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Abstract 

In this paper I propose a class of measures of rank-order segregation, each of which may be 

used to measure segregation by a continuous (but not necessarily interval-scaled) variable, such as 

income.  These rank-order segregation indices have several appealing features that remedy flaws in 

existing measures of income segregation.  First, the measures are insensitive to rank-preserving 

changes in the income distribution.  As a result, the measures are independent of the extent of 

income inequality and allow comparisons across place and time regardless of the units of income or 

differences in the cost of living.  Second, the measures can be easily computed from either exact or 

categorical income data, and are largely insensitive to variation in how income is tabulated in 

Census data.  Third, the measures satisfy a number of mathematical properties necessary or 

desirable in such indices.  Fourth, the measures are easily adapted to account for spatial proximity.  

Finally, the indices can be interpreted in a variety of equivalent ways that illustrate their 

correspondence with standard notions of segregation.  I illustrate the computation and 

interpretation of these measures using Census data from two U.S. cities: San Francisco, CA and 

Detroit, MI.
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Introduction 

 In any city in the world, even a cursory inspection of residential patterns—by any non-

sociologist, non-economist, or non-geographer—would indicate the presence of some degree of 

residential segregation by income and wealth.  There are some neighborhoods populated primarily 

by families with above-average income and wealth, and other neighborhoods populated primarily 

by families with below average income and wealth.  For the sociologist, economist, or geographer, 

however, it is not enough to merely note the presence of such residential sorting; we desire as well 

to quantify it.  Virtually any interesting question regarding the causes, patterns, and consequences 

of such residential segregation requires that we measure it—and measure it in a way that makes 

comparisons across places and times meaningful.   

 Surprisingly, the set of tools available to scholars for measuring spatial economic 

segregation is relatively limited.  Our goal in this paper is to develop an approach to measuring 

economic segregation that is intuitively meaningful, easy to compute, and allows for comparisons 

across place and time.  I draw intuition from the methods of measuring segregation along an ordinal 

dimension developed in Reardon (2009), and extend these methods to apply to segregation along a 

continuous dimension.  Although I initially develop ‘aspatial’ versions of these measures, I show 

how they can be easily adapted to take into account the spatial or social proximity of individuals by 

using the approach outlined by Reardon and O’Sullivan (2004).   

 I begin by reviewing and critiquing existing methods of measuring income and economic 

segregation.  Following this review, I outline a set of desirable properties of measures of income 

segregation (or, more generally, of segregation along a continuous variable).1  To provide intuition 

for the development of income segregation measures, I begin by describing the class of measures of 

ordinal segregation developed by Reardon (2009).  Building on this intuition, I develop a related 

                                                 
1 Although the measures I discuss in this paper can be used to characterize segregation along any continuous 
variable, throughout the paper I refer to them as measures of “economic segregation” or “income segregation” 
in order to make our discussion more concrete.  
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class of measures—measures of rank-order segregation—that can be used when the variable of 

interest is continuous, rather than ordinal.  In this section I also describe a computationally simple 

method of computing these measures even when income data are reported categorically rather 

than continuously.   Finally, I demonstrate that the indices satisfy the criteria proposed in the 

second section of the paper.  Throughout the paper, I illustrate the intuition, computation, and 

interpretation of the measures using data from two U.S. cities that have very different income 

distributions: San Francisco, CA and Detroit, MI. 

 

1. Existing Measures of Economic Segregation 

Prior research on economic segregation has relied on several general approaches for 

characterizing the extent to which individuals of different socioeconomic characteristics are 

unevenly distributed throughout a region.  Most of this research has been concerned with income 

segregation, rather than segregation by wealth, largely because income data are far more readily 

available.  This research comes primarily from three different disciplinary perspectives—sociology, 

economics, and geography—each of which faces the same set of measurement issues. 

In most data sources, income data are reported categorically, as counts within each 

organizational unit (e.g., census tract) of households, families, or individuals falling in a set of 

mutually exclusive and exhaustive ordered income categories.  Each of these income categories is 

defined by a pair of upper and lower income bounds (except for the two extreme categories, which 

are each unbounded on one side).2  As a result, the measurement of income segregation is 

hampered by the fact that we lack full information on the income distribution overall or in any one 

organizational unit.  Moreover, although the income thresholds that define the ordered income 

                                                 
2 For example, in the 2000 U.S. census, annual household income is categorized by 16 income ranges, ranging 
from “less than $10,000,” “$10,000-$14,999,” “$15,000-$19,000,” etc., through “$150,000-$199,999,” and 
finally “$200,000 or more.”  Because some households have negative income, the lowest income category is 
technically not bounded by 0 (although the Census treats households with negative income as having zero 
income in some cases).   
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categories are designed to span most of the range of incomes, they are nonetheless relatively 

arbitrary and change over time.  Any segregation measure that relies on them should be insensitive 

to the definition of the thresholds if the measure is to be useful for comparative purposes. 

 

Category-Based Measures of Income Segregation  

By far the most common method of measuring income segregation used in existing research 

has been to divide the population into two categories based on some chosen income threshold (a 

wide range of thresholds are used in extant research).  Segregation between these two groups 

(those above and those below the chosen threshold) is computed using any conventional two-group 

segregation measure, such as the dissimilarity index.  Examples of this approach are found in the 

literature in sociology (Fong & Shibuya, 2000; Massey, 1996; Massey & Eggers, 1993; Massey & 

Fischer, 2003), urban planning (Coulton, Chow, Wang, & Su, 1996; Pendall & Carruthers, 2003), and 

economics (Jenkins, Micklewright, & Schnepf, 2006; Waitzman & Smith, 1998).   

Although the primary advantage of this approach is its simplicity, its shortcomings are 

several and obvious.  First, dichotomizing the income distribution discards a substantial amount of 

information.  Even if we do not know households’ exact incomes, the 16 income categories reported 

in the 2000 U.S. census, for example, contain far more information than any dichotomized version.  

Second, the results of such an approach may depend on the choice of a threshold—segregation 

between the very poor and everyone else may not be (and generally is not) the same as segregation 

between the very rich and everyone else. 

Several variants of this approach have been used.  Massey and Fischer (2003), for example, 

compute segregation between poor and affluent households (ignoring the middle-class) to better 

capture the separation of the extremes of the income distribution.  A second variant of the 

categorical approach to measuring income segregation is to compute the two-group segregation for 

many or all possible pairs of income categories, and then to construct some average or summary 
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measure of these multiple pairwise indices (Farley, 1977; Massey & Eggers, 1990; Telles, 1995).  

Third, rather than dichotomize the income distribution, Fong and Shibuya (2000) and Telles (1995) 

compute segregation among multiple income category groups using the Theil information theory 

index of segregation (Theil, 1972).  This approach, however, uses an index designed to measure 

segregation among a set of unordered groups (such as race/ethnic groups) to measure segregation 

among a set of ordered groups (income groups), and so is insensitive to the inherently ordered 

nature of income categories.  Finally, Meng, Hall, and Roberts (2006) measure the segregation 

among multiple ordered income groups using an approach that explicitly accounts for the ordered 

nature of the categories by weighting the segregation between different groups by some measure of 

the ‘social distance’ between the groups.  While many of these variants have some advantage over 

simply dichotomizing the income distribution, each is sensitive to the number and location of the 

thresholds used to define income categories, confounding the possibility of making meaningful 

comparisons across places and times. 

 

Variation-Ratio Measures of Income Segregation  

A second approach to measuring economic segregation defines segregation as a ratio of the 

between-neighborhood variation in mean income or wealth to the total population variation in 

income or wealth.  Some measures derived from this approach use the variance of incomes as the 

measure of income variation (Davidoff, 2005; Wheeler, 2006; Wheeler & La Jeunesse, 2006), and so 

have an interpretation analogous to the R2 statistic from a regression of individual incomes on a set 

of neighborhood dummy variables.  Similarly, Jargowsky (1996, 1997) defines income segregation 

as the ratio of the between-unit (e.g., between-tract) standard deviation of income to the overall 

regional income standard deviation.  Others use a measure of income inequality as a measure of 

variation.  Kim & Jargowsky (2009), for example, use the Gini index as a measure of variation; 

Ioannides (2004) uses the ratio of the variance of log incomes; Hardman & Ioannides (2004) use 
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the ratio of within-neighborhood to overall coefficients of variation of income; and Ioannides and 

Seslen (2002) use the ratio of Bourguignon’s population-weighted decomposable inequality index 

to measure both income and wealth segregation.  The relative merits and flaws of the choice of 

inequality or variation measure used to construct the various ratio-based indices have not been 

fully investigated. 

In principle, measures based on this approach use full information on the income 

distribution in each census tract or organizational unit, but because exact income distribution data 

are generally not available, they must rely in part on the estimation of parameters describing the 

overall income distribution (see, e.g., Jargowsky, 1996; Wheeler & La Jeunesse, 2006).  This 

estimation, in turn, may be very sensitive to assumptions about the income levels of individuals in 

the top income category.  Moreover, it is not clear how sensitive the measurement of income 

segregation is to the choice of a measure of income spread (variance, standard deviation, variance 

of log income, coefficient of variation, Bourguignon inequality, etc.); nor is it clear on what basis one 

should choose among these.  The standard deviation or variance ratio measures (as used, for 

example, by Jargowsky, 1996, 1997; Wheeler, 2006; Wheeler & La Jeunesse, 2006) are insensitive 

to shape-preserving changes in the income distribution (changes that add and/or multiply all 

incomes by a constant), but measures based on other parameters, such as the variance of logged 

incomes are not (e.g., the variance of logged income is insensitive to constant multiplicative changes 

in incomes, but is sensitive to changes that add a constant to all incomes).   

To the extent that the required parameters (e.g., variance) of the income distribution can be 

estimated well from the reported counts by income category, variation ratio approaches have 

considerably more appeal than existing approaches that rely on computing pairwise segregation 

between groups defined by one or more income thresholds.  They use (in theory) complete 

information on the income distribution; they do not rely on arbitrary threshold choices; and at least 

some such measures are invariant to certain types of changes in the income distribution. 
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One interesting version of the variation ratio approach is developed by Watson (2009), who 

measures income segregation using the Centile Gap Index (CGI), which is defined as one minus the 

ratio of a measure of the within-neighborhood variation in income percentile ranks to the overall 

variation in income percentile ranks.  Specifically, the CGI measures within-neighborhood variation 

in percentile ranks as the mean absolute deviation of households’ income percentile from the 

percentile rank of their neighborhood median.  The CGI, because it is based on variation in 

percentile ranks rather than income levels, is insensitive to any rank-preserving changes in the 

income distribution, a desirable feature that other ratio measures lack. 

