of 𝑉𝑉 as a transformation-invariant effect size.  As long as some transformation exists 

that renders 𝑥𝑥 normally distributed in both 𝑎𝑎 and 𝑏𝑏, an assumption known as “respective 

normality” (Ho & Haertel, 2006) or “binormality” (e.g., Green & Swets, 1966), 𝑉𝑉 will equal 𝑑𝑑 when 𝑑𝑑 

is estimated using those appropriately transformed scores.   

A third feature of 𝑉𝑉 that makes it particularly appealing is that it can be estimated quite 

accurately from highly coarsened data.  Ho and Reardon (2012) show that it is possible to recover 

unbiased estimates of 𝑉𝑉 from coarsened data, even when the observed data include only four 

ordered categories.  They also show that recovery of 𝑉𝑉 is robust under coarsened data scenarios 

even when the assumption of respective normality is violated.  In a different context, Hanley (1988) 

demonstrated a similar robustness of goodness of fit statistics to violations of the binormal 

assumption.  These features of 𝑉𝑉 are very useful, given the ubiquity of situations in the behavioral 

sciences in which underlying continuous data are recorded in small numbers of ordered categories.   

 Ho and Reardon (2012) do not, however, address two important issues in estimating 𝑉𝑉.  

First, they do not assess the sampling variance of estimates of 𝑉𝑉 (whether based on continuous or 

coarsened data), nor do they provide any method for constructing standard errors of such 
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estimates.  Standard errors are necessary for statistically warranted inferences regarding changes 

in 𝑉𝑉 over time and differences in 𝑉𝑉 between contexts or groups.  Second, Ho and Reardon (2012) do 

not address the potential implications of measurement error for the estimation of 𝑉𝑉.  Although 

measurement error will tend to attenuate 𝑉𝑉, classical approaches to correcting gaps for 

measurement error attenuation may not hold when the underlying metric is not assumed to 

possess defensible equal-interval properties. 

 In this paper, we build on the work of Ho and Reardon (2012) and address these two issues 

in turn.  First, we consider the sampling variance of estimates of 𝑉𝑉.  We begin this part of the paper 

by reviewing the formulae for the sampling variance of estimates of 𝑑𝑑 when the distributions are 

normal but when their variances must be estimated.  This provides a benchmark for assessing the 

relative magnitude of the sampling variance of 𝑉𝑉� .  We then describe, using simulations, the 

sampling variance of several estimators of 𝑉𝑉, including both those that require continuously-

measured test score data and those that require only coarsened data.  Building on the results of 

these simulations, we describe methods of computing standard errors of 𝑉𝑉� , and we describe the 

amount of precision that is lost in common coarsened data scenarios.  

In the second part of the paper, we evaluate methods for correcting gap estimates to take 

into account the attenuating influence of measurement error.  We review conventional methods for 

disattenuating standardized mean differences like 𝑑𝑑, then we extend this review to methods for 

disattenuating 𝑉𝑉 in full and coarsened data scenarios.  We assess the robustness of a simple 

disattenuation approach that requires only the reported reliabilities of the test, rather than raw or 

item-level data. 

In both parts of the paper, we relate the methods to features of tests and tested samples 

observed in practice.  In the first part, we review cut score locations in state test score distributions 

that we observe in practice.  This allows us to assess the increase in sampling variability for realistic 

data coarsening scenarios.  We find that the added imprecision is often small relative to the 
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sampling variability of estimators based on uncoarsened data.  In the second part, we review 

reliability coefficients from operational state testing programs to predict the amount of attenuation 

bias present in gap estimates and cross-test gap comparisons.  We intend for this balance of 

theoretical results with practical context to support not only the theoretical development of these 

procedures but also an understanding of the difference that they may make in practice.   

 

Notation and Definitions 

 Let 𝑥𝑥 be a continuous variable indicating a test score (or some other quantity of interest, 

though our concrete examples here focus on test scores). We have two population groups, denoted 

𝑎𝑎 and 𝑏𝑏.  Let 𝐹𝐹𝑎𝑎(𝑥𝑥) and 𝐹𝐹𝑏𝑏(𝑥𝑥) denote the cumulative distribution functions of 𝑥𝑥 in groups 𝑎𝑎 and 𝑏𝑏, 

respectively. In some of the discussion below we will consider 𝐾𝐾 ordered “threshold” values of 𝑥𝑥, 

denoted 𝑥𝑥1 < 𝑥𝑥2 < ⋯ < 𝑥𝑥𝐾𝐾.  We denote the proportion of cases in group 𝑔𝑔 ∈ {𝑎𝑎, 𝑏𝑏} with values of 

𝑥𝑥 ≤ 𝑥𝑥𝑘𝑘 as 𝑝𝑝𝑔𝑔𝑘𝑘 = 𝐹𝐹𝑔𝑔(𝑥𝑥𝑘𝑘).  We are interested in the “gap” in 𝑥𝑥 between groups 𝑎𝑎 and 𝑏𝑏.   By “gap” we 

mean a measure of the difference in central tendencies of the two distributions, expressed on a 

metric that is “standardized” in the sense that differences in central tendencies are expressed with 

respect to the spread of the distributions.   

First, we consider the case where 𝑥𝑥 is normally distributed within both groups 𝑎𝑎 and 𝑏𝑏 

(albeit with different means and standard deviations):  

𝑥𝑥|𝑎𝑎~𝑁𝑁(𝜇𝜇𝑎𝑎 ,𝜎𝜎𝑎𝑎2) 

𝑥𝑥|𝑏𝑏~𝑁𝑁�𝜇𝜇𝑏𝑏 ,𝜎𝜎𝑏𝑏2� . 

(3) 

In this case, 𝐹𝐹𝑎𝑎(𝑥𝑥) = Φ�𝑥𝑥−𝜇𝜇𝑎𝑎
𝜎𝜎𝑎𝑎

� and 𝐹𝐹𝑏𝑏(𝑥𝑥) = Φ�𝑥𝑥−𝜇𝜇𝑏𝑏
𝜎𝜎𝑏𝑏

�, where Φ is the cumulative standard normal 

distribution function. 

We define the pooled within-group standard deviation of 𝑥𝑥 as  
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𝜎𝜎𝑝𝑝 ≡ �𝜎𝜎𝑎𝑎
2 + 𝜎𝜎𝑏𝑏2

2
. 

(4) 

Second, we consider the case where the distributions of 𝑥𝑥 in groups 𝑎𝑎 and 𝑏𝑏 are not normal, 

but rather are respectively normal, meaning that there is some increasing monotonic function 𝑓𝑓 

such that 𝑥𝑥∗ = 𝑓𝑓(𝑥𝑥) is normally distributed within both 𝑎𝑎 and 𝑏𝑏: 

𝑥𝑥∗|𝑎𝑎~𝑁𝑁(𝜇𝜇𝑎𝑎∗ ,𝜎𝜎𝑎𝑎∗2) 

𝑥𝑥∗|𝑏𝑏~𝑁𝑁�𝜇𝜇𝑏𝑏∗ ,𝜎𝜎𝑏𝑏∗2�  

(5) 

In this case, 𝐹𝐹𝑎𝑎(𝑥𝑥) = Φ�𝑓𝑓(𝑥𝑥)−𝜇𝜇𝑎𝑎∗

𝜎𝜎𝑎𝑎∗
� and 𝐹𝐹𝑏𝑏(𝑥𝑥) = Φ�𝑓𝑓(𝑥𝑥)−𝜇𝜇𝑏𝑏

∗

𝜎𝜎𝑏𝑏
∗ �.  The pooled within-group standard 

deviation in the metric defined by 𝑓𝑓 is 

𝜎𝜎𝑝𝑝∗ ≡ �𝜎𝜎𝑎𝑎
∗2 + 𝜎𝜎𝑏𝑏∗2

2
. 

(6) 

Gap Measures 

A useful measure of the difference in central tendencies of two distributions relative to the 

spread of the distributions is Cohen’s 𝑑𝑑 (Cohen, 1988; Hedges & Olkin, 1985), the standardized 

difference in means between groups 𝑎𝑎 and 𝑏𝑏:  

𝑑𝑑 ≡
𝜇𝜇𝑎𝑎 − 𝜇𝜇𝑏𝑏
𝜎𝜎𝑝𝑝

. 

(2) 

  An alternate measure of the difference between two distributions is 𝑉𝑉 (Ho and Haertel, 

2006), defined as  

𝑉𝑉 ≡ √2Φ−1(𝑃𝑃𝑎𝑎>𝑏𝑏), 

(1) 
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where 𝑃𝑃𝑎𝑎>𝑏𝑏 = ∫ 𝐹𝐹𝑏𝑏�𝐹𝐹𝑎𝑎−1(𝑞𝑞)�1
0 𝑑𝑑𝑑𝑑 is the probability that a randomly chosen observation from group 

𝑎𝑎 has a value of 𝑥𝑥 higher than that of a randomly chosen member of group 𝑏𝑏.  An important 

property of 𝑉𝑉 is that, if 𝑥𝑥 is normally distributed in both groups 𝑎𝑎 and 𝑏𝑏, then 𝑉𝑉 = 𝑑𝑑 (Ho & Haertel, 

2006; Ho & Reardon, 2012).  However, a non-linear monotonic transformation of 𝑥𝑥 will, in general, 

alter 𝑑𝑑 but leave 𝑉𝑉 unchanged.  This is because 𝑉𝑉 depends only on the ordered ranking of 𝑥𝑥; 𝑑𝑑 

depends on the interval metric of 𝑥𝑥.  The metric-free nature of 𝑉𝑉 renders it a more robust measure 

of distributional differences than 𝑑𝑑.  If 𝑥𝑥 does not have a natural interval-scaled metric (or if it has 

one, but it is not expressed in that metric), 𝑑𝑑 will be dependent on the arbitrary metric in which 𝑥𝑥 is 

measured, but 𝑉𝑉 will not.  

 While both 𝑉𝑉 and 𝑑𝑑 can be easily estimated from continuous data, both can also be readily 

estimated from certain types of aggregate or coarsened data.  If we have estimates of the group-

specific means (denoted 𝜇̂𝜇𝑎𝑎 and 𝜇̂𝜇𝑏𝑏) and standard deviations (𝜎𝜎�𝑎𝑎 and 𝜎𝜎�𝑏𝑏), we can estimate 𝑑𝑑 by 

substituting these estimates into Equations (2) and (4) above.  If we have estimates of the 

proportions of each group that fall below a set of one or more threshold values of 𝑥𝑥 (denoted 

𝑝̂𝑝𝑎𝑎1, . . 𝑝̂𝑝𝑎𝑎𝐾𝐾 , 𝑝̂𝑝𝑏𝑏1, … , 𝑝̂𝑝𝑏𝑏𝐾𝐾), we can estimate 𝑉𝑉 using the methods described by Ho and Reardon (2012).  

