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Abstract

In various environments (e.g., manufacturing shopfloors, civil engineering construction siles,
space) there is an increasing need to efficiently transport objects from locations to other-loca-
tions. Although most practical material transportation robotic system built so far have been guite
primitive, we believe that in many areas one can significantly gain in efficiency, reliability and
flezibility by automatically planning the motions of the transportation devices. While process
planning provides a high-level ‘logical’ and possibly ‘temporal’ specification of material move-
ments, motion planning says how these movements are to be ‘physically’ carried out. Thus,
motion planning is the natural intermediate stage belween process planning and task ezecution.
In this paper, we survey techniques for planning mobile robot paths among obstacles, which have
been developed over the last few years. We focus on the so-called ‘global’ techniques. We describe
in detail the three most common approaches, which are based on the notions of cell decompo-
sition, free space retraction, and visibility graph, respectively. Within the first two approaches,
we survey both the so-called ezact and approzimate techniques. Although this paper is far from
ezploring all the facets of motion planning, it gives a fundamental and detailed presentation of
issues, which are of general interest to all motion planning problems. These issues are likely to

. be of prime imporlance in future material transportation systems.
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1 Introduction

In various environments there is an increasing need to efficiently transport objects from
locations to other locations. For instance, in a machining shop-floor blanks and partly
cut parts, as well as tools (e.g., fixtures, cutting tools) have to be moved from storage
areas or machines to other machines, where the machining process plans proceed further.
In a civil engincering construction site, a large variety of materials such as earth, steel
bars, concrete beams, pipes, and prefabricated components have to be frequently moved
over a large and unstructured working area, in a much un-repetitive fashion. In space,
construction of platforms will require moving frame components out from the aircraft to
the partially assembled platform structure. In most of these application areas, material



handling and transportation turn out to be & critical 1ssue responsible for an important
share of the operating costs, and also for many delays. Mobile robots or similar devices
are likely candidates to improve the way these tasks are currently performed.

Robotized material movements.in a worksite requires that the transportation robots be
provided with advanced capabilitics for planning their motions. In fact, motion planning
is the natural intermediate stage between process planning (or task planning), which
determines and specifies the various operations that have to be executed in order to
perform a task and the actual execution of these operations. Indeed, process planning
provides a ‘logical’ and possibly ‘temporal’ specification of material movements. How-
ever, it does not say how these movements are to be ‘physically’ carried out. This 1s

the purpose of motion planning.

We believe that in many arcas one can significantly gain in efficiciency, reliability and
flexibility by automating the motion planning stage. We envision an architecture inte-
grating process planning and motion planning in a hierarchical fashion. In many cases,
process planning will be performed off-line, possibly in a non-automated fashion, while
motion planning will be an on-line capability implemented in the robot controller. In
situations where process plans may often change, both process and motion planning
capabilities will have to be available on-line; then, motion planning will still occur at a
more detailed level and probably within a shorter time perspective, but it will directly
return feedback constraints to the process planning stage.

" Most practical material transportation robotic systems built so far have been quite
primitive, using only low-level control techniques. In these systems, motion planning has
been done by hand and expressed in the form of task;speciﬁc programs driving the robots

“through the planned paths. Often, control is simplified further by materializing potential
paths using specifically designed environmental features (e.g., wiring guides). Typically,
robots controlled in this manner can only follow predetermined routes, limiting their
application to carefully engineered environments and, in these environments, restricting
their flexibility and versatility. In addition, the burden of programming the robots 1s

put on the users.

On the other hand, most of the early robotic projects based on the use of Artificial In-
telligence techniques attempted (rather unsuccessfully) to directly connect a high-level
planning and monitoring system to a low-level execution controller, thus skipping the
motion planning level. In fact, for a long period of time, motion planning has been
considered as a secondary and relatively easy problem. But, experience has shown that
efficient techniques are needed at this intermediate level. This is not surprising. A robot
operates in a physical world in which geometry plays an important role, and it seems
rather natural that a somewhat autonomous robot be equipped with advanced tech-
niques for reasoning about this world. Experience and theoretical studies (e.g., [43,49])
have also shown that motion planning is quite complex, both from the conceptual and

computational points of view.