Nonetheless, while Watson’s 𝐶𝐺𝐼 has some appeal because of its insensitivity to rank-

preserving changes in income, it has a subtle flaw.  It is insensitive to some types of redistributions 

of individuals among neighborhoods that should intuitively increase segregation.  For example, if 

we have a region consisting of two neighborhoods with identical income distributions (so that 

𝐶𝐺𝐼 = 0), and we rearrange households so that one neighborhood consists of the households in the 

first and third quartiles of each prior neighborhood and the other consists of the households in the 

second and fourth quartiles of each prior neighborhood, the 𝐶𝐺𝐼 will be unchanged (𝐶𝐺𝐼 = 0), 

despite the fact that we have created an uneven distribution of households among neighborhoods, 

such that the two neighborhoods now have different income distributions. 

 

Spatial Autocorrelation Measures of Income Segregation 

In general, most proposed measures of income segregation are aspatial—that is, they do not 

account for the spatial proximity of individuals/households, except insofar as spatial proximity is 

accounted for by census or administrative area boundaries.  A third approach to measuring income 

segregation derives from the geographical notion of spatial autocorrelation (see Anselin, 1995; Cliff 

& Ord, 1981).  In this approach, which explicitly accounts for the spatial patterning of households, 

segregation is conceived as the extent to which households near one another have more similar 
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incomes than those that are farther from one another.  Although several measures that account for 

the spatial proximity of census tracts, for example, have been suggested (Chakravorty, 1996; 

Dawkins, 2007; Jargowsky & Kim, 2004), this approach to measuring income segregation is the 

least well-developed.  Moreover, although these measures have the advantage of being explicitly 

spatial, they are subject to the modifiable areal unit problem (MAUP) (Openshaw, 1984), meaning 

that they are sensitive to areal unit boundary definitions because they rely on a definition of spatial 

proximity defined by the somewhat arbitrary size and shapes of census tracts.  Even in the absence 

of MAUP issues, the measurement properties of spatial autocorrelation indices of income 

segregation are not well understood. 

 In sum, while a wide range of measures have been used to describe income segregation, 

several key flaws plague existing measures.  Measures based on computing categorical segregation 

indices among income categories, while widely used because of their ease of computation, are 

inherently sensitive to changes in both the choice of thresholds (as occurs between censuses in the 

U.S.) and differences in income distributions (either regional or temporal), even in the absence of 

any change in the location and relative income levels of households.  Measures based on ratios of 

income variation within and among locations, in contrast, do not depend on the definition of income 

categories, at least in principle.  In practice, however, the distributional parameters used in such 

measures must be estimated from the categorical income data generally reported, and so may be 

sensitive not only to the definition of categories, but also to assumptions about the shape of the 

income distribution, particularly for the highest-earning category, which has no upper bound.  

Finally, indices based on spatial autocorrelation or spatial proximity generally rely on relatively ad 

hoc definitions of proximity and have measurement properties that are not well understood.   

 

2. Desirable Properties of an Income Segregation Measure 

 Our aim in this paper is to develop a class of measures of economic segregation that 
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measure what is generally termed the “evenness” dimension of segregation.  That is, we wish to 

measure the extent to which households of different income or wealth are evenly distributed 

among residential locations.  Because economic segregation measures can be seen as a class of 

ordinal segregation measures (because they measure segregation with respect to an ordered 

variable, albeit one that has an underlying continuous nature), I adapt the criteria used for ordinal 

segregation measures (Reardon, 2009) to apply to the case of economic segregation. 

 Before stating the properties of a useful measure of segregation, I define some notation.  Let 

𝑦 be a continuous variable measuring income, and let 𝐹 be the cumulative density function of 𝑦 in 

the population of interest, so that 𝑝 = 𝐹(𝑦) is the percentile rank in the population of interest 

corresponding to income 𝑦.  Let the population be distributed among 𝑁 neighborhoods, indexed by 

𝑛.3  One additional piece of terminology will be useful in the following sections.  We say that the 

income distribution in neighborhood 𝑚 dominates the income distribution in neighborhood 𝑛 

between incomes 𝑦𝑎 and 𝑦𝑐  (where 𝑦𝑎 < 𝑦𝑐) if 𝐹𝑚(𝑦𝑏) < 𝐹𝑛(𝑦𝑏) for all 𝑦𝑏  such that 𝑦𝑎 < 𝑦𝑏 < 𝑦𝑐 .  In 

other words, 𝑚 dominates 𝑛 over 𝑦𝑎 to 𝑦𝑐  if there is a greater proportion of the population of 𝑛 than 

𝑚 at or below each income from 𝑦𝑎 to 𝑦𝑐 . 

  

Scale Interpretability  

A segregation index is maximized if and only if within each neighborhood 𝑛, all individuals 

have the same income 𝑦�𝑛 (there is no variation in income within any neighborhood).  A segregation 

index is minimized if and only if within each neighborhood 𝑛, the income distribution is identical to 

that in the population (if and only if 𝐹𝑛(𝑦) = 𝐹(𝑦) for all 𝑛).  It is important to note that this 

definition of maximum segregation does not depend on the overall income distribution in the 

population, but only on the extent to which neighborhood income distributions differ from the 

                                                 
3 More generally, 𝑦 is a continuous variable describing some person or household characteristics (income, 
wealth, etc.) and 𝑛 indexes unordered organizational units (neighborhoods, schools, etc.).  I will refer to 𝑦 as 
measuring income and 𝑛 as indexing neighborhoods, however, in order to make the exposition more 
concrete. 
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overall distribution.  Thus, a key feature of this definition of segregation is that it separates income 

segregation (the sorting of individuals among neighborhoods) from income inequality (the extent 

to which incomes vary among individuals).  

 

Organizational Equivalence 

If the populations in neighborhoods 𝑚 and 𝑛 have the same income distribution, and 𝑚 and 

𝑛 are combined, segregation is unchanged.  This is analogous to the standard organizational 

equivalence condition used in nominal measures of segregation (James & Taeuber, 1985; Reardon 

& Firebaugh, 2002). 

 

Population Size Invariance  

If the number of individuals in each neighborhood is multiplied by a positive constant but 

the income density function within each neighborhood is unchanged, segregation is unchanged.  

The intuition here is simply that the total population counts do not matter, but only the 

neighborhood income distributions. 

 

Rank-Preserving Scale Invariance  

Because we would like an income segregation measure to be independent of income 

inequality, such measures should be invariant under certain types of changes in the income 

distribution.  At a minimum, we might wish a measure to be invariant under multiplicative changes 

in the income scale.  Such a property would ensure, for example, that doubling each household’s 

income does not affect measured segregation.  We might also wish the measure to be invariant 

under additive changes in the income scale—as would occur if each household income increased by 

a constant amount.  A stronger invariance property—and the one I adopt here—is invariance under 

rank-preserving changes in income.  This requires that a change in the income distribution that 
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leaves each household in their same neighborhood and that does not affect the rank-ordering of 

households in the income distribution will not change segregation levels.  Formally, a measure will 

be rank-preserving scale invariant if it depends only on the sorting of households in relation to 

their income percentiles 𝑝, and requires no information regarding actual income amounts. 

Rank-preserving scale invariance implies both multiplicative and additive scale invariance.  

More importantly, it implies that a segregation measure is independent of the level of income 

inequality, and depends only on the sorting of households among neighborhoods in relation to their 

income ranks.  If, for example, all households remain in the same residential location but the 

incomes of high-income households grow and the incomes of low-income households decline while 

each household maintains its rank in the overall income distribution, then a rank-preserving scale 

invariant measure of segregation will not change.  Watson (2009) notes the advantage of measures 

with this property when examining income sorting processes.   

 It is worth noting that our desire for a measure of income segregation that is independent of 

the income distribution means that we are interested in the sorting of households among 

neighborhoods rather than the sorting of income among neighborhoods.  That is, we are implicitly 

treating income as an ordered—but not necessarily interval-scaled—characteristic of households, 

and we are interested in the extent to which households of different incomes are unevenly 

distributed among neighborhoods.  Any measure that treats income as ordinal- rather than 

interval-scaled will necessarily be impervious to any rank-preserving changes in the income 

distribution, by definition. 

 

Exchanges   

If the income distribution in neighborhood 𝑚 dominates that in neighborhood 𝑛 over 

incomes 𝑦𝑎 to 𝑦𝑏  (where 𝑦𝑎 < 𝑦𝑏), and if an individual with income 𝑦𝑎 moves from 𝑛 to 𝑚 while an 

individual with income 𝑦𝑏  moves from 𝑚 to 𝑛, then segregation is reduced.  Likewise, if the income 
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of an individual in neighborhood 𝑚 decreases from 𝑦𝑏  to 𝑦𝑎 , while the income of an individual in 

neighborhood 𝑛 increases from 𝑦𝑎 to 𝑦𝑏 , then segregation is reduced.  The intuition here is that if 

we exchange individuals of different incomes in a way that makes the income distributions in two 

neighborhoods more similar to one another, segregation should be reduced.  For example, if 

neighborhood 𝑚 has a lower proportion of its population at or below each income level than 

neighborhood 𝑛, and if a high-income individual in neighborhood 𝑚 swaps houses with a lower-

income individual in 𝑛, then segregation should be reduced—because we have raised income levels 

in 𝑛 and lowered them in 𝑚.  Reardon (2009) provides a discussion of this in the ordinal case. 

 

Ordered Exchanges 

If the income distribution in neighborhood 𝑚 dominates that in neighborhood 𝑛 over 

incomes 𝑦𝑎 to 𝑦𝑐  (with 𝑦𝑎 < 𝑦𝑏 < 𝑦𝑐), and if an individual of income 𝑦𝑎 moves from neighborhood 𝑛 

to 𝑚 while an individual of income 𝑦𝑐  moves from 𝑚 to 𝑛, then the resulting reduction in 

segregation will be greater than that resulting if an individual of income 𝑦𝑎 moves from 

neighborhood 𝑛 to 𝑚 while an individual of income 𝑦𝑏  moves from neighborhood 𝑚 to 𝑛 or if an 

individual of income 𝑦𝑏  moves from neighborhood 𝑛 to 𝑚 while an individual of income 𝑦𝑐  moves 

from neighborhood 𝑚 to 𝑛.  Likewise, if the income of an individual in neighborhood 𝑚 decreases 

from 𝑦𝑐  to 𝑦𝑎 , while the income of an individual in neighborhood 𝑛 increases from 𝑦𝑎 to 𝑦𝑐 , then the 

resulting reduction in segregation will be greater than that resulting if the income of an individual 

in neighborhood 𝑚 decreases from 𝑦𝑏  to 𝑦𝑎 , while the income of an individual in neighborhood 𝑛 

increases from 𝑦𝑎 to 𝑦𝑏  (or if the income of an individual in neighborhood 𝑚 decreases from 𝑦𝑐  to 

𝑦𝑏 , while the income of an individual in neighborhood 𝑛 increases from 𝑦𝑏  to 𝑦𝑐).  The intuition here 

is that the effect of an exchange of individuals between neighborhoods or of an exchange of income 

between individuals ought to be sensitive to the difference in income involved.  Exchanges 

involving individuals whose incomes are farther apart should change segregation more than 
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exchanges of individuals whose incomes are closer to one another’s.  Reardon (2009) provides 

some discussion of this in the ordinal case. 