 

Part 1: Sampling Variance of Gap Measure Estimates 

 In this section of this paper we 1) describe the sampling variance of a set of estimators of 𝑑𝑑 

and 𝑉𝑉; and 2) describe and evaluate methods for computing standard errors for their estimates.  

We first consider the sampling variance of estimators of 𝑑𝑑.   

Suppose we have a sample of size 𝑛𝑛, with 𝑛𝑛𝑎𝑎 cases drawn from group 𝑎𝑎 and 𝑛𝑛𝑏𝑏 cases drawn 

from group 𝑏𝑏, so that 𝑛𝑛 = 𝑛𝑛𝑎𝑎 + 𝑛𝑛𝑏𝑏 .  Let 𝑝𝑝 = 𝑛𝑛𝑎𝑎/𝑛𝑛 denote the proportion of cases from group 𝑎𝑎; let 

𝑟𝑟 = 𝜎𝜎𝑎𝑎2/𝜎𝜎𝑏𝑏2 denote the ratio of the population variances of 𝑥𝑥 in groups 𝑎𝑎 and 𝑏𝑏.  Let 𝜇̂𝜇𝑎𝑎 and 𝜇̂𝜇𝑏𝑏 be the 

sample means of 𝑥𝑥 in groups 𝑎𝑎 and 𝑏𝑏, and let 𝜎𝜎�𝑎𝑎 and 𝜎𝜎�𝑏𝑏 be the estimated standard deviations of 𝑥𝑥 in 

groups 𝑎𝑎 and 𝑏𝑏, respectively. 
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Parametric Estimators of 𝑑𝑑 

 If the pooled within-group standard deviation 𝜎𝜎𝑝𝑝 is known (rather than estimated from the 

sample), then we estimate 𝑑𝑑 with 

𝑑̂𝑑 =
𝜇̂𝜇𝑎𝑎 − 𝜇̂𝜇𝑏𝑏
𝜎𝜎𝑝𝑝

. 

(7) 

The sampling variance of this estimator will be 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� =
1
𝜎𝜎𝑝𝑝2

�
𝜎𝜎𝑎𝑎2

𝑛𝑛𝑎𝑎
+
𝜎𝜎𝑏𝑏2

𝑛𝑛𝑏𝑏
� =

2(𝑟𝑟 + 𝑝𝑝 − 𝑝𝑝𝑝𝑝)
𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)

. 

(8) 

Note that if 𝑟𝑟 = 1 or 𝑝𝑝 = 1
2
, Equation (8) simplifies to 𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� = 1

𝑛𝑛𝑛𝑛(1−𝑝𝑝).  Note also that the sampling 

variance in this case does not depend on the magnitude of 𝑑𝑑. 

 If the pooled standard deviation 𝜎𝜎𝑝𝑝 is not known, however, it must be estimated from the 

sample, which will add some additional sampling variance to the estimator.  Specifically, we show in 

Appendix A that if we estimate 𝑑𝑑 as the difference in estimated means divided by the estimated 

pooled within-group standard deviation, 

𝑑̂𝑑′ =
𝜇̂𝜇𝑎𝑎 − 𝜇̂𝜇𝑏𝑏
𝜎𝜎�𝑝𝑝

, 

(9) 

then the sampling variance of this estimator will be approximately 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑′� ≈ 𝜆𝜆 ∙ 𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑�, 

(10) 

where  

𝜆𝜆 = 1 +
𝑑𝑑2[𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2]

4(1 + 𝑟𝑟)[𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟] +
𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)2. 

(11) 
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Because 𝑟𝑟 ≥ 0 and 0 < 𝑝𝑝 < 1, it follows that 𝜆𝜆 > 1.  Note that, as 𝑛𝑛 get large, the third term in 

Equation (11) goes to zero, but the second term does not.  Note also that the second term depends 

on the size of the true gap, 𝑑𝑑.  When the true gap is large, the sampling variance inflation factor 

grows.  If 𝜎𝜎𝑎𝑎2 = 𝜎𝜎𝑏𝑏2 (so that 𝑟𝑟 = 1), then the sampling variance is simply 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑′� ≈ �1 +
𝑑𝑑2

8
+

1
8𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)� �

1
𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)�. 

(12) 

So, when 𝑟𝑟 = 1 and 𝑛𝑛 is moderately large, estimating 𝜎𝜎𝑝𝑝 increases the sampling variance by a factor 

of approximately �1 + 𝑑𝑑2

8
� (and so should increase the standard error by a factor of approximately 

�1 + 𝑑𝑑2

8
, where 𝑑𝑑 is the true value of Cohen’s 𝑑𝑑).  For 𝑑𝑑 = 1, for example, the standard error would 

increase by about 6% due to the estimation of the variances (because √1.125 = 1.061).  

A Non-Parametric Estimator of 𝑉𝑉 Using Continuous (Non-coarsened) Data 

When we observe non-coarsened values of 𝑥𝑥 for each of the 𝑛𝑛 cases in the sample, we can 

estimate 𝑉𝑉 non-parametrically, by first estimating 𝑃𝑃𝑎𝑎>𝑏𝑏.  This is done by constructing all possible 

pairs of observed values of 𝑥𝑥 {𝑥𝑥𝑎𝑎 ,𝑥𝑥𝑏𝑏} (where 𝑥𝑥𝑎𝑎 and 𝑥𝑥𝑏𝑏 here denote values of 𝑥𝑥 drawn from the 

observed samples from groups 𝑎𝑎 and 𝑏𝑏, respectively) and computing the proportion of pairs in 

which 𝑥𝑥𝑎𝑎 > 𝑥𝑥𝑏𝑏.  In the case where there are ties (cases where 𝑥𝑥𝑎𝑎 = 𝑥𝑥𝑏𝑏), we add half the proportion 

of cases in which 𝑥𝑥𝑎𝑎 = 𝑥𝑥𝑏𝑏: 

𝑃𝑃�𝑎𝑎>𝑏𝑏 =
1

𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
���𝐼𝐼[𝑥𝑥𝑎𝑎 > 𝑥𝑥𝑏𝑏] +

1
2
𝐼𝐼[𝑥𝑥𝑎𝑎 = 𝑥𝑥𝑏𝑏]�

𝑥𝑥𝑏𝑏𝑥𝑥𝑎𝑎

 

(13) 

We then construct a non-parametric estimate of 𝑉𝑉 as 

𝑉𝑉�𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = √2Φ−1�𝑃𝑃�𝑎𝑎>𝑏𝑏�. 

(14) 
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This is a non-parametric estimator of 𝑉𝑉 because it requires no distributional assumptions.  Mee 

(1990) and Brunner and Munzel (2000) provide formulae for computing confidence intervals of 

𝑃𝑃�𝑎𝑎>𝑏𝑏 ,1 as does Pepe (2003).  If the confidence interval of 𝑃𝑃�𝑎𝑎>𝑏𝑏 is denoted [𝐿𝐿𝑃𝑃� ,𝑈𝑈𝑃𝑃�], then we can 

construct confidence intervals of 𝑉𝑉�𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as 

�√2Φ−1(𝐿𝐿𝑃𝑃�),√2Φ−1(𝑈𝑈𝑃𝑃�)�. 

(15) 

Parametric Estimators of 𝑉𝑉 Using Continuous or Coarsened Data 

 Under the assumption that the two distributions are respectively normal (as defined in 

Equation 5 above), we can use methods described by Ho and Reardon (2012) to estimate 𝑉𝑉.  We 

focus here on three methods they describe, the “PTFIT” (“probit-transform-fit-inverse-transform”) 

method; the maximum likelihood “ROCFIT” method (which we refer to as the maximum likelihood 

(ML) method hereafter); and the “ADTPAC” (“average difference in transformed percentages-

above-cutscore”) method.  This third method is only appropriate under the additional assumption 

that the two distributions have equal variances in the metric in which they are both normal.  

Although Ho and Reardon describe these methods as applied to coarsened data, they can readily be 

applied to complete data (instead of having only a small number of ordered categories, we now 

have 𝑛𝑛 distinct categories, one for each observed test score value).  

 Ho and Reardon (2012) describe the ML, PTFIT, and ADTPAC methods; we provide only a 

quick summary here.  The key to each of these methods is the fact that a plot of Φ−1�𝐹𝐹𝑏𝑏(𝑥𝑥)� against 

Φ−1�𝐹𝐹𝑎𝑎(𝑥𝑥)� will be linear if 𝐹𝐹𝑎𝑎 and 𝐹𝐹𝑏𝑏 describe respectively normal distributions (Green & Swets, 

1966; Pepe, 2003).2  The line will have intercept 𝑛𝑛 = 𝜇𝜇𝑎𝑎∗−𝜇𝜇𝑏𝑏
∗

𝜎𝜎𝑏𝑏
∗  and slope 𝑚𝑚 = 𝜎𝜎𝑎𝑎∗

𝜎𝜎𝑏𝑏
∗, where 𝜇𝜇𝑎𝑎∗ , 𝜇𝜇𝑏𝑏∗ , 𝜎𝜎𝑎𝑎∗, and 

1 We thank an anonymous reviewer for pointing out these references. 

2 That is, if we took every possible value of 𝑥𝑥, and computed 𝛼𝛼𝑥𝑥 = Φ−1�𝐹𝐹𝑎𝑎(𝑥𝑥)� and 𝛽𝛽𝑥𝑥 = Φ−1�𝐹𝐹𝑏𝑏(𝑥𝑥)�, and then 

plotted the points (𝛼𝛼𝑥𝑥, 𝛽𝛽𝑥𝑥), the points would fall on a straight line. To see this, note that if the distributions are 
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𝜎𝜎𝑏𝑏∗ are the means and standard deviations of the distributions of 𝑥𝑥 in groups 𝑎𝑎 and 𝑏𝑏, respectively, 

in some metric in which the two distributions are both normal (see Equation(5)).  Note that the 

parameters 𝑚𝑚 and 𝑛𝑛 are invariant under any function 𝑓𝑓 that renders both distributions of 𝑥𝑥∗ normal 

(any function satisfying Equation (5)).  Because 𝑉𝑉 = 𝑑𝑑 when both distributions are normal, we have 

𝑉𝑉 = 𝑑𝑑 =
𝜇𝜇𝑎𝑎∗ − 𝜇𝜇𝑏𝑏∗

�𝜎𝜎𝑎𝑎
2∗ + 𝜎𝜎𝑏𝑏2∗

2

=
𝑛𝑛

�𝑚𝑚
2 + 1
2

. 

(16) 

Thus, estimating 𝑚𝑚 and 𝑛𝑛 is sufficient to estimate 𝑉𝑉.  Moreover, we do not need to identify the 

function 𝑓𝑓 to estimate 𝑚𝑚 and 𝑛𝑛.  