Motion planning requires to make use of spatial knowledge about the workspace in
order to plan collision-free paths among fixed and moving obstacles. It must also be
able to deal with lack of knowledge about the environment and to generate robust plans



allowing to face contingencies, such as unexpected obstacles. It should also be capable of
rcasoning about uncertainties in object locations, robot control and sensing, and able to
generate sensory-based motion plans coping with these uncertainties. Therefore, motion
planning has many facets. In this paper, we present techniques for planning paths among
obstacles, which have been developed over the last few years. Our discussion is limited

in scope and focuses on basic issues along the following lines:

1. We concentrate on the motion planning problem for a moving rigid object. This
means that we mainly address the case of a mobile robot. The presented techniques are
directly applicable to ground-based mobile robots, whose workspace can be realistically
approximated as a two-dimensional workspace. The principle of most of the techniques
can casily be extended to free-flying robots operating in three-dimensional workspaces,
at the expense of increased computations. The problem of planning the motions of an
articulated object, such as a manipulator arm, is not addressed in this paper, although
several of the presented techniques can be generalized to this case (see [49,33]). ~

2. We concentrate on the so-called global path planning techniques. All these tech-
niques consist of, first constructing a representation of the global topology of the space
of collision-free positions and orientations of the robot in the form of a graph, and next
searching this graph for a path. Another family of path planning techniques are known
as the local techniques. These techniques base their decisions only on local considera-
tions. Since they avoid to explicitly represent free space topology, they may occasionally
be faster than global techniques. But because they tend to search very large graphs,
their worst-case computational complexity is much higher than the worst-case com-
plexity of global methods. The most well-known and successful local path planning
technique is the Potential Field method [22].

3. We assume that the robot has a complete and accurate world model prior to planning.
This means that we do not consider the case where the workspace is ‘discovered’ by the
robot as it moves, nor the case where there are significant uncertainties in the robot’s
model. Dealing with incomplete knowledge is often considered an easier problem when
local techniques are used rather than global ones. However, we believe that this 1s
basically an architectural issue, in which one has to appropriately interweave motion
planning within a limited subset of the workspace (the portion of space for which the
robot has 2 model) and execution (which allows the robot to extend its spatial knowledge
of the workspace through sensing). Dealing with uncertainties 1s more difficult. It
requires to produce sensory-based motion plans, not just paths. Other techniques than
thosed presented below are needed to that purpose. We refer the reader to [24] for a
presentation of the motion planning problem in the presence of uncertainty.

4. We only consider the case of a single robot moving among fixed obstacles. Several
of the methods presented below can easily be extended, in principle, to handle the case
of multiple robots. One general approach is to consider the set of all the robots as a
single multiple-bodied robot with many degrees of freedom. However, motion planning
is known to be NP-hard in the number of degree of freedom [43], so that this approach
results in a substantial increase of computational complexity. Another approach to
multiple-robot path planning is the so-called prioritarized approach [18], which consists



of planning the motion of one robot at a time using one of the techniques described
in this paper, and considering the robots whose motions have already been planned
as obstacles to the other robot. This approach, however, is not guaranteed to succeed
whenever collision-free paths exist for all the robots. The case of moving obstacles 1s
casy to handle as long as there are no bounds on the velocity and the acceleration of
the robots. Dealing with such bounds in a rigorous fashion makes the problem much

harder.

Thus, this paper is far from exploring all the facets of motion planning. However, it
gives a fundamental and detailed presentation of issues which are of general interest
to the other facets of motion planning. Furthermore, these 1ssues are likely to be of
prime importance in future material transportation systems, if we want to increase
the flexibility and ease of use of these systems. Path planning techniques also have
more specific applications; for instance, moving long bars, pipes and beams through
a building under construction is known to raise tough planning problems interfering
with the building construction process, whether material handling is robotized or not.
Nevertheless, due to the limited scope or the paper and its theoretical nature, the reader
should be constantly aware that a practical implementation of any of the techniques
described below requires a lot of domain-specific engineering.