 

In addition to these criteria, there are a number of other features that are desirable—if not 

always necessary—in a measure of economic segregation.  First, a measure should be additively 

decomposable, in the sense described by Reardon and Firebaugh (2002).  This enables the 

partitioning of segregation into between- and within-cluster components (for example, it would 

allow us to decompose income segregation into between-city and within-city, between 

neighborhood components).  Second, an economic segregation measure should be spatially 

adaptable, meaning that the measure can be adapted to account for the spatial patterning of 

households.  Third, because most sources of data on income and wealth report income or wealth in 

a set of ordered categories, a useful income segregation measure should be easily computed from 

categorical data and should be income category threshold invariant—that is, it should be insensitive 

to the set of income thresholds used to define the reported income categories.  

 

3. Measuring Segregation by an Ordinal Category 

Because income data are generally reported as counts by ordered income category, I begin 

by describing the approach to measuring segregation among groups defined by ordinal categories 

developed in Reardon (2009).  This approach, I later show, can be readily extended to define 

measures of segregation by a continuous variable. 

Again, it is useful to begin by defining some notation.  Let 𝑦 be an ordinal measure of 

income, taking on 𝐾 distinct ordered values 1,2, … ,𝐾.  The set of values of 𝑦 in a population can be 

summarized by the [𝐾 − 1]-tuple of cumulative proportions 𝐶 = (𝑝1,𝑝2, . . , 𝑝𝐾−1), where 𝑝𝑘  is the 

proportion of the population with values of 𝑦 ≤ 𝑘 (𝑝𝐾 = 1 by definition, so is not needed to 

characterize the distribution of 𝑦).  Let 𝑣 = 𝑔(𝑝1,𝑝2, … , 𝑝𝐾−1) denote a measure of the variation in 𝑦 
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in the population that can be computed from the set of cumulative proportions.  It will be useful to 

require that 𝑔 be a concave down function of the 𝑝𝑘 ’s in the 𝐾 − 1 dimensional unit square.  Let 

𝑛 ∈ (1,2, … ,𝑁) index a set of unordered organizational units (e.g., neighborhoods or census tracts).  

Reardon (2009) notes that one way of constructing a segregation measure is to think of it as 

a form of a variation ratio, where segregation is the proportion of the total variation in a population 

that is due to differences in population composition of different organizational units (e.g., census 

tracts).  This approach underlies the variation-ratio segregation measures described above.  Under 

this approach, we can define an ordinal segregation measure Λ as follows: 

Λ = �
𝑡𝑛
𝑇𝜈

(𝜈 − 𝜈𝑛)
𝑁

𝑛=1

= 1 −�
𝑡𝑛𝑣𝑛
𝑇𝜈

𝑁

𝑛=1

, 

 (1) 

where 𝑇 and 𝑡𝑛 are the total population and the population count in unit 𝑛, respectively, and where 

𝜈 and 𝜈𝑛 are the ordinal variation in 𝑦 in the population and in unit 𝑛, respectively.   

The key to defining such a measure of ordinal segregation, then, is in defining an 

appropriate measure of ordinal variation.  Reardon (2009) notes that variation in an ordinal 

variable 𝑦 is maximized when half the population has the lowest possible value of 𝑦 and half has the 

highest possible value of 𝑦, corresponding to 𝐶 = �1
2

, 1
2

, … , 1
2
� (Berry & Mielke, 1992a, 1992b; Blair 

& Lacy, 1996, 2000; Kvålseth, 1995a, 1995b).  Variation in an ordinal variable 𝑦 is minimized when 

all observations have the same value of 𝑦, corresponding to the 𝐾 cases of the pattern 𝐶 =

(0,0, … ,0,1, … ,1), implying that variation in an ordinal variable can be measured by constructing a 

function that increases as each 𝑝𝑘  approaches 1
2
 and decreases as each 𝑝𝑘  approaches 0 or 1.  One 

set of such functions are those that have the form 

𝑣 = 𝑔(𝑝1,𝑝2, … ,𝑝𝐾−1) =
1

𝐾 − 1
�𝑓(𝑝𝑘)
𝐾−1

𝑘

, 

 (2) 
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where 𝑓(𝑝) is maximized at 𝑓 �1
2
� = 1 and minimized on the interval [0,1] at 𝑓(0) = 𝑓(1) = 0.  If 𝑓 

is twice-differentiable, with a negative second derivative, everywhere on the unit interval, then 𝑔 is 

also concave down everywhere on the 𝐾 − 1 dimensional unit square. 

 Reardon (2009, p. 143) shows that an ordinal segregation measure defined as in Equation 

(1) can be written as the weighted average of 𝐾 − 1 binary (non-ordinal) segregation indices.  That 

is, suppose we collapse the ordinal variable 𝑦 into two categories (those with 𝑦 ≤ 𝑘 and those with 

𝑦 > 𝑘).  Let 𝑣𝑘 denote the variation in this collapsed variable.  From Equation (2), we have 

𝑣𝑘 = 𝑓(𝑝𝑘).  Now we define Λ𝑘  as the segregation between these two groups (using 𝑣𝑘 = 𝑓(𝑝𝑘) in 

Equation (2) in place of 𝑣).  Reardon shows that Equation (1) can be written as 

Λ = �𝑤𝑘Λ𝑘

𝐾−1

𝑘=1

, 

 (3) 

where 𝑤𝑘 = 𝑣𝑘/∑ 𝑣𝑗𝐾−1
𝑗=1 = 𝑓(𝑝𝑘)/∑ 𝑓(𝑝𝑗)𝐾−1

𝑗=1  (see Appendix A1 for derivation).  Note that these 

weights sum to 1.  By construction, the weights are maximized when 𝑝𝑘 = 1
2
, that is, when dividing 

the population at the top of category 𝑘 divides the population in half.  Likewise the weights are 

smallest when 𝑝𝑘  is close to 0 or 1, when dividing the population at category 𝑘 splits the population 

most unevenly.  I return to a discussion of the interpretation of these weights later. 

 Note that the above method of constructing an ordinal segregation measure produces 

measures that have features of both the category-based measures of income segregation and the 

variation ratio measures of income segregation described above.  Equation (1) defines a class of 

variation ratio measures, where segregation is high if the average within-unit variation in 𝑦 is much 

smaller than the population variation in 𝑦, and vice versa.  Equation (3), however, shows that this 

same class of measures can be written as a weighted average of a set of pairwise, category-based 

measures of segregation.  This approach has some intuitive appeal and consistency with much of 

the prior literature. 
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 Nonetheless, the ordinal measures also share the flaws of the categorical measures, since 

Equation (3) makes clear that they depend explicitly on the values of the K-1 income thresholds 

used to define the income categories (except in the special case where Λ𝑘  is constant across all 

possible income thresholds, an unlikely scenario).  Moreover, Equation (2) makes clear that they 

share the flaws of the variation ratio measures, since the measure of ordinal variation 𝑣 on which 

they are based is not necessarily invariant under changes in the income distribution (unless the 

thresholds defining the income categories change as well in such a way that they lie at the same 

percentiles of the income distribution).   

 

Visualizing the Ordinal Segregation Measures 

 The fact that the ordinal segregation indices can be written as weighted averages of a set of 

pairwise segregation indices enables us to better visualize what the indices measure.  To illustrate 

the measures, consider Figures 1 and 2, which show the cumulative household income percentile 

density curves for random samples of 50 census tracts in San Francisco County, CA (whose 

boundaries are identical to those of the city of San Francisco) and in Wayne County, MI (which 

includes Detroit) in 2000.4  In both figures, the x-axis indicates both the local (i.e., San Francisco or 

Wayne County) income percentiles and the 15 income thresholds used in the 2000 census 

(indicated by the vertical dashed lines).  Note that the income distribution in San Francisco is 

shifted right in comparison to Wayne County—25% of households in San Francisco reported 

incomes greater than $100,000, compared to 12% of Wayne County households.  If there were no 

income segregation in either county, each tract’s cumulative household income percentile density 

curve would fall exactly on the 45-degree line (the heavy black line in each figure).  If there were 

complete income segregation, each tract’s curve would be a vertical line at some income level, 

indicating that within each tract all households have the same income.  Thus, one way of thinking 
                                                 
4 Household income data (for the year 1999) are obtained from Table P52 in SF3 from the 2000 Census.  I 
show only a random sample of tract cumulative income distributions to avoid cluttering the figures. 
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about a segregation measure is that it should measure the average deviation of the tract cumulative 

household income percentile density curves from their regional average (which is, by definition, the 

45-degree line).  By this criterion, Wayne County appears more segregated by income than San 

Francisco, since the variation of the tract cumulative density curves around the 45-degree line is 

greater in Wayne County (though admittedly such a comparison is hard to make visually, given the 

density of the figures). 

Figures 1 and 2 here 

 The ordinal segregation indices, when applied to income data, can be seen as measures of 

the variation of the tract cumulative household income percentile curves around the 45-degree line.  

At each income threshold reported in the Census, we know the value of each tract’s cumulative 

household income density curve—that is, we know the percentage of households with incomes 

above and below each threshold (denoted 𝑝𝑘  above).  These data can be used to compute the 

pairwise segregation between households with incomes above and below that threshold (what 

denoted Λ𝑘  above).  Equation (3) makes clear that an ordinal segregation measure of the class 

defined by Reardon (2009) can be seen as a weighted average of these 15 measures, where the 

weights are maximized when 𝑝𝑘 = 1
2
.   

 A close look at Figures 1 and 2 suggests that the ordinal segregation measures do not fully 

solve the problems of existing measures of income segregation.  Because of the differences in the 

overall income distributions in the two counties, the Census-defined income thresholds do not fall 

at the same percentiles of the two local income distributions.  Thus, in San Francisco, the ordinal 

segregation measures are based more heavily on information about the segregation at thresholds in 

the 10th-50th percentile range (where 9 of 15 thresholds fall) than in the 50th-90th percentile range 

(where only 5 of 15 thresholds fall).  In Wayne County, in contrast, three of the thresholds fall in the 

90th-99th percentile range, and only 7 fall in the 10th-50th percentile range.  As a result, the ordinal 

segregation measured in San Francisco is not exactly comparable to that measured in Wayne 
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County, because of differences in the underlying income distributions.  Put differently, the measures 

depend on the choice of thresholds—a different set of income thresholds would yield different 

measured levels of segregation.  And finally, the measures are also clearly not invariant under 

changes in income that preserve the shape of the income distribution—a doubling of each 

household’s income would have the effect of moving the thresholds to the left on the figure, 

meaning that the computed ordinal segregation would depend much more on segregation levels at 

the low end of the percentile distribution. 