The ML method uses maximum likelihood to estimate the values of 𝑚𝑚 and 𝑛𝑛  that 

correspond to the distributions most likely to have given rise to the observed numbers of each 

group scoring below each of 𝐾𝐾 observed values (for detail on the ML estimation methods, see 

Dorfman & Alf, 1968, 1969; Pepe, 2003).  𝑉𝑉 is then computed from 𝑚𝑚�  and 𝑛𝑛� using Equation (16) (Ho 

& Reardon, 2012; Equation 12, p. 499).  Given the maximum likelihood estimates of 𝑉𝑉𝑉𝑉𝑉𝑉(𝑚𝑚�), 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛�), and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑚𝑚� ,𝑛𝑛�) (obtained from the observed Fisher information matrix), the sampling 

variance of 𝑉𝑉�𝑚𝑚𝑚𝑚 can be approximated (see Appendix B) as 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑉𝑉�𝑚𝑚𝑚𝑚� ≈
2

1 + 𝑚𝑚2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛�) +
2𝑛𝑛2𝑚𝑚2

(1 + 𝑚𝑚2)3 𝑉𝑉𝑉𝑉𝑉𝑉
(𝑚𝑚�) −

4𝑚𝑚𝑚𝑚
(1 + 𝑚𝑚2)2 𝐶𝐶𝐶𝐶𝐶𝐶

(𝑚𝑚� ,𝑛𝑛�). 

(17) 

The PTFIT method also relies on the respective normality assumption, and uses a weighted 

least squares regression approach to estimate 𝑚𝑚 and 𝑛𝑛 from the association between Φ−1�𝐹𝐹𝑏𝑏(𝑥𝑥)� 

and Φ−1�𝐹𝐹𝑎𝑎(𝑥𝑥)�.   The ADTPAC method is similar to the PTFIT method, but relies on a stronger 

respectively normal, then Φ�𝑥𝑥
∗−𝜇𝜇𝑎𝑎∗

𝜎𝜎𝑎𝑎∗
� = 𝐹𝐹𝑎𝑎(𝑥𝑥) and Φ�𝑥𝑥

∗−𝜇𝜇𝑏𝑏
∗

𝜎𝜎𝑏𝑏
∗ � = 𝐹𝐹𝑏𝑏(𝑥𝑥), which implies 𝛽𝛽𝑥𝑥 = �𝑥𝑥

∗−𝜇𝜇𝑏𝑏
∗

𝜎𝜎𝑏𝑏
∗ � = 𝜇𝜇𝑎𝑎∗−𝜇𝜇𝑏𝑏

∗

𝜎𝜎𝑏𝑏
∗ +

𝜎𝜎𝑎𝑎∗

𝜎𝜎𝑏𝑏
∗ �

𝑥𝑥∗−𝜇𝜇𝑎𝑎∗

𝜎𝜎𝑎𝑎∗
� = 𝜇𝜇𝑎𝑎∗−𝜇𝜇𝑏𝑏

∗

𝜎𝜎𝑏𝑏
∗ + 𝜎𝜎𝑎𝑎∗

𝜎𝜎𝑏𝑏
∗ 𝛼𝛼𝑥𝑥 . 
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assumption—that the two distributions are equivariant respectively normal (meaning they would 

have the same variance in the metric in which both were normal).  Relying on this assumption, the 

ADTPAC method estimates 𝑉𝑉 using the same approach as the PTFIT method, but does so under the 

constraint that the fitted line has a slope of 𝑚𝑚 = 1.  Because the PTFIT and ADTPAC methods do not 

produce estimates of the sampling covariance matrix of 𝑚𝑚�  and 𝑛𝑛�, however, we cannot use Equation 

(17) to compute the sampling variance of the 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 estimators.  We show below, 

however, that Equation (10) can be used to produce accurate standard errors for both estimators 

when they are used with continuous, non-coarsened data. 

Ho and Reardon (2012) showed that, under conditions of respective normality, both the ML 

and PTFIT methods produce unbiased estimates of 𝑉𝑉.  When the two distributions have equal 

variance in their normal metric, the ADTPAC method is also unbiased.  The PTFIT method, however, 

is computationally simpler (and considerably faster) to implement than the ML method, 

particularly when the scores are not highly coarsened.  We refer to the PTFIT estimator that uses 

complete data as 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ; we refer to the corresponding ML estimator that uses complete data as 

𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓;3 and we refer to the ADTPAC estimator that uses complete data as 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . 

Ho and Reardon (2012) describe an additional set of methods for estimating 𝑉𝑉 that do not 

require the assumption of respective normality.  These methods typically rely on some other 

parametric assumption (such as an assumption that the relationship between 𝐹𝐹𝑏𝑏(𝑥𝑥) and 𝐹𝐹𝑎𝑎(𝑥𝑥) can 

3 Note that in our simulations below we do not estimate 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  using the complete data, because it is 

computationally very intensive.  Rather, we coarsen the observed data into 20 ordered categories of equal 

size, and then estimate 𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (described below) from the sample counts in these 20 categories.  There is 

virtually no gain in precision by using more categories, but great loss in computational time, because the ML 

estimator must estimate 𝐾𝐾 + 1 parameters, where 𝐾𝐾 is the number of categories (𝐾𝐾 − 1 threshold scores, plus 

a parameter describing the difference in means and a parameter describing the ratio of the variances in the 

two distributions). 
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be described by a piecewise cubic function).  In general, Ho and Reardon found that these methods 

do not perform as well as the ML, PTFIT, and ADTPAC methods, even when the distributions are not 

respectively normal.  Moreover, examination of many real world test score distributions suggest 

that many distributions are sufficiently close to respectively normal that the ML, PTFIT, and 

ADTPAC methods are nearly unbiased.  As a result, we do not consider the other methods further in 

this paper. 

Sampling Variance of Estimators of 𝑉𝑉 Using Complete (Non-coarsened) Data 

 Because we do not have analytic methods of computing the sampling variances of all of the 

𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 estimators (specifically, we are not aware of formulae for computing the sampling variances 

of 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ), we examine their sampling variances using simulations.  In each simulation, 

we select values of 𝑉𝑉, 𝑟𝑟, and 𝑝𝑝, and then draw a sample of size 𝑛𝑛 = 2000 from a population in which 

𝑛𝑛𝑎𝑎 = 𝑝𝑝𝑝𝑝 cases are drawn from a normal distribution with mean 0 and variance 1, and in which 𝑛𝑛𝑏𝑏 =

(1 − 𝑝𝑝)𝑛𝑛 cases are drawn from a normal distribution with mean 𝑉𝑉[(1 + 𝑟𝑟)/2𝑟𝑟]1/2 and variance 1/

𝑟𝑟.4  We conduct simulations based on 100 different data generating models (corresponding to each 

possible combination of 𝑉𝑉, 𝑝𝑝 , and 𝑟𝑟, where 𝑉𝑉 ∈ {0, 0.5, 1.0, 1.5, 2.0}; 𝑝𝑝 ∈ {0.90, 0.75, 0.67, 0.50}; and 

𝑟𝑟 ∈ {0.67, 0.80, 1.0, 1.25, 1.5}).5  For each combination of 𝑉𝑉, 𝑝𝑝, and 𝑟𝑟, we draw 1000 samples, and 

then compute 𝑑̂𝑑′, 𝑉𝑉�𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑉𝑉�𝑚𝑚𝑚𝑚

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , and 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (the last we compute only when 𝑟𝑟 = 1).  We then 

examine the standard deviations of each of these estimators over the 1000 samples. 

Figure 1 about here 

 Figure 1 summarizes the results of these simulations.  Several things are notable about this 

figure.  First, the sampling standard deviations of the five estimators are virtually identical to each 

4 These parameters ensure that the true population gap is 𝑑𝑑 ≡ [𝑉𝑉[(1 + 𝑟𝑟)/2𝑟𝑟]1/2 − 0]/[(1 + 1/𝑟𝑟)/2]1/2 = 𝑉𝑉. 

5 For reference, note that NAEP data yield estimated values of black-white and Hispanic-white 𝑉𝑉 gaps ranging 

from roughly 0.25 to 1.0; the proportion black across states ranges from 2 to 68%; and the black/white 

variance ratio 𝑟𝑟 ranges from roughly 0.67 to 1.5. 
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other within each data generating scenario.  This suggests that we can use Equation (10) above, 

which describes the sampling variance of 𝑑̂𝑑′ as a function of 𝑑𝑑, 𝑝𝑝, 𝑟𝑟, and 𝑛𝑛, to compute approximate 

standard errors of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , and 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  as  

𝑠𝑠. 𝑒𝑒. �𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� = �𝜆̂𝜆 ∙
2(𝑟̂𝑟 + 𝑝𝑝 − 𝑝𝑝𝑟̂𝑟)

𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟̂𝑟) 

= ��1 +
𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2[𝑝𝑝 + (1 − 𝑝𝑝)𝑟̂𝑟2]

4(1 + 𝑟̂𝑟)[𝑝𝑝 + (1 − 𝑝𝑝)𝑟̂𝑟] +
𝑝𝑝 + (1 − 𝑝𝑝)𝑟̂𝑟2

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟̂𝑟)2�
2(𝑟̂𝑟 + 𝑝𝑝 − 𝑝𝑝𝑟̂𝑟)

𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟̂𝑟). 

 (18) 

Using Equation (18) to compute a standard error of 𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 requires an estimate of 𝑟𝑟 (𝑝𝑝 and 𝑛𝑛 are 

observed so need not be estimated).  The ML and PTFIT methods provide estimates of 𝑟𝑟; the 

ADTPAC method assumes 𝑟𝑟 = 1, so Equation (18) provides a method of obtaining standard errors 

of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , and 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 .  Note that Equation (17) provides an alternate standard error estimate 

for 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  

The second thing to note about Figure 1 is that the sampling variance of 𝑑̂𝑑′ and the 𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

estimators is smallest when 𝑝𝑝 = 0.5, 𝑟𝑟 = 1, and 𝑉𝑉 = 0.   The sampling variance is particularly 

sensitive to departures from 𝑝𝑝 = 0.5; as the group sample sizes grow more uneven, the sampling 

variance increases substantially. 

Sampling Variance of Estimators of 𝑉𝑉 Using Coarsened Data 

 When we have coarsened data, we can use the ML, PTFIT, and ADTPAC methods to estimate 

gaps, under the assumption that the distributions are respectively normal.  We refer to these 

estimators as 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Although these estimators will be unbiased under the 

assumption of respective normality, they may be substantially less efficient than the 𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

estimators, if the coarsening results in a significant loss of information.  As with the 𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

estimators, we can investigate the sampling variance of these estimators using simulations. 
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 We conduct simulations as above, but after drawing each sample we coarsen the data by 

computing the proportions of cases in each group that fall within each of four ordered categories.  