There exist two major global approaches to motion planning, namely decomposition
and retraction. These approaches are ‘universal’ in the sense that they are applicable to
path planning in géneral, not just to specific instances of this problem. Decomposition
consists of representing ‘free space’, i.e. the set of collision-free positions and orientations
of the robot as a finite collection of cells. Path planning is then reduced to finding a
sequence of free cells such that any two successive cells in the sequence are ‘adjacent’.
Retraction consists of mapping free space on a network of curves, so that path planning
is reduced to searching this network.

Within both approaches, there are two sorts of techniques, the ezact and the approrimate
ones. The exact techniques are based on rather involved mathematics and are complete
in the sense that they can produce a path whenever one exists. The approximate
techniques are based on various approximations and/or assumptions, and they are not
complete. Implementation of the exact techniques raises difficult issues, such as doing
exact computations with rational or algebraic numbers. Implementing the approximate
techniques is usually easier.

Exact decomposition techniques are presented in Sections 3 through 5. Approximate
decomposition techniques are described in Sections 6 and 7. The concept of exact
retraction is introduced in Section 8, and an approximate method based on this concept
is detailed in Section 9. Finally, Section 10 describes a third approach to path planning,
known as the visibility graph approach. Unlike the previous two, this latter approach 1s
not universal, but, due to its conceptual simplicity, it is a popular one.

Our presentation of path planning methods makes intensive use of the concept of con-
figuration space. We describe this concept in the following section and we formalize the

path planning problem.



2 Configuration Space

The path planning problem may be formulated as the problem of constructing a contin-
wous collision-free sequence of positions and orientations of an object (the robot) moving
among obstacles from an initial position/orientation to a final one. Configuration space
is a conceptual tool that makes the constraints on the moving object explicit.

Let us consider an object A, which we indifferently call the moving object or the robol.
A can move in a space, W, called workspace, of dimension 2 or 3. Typically, in the
case of a ground-based mobile robot, W is approximated as a space of dimension 2 and
is isomorphic to 2. In the case of a general manipulator arm or a three-dimensional

{ree-flying object, its dimension is 3 and 1t 1s isomorphic to 2.

Let us assume that a Cartesian frame F4 (resp. Fy) has been attached to A (resp.

DEFINITION 1: A configuration c of A is a spectficalion of the postiton and
orientation of Fu with respect o Fy. The configuration space of A 13 the space,
denoted C, of all the possible configurations of A. The subsel of W occupied by A at
configuration ¢ is denoted A(c). In the same fashion, the point a on A al configuratlion
c 1s denoled a(c) in W.

The configuration space C of A is a manifold of dimension m, which can be embedded 1n
an Euclidean space of dimension N (N > m) [1,51]. The topology on € is the subspace
topology induced by the Euclidean metric in the N-dimensional space or, equivalently,
by the following distance function d on C:

Ve, € C [d(e,c') = max distance(a(c), a(c"))]

where distance denotes the Euclidean distance in W.

For instance:

_If A is only allowed to translate in W = ®* (k = 2 or 3), then A’s configuration can
be defined as the coordinates of the origin of F 4 in Fyy. Thus, C = R* (more precisely,

C is isomorphic to ®F) and m = N = k.

- If A translates and rotates in R2, A’s configuration can be represented as a list of
three parameters (z,y,8), the coordinates z and y of the origin of ¥4 and the angle
9 between the z-axes of F4 and Fw. This parametrization, however, does no make
explicit the fact that in this case C is a cylinder, i.e. that the orientation is defined by
an angle modulo 27. In fact, C = R? x S*, where S! is the unit circle in ®2. Thus, C1s
a manifold of dimension 3 (a 3-cylinder) that can be embedded in an Euclidean space

of dimension 4 [51].