  

4. Measures of Rank-Order Segregation 

A General Class of Rank-Order Segregation Measures 

 The foregoing discussion illustrates that the ordinal segregation measures do not avoid the 

flaws of many existing approaches to measuring income segregation.  They do improve on existing 

categorical measures, however, to the extent that they rely on multiple, relatively evenly-spaced 

thresholds.  Moreover, they may be useful measures when measuring segregation by some truly 

ordinal variable, where the thresholds have some substantive meaning (rather than a variable that 

is inherently continuous, but measured ordinally, like income).  Most importantly for our purposes, 

they provide the intuition for a related set of segregation measures that is free of their flaws. 

Equation (3) describes an ordinal segregation measure as a weighted average of a finite set 

of 𝐾 − 1 pairwise segregation indicies.  If we let the number of categories grow arbitrarily large, we 

can—with some abuse of notation5—define a rank-ordered segregation index as  

Λ𝑅 = �
𝑓(𝑝)

∫ 𝑓(𝑞)𝑑𝑞1
0

Λ(𝑝)𝑑𝑝
1

0
 

 (4) 
                                                 
5 Equation (4) and subsequent equations treat 𝑝 as if it could take on any of an infinite number of values 
between 0 and 1.  In fact, in a finite population, the number of possible income categories is limited by the 
number of distinct values realized in the population.  However, as long as the population is large, this 
limitation has no practical effect on the computation of the measures.  I use the integral notation here for 
simplicity.  
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where 𝑓(𝑝) is—as above—a measure of variation between those with incomes above or below the 

100 × 𝑝𝑡ℎ percentile of the income distribution, and Λ(𝑝) is the segregation between the same two 

groups.  Equation (4) is simply the limit of the expression in Equation (3) as the number of 

categories goes to infinity.  In principle, such a measure would be free from the problems inherent 

in the ordinal segregation measures, all of which stem from the finite number of unevenly-spaced 

income category thresholds. 

 One additional feature of Equation (4) is worth noting.  The definition of Λ(𝑝) makes clear 

that we can, in principle, consider the segregation between any two groups defined by whether they 

have incomes above or below the 100 × 𝑝𝑡ℎ percentile of the income distribution.  That is, we might 

be interested in the segregation of the top 10 percent of earners from the bottom 90 percent (what 

Reardon and Bischoff (2011) term the “segregation of affluence”), or the segregation of the bottom 

10 percent from the top 90 percent (the “segregation of poverty”), or the segregation of below-

median earners from above-median earners, and so on.  For a variety of substantive reasons, the 

extent of segregation of affluence may differ from the segregation of poverty, and patterns, trends, 

and reasons for such difference may be of interest in their own right.  For example, Reardon and 

Bischoff (2011) find that the rise in income inequality from 1970-2000, which was driven by 

growth at the top of the income distribution, led to increased segregation of the affluent, but not of 

the poor.  Thus, the ability to compare groups at any percentile of the income distribution allows for 

a more refined examination of patterns and trends when the research question warrants it.  In 

other cases, focusing on a summary measure of rank-order segregation, Λ𝑅 , may be of particular 

interest.  Equation (4) makes clear that the summary measure can be understood as a weighted 

sum of the threshold-specific measures, a property that enables a consistent type of analysis of 

segregation regardless of whether our interest is in segregation of a specific part of the income 

distribution or in the total extent of income segregation.  
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Three Measures of Rank-Order Segregation 

 Equation (4) defines a general class of measures of rank-order segregation.  To define a 

specific measure, however, we must define a function 𝑓 that satisfies the conditions described 

above following Equation (2).  Specifically, 𝑓 should be a concave down function on the unit 

interval, maximized at 𝑓 �1
2
� = 1 and minimized at 𝑓(0) = 𝑓(1) = 0.  Reardon shows that three such 

possible functions 𝑓 (each of which yields a useful measure of ordinal segregation) are:6 

𝐸(𝑝) = −[𝑝 log2 𝑝 + (1 − 𝑝) log2(1 − 𝑝) 

𝐼(𝑝) = 4𝑝(1 − 𝑝) 

𝑉(𝑝) = 2�𝑝(1 − 𝑝). 

 (5) 

Each of these functions meets the conditions specified above.7  Moreover, each yields a familiar 

pairwise segregation index when 𝐾 = 2.  Specifically, if we define 𝑓(𝑝) = 𝐸(𝑝), then 

Λ𝑘 = �
𝑡𝑛

𝑇𝐸(𝑝𝑘)
[𝐸(𝑝𝑘) − 𝐸(𝑝𝑛𝑘)]

𝑁

𝑛=1

= 𝐻𝑘 = 𝐻(𝑝𝑘) 

 (6) 

is the information theory segregation index (James & Taeuber, 1985; Theil, 1972; Theil & Finezza, 

1971) between those with incomes at or below income category 𝑘 and those with incomes above 

category 𝑘.  Likewise, if we define 𝑓(𝑝) = 𝐼(𝑝), then 

Λ𝑘 = �
𝑡𝑛

𝑇𝐼(𝑝𝑘)
[𝐼(𝑝𝑘) − 𝐼(𝑝𝑛𝑘)]

𝑁

𝑛=1

= 𝑅𝑘 = 𝑅(𝑝𝑘) 

 (7) 

                                                 
6 Note we define 0 ∙ log2(0) = lim𝑝→0+ 𝑝log2(𝑝) = 0.  Reardon (2009) identifies a fourth function, 
𝑓4(𝑝) = 1 − |2𝑝 − 1|, but shows that it does not yield a satisfactory measure of segregation (because it is not a 
concave down function of 𝑝). 
7 The maxima and minima conditions are straightforward to verify.  The second derivatives of the three 
functions are, respectively, 𝑑

2𝐸
𝑑𝑝2

= −1
𝑝(1−𝑝)

; 𝑑
2𝐼

𝑑𝑝2
= −8; and 𝑑

2𝑉
𝑑𝑝2

= −1
2[𝑝(1−𝑝)]3/2 

.  Each of these second derivatives are 
negative everywhere in the interval (0,1). 
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is the variance ratio segregation index (Bell, 1954; Coleman, Hoffer, & Kilgore, 1982; Duncan & 

Duncan, 1955; Zoloth, 1976).  Finally, if we define 𝑓(𝑝) = 𝑉(𝑝), then 

Λ𝑘 = �
𝑡𝑛

𝑇𝑉(𝑝𝑘)
[𝑉(𝑝𝑘) − 𝑉(𝑝𝑛𝑘)]

𝑁

𝑛=1

= 𝑆𝑘 = 𝑆(𝑝𝑘) 

 (8) 

is Hutchens’ square root segregation index (Hutchens, 2001, 2004). 

 Substituting each of these into Equation (4) defines three rank-order segregation measures: 

the rank-order information theory index (𝐻𝑅):8 

𝐻𝑅 = �
𝐸(𝑝)

∫ 𝐸(𝑞)𝑑𝑞1
0

𝐻(𝑝)𝑑𝑝
1

0
 

= 2 ln(2)� 𝐸(𝑝)𝐻(𝑝)𝑑𝑝
1

0
; 

 (9) 

the rank-order variance ratio index (𝑅𝑅): 

𝑅𝑅 = �
𝐼(𝑝)

∫ 𝐼(𝑞)𝑑𝑞1
0

𝑅(𝑝)𝑑𝑝
1

0
 

=
3
2
� 𝐼(𝑝)𝑅(𝑝)𝑑𝑝
1

0
; 

 (10) 

and the rank-order square root index (𝑆𝑅): 

𝑆𝑅 = �
𝑉(𝑝)

∫ 𝑉(𝑞)𝑑𝑞1
0

𝑆(𝑝)𝑑𝑝
1

0
 

=
4
𝜋
� 𝑉(𝑝)𝑆(𝑝)𝑑𝑝
1

0
. 

 (11) 

Intuitively, 𝐻𝑅 , 𝑅𝑅 , and 𝑆𝑅 are extensions of the ordinal segregation indices defined in Reardon 

                                                 
8 See Appendix A2 for calculation of the integrals in the denominator of each of Equations (9)-(11). 
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(2009) to the case where we have an arbitrarily large number of income categories. 

 

Visualizing the Rank-Order Segregation Measures 

 Equations (9)-(11) define three rank-order segregation measures as weighted averages of 

the values of pairwise segregation measures at every point in the income distribution.  Figures 3-5 

allow us to visualize this weighted average.  Each figure shows the pairwise household income 

segregation (as measured by 𝐻, 𝑅, or 𝑆, respectively) computed at each of the 15 Census 2000 

thresholds for San Francisco and Wayne County; these enable us to visualize what the complete 

functions 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝) would look like if we could observe them for each value of 𝑝 ∈ (0,1).  

In addition, each figure illustrates the relative weight (dashed lines) that the pairwise segregation 

computed at each threshold is given in the calculation of the segregation measures.  The weights 

are displayed on the same scale in the three figures, allowing comparison of their relative 

magnitude.  The weight 𝐼(𝑝) used in computation of the rank-order variance ratio segregation index 

(Figure 4) weights segregation between those above and below the median income relatively more 

than do the other two weights; the weight 𝑉(𝑝) used in the rank-order square root index (Figure 5) 

weights segregation at the extremes of the  income distribution relatively more than the other two.  

I return to a discussion of the weights later. 

Figures 3-5 here 

The segregation profiles shown in Figures 3-5 are informative.  First, note that segregation, 

as measured by 𝐻, 𝑅, or 𝑆, is relatively flat across most of the middle of the income percentile 

distribution in both places, but increases or decreases sharply at the extremes of the distribution, 

depending on which measure is used.  Second, note that, as expected, measured segregation at each 

income percentile is generally higher in Wayne County than in San Francisco, regardless of which 

measure is used; the difference is more pronounced at the high end of the income distribution for 𝐻 

and 𝑅, though not for 𝑆.  Finally, the shapes of the segregation curves differ slightly between San 
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Francisco and Wayne County: in San Francisco, for example, segregation between those with 

income above and below the 25th percentile is higher than segregation between those with incomes 

above and below the 75th percentile, while the opposite is true in Wayne County.    

 

Computing the Rank-Order Segregation Measures 

 To compute the rank-order segregation indices, we must evaluate equations (9)-(11).  The 

formulas for 𝐸(𝑝), 𝐼(𝑝), and 𝑉(𝑝) are defined in Equation (5).  Thus, if we knew the functions 𝐻(𝑝), 

𝑅(𝑝), and 𝑆(𝑝) on the interval (0,1), we could compute the rank-order segregation measures 

without relying on an arbitrary set of thresholds.  In general, we do not know these functions, but 

we can estimate them from the 𝐾 − 1 values of 𝐻(𝑝𝑘), 𝑅(𝑝𝑘), and 𝑆(𝑝𝑘) that we can measure. 