We define the categories such that, in the full population, the threshold values of 𝑥𝑥 defining these 

categories fall at three pre-specified percentiles.  We run simulations using 14 different sets of 

percentiles, ranging from widely-spaced (5th, 50th, and 95th percentiles) to narrowly spaced (45th, 

50th, and 55th percentiles), and including some sets that are centered on the 50th percentile and 

others that are all to one side of the median (e.g., 20th, 30th, and 40th percentiles). 

 The results of these simulations are shown in Table 1.  Each cell in Table 1 reports the ratio 

of the sampling standard deviation6 of 𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to that of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 under the same conditions (Table 1 

shows only sampling variation for 𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; the results are nearly identical for 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐).  

Values close to 1 indicate that the sampling variance of the estimates based on the coarsened data 

are not substantially different than that of the estimates based on the complete data: little 

information is lost from the coarsening in these cases.  Values much greater than 1 indicate that a 

great deal of precision is lost in the coarsening.  The rows are sorted, from lowest to highest, by the 

average value of the sampling variance ratio across the nine displayed scenarios. 

Table 1 about here 

 Table 1 shows that the sampling variance of 𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is minimized, relative to that of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

when the cutscores are placed near the 20th, 50th, and 80th percentiles of the unweighted 

combination of the two distributions.  The standard errors of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in this case are generally only 

3-7% larger than the standard errors of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, implying there is very little loss of information when 

6 We report ratios of standard deviations because these indicate the extent to which standard errors and 

confidence intervals will be inflated due to coarsening of the data.  The square of this ratio—the ratio of 

sampling variances—is a measure of relative efficiency, and can be interpreted as the proportion by which 

the sample size would need to be increased to offset the precision loss from coarsening.  

14 
 

                                                             



the scores are placed widely (but not too widely) and symmetrically.  We estimate gaps almost as 

precisely with coarsened data in such cases as we can with complete data.  Indeed, so long as the 

cutscores are placed relatively symmetrically and not extremely narrowly or extremely widely, the 

standard errors of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are generally less than 10% larger than those of 𝑉𝑉�𝑚𝑚𝑚𝑚

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  Cutscores at the 

10/50/90th percentiles, the 30/50/70th percentiles, the 10/40/70th percentiles, and even the 

5/40/75th percentiles all provide little loss of information.  However, when the cutscores become 

too close together and/or too far from symmetrical, the standard errors of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are significantly 

larger than those of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 

 Figure 2 shows the location of the percentiles of the high and low cutscores for state 

accountability tests over the years 1997-2011.  In the figure, the diamonds, squares, and triangles 

indicate the points that correspond to the simulations shown in Table 1.  Each small dot represents 

a state-grade-year-subject combination.  Every such combination for which we were able to obtain 

data is represented here (though we only show observations in which there were three cutscores; 

the patterns are similar when there are 2 or 4 cutscores).  As is evident in Figure 2, there are few 

cases in which the high and low percentiles are separated by fewer than 50 percentile points.  

There are, however, many cases in which one or the other of the cutscores is near the edge of the 

figure, meaning that there is at least one cutscore that provides little information (a category that 

has almost no one in it provides almost no information on the relative distributions).  Nonetheless, 

there are many cases in which the cutscores fall in ranges likely to lead to no more than a 10-20% 

increase in standard errors, relative to what we would find if we had access to full data. 

Figure 2 about here 

 Tables 2 and 3 present the results of several additional simulations.  Table 2 reports the 

sampling variability of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 under different sample sizes.  Table 2 illustrates that the sampling 

standard deviation of 𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is roughly proportional to 1/√𝑛𝑛, just as is that of Cohen’s 𝑑𝑑.  

Moreover, the relative loss of precision from the coarsening of the data is roughly the same, 
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regardless of sample size.   

 Table 3 reports the ratio of the sampling standard deviation of 𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐to that of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 when 

the coarsening uses different numbers of categories.  With six categories (5 cutscores), the 

coarsening of the data increases standard errors by only 2 percent, on average. With three 

categories (2 cutscores), the coarsening inflates the standard errors by roughly 10 percent.  

Although the precision of 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is greater when there are more categories, the estimator is 

surprisingly precise even when there are very few categories. Note that in these simulations we use 

evenly spaced cutscores.  As Table 1 shows, the precision will generally be less with less evenly 

spaced cutscores.    

Confidence Interval Coverage Rates 

 Above we have suggested a variety of methods of obtaining standard errors from the 

different estimators of 𝑉𝑉.  To review, when we have (non-coarsened) continuous test score data, we 

can compute confidence intervals for 𝑉𝑉�𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 using Equation (15).  For 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , and 𝑉𝑉�𝑚𝑚𝑚𝑚

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, the 

similarity of their sampling variances to that of 𝑑̂𝑑′ shown in Figure 1 suggests that we can compute 

their standard errors using Equation (18) (setting 𝑟̂𝑟 = 1 when using 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ).  Finally, for either 

continuous or coarsened data, standard errors for the maximum likelihood estimators 𝑉𝑉�𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 

𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 can be computed from Equation (17).   We have not identified methods of computing 

standard errors of the 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 estimators.7 

 In Table 4 we assess the accuracy of these different standard error estimation methods.  

Specifically, for each of the simulations used in Figure 1 and Tables 1-3, we construct a 95% 

confidence interval and then report the proportion of cases in which the true value of 𝑉𝑉 is contained 

7 In principle, Equation (17) could be used to compute standard errors for these estimators if the covariance 

matrix of 𝑚𝑚�  and 𝑛𝑛� were obtained.  However, we are not aware of a method to do so.  Moreover, given the 

adequacy of the 𝑉𝑉�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  estimator, there is little need to use the 𝑉𝑉�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  estimators.  
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in that interval.  As Table 4 illustrates, each of the methods of constructing standard errors and 

confidence intervals discussed above yields a coverage rate of almost exactly 95% over the range of 

simulations.  In more detailed analyses not shown here, we find the coverage rate appears constant 

across different values of the population parameters 𝑉𝑉, 𝑟𝑟, 𝑝𝑝, and 𝑛𝑛 and across different locations of 

the cutscores. 

Table 4 about here 

 

Part 2: Disattenuating 𝑽𝑽 for Measurement Error 

 Gap measures like 𝑑𝑑 and 𝑉𝑉 are expressed in terms of units of observed variation.  Observed 

variation is increased by measurement error, thus estimates of 𝑑𝑑 and 𝑉𝑉 will be biased toward zero 

when measurement error is present.  In this section, we review bias correction procedures for 𝑑𝑑 

and 𝑉𝑉 that allow gap expression in units of variation uninflated by measurement error.  These 

procedures are particularly important for gap comparisons where differences in measurement 

error may be confounded with differences in gaps.  We demonstrate that group-specific reliability 

coefficients and variances are necessary for exact corrections to 𝑑𝑑, and that exact corrections to 𝑉𝑉 

require the same parameters, except estimated on a scale where distributions are normal.  These 

values are rarely available in practice.  We show that a practical approximation using readily 

available reliability coefficients is generally sufficient for corrections to 𝑑𝑑 and 𝑉𝑉 alike.  

Reliability-based disattenuation of 𝑑𝑑 

We begin with some additional notation.  In this section of the paper, we consider 𝑥𝑥 to be an 

error-prone measure of some true score 𝑡𝑡 (i.e., 𝑥𝑥 = 𝑡𝑡 + 𝜖𝜖, where 𝜖𝜖 ⊥ 𝑡𝑡 and 𝐸𝐸[𝜖𝜖] = 0).  The reliability 

of 𝑥𝑥, which we denote as 𝜌𝜌, is defined as the ratio of true score variance, 𝜎𝜎𝑡𝑡2, to observed score 

variance, 𝜎𝜎2.  The standard deviation of true scores for group 𝑔𝑔 is 𝜎𝜎𝑡𝑡𝑔𝑔 = �𝜌𝜌𝑔𝑔𝜎𝜎𝑔𝑔, where 𝜌𝜌𝑔𝑔 = 𝜎𝜎𝑡𝑡𝑔𝑔
2 /𝜎𝜎𝑔𝑔2 

is the reliability of 𝑥𝑥 for group 𝑔𝑔.  Measurement error increases observed score standard deviations 

and biases effect size estimates like 𝑑𝑑 toward zero (e.g., Hedges & Olkin, 1985).  If the group-specific 
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reliabilities of 𝑥𝑥 in both group 𝑎𝑎 and 𝑏𝑏 are known, then, following Equation (2), 𝑑𝑑𝑥𝑥 can be 

disattenuated to express the gap in terms of pooled standard deviation units of the true score 𝑡𝑡:   

𝑑𝑑𝑡𝑡 =
𝜇𝜇𝑎𝑎 − 𝜇𝜇𝑏𝑏

�𝜎𝜎𝑡𝑡𝑎𝑎
2 + 𝜎𝜎𝑡𝑡𝑏𝑏

2

2

=
𝜇𝜇𝑎𝑎 − 𝜇𝜇𝑏𝑏

�𝜌𝜌𝑎𝑎𝜎𝜎𝑎𝑎
2 + 𝜌𝜌𝑏𝑏𝜎𝜎𝑏𝑏2

2

=
𝑑𝑑𝑥𝑥

�𝜎𝜎𝑎𝑎
2𝜌𝜌𝑎𝑎 + 𝜎𝜎𝑏𝑏2𝜌𝜌𝑏𝑏
𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑏𝑏2

=
𝑑𝑑𝑥𝑥

�𝑟𝑟𝜌𝜌𝑎𝑎 + 𝜌𝜌𝑏𝑏
𝑟𝑟 + 1

=
𝑑𝑑𝑥𝑥
�𝜌𝜌�

, 

(19) 

where 𝑟𝑟 = 𝜎𝜎𝑎𝑎2/𝜎𝜎𝑏𝑏2 is the ratio of the group-specific variances as above.  This shows that 𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑥𝑥 

differ by a constant, 1/�𝜌𝜌� , where 𝜌𝜌� is the weighted average of the reliabilities for groups 𝑎𝑎 and 𝑏𝑏, 

and the weights are proportional to the variances of 𝑥𝑥 for the two groups.  In short, accurate 

disattenuation of 𝑑𝑑𝑥𝑥 requires group-specific reliabilities and the ratio of group-specific variances.   

Practical approximations for 𝜌𝜌� 

 Approximations for 𝜌𝜌� are necessary when any of 𝑟𝑟, 𝜌𝜌𝑎𝑎, or 𝜌𝜌𝑏𝑏 are unavailable.  Group-specific 

variances are reported rarely in publicly available documentation (Center on Education Policy, 

2007), thus 𝑟𝑟 will generally not be available.  In contrast, reliability estimates for large-scale 

educational tests are generally reported in accordance with professional standards (AERA, APA, & 

NCME, 1999), for all students (𝜌𝜌) and sometimes for specific groups (𝜌𝜌𝑔𝑔).  However, as we show 

below, 𝜌̅𝜌, the average of 𝜌𝜌𝑎𝑎 and 𝜌𝜌𝑏𝑏, is generally sufficient when 𝑟𝑟 is unavailable, and 𝜌𝜌 is generally 

sufficient when 𝜌𝜌𝑔𝑔 are unavailable.   

 If we disattenuated 𝑑𝑑𝑥𝑥 using 𝜌̅𝜌 rather than 𝜌𝜌� in Equation (19), 𝑑𝑑𝑡𝑡 will be incorrect by a factor 

of �𝜌𝜌� 𝜌̅𝜌⁄ . This ratio is a function of 𝑟𝑟 and the difference in the group-specific reliabilities, 𝜌𝜌𝑎𝑎 and 𝜌𝜌𝑏𝑏.  

Note that 

𝜌𝜌�
𝜌̅𝜌

= 1 +
(𝑟𝑟 − 1)
(𝑟𝑟 + 1) ∙

(𝜌𝜌𝑎𝑎 − 𝜌𝜌𝑏𝑏)
(𝜌𝜌𝑎𝑎 + 𝜌𝜌𝑏𝑏). 

(20) 

Thus, if either group-specific variances are approximately equal across groups (𝑟𝑟 ≈ 1) or 

group-specific reliabilities are approximately equal across groups (𝜌𝜌𝑎𝑎 ≈ 𝜌𝜌𝑏𝑏), then the average 
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reliability will approximately equal the variance-weighted average reliability (𝜌𝜌�/𝜌̅𝜌  ≈ 1).  Both 

assumptions tend to hold in practice.  In the case of group-specific variance ratios, note that state-

level NAEP ratios of the variance of Black or Hispanic test scores to White test scores since the 2003 

administration have averaged 1.10 and 1.14 for Black-White and Hispanic-White ratios, 

respectively.  Only 2.5 percent (51 of 2,040 computed variance ratios) are greater than 1.5 or less 

than 0.67.8   In the case of group-specific reliability differences, Figure 3 shows that they are similar 

on average.  To construct Figure 3, we gathered publicly available group-specific reliability 

statistics9 from technical manuals for state testing programs, from 38 states, grades 3-8, 

mathematics and reading/English language arts, for all students, White students, Black students, 

and Hispanic students, from 2009 to 2012.  Figure 3 shows the distribution of 1,438 available 

reliability coefficients from the 38 states, 6 grades, 2 subjects, 4 groups, and 4 years.  We do not 

review further details of this data collection process for space considerations and because the 

relevant results have straightforward implications.  Average group-specific reliabilities are very 

similar, with average White, Hispanic, and Black reliabilities of .895, .897, and .899, respectively.  

The reliability for all students was slightly higher on average at .903, but the magnitude of average 

differences is trivial. 

The embedded table in Figure 3 shows standard deviations of the pairwise differences in 

group-specific reliabilities above the diagonal.  These standard deviations are never greater than 

0.02.  At least in the case of tests like these, then, any two group-specific reliabilities that might be 

used to disattenuate a gap are unlikely to differ by more than 0.04 (two standard deviations).   

8 Authors’ calculations from Main NAEP data available from the NAEP Data Explorer, available at 

http://nces.ed.gov/nationsreportcard/naepdata/.  

9 Almost all states reported classical, internal consistency-type reliability statistics like Cronbach’s alpha and, 

rarely, stratified alpha.  A few states reported marginal reliabilities estimated from Item Response Theory 

models.   
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Returning to Equation (20), even with a variance ratio 𝑟𝑟 = 1.5, and even if group reliabilities differ 

by as much as 𝜌𝜌𝑎𝑎 − 𝜌𝜌𝑏𝑏 = 0.10, the ratio �𝜌𝜌�/𝜌̅𝜌 < 1.01 unless 𝜌̅𝜌 < 0.5, which does not occur in our 

dataset.  Thus, although 𝜌𝜌� is ideal, 𝜌̅𝜌 will be a very close approximation for the purpose of 

disattenuating 𝑑𝑑.   

Finally, Figure 3 suggests that, when group-specific reliabilities (𝜌𝜌𝑔𝑔) are not available, using 

the reliability for all students (𝜌𝜌) will also be a reasonable approximation.  Given that average 

reliabilities are about 0.90, and that the standard deviation of differences between group-specific 

and total reliabilities is less than 0.02 (implying that the standard deviation of differences between 

𝜌̅𝜌 and 𝜌𝜌 will also typically be less than 0.02), the ratio �𝜌̅𝜌/𝜌𝜌 will typically be between 0.98 and 1.02.  

That is, using 𝜌𝜌 in place of 𝜌̅𝜌 in Equation (19) will change 𝑑𝑑𝑡𝑡 by less than 2%.  Certainly, group-

specific variances may differ, reliabilities may be lower, or differences between group-specific and 

overall reliabilities may be larger in other contexts.  However, for situations with variance ratios 

and reliabilities in the ranges we show here, 𝑑𝑑𝑡𝑡 is unlikely to differ by more than 3% whether 

corrected by 𝜌𝜌� or by approximations necessitated by limited data (𝜌̅𝜌 when missing 𝑟𝑟; 𝜌𝜌 when 

missing 𝜌𝜌𝑔𝑔).  

Reliability-based disattenuation of 𝑉𝑉 

The interpretation of 𝑉𝑉 as a quasi-effect size relies upon pooled standard deviation units of 

normal distributions as a basis, even though the distributions themselves need only be respectively 

normal.  Reliability-based correction (attenuation) of these pooled standard deviation units is 

strictly appropriate only when the reliability coefficient is applicable to the metric in which the 

distributions are normal.  Reported reliability coefficients may apply to the normal metric if group-

specific distributions are in fact normal, however, test-score distributions are rarely normal in 

practice (Ho & Yu, in press; Micceri, 1989).  The practical problem for disattenuating 𝑉𝑉 can 

therefore be summarized as having access to reliability and variances in the observed metric but 

requiring reliability and variances applicable to the scale in which distributions are normal.  
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Following our notation above, we denote parameters for this normal metric with an asterisk—the 

ratio of group-specific variances (𝑟𝑟∗), the group-specific reliabilities (𝜌𝜌𝑎𝑎∗  and 𝜌𝜌𝑏𝑏∗), the variance-

weighted average reliability (𝜌𝜌�∗), and average and overall approximations (𝜌̅𝜌∗ and 𝜌𝜌∗)—all derived 

from variances applicable to the scale in which distributions are normal.  Following Equation (19) 

and our argument from the previous section: 

𝜌𝜌�∗ =
𝜎𝜎𝑎𝑎∗2𝜌𝜌𝑎𝑎∗ + 𝜎𝜎𝑏𝑏∗2𝜌𝜌𝑏𝑏∗

𝜎𝜎𝑎𝑎∗2 + 𝜎𝜎𝑏𝑏∗2
=
𝑟𝑟∗𝜌𝜌𝑎𝑎∗ + 𝜌𝜌𝑏𝑏∗

𝑟𝑟∗ + 1
≈ 𝜌̅𝜌∗ ≈ 𝜌𝜌∗ 

(21) 

Given these parameters, we can disattenuate 𝑉𝑉 directly as we would 𝑑𝑑: 

𝑉𝑉𝑡𝑡 =
𝑉𝑉𝑥𝑥
�𝜌𝜌�∗

≈
𝑉𝑉𝑥𝑥
�𝜌̅𝜌∗

≈
𝑉𝑉𝑥𝑥
�𝜌𝜌∗

. 

(22) 

It is not standard practice to report variance ratios or reliabilities in the metric in which 

distributions are normal, however.  Practical disattenuation of 𝑉𝑉 hinges upon how well available 

estimates of reliability parameters like 𝜌𝜌 can approximate the desired reliability parameter in the 

normal metric, 𝜌𝜌∗.   We address this generally by taking advantage of the definition of reliability as 

an expected correlation between strictly parallel tests (Haertel, 2006).  Because reliability is a 

correlation, and correlations vary under transformations of variables, we can use the robustness of 

correlations to transformations to indicate the robustness of reliability to transformations.   

Our strategy is to consider the case where we know the reliability 𝜌𝜌 of a variable 𝑥𝑥 when 𝑥𝑥 is 

expressed in a metric in which it is not normally distributed and where we know the function 𝑓𝑓 that 

will render the distribution of 𝑥𝑥∗ = 𝑓𝑓(𝑥𝑥) normal.  In particular, we consider the case where 𝑥𝑥 has a 

generalized log-normal distribution such that  

𝑥𝑥 = 𝑓𝑓−1(𝑥𝑥∗) = 𝑎𝑎 + 𝑏𝑏𝑒𝑒𝑐𝑐𝑥𝑥∗ , 

or, equivalently, 
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𝑥𝑥∗ = 𝑓𝑓(𝑥𝑥) =
1
𝑐𝑐

ln �
𝑥𝑥 − 𝑎𝑎
𝑏𝑏

� 

(23) 

The generalized log-normal distribution is useful because it can approximate a wide range of 

distributions of varying degrees of skewness and is mathematically tractable for our purposes here.  

Without loss of generality, if 𝑥𝑥∗~𝑁𝑁(0,1), we can set  

𝑎𝑎 = −�𝑒𝑒𝑐𝑐2 − 1�
−12 

𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)�𝑒𝑒2𝑐𝑐2 − 𝑒𝑒𝑐𝑐2�
−12. 

(24) 

These constraints will result in 𝑥𝑥 having a standardized (mean 0, variance 1) log-normal 

distribution with skewness, 𝛾𝛾 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)�𝑒𝑒𝑐𝑐2 + 2��𝑒𝑒𝑐𝑐2 − 1), that is determined by the parameter 𝑐𝑐. 

We use Figure 4 to illustrate a particularly extreme distribution from this family, using 𝑐𝑐 =

0.55, which corresponds to a skewness of 𝛾𝛾 = 2.  Ho and Yu (in press) find that skewness statistics 

for state-level test-score distributions rarely exceed ±0.5 and almost never exceed ±2.0 (only 2 of 

their 330 publicly available scale score distributions have skewness exceeding 2.0), thus this 

represents an extremely skewed distribution by the standards of state tests. 

Figure 4 shows an observed correlation of 0.8, corresponding to a fairly low observed 

reliability parameter 𝜌𝜌.  When 𝑓𝑓 is a logarithmic transformation of the type in Equation (23), we can 

derive the relationship between correlations on the scale of 𝑥𝑥 (𝜌𝜌) and correlations on the scale of 𝑥𝑥∗ 

(𝜌𝜌∗) in closed form: 

𝜌𝜌∗ =
ln�𝜌𝜌�𝑒𝑒𝑐𝑐2 − 1� + 1�

𝑐𝑐2
. 

(25) 

Table 5 shows the theoretical relationship between reliabilities from distributions with a 

normalizing transformation 𝑓𝑓 and reliabilities after the scales have been normalized.  The 
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reliabilities on the normalized scale, 𝜌𝜌∗, are always higher, however, the differences are small.  