We can estimate the functions 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝) on the interval (0,1) as follows.  For 

each threshold 𝑘 ∈ (1,2, … ,𝐾 − 1), we compute 𝐻𝑘 , 𝑅𝑘 , or 𝑆𝑘 and then plot it against the 

corresponding 𝑝𝑘 , the cumulative proportions of the population with incomes equal to or below the 

threshold 𝑘, as shown in Figures 3-5.  We then fit a polynomial of some order 𝑀 ≤ 𝐾 − 2 to the 

observed points, using weighted least squares (WLS) regression and weighting each point by 𝐸𝑘2, 𝐼𝑘2, 

or 𝑉𝑘2 (depending on whether we are fitting polynomial 𝐻(𝑝), 𝑅(𝑝), or 𝑆(𝑝), respectively).  

Weighting the regression by the square of the weight minimizes the weighted squared errors and 

ensures that the fitted polynomial will fit best for 𝑝𝑘  near 1
2
, where 𝐻𝑘 , 𝑅𝑘 , or 𝑆𝑘 is weighted most.   

Given a sufficient number of income categories that are spread widely across the percentiles 

of the income distribution, we can obtain relatively precise estimates of 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝).  We 

can use the uncertainty in the estimated polynomial to provide information on the amount of 

uncertainty in the rank-order segregation that arises from the fact that we must estimate 𝐻(𝑝), 

𝑅(𝑝), or 𝑆(𝑝).  Moreover, to the extent that we estimate 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝) well on the interval 

(0,1) from the observed points, our estimate of segregation will not be biased by the choice of 

thresholds we have available.  In general, we will not have information on the shape of 𝐻(𝑝), 𝑅(𝑝), 
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and 𝑆(𝑝) at the extreme ends of the income distribution (at points below and above the bottom and 

top thresholds), except via extrapolation.  We can, however, assess the sensitivity of our estimates 

of 𝐻𝑅 ,𝑅𝑅 , and 𝑆𝑅 to alternative assumptions about the shape of 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝) by assuming a 

range of possible shapes of the functional form.  In general, the estimates of 𝐻𝑅 ,𝑅𝑅 , and 𝑆𝑅 will be 

relatively insensitive to assumptions about 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝) at the ends of the income 

percentile distribution, because little weight is given to 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝) when 𝑝 is near 0 or 1.9 

More specifically, we fit the WLS regression model 

Λ𝑘 = 𝛽0 + 𝛽1𝑝𝑘 + 𝛽2𝑝𝑘2 + ⋯+ 𝛽𝑀𝑝𝑘𝑀 + 𝑒𝑘 , 𝑒𝑘~𝑁�0,
1
𝑣𝑘2
� 

 (12) 

to the 𝐾 − 1 points (Λ𝑘 ,𝑝𝑘).  This yields the (𝑀 + 1) × 1 vector of estimated coefficients 

𝚩� = �𝛽̂0, 𝛽̂1, … , 𝛽̂𝑀 �′.  In Appendix A3, I show that the segregation indices can be estimated by10  

 Λ�𝑅 = 𝚫′𝚩�, (13) 

where 𝚫 = (𝛿0, 𝛿1, … , 𝛿𝑀 )′ is an (𝑀 + 1) × 1 vector of scalars, such that    

𝛿𝑚 = �
𝑓(𝑝) ∙ 𝑝𝑚

∫ 𝑓(𝑞)𝑑𝑞1
0

𝑑𝑝
1

0
. 

 (14) 

In Appendix A4, I evaluate the integrals in Equation (14) to derive closed-form expressions for 𝚫 for 

each of the three variation functions described in Equation (5), allowing us to use Equation (13) to 

estimate each of the three rank-order segregation indices from data that provides only ordinal 

income measures (such as the US Census and many surveys).  Values of the 𝛿𝑚’s for each of the 

                                                 
9 When weighting by 𝐸, the bottom and top deciles together carry only 7.5% of the total weight, for example; 
when weighting by 𝐼, the bottom and top deciles together carry only 5.6% of the total weight; when weighting 
by 𝑉 they together carry 10.4% of the weight, so even if our estimates of 𝐻(𝑝), 𝑅(𝑝), and 𝑆(𝑝) were off by a 
large amount in the tails of the income percentile distribution, this error would contribute little error to the 
estimates of 𝐻𝑅 ,𝑅𝑅 , and 𝑆𝑅 . 
10 Fitting the regression model in (12) will also yield the estimated variance-covariance matrix of 𝚩�, denoted 
𝐕.  The variance in the estimate of Λ�𝑅 can be computed as 𝑉𝑎𝑟�Λ�𝑅� = 𝚫′𝐕𝚫.  This provides an estimate of the 
uncertainty in Λ�𝑅 that arises from the fact that the polynomial in (12) does not fit the data exactly.  
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three indices are shown in Table 1. 

Table 1 here 
 

Interpretation of the Rank-Order Segregation Measures 

 I have defined three income segregation measures: the rank-order information theory index 

(𝐻𝑅); the rank-order variance ratio index (𝑅𝑅); and the rank-order square root index (𝑆𝑅).  These 

can each be interpreted in three ways: 1) as weighted averages of pairwise segregation indices (as 

in Equation (4)); 2) as proportions of the variation in income that lies between rather than within 

neighborhoods (as in Equation (1); and 3) as measures of the extent to which the cumulative 

income percentile density curves vary around their mean (as shown in Figures 1 and 2).  

First, the interpretation of the rank-order indices as weighted averages of pairwise indices 

follows directly from Equation (4).  In practical terms, given an income-ranked population of N 

individuals (with no rank ties), we can define N-1 thresholds that each dichotomize the population 

into those with ranks above and below the given threshold.  Then the rank-order indices are 

weighted averages of the N-1 values of their corresponding pairwise index obtained by computing 

the segregation between each of the pairs of groups defined by the thresholds.  As shown in Figures 

3-5, the weights  𝐸𝑘 , 𝐼𝑘 , and 𝑉𝑘  have their maxima at 𝑝𝑘 = 0.5, and their minima at 𝑝𝑘 = 0 and 

𝑝𝑘 = 1.  Thus the measures weight segregation between groups defined by the median of the 

income distribution most heavily, and segregation between the extreme income groups and the 

remainder of the population least heavily.  Intuitively, this makes sense, because a segregation level 

computed between those above and below the 99th percentile, for example, tells us very little about 

the segregation between two randomly chosen individuals, while segregation between those above 

and below the median income tells us more about overall income segregation. 

 The weight 𝐼𝑘 , in particular, has an appealing interpretation.  For a given threshold 𝑘, the 

probability that two randomly-selected individuals from the population will have incomes on 

opposite sides of threshold 𝑘 is 2𝑝𝑘(1 −  𝑝𝑘), which is proportional to 𝐼𝑘 .  Since the segregation 
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level describes the extent of segregation between individuals on either side of the income threshold 

𝑘, we can interpret Equation (6) as a weighted average of the segregation across each threshold, 

where the value at each threshold is weighted by how informative segregation measured at that 

threshold is for a randomly chosen pair of individuals. 

 Second, the rank-order income segregation measures can be interpreted as variation ratios, 

as in Equation (1).  To see this, consider Equation (3), which defines the variation in an ordinal 

variable as the average, across 𝐾 − 1 thresholds, of the function 𝑓(𝑝𝑘), where 𝑝𝑘  is the proportion 

of the population with income ranks below 𝑝𝑘 .  Extending this to the case where the number of 

thresholds becomes arbitrarily large, the variation in income ranks can be defined as  

𝑣𝑅 = � 𝑓�𝑝𝑞�𝑑𝑞
1

0
, 

 (15) 

where 𝑝𝑞  is the proportion of the population below the 100 × 𝑞𝑡ℎ population percentile (in the total 

population, 𝑝𝑞 = 𝑞, by definition, but in any given neighborhood, the proportion below any given 

income rank may differ from 𝑞).  Now, using the same logic as the derivation in Appendix A1, albeit 

in reverse, Equation (4) can be rewritten as 

Λ𝑅 = �
𝑡𝑛
𝑇𝑣𝑅

(𝑣𝑅 − 𝑣𝑛𝑅)
𝑁

𝑛=1

. 

 (16) 

Equation (16) shows that the rank-order segregation measures can be written as variation ratios in 

the same form as Equation (1).  The only difference here is that we measure the variation in a 

(continuous) income ranks, rather than (ordinal) income categories.  Each of the indices measures 

how much less income rank variation there is within neighborhoods than in the overall population. 

Third, the rank-order segregation indices can be interpreted as measures of the extent to 

which the cumulative income percentile density curves vary around their mean (the 45-degree 
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line).  The rank-order information theory index, for example, can be written as  

𝐻𝑅 = 2� ��
𝑡𝑛
𝑇
�𝑝𝑛𝑞 ln �

𝑝𝑛𝑞
𝑞
� + �1 − 𝑝𝑛𝑞� ln �

1 − 𝑝𝑛𝑞
1 − 𝑞

��
𝑁

𝑛=1

� 𝑑𝑞
1

0
 

   (17) 

where 𝑝𝑛𝑞  is the cumulative proportion of those in neighborhood n with incomes at or below 

percentile 100×q.  The term inside the brackets is akin to the Theil inequality measure, a measure of 

the deviation of 𝑝𝑛𝑞  from its mean (𝑞) (Theil, 1967).  Averaged over neighborhoods and integrated 

over 𝑞 ∈ [0,1], this yields a measure of the average deviation of the cumulative income percentile 

density function in neighborhood 𝑛 from the regional average (the 45-degree line).  𝐻𝑅  is therefore 

a measure of the average variation among neighborhoods of their cumulative income percentile 

density functions around the 45-degree line. 

  Likewise, the rank-order relative diversity index can be written as 

𝑅𝑅 = 6� ��
𝑡𝑛
𝑇
�𝑝𝑛𝑞 − 𝑞�2

𝑁

𝑛=1

� 𝑑𝑞
1

0
 

   (18) 

Since the average of 𝑝𝑛𝑞  across neighborhoods equals 𝑞, the term in the brackets is simply the 

variance of the 𝑝𝑛𝑞 ’s at the point on the income distribution given by q.  Thus, 𝑅𝑅 can be interpreted 

as a measure of the average variance of the neighborhood cumulative percentile density functions.   

Note that the rank-order square root index cannot be expressed as a measure of the 

variation of the neighborhood cumulative percentile density functions, at least not using any 

traditional measure of variation.11 

                                                 
11 𝑆𝑅  can be written as 

𝑆𝑅 =
8
𝜋
� ��

𝑡𝑛
𝑇
��𝑞 − 𝑞2 − ��𝑝𝑛𝑞 − 𝑝𝑛𝑞2 ��

𝑁

𝑛=1

� 𝑑𝑞
1

0
. 