Using 𝜌𝜌 instead of 𝜌𝜌∗ will underestimate the desired reliability, 𝜌𝜌∗, and overestimate the corrected 

gap, 𝑉𝑉𝑡𝑡.  For the difference to amount to even 1% of the gap, Table 5 shows test score distributions 

must be extremely skewed, and reliabilities must be low.  We conclude that, for practical purposes, 

disattenuating 𝑉𝑉 using generally available reliability coefficients, 𝜌𝜌, instead of reliability coefficients 

for normalized scales, 𝜌𝜌∗, is not consequential unless there is evidence that reliabilities are low and 

test score distributions are heavily skewed.  In these rare cases, we may expect that disattenuated 𝑉𝑉 

gaps will be slightly overcorrected.  

Alternative approaches to disattenuating 𝑉𝑉 

 There are three alternative approaches to disattenuating 𝑉𝑉 that may be appropriate in 

particular scenarios.  First, a number of methods exist for estimating reliability in an ordinal 

framework, where the impact of transformations on reliability may be lessened or negated.  Lord 

and Novick (1968) describe an ordinal reliability estimation procedure using pairwise Spearman 

rank correlations among split-half test scores.  For ordinal item scales, a number of robust 

procedures have been proposed (Wilcox, 1992; Zimmerman, Zumbo, & Lalonde, 1993; Zumbo, 

Gadermann, & Zeisser, 2007).  These procedures are compelling theoretically but impractical in our 

coarsened data scenarios, wherein means and standard deviations are generally unavailable, let 

alone individual scores and item-response data. 

  Second, when full score distributions are available, we can shrink individual scores toward 

respective group means in accordance with their unreliability.  For example, for group 𝑔𝑔, the 

shrunken test scores will be: 

𝑥𝑥� = �𝜌𝜌𝑔𝑔�𝑥𝑥 − 𝜇𝜇𝑔𝑔� + 𝜇𝜇𝑔𝑔 = ��𝜌𝜌𝑔𝑔�𝑥𝑥 + �1 −�𝜌𝜌𝑔𝑔�𝜇𝜇𝑔𝑔. 

(26) 
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 Following this shrinkage,10 calculation of measures like 𝑉𝑉 can proceed.  Reardon and 

Galindo (2009) take this approach in their measurement of Hispanic-White test score gaps.  Again, 

individual scores are generally not available in the coarsened data scenario that motivates this 

paper, thus we do not consider this further. 

 Third, one could apply a reliability adjustment directly to individual cumulative 

proportions, 𝑝𝑝𝑔𝑔𝑘𝑘, for each group 𝑔𝑔, assuming that the cumulative proportions arise from a normal 

distribution.  If 𝜌𝜌𝑔𝑔∗  is the reliability in the normalized metric, then the corrected cumulative 

proportion below a cut score 𝑘𝑘 is 

𝑝̂𝑝𝑔𝑔𝑘𝑘 = Φ�Φ−1�𝑝𝑝𝑔𝑔𝑘𝑘�/�𝜌𝜌𝑔𝑔∗�. 

(27) 

 After this adjustment, 𝑉𝑉 can be estimated from the 𝑝̂𝑝𝑔𝑔𝑘𝑘’s.  A small complication arises when 

certain estimation procedures require count data (e.g., ML, though not PTFIT), as the adjustment in 

Equation (27) will ultimately require rounding.  We find it simpler to disattenuate 𝑉𝑉 directly, 

following Equation (22).   

 

Conclusion 

 As Ho and Reardon (2012) argued, coarsened data may challenge, but does not prevent, the 

estimation of achievement gaps .  They show that is possible to obtain unbiased estimates of gaps 

under a wide range of conditions; even substantial violations of the respective normality 

assumption do not lead to large biases in gap estimates.  In practice, however, one might imagine 

that the sampling variance of gap estimates based on coarsened data is so large as to render the 

10 We note that this correction differs from a similar, well known correction proposed by Kelley (1947). The 

Kelley shrinkage estimate supports prediction of individual true scores, whereas Equation (26) allows the 

variance of 𝑥𝑥� to equal the variance of the true scores.   
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estimates largely useless in practical applications.  Likewise, if the measurement error-induced 

attenuation bias in coarsened gap estimates were large and/or unpredictable in magnitude, one 

might worry about comparing gap estimates across tests with different and unknown measurement 

error properties. 

Our analyses here suggest, however, that these concerns will be largely unfounded in a wide 

range of practical data applications.  With regard to the sampling variance of the 𝑉𝑉�  estimators, three 

results here are noteworthy. First, under conditions of respective normality, the sampling variance 

of the estimators of the 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 estimators is essentially identical to the sampling variance of the more 

conventional Cohen’s 𝑑𝑑 estimator, despite the fact that 𝑉𝑉 does not rely on the interval properties of 

the test metric.  Second, the sampling variance of estimators of 𝑉𝑉 based on coarsened data will often 

be only slightly larger than that of the 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 estimators.  Estimates of 𝑉𝑉 derived from highly 

coarsened data can be nearly as precise as conventional Cohen’s 𝑑𝑑 estimators (which rely on 

sample means and standard deviations) and as 𝑉𝑉 estimates based on full information (which rely 

on individual rank information).  Third, we provide formulas for computing standard errors and 

confidence intervals for many of the 𝑉𝑉 estimators, and we show that these formulas provide 

accurate confidence interval coverages.  In wide range of scenarios, then, it is possible to recover 

unbiased and reasonably precise estimates of gaps and their standard errors, even when the data 

are highly coarsened.  

The relative precision of the 𝑉𝑉�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 estimators may be somewhat surprising.  After all, 

coarsening a continuous test score into four ordered categories represents a potentially substantial 

loss of information regarding individual scores.  Nonetheless, so long as the thresholds used to 

coarsen the data are not very closely or very asymmetrically located, the coarsening results in very 

little loss of precision in 𝑉𝑉�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 relative to 𝑉𝑉�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  This results from the fact that estimating 𝑉𝑉 is 

equivalent to computing the area under a monotonic curve fitted to the points representing the 

paired cumulative proportions of each group below each threshold (Ho & Reardon, 2012).  Given 
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the constraint that this curve must go through the origin and the point (1,1), sampling variability in 

the paired cumulative proportions will result in little sampling variance in the estimated error 

under the curve so long as the paired proportions are not tightly clustered in one part of the curve.  

As a result, estimates of 𝑉𝑉 based on coarsened data are surprisingly precise under a wide range of 

coarsening conditions.  

 With regard to the effects of measurement error on estimates of 𝑉𝑉, we show that an easily 

applied measurement error bias correction of 1/�𝜌𝜌 can provide accurate disattenuation over a 

wide range of common data scenarios.  Although the exact disattenuation factor , 1/�𝜌𝜌�∗, requires 

the analyst to know group-specific reliabilities and variance ratios in the metric in which 

distributions are normal, we demonstrate that 1) average reliabilities often closely approximate 

variance-weighted reliabilities (𝜌̅𝜌 ≈ 𝜌𝜌�), 2) overall reliabilities often approximate average 

reliabilities (𝜌𝜌 ≈ 𝜌̅𝜌), and 3) reliabilities are robust to transformations (𝜌𝜌 ≈ 𝜌𝜌∗).  Unless there is 

some combination of low reliabilities, differing group-specific reliabilities and variances, and 

extremely non-normal distributions, the approximate correction factor of 1/�𝜌𝜌 will provide quite 

accurate disattenuation of gaps.  

These findings are useful given the importance of disattenuation for comparing gaps across 

tests with different reliabilities.  One example of this is gap comparison from state tests to NAEP, 

where NAEP explicitly incorporates item sampling into its estimates of standard deviations 

(Mislevy, Johnson, & Muraki, 1992).  Without correction, all else equal, we expect NAEP gaps to be 

larger due to their correction for measurement error.  Nonetheless, corrections for measurement 

error are generally incomplete.  Most reliability estimates are internal consistency measures like 

Cronbach’s alpha, where only measurement error due to item sampling is incorporated.  Large-

scale testing programs rarely include other sources of measurement error, such as replications over 

occasions or raters.  To the degree that these sources of error, such as those from occasions or 

raters, are dramatically different across tests, comparisons may be further biased.  Models for these 
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sources of error, such as those offered by generalizability theory (e.g., Brennan, 2001) can help to 

disattenuate and compare gaps to account for these additional sources of error.  

Together, our findings suggest that issues of sampling variance and measurement error 

pose no more significant barrier to the estimation of 𝑉𝑉 than they do to more conventional gap 

measures.  This is not to say that there are not cases where estimation of 𝑉𝑉 is problematic, of 

course.  But the conditions under which sampling variance and measurement error become 

worrisome—when the thresholds defining the coarsening are too close together or when group 

reliabilities are very low and differ substantially from each other—do not appear with any 

frequency in the standardized test score data we examined.  Certainly analysts should be cautious 

in applying these methods, and we have identified the situations that should cause the most 

concern.  However, our results also suggest that sampling variance inflation is low and 

measurement error corrections are appropriate under a wide range of conditions common in the 

analysis of educational achievement gaps.    
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Figure 1 
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Figure 2.  Locations of high and low cut scores from a sample of state accountability tests, 1997-

2011. 
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Figure 3.  Distribution of reported group-specific reliability statistics for White, Black and Hispanic 

students on state accountability tests, from 38 states, grades 3-8, mathematics and English language 

arts, 2009-2012 (n=4240).  Embedded table shows pairwise correlations below the diagonal and 

standard deviations of pairwise differences above the diagonal. 

 

  All White Black Hispanic 
All   0.017 0.015 0.015 
White 0.918   0.014 0.020 
Black 0.800 0.760   0.014 
Hispanic 0.875 0.875 0.877   
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Figure 4. An illustration of reliability of 0.80 for a standardized log normal test score distribution 

(skewness = 2) that is normalizable by a function 𝑓𝑓 (see Equation 23 in text) with a skew-correcting 

factor of 𝑐𝑐 = 0.55.     