Although the term in brackets is a measure of the variation in 𝑝𝑛𝑞 around its mean, it is not a standard 
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Incorporating Spatial Proximity Into Measures of Income Segregation 

 The income segregation measures developed above do not take into account the spatial 

patterning of the organizational units (e.g. census tracts) in which income data are collected and 

reported.  Moreover, they are inherently subject to the MAUP, since a different set of definitions of 

organizational boundaries may yield different computed levels of income segregation.  However, 

because the rank-order segregation measures can be written as weighted averages of traditional 

pairwise indices, we can define explicitly spatial versions of the rank-order measures simply by 

substituting spatial versions of the pairwise indices in Equations (9)-(11).  Specifically, I define the 

spatial rank-order information theory index, 

𝐻�𝑅 = 2 ln 2� 𝐸(𝑝)𝐻�(𝑝)𝑑𝑝
1

0
; 

  (19) 

the spatial rank-order variance ratio index, 

𝑅�𝑅 =
3
2
� 𝐼(𝑝)𝑅�(𝑝)𝑑𝑝
1

0
; 

  (20) 

and the spatial square root index, 

𝑆̃𝑅 =
3
2
� 𝑉(𝑝)𝑆̃(𝑝)𝑑𝑝
1

0
; 

  (21) 

where 𝐻�(𝑝), 𝑅�(𝑝), and 𝑆̃(𝑝) are the pairwise spatial versions of their respective pairwise indices (as 

defined in Reardon & O'Sullivan, 2004), computed between households with incomes above 

percentile 100×p and those with incomes at or below percentile 100×p.12  In practice, the functions 

𝐻�(𝑝), 𝑅�(𝑝), and 𝑆̃(𝑝) can be estimated from the values of 𝐻�𝑘 , 𝑅�𝑘 , and 𝑆̃𝑘 computed at each of the K-1 

                                                                                                                                                             
measure of variation and has no ready interpretation.  
12 The pairwise spatial segregation indices 𝐻� and 𝑅�  can be computed using a program written by Reardon, 
Matthews, O’Sullivan and colleagues (available at  http://www.pop.psu.edu/services/GIA/research-
projects/mss/mss-about). 

http://www.pop.psu.edu/services/GIA/research-projects/mss/mss-about
http://www.pop.psu.edu/services/GIA/research-projects/mss/mss-about
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income thresholds used to define income categories, just as in the aspatial case above.  Thus, the 

spatial versions of the rank-order segregation indices introduce no additional complexity, other 

than the additional computational burden of computing spatial versions of 𝐻�𝑘 , 𝑅�𝑘 , and 𝑆̃𝑘 . 

 

5. Properties of the Rank-Order Income Segregation Measures 

 Because each of the three indices described above can be written as a weighted average of 

pairwise indices, they inherit many of the properties of these pairwise indices.  The pairwise 

information theory index 𝐻, variance ratio index 𝑅, and square root index 𝑆 each meet all of the 

relevant criteria described in section 2 above: scale interpretability; organizational equivalence; 

population size invariance; exchanges; additive decomposability; and spatial adaptability 

(Hutchens, 2001, 2004; James & Taeuber, 1985; Reardon & Firebaugh, 2002).  Moreover, the  

ordinal versions of 𝐻, 𝑅, and 𝑆 each satisfy these properties, as well as the property of ordered 

exchanges (Reardon, 2009).  Because the rank-order measures can be seen as ordinal measures 

with an arbitrarily large number of categories, the proofs in Reardon (2009) that show that the 

ordinal measures satisfy these properties apply as well to the rank-order measures.  Thus, the only 

two criteria that require further discussion are the rank-preserving scale invariance and income 

category threshold invariance properties. 

  

Rank-Preserving Scale Invariance.   

Each of the three measures described above (and any similar measure, such as Watson’s CGI 

(2009)) relies only on information about household’s rank in the income distribution (rather than 

on actual income in monetary units).  As a result, any rank-preserving change in the income 

distribution will not affect the measured segregation.  This means that changes in the income 

distribution that increase or reduce income inequality or changes that raise or lower all 

households’ income (through inflation, for example) will not affect measured segregation so long as 



29 
 

the changes do not alter households’ ranks in the income distribution. 

A consequence of this property is that the rank-order segregation measures separate the 

measurement of income segregation from income inequality.  Consider a region made up of two 

neighborhoods, one in which all households have incomes of $50,000 and one in which all 

households have incomes of $55,000.  If income is transferred among households so that the first 

neighborhood now consists of households each with incomes of $5,000 and the second consists of 

households each with incomes of $100,000, the rank-order segregation measures will indicate no 

change in segregation—in both cases the neighborhoods are sorted similarly by income ranks.  

However, income inequality will have increased substantially.  In this way, the rank-order 

segregation indices measure the sorting dimension of the spatial income distribution, whereas 

income inequality indices measure the variation dimension of the income distribution.  In principle, 

the extent of sorting is independent of the extent of variation.  The rank-order measures thus are 

measures of income sorting.  Coupled with measures of income inequality, they provide a more 

complete description of spatial income distribution than either does alone. 

 

Income Category Threshold Invariance 

 Strictly speaking, the rank-order income segregation measures are not invariant to changes 

in the locations of the income category thresholds, because the function Λ(𝑝) must be estimated 

from a finite set of points using a (polynomial) parametric function.  Both the functional form (e.g., 

the order of the polynomial) and the locations of the income category thresholds may affect the 

estimated function Λ�(𝑝) and so may affect the estimated segregation Λ�𝑅 .  However, so long as there 

are a sufficient number of thresholds that span most of the income distribution, and so long as the 

fitted polynomial is of high enough order, the estimate of Λ𝑅 will not be very sensitive to the 

location of the thresholds.   

To illustrate this, I use the data from San Francisco and Wayne counties described above.  I 
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first compute the three rank-order segregation measures using polynomials of order 1-8.  I use 

Equation (13) and the formula in footnote 11 to estimate the segregation level and its standard 

error (the uncertainty in the estimates arises both because of sampling variation—income data 

from the Census are based on a sample of households—and because of the misfit of the functional 

form to the data).  Figure 6 reports the estimated segregation levels, based on polynomials of order 

1-8, for each of the three measures and for both San Francisco and Wayne counties.   

Figure 6 here 

Recall that the polynomials are fit to the data depicted in Figures 3-5.  It is clear from these 

figures that polynomials of order 3 or higher are likely necessary to fit the data reasonably well.  

Indeed, Figure 6 shows that the estimated segregation is relatively imprecise and sensitive to the 

polynomial order for orders lower than 3 or 4, but for polynomials of order 4 or higher, the 

estimated segregation is insensitive to the order of the polynomial and is very precisely estimated.  

The rank-order information theory and variance ratio indices are more precise and more stable 

than the square root index, likely because the square root index weights segregation values at 

thresholds at the extremes of the income distribution more heavily than the other two measures.  

As a result, the estimates are more sensitive to the extrapolation of the fitted polynomial beyond 

the extreme thresholds. 

The fact that the estimated segregation is relatively insensitive to the order of the fitted 

polynomial beyond order 4 suggests that, at least in these data, we can safely use fourth-order 

polynomials to estimate segregation.  In general, however, it is useful to examine plots like those 

shown in Figures 3-5 to ensure that the polynomial is of sufficiently high order to capture the 

segregation function well.  It is also useful to check for the robustness of results across different 

polynomial orders, as done here. 

A second concern is with the potential sensitivity of the estimates to differences in the 

location of the income thresholds reported.  Figure 6 above relies on the 15 income thresholds 
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provided in recent Census data.  As Figures 3-5 make clear, these thresholds span most of the 

income range in both counties, and are spaced sufficiently evenly to allow precise estimation of the 

function Λ(𝑝).  To investigate how the estimated segregation may depend on the number and range 

of the income thresholds available, we can drop different thresholds from the data to simulate the 

condition where we have fewer, and possibly less broadly or evenly spaced, available thresholds.  

Figure 7 reports the estimated segregation using 8 different subsets of the thresholds.  In each case, 

the segregation measure is computed using a fourth-order polynomial to approximate Λ(𝑝). 

Figure 7 here 

In each panel of Figure 7 are 8 estimates of segregation.  The first is based on all the 

thresholds, for comparison.  The second and third estimates use only the even or odd thresholds, 

respectively.  These have only 7 or 8 thresholds instead of the full 15, but they capture most of the 

range of the full set.  In general, the estimated segregation levels from these subsets of thresholds 

are very similar to—and are similarly precise as—those based on the full sample.  The fourth set 

uses only every third threshold (thresholds 1, 4, 7, 10, 13, and 15) and again yields estimates very 

close to those based on the full set of thresholds.  The fifth and sixth estimates use sets of thresholds 

that exclude the highest 2 or 4 thresholds, respectively; while the seventh and eighth estimates 

exclude the lowest 2 or 4 thresholds, respectively.  Here there is some evidence that the estimates 

may be quite sensitive to the set of thresholds used.  In particular, the San Francisco estimates are 

quite sensitive to the exclusion of the top four thresholds, while the Wayne County estimates are 

quite sensitive to the exclusion of the bottom four thresholds.  The reason for this is evident in 

Figures 3-5.  Because the income distribution is much higher in San Francisco than Wayne County, 

the fifth highest threshold in San Francisco corresponds to the 63rd percentile of the income 

distribution, while in Wayne County it corresponds to the 78th percentile.  Thus, dropping the top 4 

thresholds in San Francisco much more severely limits our information about the shape of the 

segregation function in the upper part of the income distribution than it does in Wayne County.  For 
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the same reason, dropping the bottom 4 thresholds affects measured segregation in Wayne County 

much more than in San Francisco (the 5th threshold is at the 28th percentile in San Francisco and the 

38th percentile in Wayne County).   

As a rule of thumb, then, the estimates appear relatively insensitive to the location of the 

thresholds so long as the thresholds span roughly the 25th to 75th percentile range.  Moreover, the 

rank-order information theory and variance ratio indices are slightly less sensitive than the square 

root index to the absence of thresholds at the extremes, because they weight segregation at the 

extremes less (see Figures 3-5).  Although the results for San Francisco and Wayne counties 

obviously may not generalize to all places, all income distributions, and all choices of thresholds, 

they provide reassurance regarding the use of Census income categories for the computation of 

income segregation in the U.S.  The income distributions in San Francisco and Wayne Counties are 

among the highest and lowest in the U.S., but even in these two counties the income thresholds span 

almost the entire income range (the 10th-93rd percentiles in San Francisco and the 12th-98th 

percentiles in Wayne County), suggesting that measured segregation in all metropolitan areas in 

the U.S. is largely insensitive to the location of the thresholds.  Moreover, although the income 

categories used in the Census as well as the U.S. income distribution have changed over time, the 

income thresholds have historically covered a roughly similar range of the income distribution.  

 

Sensitivity to Exchanges 

 Although the fact that the ordinal segregation indices satisfy the exchange criteria ensures 

that the rank-order measures do as well, it is instructive to examine the differential sensitivity of 

the three indices to exchanges.  Consider an exchange 𝑥 in which a household of income percentile 𝑟 

moves from neighborhood 𝑚 to 𝑛 while a household of income percentile 𝑠 (where 𝑟 < 𝑠) moves 

from neighborhood 𝑛 to 𝑚.  It is straightforward to show (see Appendix A5) that the derivatives of 

the three measures with respect to such an exchange can each be written as 
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𝑑Λ𝑅

𝑑𝑥
=

1
𝑇
� �𝑔�𝐹𝑛(𝑞)� − 𝑔�𝐹𝑚(𝑞)��𝑑𝑞
𝑠

𝑟
 

  (22) 

where, as above, 𝐹𝑛(𝑞) is the proportion of households in neighborhood 𝑛 with incomes percentiles 

below 𝑞, and where 𝑔 is an increasing function on the interval (0,1).  The fact that 𝑔 is an increasing 

function implies that the derivative is positive when 𝐹𝑚(𝑞) < 𝐹𝑛(𝑞) for all 𝑞 ∈ (𝑟, 𝑠); which in turn 

implies that the indices satisfy the exchange criterion.  Equation (22) indicates that segregation 

between two neighborhoods depends on the differences in a monotonic transformation of their 

cumulative income percentile density functions.  The shape of this monotonic transformation 

indicates what types of exchanges an index is more or less sensitive to.  In particular, the slope of 

the function 𝑔 at a given value of 𝐹(𝑞) indicates the effect of a disequalizing exchange of households 

between two neighborhoods that initially have identical proportions of households with incomes 

below 𝑞.  The top panel of Figure 8 illustrates the function 𝑔 used in the derivatives of each of the 

three rank-order indices; the bottom panel illustrations the derivative 𝑑𝑔
𝑑𝐹(𝑞) for each of the three 

functions.   

Figure 8 here 

 Figure 8 shows that 𝐻𝑅  and 𝑆𝑅 are much more sensitive than 𝑅𝑅 to a given difference in 

income proportions between neighborhoods when the proportions are near 0 or 1.  This indirectly 

implies that 𝐻𝑅  and 𝑆𝑅 are more sensitive to the segregation of those at the extremes of the income 

distribution from other households than they are to the segregation of above-median from below-

median income households, while 𝑅𝑅 is equally sensitive to the segregation across all income 

thresholds.  However, given that there is greater variation in the cumulative income percentile 

density functions at the middle of the income distribution than the tails (see Figures 1-2), one might 

argue that a fixed difference in household proportions below an extreme income percentile 

represents a larger substantive difference between neighborhoods than the same difference at the 
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median income (e.g., the difference between having 45% or 55% of households in a neighborhood 

below the median income is a smaller difference, in substantive terms, than the difference between 

having 0% and 10% of households below the 5th percentile of the income distribution).  By this 

argument, 𝐻𝑅  and 𝑆𝑅 more appropriately respond to exchanges or differences in neighborhood 

composition than does 𝑅𝑅 .  

 

6. Conclusion 

 I have proposed three measures of rank-order segregation—the rank-order information 

theory index (𝐻𝑅), the rank-order variance ratio index (𝑅𝑅), and the rank-order square root index 

(𝑆𝑅).  These indices have several appealing features.  First, they are insensitive to rank-preserving 

changes in income, since the measures are based on the ranks of incomes rather than their 

numerical values.  As a result, the measures are independent of the extent of income inequality and 

allow comparisons across place and time regardless of the units of income or differences in the cost 

of living.  Second, the measures are relatively easy to calculate, since they require (in the aspatial 

case) simply computing a series of pairwise segregation values using existing measures of 

segregation (H, R or S), fitting a polynomial regression line through these values, and then 

computing a linear combination of the estimated parameters.  When used to compute income 

segregation, the rank-order measures are largely insensitive to the set of income thresholds that 

define the categories in which income is reported, so long as the thresholds span most of the range 

of income percentiles.  As a result, they do not require one to make any assumption about the shape 

of income distributions; in particular, no assumption is needed regarding top-coded incomes, a 

problem that complicates many other measures of income segregation.  Third, the measures are 

easily adapted to account for spatial proximity, following the approach of Reardon and O’Sullivan 

(2004).  In the spatial case, the computational steps are the same, but the pairwise segregation 

indices must be computed using some spatially-sensitive method.   
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 Each of the indices I describe satisfies the set of criteria necessary for a useful income 

segregation measure.  However, the three indices differ in several ways.  Most importantly, the 

indices are differently sensitive to segregation at different thresholds of the income distribution.  

Because 𝐻𝑅  and 𝑆𝑅 are more sensitive to segregation at the ends of the income distribution, they 

may be most useful for research that is substantively interested in the residential concentration of 

poverty or affluence.  Of these two, 𝑆𝑅 is the most sensitive to segregation at the extremes of the 

income distribution (and the least sensitive to segregation at the median); indeed the differential 

sensitivity of 𝑆𝑅 to segregation at different parts of the income distribution may be too extreme—it 

is very insensitive to variation among neighborhoods when the proportions of households at some 

income level are between 0.2 and 0.8, a rather wide range.   

An additional difference among the indices is that 𝐻𝑅  and 𝑅𝑅 are based on much more 

widely-used pairwise segregation indices; Hutchens’ square root index has not been widely used 

and so is unfamiliar to most scholars.  Moreover, the functional form of 𝑆𝑅 and its sensitivity to 

between-neighborhood differences does not have a readily interpretable form, unlike 𝐻𝑅  and 𝑅𝑅 , 

which are based in the concepts of entropy and variance, respectively.    

Regardless of the differences among them, the great advantage of the rank-order 

segregation measures is that they measure the extent to which households are sorted by income 

independently of the extent of income inequality in the population.  As a result, they allow for 

meaningful comparisons regarding the degree of residential sorting by income, across place and 

time and regardless of changes in the shape of the income distribution, inflation, or cost-of-living.  

Indeed, they allow the measurement of segregation by any characteristic that has an underlying 

continuous distribution, such as age, test score, or years of schooling completed.   As a result, the 

measures described here may prove useful in many areas of research, beyond their obvious 

application to income segregation.   
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Appendices 

 

A1: Derivation of Equation (3) 

Let 𝑣𝑘 indicate the variation of a population that is divided into two groups, where one 

group consists of all those in income category 𝑘 or below, and the other groups consists of all those 

in categories 𝑘 + 1 or above.  Then, as noted in the text, 𝑣𝑘 = 𝑓(𝑝𝑘).  Likewise, denote 𝑣𝑛𝑘 = 𝑓(𝑝𝑛𝑘), 

where 𝑝𝑛𝑘  is the cumulative proportion in category 𝑘 or lower in unit 𝑛.  Then we can rewrite 

Equation (1) as: 

Λ = �
𝑡𝑛
𝑇𝑣

(𝑣 − 𝑣𝑛)
𝑁

𝑛=1

 

= �
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𝐾 − 1
�(𝑣𝑘 − 𝑣𝑛𝑘)
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𝑁
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𝐾−1
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= �
𝑣𝑘

(𝐾 − 1)𝑣
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𝐾−1

𝑘=1

 

= �
𝑣𝑘

∑ 𝑣𝑗𝐾−1
𝑗=1

Λ𝑘

𝐾−1

𝑘=1

. 

 

A2: Derivation of denominators in Equations (9)-(11) 

We wish to evaluate the integral 

� 𝑣(𝑝)𝑑𝑝
1

0
, 

where 𝑣(𝑝) is the value 𝑓(𝑝).  For the ordinal information theory index, 𝑣(𝑝) = −[𝑝log2𝑝 +

(1 − 𝑝) log2(1 − 𝑝)].  The integral is then 



37 
 

� 𝑣(𝑝)𝑑𝑝
1
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= −� [𝑝log2𝑝 + (1 − 𝑝) log2(1 − 𝑝)]𝑑𝑝
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0
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2 ln 2
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. 

For the ordinal variation ratio index, 𝑣(𝑝) = 4𝑝(1 − 𝑝).  The integral is then 
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0
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For the ordinal square root index, 𝑣(𝑝) = 2�𝑝(1 − 𝑝).  The integral is then 
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3
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2
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where 𝐹12 (𝑎, 𝑏, 𝑐, 𝑥) is Gauss’s hypergeometric function.  At 𝑥 = 0, 𝐹12 (𝑎, 𝑏, 𝑐, 𝑥) = 0; at 𝑥 = 1, 

Gauss’s hypergeometric theorem yields 

𝐹12 (𝑎, 𝑏, 𝑐, 1) =
Γ(𝑐 − 𝑏 − 𝑎)Γ(𝑐)
Γ(𝑐 − 𝑏)Γ(𝑐 − 𝑎), 

where Γ is the gamma function.13  Thus, the integral evaluates to 

                                                 

13 Weisstein, Eric W. "Gauss's Hypergeometric Theorem." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/GausssHypergeometricTheorem.html; Weisstein, Eric W. "Gamma Function." 
From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaFunction.html. 

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/GausssHypergeometricTheorem.html
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/GammaFunction.html
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A3: Derivation of Equations (13)-(14) 

Fitting the model in Equation (12) yields  

Λ�(𝑝) = � 𝛽̂𝑚 𝑝𝑚
𝑀

𝑚=0

. 

Substituting this into Equation (4), rearranging terms, and integrating, yields 

Λ�𝑅 = �
𝑓(𝑝)

∫ 𝑓(𝑞)𝑑𝑞1
0

Λ�(𝑝)𝑑𝑝
1

0
 

= �
𝑓(𝑝)

∫ 𝑓(𝑞)𝑑𝑞1
0

�� 𝛽̂𝑚𝑝𝑚
𝑀

𝑚=0

� 𝑑𝑝
1

0
 

= � ��
𝑓(𝑝)𝑝𝑚

∫ 𝑓(𝑞)𝑑𝑞1
0

𝑑𝑝
1

0
� 𝛽̂𝑚

𝑀

𝑚=0

 

= � 𝛿𝑚𝛽̂𝑚

𝑀

𝑚=0

, 

where  

𝛿𝑚 = �
𝑓(𝑝)𝑝𝑚

∫ 𝑓(𝑞)𝑑𝑞1
0

𝑑𝑝
1

0
. 