 

Notes: Scatterplot shows a random draw of 𝑛𝑛 = 1000 from the joint distribution.  Population 
reliability following normalization is 0.823.  
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Table 1 

   

gap=0 gap=0.5 gap=1 gap=0 gap=0.5 gap=1 gap=0 gap=0.5 gap=1
Variance Ratio = 0.80

(20/50/80) 1.06 1.07 1.08 1.07 1.06 1.06 1.06 1.05 1.06 1.06
(10/40/70) 1.09 1.09 1.07 1.08 1.08 1.08 1.08 1.08 1.06 1.08
(10/50/90) 1.06 1.10 1.10 1.07 1.06 1.09 1.06 1.08 1.09 1.08
(30/50/70) 1.08 1.09 1.11 1.09 1.08 1.09 1.10 1.05 1.07 1.08
(5/40/75) 1.11 1.09 1.07 1.08 1.09 1.09 1.07 1.09 1.08 1.09
(20/40/60) 1.12 1.12 1.10 1.10 1.12 1.12 1.12 1.12 1.11 1.11
(5/50/95) 1.13 1.14 1.16 1.09 1.12 1.16 1.10 1.12 1.18 1.13
(40/50/60) 1.15 1.15 1.13 1.12 1.13 1.14 1.15 1.15 1.15 1.14
(5/30/55) 1.17 1.20 1.17 1.16 1.16 1.13 1.17 1.17 1.14 1.16
(45/50/55) 1.20 1.22 1.18 1.17 1.17 1.17 1.18 1.20 1.20 1.19
(10/30/50) 1.24 1.24 1.24 1.21 1.22 1.22 1.21 1.23 1.24 1.23
(35/40/45) 1.40 1.40 1.40 1.38 1.34 1.34 1.37 1.38 1.40 1.38
(20/30/40) 1.57 1.49 1.49 1.47 1.45 1.47 1.48 1.55 1.52 1.50
(25/30/35) 2.00 1.95 1.88 1.87 1.88 1.89 1.89 1.95 2.04 1.93

Variance Ratio = 1.00
(20/50/80) 1.05 1.06 1.07 1.05 1.04 1.05 1.08 1.07 1.05 1.06
(10/40/70) 1.10 1.07 1.07 1.08 1.08 1.06 1.07 1.07 1.06 1.07
(10/50/90) 1.08 1.08 1.09 1.08 1.07 1.05 1.07 1.08 1.07 1.07
(30/50/70) 1.10 1.08 1.11 1.07 1.09 1.08 1.07 1.07 1.06 1.08
(5/40/75) 1.09 1.08 1.09 1.07 1.07 1.08 1.08 1.07 1.10 1.08
(20/40/60) 1.12 1.12 1.12 1.10 1.12 1.09 1.11 1.13 1.09 1.11
(5/50/95) 1.13 1.09 1.14 1.11 1.12 1.13 1.10 1.10 1.15 1.12
(40/50/60) 1.16 1.13 1.14 1.13 1.13 1.11 1.13 1.14 1.12 1.13
(5/30/55) 1.18 1.15 1.19 1.18 1.16 1.14 1.14 1.17 1.15 1.16
(45/50/55) 1.22 1.17 1.18 1.18 1.17 1.16 1.18 1.17 1.16 1.18
(10/30/50) 1.25 1.20 1.21 1.22 1.20 1.19 1.24 1.21 1.22 1.22
(35/40/45) 1.45 1.39 1.40 1.39 1.39 1.40 1.41 1.39 1.41 1.40
(20/30/40) 1.58 1.49 1.47 1.50 1.49 1.52 1.53 1.49 1.54 1.51
(25/30/35) 1.93 1.91 1.89 1.89 1.81 1.93 1.92 1.91 1.99 1.91

Variance Ratio = 1.25
(20/50/80) 1.07 1.04 1.08 1.05 1.07 1.07 1.06 1.05 1.07 1.06
(10/40/70) 1.07 1.06 1.08 1.08 1.09 1.06 1.08 1.09 1.09 1.08
(30/50/70) 1.09 1.08 1.08 1.10 1.10 1.06 1.10 1.06 1.07 1.08
(5/40/75) 1.06 1.08 1.10 1.06 1.10 1.09 1.09 1.08 1.09 1.08
(10/50/90) 1.08 1.08 1.10 1.08 1.10 1.08 1.10 1.08 1.07 1.09
(20/40/60) 1.11 1.10 1.14 1.11 1.12 1.11 1.11 1.11 1.15 1.12
(5/50/95) 1.15 1.13 1.16 1.13 1.15 1.12 1.14 1.12 1.12 1.14
(40/50/60) 1.17 1.14 1.15 1.14 1.16 1.12 1.16 1.13 1.13 1.14
(5/30/55) 1.15 1.19 1.17 1.15 1.18 1.22 1.19 1.15 1.12 1.17
(45/50/55) 1.21 1.19 1.20 1.18 1.22 1.14 1.19 1.17 1.19 1.19
(10/30/50) 1.25 1.22 1.25 1.22 1.26 1.20 1.23 1.22 1.25 1.23
(35/40/45) 1.41 1.40 1.49 1.36 1.42 1.39 1.38 1.40 1.45 1.41
(20/30/40) 1.48 1.48 1.53 1.48 1.55 1.47 1.51 1.52 1.53 1.51
(25/30/35) 1.82 1.86 2.01 1.87 1.98 1.88 1.88 1.95 2.01 1.92

Notes: Sampling standard deviations are computed based on 1000 replications.  Each replication includes 2000 observations.  The sample ratio is the ratio of the 
number of observations of group B to those of group A, where A is the higher scoring group.  The variance ratio is the ratio of the variance of the test score 
distribution of group B to that of group A.  The cut scores are located at the percentiles of combined test score distribution of groups A and B, in a population in 
which A and B are equal size. 

Ratio of Sampling Standard Deviation of Maximum Likelihood V  Estimate From Coarsened Data to Maximum Likelihood V  Estimate From 
Full Data, by Variance Ratio (r ), Location of Cut Points, Proportion of Sample in One Group (p ), and Size of True Gap

Variance Ratio and 
Location of Cut Points

Sample Ratio and Size of True Gap
Average 
SD Ratio

ratio = 10:90 ratio = 25:75 ratio=50:50
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Table 2 
 

 
 

  

100 500 2000 100 500 2000 100 500 2000
Variance Ratio = 0.80

Coarsened V Sampling Standard Deviation 0.35 0.17 0.08 0.25 0.12 0.06 0.23 0.10 0.05
Ratio: Coarsened V SD to V Full SD 1.04 1.07 1.06 1.06 1.07 1.06 1.05 1.04 1.05

Variance Ratio = 1.00
Coarsened V Sampling Standard Deviation 0.38 0.17 0.09 0.27 0.12 0.06 0.22 0.10 0.05
Ratio: Coarsened V SD to V Full SD 1.06 1.08 1.05 1.08 1.06 1.05 1.07 1.05 1.04

Variance Ratio = 1.25
Coarsened V Sampling Standard Deviation 0.41 0.18 0.09 0.28 0.12 0.06 0.24 0.10 0.05
Ratio: Coarsened V SD to V Full SD 1.10 1.09 1.07 1.10 1.06 1.04 1.06 1.06 1.06

Notes: Sampling standard deviations are computed based on 1000 replications.  Each replication includes 2000 observations.  The sample ratio is the ratio of 
the number of observations of group B to those of group A, where A is the higher scoring group.  The variance ratio is the ratio of the variance of the test score 
distribution of group B to that of group A.  The cut scores are located at the percentiles of combined test score distribution of groups A and B, in a population 
in which A and B are equal size. 

Ratio of Sampling Standard Deviation of Maximum Likelihood V  Estimate From Coarsened Data to Maximum Likelihood V  Estimate 
From Full Data, by Variance Ratio (r ), Proportion of Sample in One Group (p ), and Sample Size

Variance Ratio

Sample Ratio and Sample Size (True Gap = 1, Cut Scores = 20, 50, 80)
ratio = 10:90 ratio = 25:75 ratio=50:50
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Table 3 

 

 

 
  

gap=0 gap=0.5 gap=1 gap=0 gap=0.5 gap=1 gap=0 gap=0.5 gap=1
Variance Ratio = 0.80

33/67 1.12 1.12 1.08 1.10 1.09 1.07 1.12 1.09 1.07 1.10
25/50/75 1.06 1.06 1.04 1.07 1.07 1.03 1.06 1.05 1.07 1.06
20/40/60/80 1.06 1.03 1.02 1.04 1.04 1.04 1.04 1.04 1.04 1.04
16/33/50/67/84 1.04 1.02 1.03 1.03 1.03 1.02 1.04 1.02 1.03 1.03

Variance Ratio = 1.00
33/67 1.12 1.14 1.10 1.11 1.11 1.12 1.10 1.09 1.10 1.11
25/50/75 1.05 1.08 1.05 1.07 1.07 1.05 1.05 1.08 1.06 1.06
20/40/60/80 1.04 1.06 1.05 1.04 1.05 1.02 1.02 1.06 1.04 1.04
16/33/50/67/84 1.04 1.04 1.03 1.03 1.02 1.04 1.02 1.02 1.04 1.03

Variance Ratio = 1.25
33/67 1.08 1.10 1.09 1.12 1.11 1.13 1.13 1.10 1.11 1.11
25/50/75 1.06 1.06 1.05 1.06 1.07 1.05 1.10 1.05 1.07 1.06
20/40/60/80 1.04 1.04 1.03 1.02 1.04 1.04 1.05 1.04 1.05 1.04
16/33/50/67/84 1.03 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.03 1.03

Ratio of Sampling Standard Deviation of Maximum Likelihood V  Estimate From Coarsened Data to Maximum Likelihood V  Estimate From Full 
Data, by Variance Ratio (r ), Number of Cut Points, Proportion of Sample in One Group (p ), and Size of True Gap

Notes: Sampling standard deviations are computed based on 1000 replications.  Each replication includes 2000 observations.  The sample ratio is the ratio of the 
number of observations of group B to those of group A, where A is the higher scoring group.  The variance ratio is the ratio of the variance of the test score 
distribution of group B to that of group A.  The cut scores are located at the percentiles of combined test score distribution of groups A and B, in a population in 
which A and B are equal size. 

Variance Ratio and 
Location of Cut Points

Sample Ratio and Size of True Gap
Average 
SD Ratio

ratio = 10:90 ratio = 25:75 ratio=50:50
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Table 4 

   

Estimator

Standard Error/ 
Confidence Interval 

Formula

95% Confidence 
Interval Coverage 

Rate

Equation (15) 94.8%

Equation (18) 94.7%

Equation (18) 94.7%

Equation (18) 94.7%

Equation (17) 95.0%

Equation (17) 94.9%

95% Confidence Interval Coverage Rates, by Estimator 
and Confidence Interval Construction Method

Note: 95% confidence intervals coverage rates for each of the 
V(full) estimators are averaged over all simulations used in Figure 
1.  Coverage rates for the V(coarse) estimator are averaged over 
all simulations used in Tables 1-3.     
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Table 5.  

Consequences of using reliability parameter 𝜌𝜌 as an approximation of the reliability parameter 𝜌𝜌∗ 
when distributions of 𝑥𝑥 are generalized log normal distributions.   