 

A4: Derivation of Formulae in Table 1 

For the rank-order information theory index,  
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𝛿𝑚 = 2 ln 2� 𝐸(𝑝)𝑝𝑚𝑑𝑝
1

0
 

= −2� [𝑝𝑚+1 ln(𝑝) + 𝑝𝑚(1 − 𝑝) ln(1 − 𝑝)]𝑑𝑝
1

0
 

= −2� �𝑝𝑚+1 ln(𝑝) + �1 − (1 − 𝑝)�𝑚(1 − 𝑝) ln(1 − 𝑝)�𝑑𝑝
1

0
 

= −2� [𝑝𝑚+1 ln(𝑝)]𝑑𝑝
1

0
+ � ��(−1)𝑚−𝑛 𝐶𝑛𝑚 (1 − 𝑝)𝑚−𝑛+1 ln(1 − 𝑝)

𝑚

𝑛=0

� 𝑑𝑝
1

0
   

= −2� [𝑝𝑚+1 ln(𝑝)]𝑑𝑝
1

0
+ �(−1)𝑚−𝑛 𝐶𝑛𝑚 � [(1 − 𝑝)𝑚−𝑛+1 ln(1 − 𝑝)]𝑑𝑝

1

0

𝑚

𝑛=0

 

= −2 �𝑝𝑚+2 �
(𝑚 + 2)ln(𝑝) − 1

(𝑚 + 2)2 ��
0

1

−� (−1)𝑚−𝑛 𝐶𝑛𝑚 (1 − 𝑝)𝑚−𝑛+2 �
(𝑚 − 𝑛 + 2) ln(1 − 𝑝) − 1

(𝑚 − 𝑛 + 2)2  ��
0

1𝑚

𝑛=0

� 

= �
2

(𝑚 + 2)2 + 2 �
(−1)𝑚−𝑛 𝐶𝑛𝑚
(𝑚 − 𝑛 + 2)2

𝑚

𝑛=0

�, 

where 𝐶𝑛𝑚 = 𝑚!/𝑛! (𝑚 − 𝑛)! is the combinatorial function. 

For the rank-order variation ratio theory index,  

𝛿𝑚 =
3
2
� 𝐼(𝑝)𝑝𝑚𝑑𝑝
1

0
 

=
3
2
� 4𝑝(1 − 𝑝)𝑝𝑚𝑑𝑝
1

0
 

= 6� 𝑝𝑚+1(1 − 𝑝)𝑑𝑝
1

0
 

= 6�
𝑝𝑚+2

𝑚 + 2
−
𝑝𝑚+3

𝑚 + 3
��
0

1

 

=
6

(𝑚 + 2)(𝑚 + 3) . 
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For the rank-order square root index,  

𝛿𝑚 =
4
𝜋
� 𝑉(𝑝)𝑝𝑚𝑑𝑝
1

0
 

=
4
𝜋
� 2�𝑝(1 − 𝑝)𝑝𝑚𝑑𝑝
1

0
 

=
8
𝜋
� 𝑝𝑚+12�1 − 𝑝
1

0
𝑑𝑝 

=
8
𝜋
�−2

3
(1 − 𝑝)

3
2 ∙ 𝐹12  �3

2
,−𝑚 − 1

2
, 5
2
, 1 − 𝑝���

0

1
  

where 2F1(a,b,c,x) is Gauss’s hypergeometric function (which is equal to 0 for x=0).  At x=1, Gauss’s 

hypergeometric theorem gives 

𝐹2 1   �3
2
,−𝑚 − 1

2
, 5
2
, 1� =

Γ�52�Γ�𝑚 + 3
2�

Γ(1)Γ(𝑚 + 3), 

where Γ is the gamma function.  Thus, the integral evaluates to 

𝛿𝑚 =
8
𝜋
�
2
3
∙
Γ�52�Γ�𝑚 + 3

2�
Γ(1)Γ(𝑚 + 3)� 

=
8
𝜋

⎣
⎢
⎢
⎢
⎡
2
3
∙

3
4𝜋�1 ∙ 3 ∙ 5 ∙∙∙ (2𝑚 + 1)�

2𝑚+1

1 ∙ (m + 2)!

⎦
⎥
⎥
⎥
⎤

 

= 4 �
�1 ∙ 3 ∙ 5 ∙∙∙ (2𝑚 + 1)�

2𝑚+1(𝑚 + 2)!
�  

= 4�
2𝑛 + 1
2𝑛 + 4

𝑚

𝑛=0

. 

 

Appendix A5: Sensitivity of Indices to Exchanges  

Suppose a household of income percentile 𝑟 moves from neighborhood 𝑚 to 𝑛 while a 

household of income percentile 𝑠 (where 𝑟 < 𝑠) moves from neighborhood 𝑛 to 𝑚.  Taking the 
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derivative of Equation (4) with respect to such an exchange, and noting that 𝑑Λ(𝑞)
𝑑𝑥

= 0 for values of 

𝑞 < 𝑟 and 𝑞 > 𝑠, yields 

𝑑Λ𝑅

𝑑𝑥
=

𝑑
𝑑𝑥

��
𝑓(𝑞)

∫ 𝑓(𝑧)𝑑𝑧1
0

Λ(𝑞)𝑑𝑞
1

0
� 

= �
𝑓(𝑞)

∫ 𝑓(𝑧)𝑑𝑧1
0

∙
𝑑Λ(𝑞)
𝑑𝑥

𝑑𝑞
1

0
 

= �
𝑓(𝑞)

∫ 𝑓(𝑧)𝑑𝑧1
0

∙
𝑑Λ(𝑞)
𝑑𝑥

𝑑𝑞
𝑠

𝑟
. 

For the rank-order information theory index, this implies 

𝑑𝐻𝑅

𝑑𝑥
= 2 ln 2� 𝐸(𝑞)

𝑑𝐻(𝑞)
𝑑𝑥

𝑑𝑞
1

0
 

James and Taeuber (1985) show that the derivative of 𝐻 with respect to an exchange is  

𝑑𝐻(𝑞)
𝑑𝑥

=
1

𝑇𝐸(𝑞)
log2 �

𝑝𝑛𝑞�1 − 𝑝𝑚𝑞�
𝑝𝑚𝑞�1 − 𝑝𝑛𝑞�

�, 

where 𝑝𝑚𝑞  is the proportion of households with income less than or equal to 𝑞 in neighborhood 𝑚 

(i.e., 𝑝𝑚𝑞 = 𝐹𝑚(𝑞)).  Thus  

𝑑𝐻𝑅

𝑑𝑥
=

2
𝑇
� ln�

𝐹𝑛(𝑞)
1 − 𝐹𝑛(𝑞)� − ln�

𝐹𝑚(𝑞)
1 − 𝐹𝑚(𝑞)�𝑑𝑞

𝑠

𝑟
. 

The term inside the integral is the between-neighborhood difference in the log odds of the 

proportions of households with income below the 𝑞𝑡ℎ percentile of the overall income distribution. 

The change in segregation resulting from an exchange is therefore proportional to average of this 

difference over the income range from 𝑟 to 𝑠. 

For the rank-order variance ratio index, 

𝑑𝑅𝑅

𝑑𝑥
=

3
2
� 𝐼(𝑞)

𝑑𝑅(𝑞)
𝑑𝑥

𝑑𝑞
1

0
 

James and Taeuber (1985) show that the derivative of 𝑅 with respect to an exchange is  
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𝑑𝑅(𝑞)
𝑑𝑥

=
8

𝑇𝐼(𝑞) �𝑝𝑛𝑞 − 𝑝𝑚𝑞�. 

Thus  

𝑑𝑅𝑅

𝑑𝑥
=

12
𝑇
� [𝐹𝑛(𝑞) − 𝐹𝑚(𝑞)]𝑑𝑞
𝑠

𝑟
 

The term inside the integral is the between-neighborhood difference in the proportions of 

households with income below the 𝑞𝑡ℎ percentile of the overall income distribution. The change in 

segregation resulting from an exchange is therefore proportional to average of the differences in 

proportions of households with incomes less than 𝑞, for 𝑟 ≤ 𝑞 ≤ 𝑠.  

For the rank-order square root index, 

𝑑𝑆𝑅

𝑑𝑥
=

4
𝜋
� 𝑉(𝑞)

𝑑𝑆(𝑞)
𝑑𝑥

𝑑𝑞
1

0
 

It is straightforward to show that the derivative of 𝑆 with respect to an exchange is  

𝑑𝑆(𝑞)
𝑑𝑥

=
1

𝑇𝑉(𝑞)
⎣
⎢
⎢
⎡ 2𝑝𝑛𝑞 − 1

�𝑝𝑛𝑞�1 − 𝑝𝑛𝑞�
−

2𝑝𝑚𝑞 − 1

�𝑝𝑚𝑞�1 − 𝑝𝑚𝑞�⎦
⎥
⎥
⎤
 

Thus  

𝑑𝑆𝑅

𝑑𝑥
=

4
𝜋𝑇

�

⎣
⎢
⎢
⎡ 2𝐹𝑛(𝑞) − 1
�𝐹𝑛(𝑞)(1 − 𝐹𝑛(𝑞))

−
2𝐹𝑚(𝑞) − 1

�𝐹𝑚(𝑞)�1 − 𝐹𝑚(𝑞)�⎦
⎥
⎥
⎤
𝑑𝑞

𝑠

𝑟
. 

The term inside the integral has no ready interpretation, though it can be understood as the 

between-neighborhood difference in a monotonic transformation of the proportions of households 

with income below the 𝑞𝑡ℎ percentile of the overall income distribution. 

 For each of the three indices, then, the change in segregation resulting from an exchange 𝑥 

can be written as  

𝑑Λ𝑅

𝑑𝑥
=

1
𝑇
� �𝑔�𝐹𝑛(𝑞)� − 𝑔�𝐹𝑚(𝑞)��𝑑𝑞
𝑠

𝑟
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where 𝑔 is an increasing function on the interval (0,1).  The three functions 𝑔 and their derivatives 

are plotted in Figure 8.  Because 𝑔 is increasing, �𝐹𝑛(𝑞) > 𝐹𝑚(𝑞)�∀𝑞 ∈ (𝑟, 𝑠) ⟹ 𝑑Λ𝑅

𝑑𝑥
> 0, so each 

index satisfies the exchange criterion. 

  



44 
 

Table 1: Weights for Computing Rank-Order Segregation Indices from Fitted Segregation 
Profiles 

 Segregation Index 

 
Rank-order information theory 

index (𝐻𝑅) 
Rank-order variation ratio 

index (𝑅𝑅) 
Rank-order square root 

index (𝑆𝑅) 

𝛿0 1 1 1 

𝛿1 
1
2

 
1
2

 
1
2

 

𝛿2 
11
36

 
3

10
 

5
16

 

𝛿3 5
24

 
1
5

 
7

32
 

𝛿4 
137
900

 
1
7

 
21

128
 

⋮ ⋮ ⋮ ⋮ 

𝛿𝑚 
2

(𝑚 + 2)2 + 2 �
(−1)𝑚−𝑛 𝐶𝑛𝑚
(𝑚 − 𝑛 + 2)2

𝑚

𝑛=0

 
6

(𝑚 + 2)(𝑚 + 3) 4�
2𝑛 + 1
2𝑛 + 4

𝑚

𝑛=0
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6
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Figure 7
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Figure 8 
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