 

Reliability 
Parameter 

(𝜌𝜌) 

Normalized 
Reliability 

(𝜌𝜌∗) 

Underestimates 
𝜌𝜌∗ by 

�
𝜌𝜌∗

𝜌𝜌
− 1� 

Overestimates 
𝑉𝑉 by 

��
𝜌𝜌∗

𝜌𝜌
− 1� 

Skewness = 2 0.750 0.777 3.61% 1.79% 

 
0.800 0.823 2.86% 1.42% 

 
0.850 0.868 2.12% 1.06% 

 
0.900 0.913 1.40% 0.70% 

 
0.950 0.957 0.69% 0.35% 

Skewness = 0.5 0.750 0.753 0.33% 0.17% 

 
0.800 0.802 0.27% 0.13% 

 
0.850 0.852 0.20% 0.10% 

 
0.900 0.901 0.13% 0.07% 

 
0.950 0.951 0.07% 0.03% 
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Appendix A: The sampling variance of 𝑑̂𝑑′ = 𝜇𝜇�𝑎𝑎−𝜇𝜇�𝑏𝑏
𝜎𝜎�𝑝𝑝

. 

First, define 𝑒𝑒𝑎𝑎 = 𝜇̂𝜇𝑎𝑎 − 𝜇𝜇𝑎𝑎 as the error with which the mean 𝜇𝜇 in group 𝑎𝑎 is estimated.  The 

variance of 𝑒𝑒𝑎𝑎, given a sample of size 𝑛𝑛𝑎𝑎, will be 𝜎𝜎𝑎𝑎
2

𝑛𝑛𝑎𝑎
.  As above, we define 𝑝𝑝 = 𝑛𝑛𝑎𝑎

𝑛𝑛
 and 𝑟𝑟 = 𝜎𝜎𝑎𝑎2/𝜎𝜎𝑏𝑏2.  The 

sampling variance of 𝑑̂𝑑, when 𝜎𝜎𝑝𝑝 ≡
𝜎𝜎𝑎𝑎2+𝜎𝜎𝑏𝑏

2

2
 is known, is 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� = 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜇̂𝜇𝑎𝑎 − 𝜇̂𝜇𝑏𝑏
𝜎𝜎𝑝𝑝

� 

= 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜇𝜇𝑎𝑎 − 𝜇𝜇𝑏𝑏 + 𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑏𝑏

𝜎𝜎𝑝𝑝
� 

= �
1
𝜎𝜎𝑝𝑝2
� ∙ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑏𝑏) 

= �
1
𝜎𝜎𝑝𝑝2
� ∙ [𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑎𝑎) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑏𝑏)] 

= �
1
𝜎𝜎𝑝𝑝2
� ∙ �

𝜎𝜎𝑎𝑎2

𝑛𝑛𝑎𝑎
+
𝜎𝜎𝑏𝑏2

𝑛𝑛𝑏𝑏
� 

= �
𝜎𝜎𝑏𝑏2

𝜎𝜎𝑝𝑝2
� ∙ �

𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑛𝑛𝑎𝑎
𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏

� 

=
2(𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟)
𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)

 

(A.1) 

Now, the sampling variance of 𝑑̂𝑑′, when 𝜎𝜎𝑝𝑝 is estimated, is 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑′� = 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜇̂𝜇𝑎𝑎 − 𝜇̂𝜇𝑏𝑏
𝜎𝜎�𝑝𝑝

� 

= 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑑̂𝑑 ∙
𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
� 
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≈ 𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� ∙ 𝐸𝐸 �
𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
�
2

+ 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
� ∙ 𝐸𝐸�𝑑̂𝑑�

2 + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� ∙ 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
� 

= 𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� �1 + 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
��+ 𝑑𝑑2 ∙ 𝑉𝑉𝑉𝑉𝑉𝑉 �

𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
� 

(A.2) 

Next we derive an expression for 𝑉𝑉𝑉𝑉𝑉𝑉 �𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
�.  For this we use both the delta method and the fact that 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�2) ≈ 2𝜎𝜎4

𝑛𝑛−1
 (and the expression is exact if there is no excess kurtosis) (Casella & Berger, 2002; 

Neter, Wasserman, & Kutner, 1990). 

𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜎𝜎𝑝𝑝
𝜎𝜎�𝑝𝑝
� ≈ 𝑉𝑉𝑉𝑉𝑉𝑉 �

𝜎𝜎�𝑝𝑝
𝜎𝜎𝑝𝑝
�                                                                                                   (Delta Method) 

= 𝑉𝑉𝑉𝑉𝑉𝑉��
𝜎𝜎�𝑎𝑎2 + 𝜎𝜎�𝑏𝑏2

2𝜎𝜎𝑝𝑝2
�

1
2
� 

≈
1

16𝜎𝜎𝑝𝑝4
𝑉𝑉𝑉𝑉𝑉𝑉�𝜎𝜎�𝑎𝑎2 + 𝜎𝜎�𝑏𝑏2�                                                                                    (Delta Method) 

=
1

16𝜎𝜎𝑝𝑝4
�𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�𝑎𝑎2) + 𝑉𝑉𝑉𝑉𝑉𝑉�𝜎𝜎�𝑏𝑏2�� 

≈
1

16𝜎𝜎𝑝𝑝4
�

2𝜎𝜎𝑎𝑎4

(𝑛𝑛𝑎𝑎 − 1) +
2𝜎𝜎𝑏𝑏4

(𝑛𝑛𝑏𝑏 − 1)�                                                              

≈
1

8𝜎𝜎𝑝𝑝4
�
𝑛𝑛𝑏𝑏𝜎𝜎𝑎𝑎4 + 𝑛𝑛𝑎𝑎𝜎𝜎𝑏𝑏4

𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
�                                                                                  (if 𝑛𝑛𝑎𝑎  and 𝑛𝑛𝑏𝑏 are large) 

=
1

8𝜎𝜎𝑝𝑝4
�
𝑛𝑛�𝜎𝜎𝑎𝑎4 + 2𝜎𝜎𝑎𝑎2𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑏𝑏4� − �𝑛𝑛𝑎𝑎𝜎𝜎𝑎𝑎4 + 2𝑛𝑛𝜎𝜎𝑎𝑎2𝜎𝜎𝑏𝑏2 + 𝑛𝑛𝑏𝑏𝜎𝜎𝑏𝑏4�

𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
� 

=
1

8𝜎𝜎𝑝𝑝4
�
4𝑛𝑛�𝜎𝜎𝑝𝑝4� − �𝑛𝑛𝑎𝑎𝜎𝜎𝑎𝑎4 + 2𝑛𝑛𝜎𝜎𝑎𝑎2𝜎𝜎𝑏𝑏2 + 𝑛𝑛𝑏𝑏𝜎𝜎𝑏𝑏4�

𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
� 

=
𝑛𝑛

2𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
−
𝑛𝑛𝑎𝑎𝜎𝜎𝑎𝑎4 + 2𝑛𝑛𝜎𝜎𝑎𝑎2𝜎𝜎𝑏𝑏2 + 𝑛𝑛𝑏𝑏𝜎𝜎𝑏𝑏4

8𝜎𝜎𝑝𝑝4𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
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=
𝑛𝑛

2𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
−
𝜎𝜎𝑏𝑏4

𝜎𝜎𝑝𝑝4
∙
𝑛𝑛𝑎𝑎𝑟𝑟2 + 2𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑏𝑏

8𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
 

=
𝑛𝑛

2𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
−
𝑛𝑛𝑎𝑎𝑟𝑟2 + 2𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑏𝑏

2(1 + 𝑟𝑟)2𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
 

=
1

2𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
�𝑛𝑛 −

𝑛𝑛𝑎𝑎𝑟𝑟2 + 2𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑏𝑏
(1 + 𝑟𝑟)2 � 

=
1

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)
�
(1 + 𝑟𝑟)2 − 𝑝𝑝𝑟𝑟2 − 2𝑟𝑟 − (1 − 𝑝𝑝)

(1 + 𝑟𝑟)2 � 

=
𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)2 

(A.3) 

Substituting (A.1) and (A.3) into (A.2) yields 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑′� ≈
2(𝑟𝑟 + 𝑝𝑝 − 𝑝𝑝𝑝𝑝)

𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟) �1 +
𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)2�+
𝑑𝑑2(𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2)

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)2 

=
2(𝑟𝑟 + 𝑝𝑝 − 𝑝𝑝𝑝𝑝)

𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟) �1 +
𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)2 +
𝑑𝑑2(𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2)

4(1 + 𝑟𝑟)(𝑟𝑟 + 𝑝𝑝 − 𝑝𝑝𝑝𝑝)� 

= 𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� ∙ �1 +
𝑑𝑑2(𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2)

4(1 + 𝑟𝑟)(𝑟𝑟 + 𝑝𝑝 − 𝑝𝑝𝑝𝑝) +
𝑝𝑝 + (1 − 𝑝𝑝)𝑟𝑟2

2𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)(1 + 𝑟𝑟)2� 

= 𝜆𝜆 ∙ 𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̂𝑑� 

(A.4) 

 

Appendix B: The sampling variance of 𝑽𝑽�𝒎𝒎𝒎𝒎 

We wish to compute 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑉𝑉�𝑚𝑚𝑚𝑚� = 𝑉𝑉𝑉𝑉𝑉𝑉 �
√2𝑛𝑛�

√1 + 𝑚𝑚�2
� = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥), 

(B.1) 
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where  

𝑥𝑥 = 𝑛𝑛�; 

𝑦𝑦 = � 2
1 +𝑚𝑚�2

. 

(B.2) 

Assuming 𝑉𝑉𝑉𝑉𝑉𝑉(𝑚𝑚�) ≪ 𝑚𝑚2, we have 

𝐸𝐸[𝑦𝑦] ≈ � 2
1 +𝑚𝑚2. 

(B.3) 

The delta method yields 

𝜎𝜎𝑦𝑦2 ≈
2𝑚𝑚2

(1 + 𝑚𝑚2)3 𝜎𝜎𝑚𝑚
2  

(B.4) 

and 

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑛𝑛�,�
2

1 + 𝑚𝑚�2
� ≈ −.5𝑚𝑚�

2
1 + 𝑚𝑚2�

1.5
∙ 𝜎𝜎𝑚𝑚𝑚𝑚. 

(B.5) 

The variance of the product of two correlated random variables 𝑥𝑥 and 𝑦𝑦 can be approximated as 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥) ≈ 𝐸𝐸[𝑦𝑦]2𝜎𝜎𝑥𝑥2 + 𝐸𝐸[𝑥𝑥]2𝜎𝜎𝑦𝑦2 + 2𝐸𝐸[𝑥𝑥]𝐸𝐸[𝑦𝑦]𝜎𝜎𝑥𝑥𝑥𝑥 

(B.6) 

(Goodman, 1960). So we have  

𝑉𝑉𝑉𝑉𝑉𝑉�𝑉𝑉�𝑚𝑚𝑚𝑚� ≈
2

1 + 𝑚𝑚2 𝜎𝜎𝑛𝑛
2 +

2𝑛𝑛2𝑚𝑚2

(1 +𝑚𝑚2)3 𝜎𝜎𝑚𝑚
2 −

4𝑚𝑚𝑚𝑚
(1 + 𝑚𝑚2)2 𝜎𝜎𝑚𝑚𝑚𝑚. 

(B.7) 
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