_If A translates and rotates in R, A’s configuration can be represented as a list of six
parameters, say the three coordinates of the origin of 74 and the three Euler angles [6]
specifying the orientations of F4’s axes with respect to Fw. Again this parametrization
does not reflect the topology of C. In this case, C = R x SO(3), where SO(3) is the
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Figure 1: C-obstacle in the Convex Polygonal Case -

special orthogonal group made of 3 x 3 matrices with orthonormal rows (and columns)
and determinant 1. The space of 3 x 3 matrices with real coeflicients 1s a vector space of
dimension 9. Othonormality of the rows generates 6 independent polynomial equations
specifying two three-dimensional subsets of this space. The constraint that the deter-
minant should be +1 selects one of these subsets. The set ®° x SO(3) is a2 manifold
of dimension 6, which can be embedded in the Euclidean space of dimension 12. The
constraints on the matrices in SO(3) determines the manifold in ®'%.

One of the reasons why path planning is difficult is that, except in the translational
case, C is a multiply-connected manifold. This can easily be illustrated in the case
where C = R2 x S'. Any two paths which make, respectively, 7 and j (¢ # j) net turns
around S! are not homotopic (i.e. one cannot be continuously deformed into the other)

[21].

Let us assume now that the workspace W contains obstacles B; (i = 1,2,...). We model
all objects, both A and the B;s, as closed bounded (i.e., compact) subsets of W. Each
B; is mapped in C as another region, CB;, called a C-obstacle and defined as follows:

DEFINITION 2: The obstacle region B; in W maps inlo C as the region CB; = {ce
C [/ A(c) N B; # 8}. CB; is called a C-obstacle.

Figure 1 illustrates the case where both A and B; are convex polygonal regions in 7.
If A keeps a fixed orientation, then C = ®?, and the C-obstacle corresponding to B; 1s
shown in Figure 1. It is easy to see that CB; is another convex polygonal region. If A
can both rotate and translate, then C = R? x S!, and the representation of CB; n a
(z,y,8) Cartesian frame, where 6 € [0, 27) represents the orientation of A (modulo 27)
is a three-dimensional volume bounded by patches of ruled surfaces. Every cross-section
through this volume is a polygonal region representing the C-obstacle in %? for a fixed
orientation of A [32].

There exist rather straighforward techniques for computing the representation of CB;



from the representation of A and B;, when both objects are convex polygons or polyhedra
[32,16]. The computed representation of CB; when both A4 and B; are convex polygons
!

is of the form:

(z,9,0) € CB; & A € b = (au(0)z + bar(8)y + ci(f) < 0)]

where & is a subinterval of [0, 27) and aw(f), bix(6), and c;x(0) are continuous function
of 8. The inequality a:(8)z + by (0)y+ ci(f) < 0is called a C-constraint (the equality
represents a ruled surface). The interval §;. defines the range of orientations of A in
which the C-constraint applies. In the case where .4 has a fixed orientation (1.e., it can
only translate), the representation simplifies to an expression of the form:

(z,y,8) € CB; & A(aiz + by + cinr < 0).
k'

If, more generally, both A and B; are represented as semi-algebraic sets, then CB; is also

a semi-algebraic set, whose representation is computable (see Section 5). .

C-obstacles explicitly describe the constraints on the motions of A. A second reason
why path planning is difficult is that, whenever the moving object A is allowed to rotate,
C-obstacles may be complex regions bounded by curved surfaces.

The set of collision-free positions and orientations of the robot A is defined as follows:

DEFINITION 3: Free space is Cj,.. = {c € C [ A(c) N (U; B:) = 8}

" In the same way, we can define valid space as the set of configurations of A where the
interior of A and the interiors of the B;s have null intersection:

DEFINITION 4: Valid Space is Cpaia = {c € C / int(A(c)) N (U; int(B;)) = 8}

At a valid configuration, A may touch an obstacle.

A collision-free (more simply, a free) path of A in C is formalized as follows:

DEFINITION 4: A free path of A between an initial configuration ¢, and a final
configuration ¢y is a conlinuous map 7 : [0,1] — Cyree, wilh 7(0) = ¢; and 7(1) = c;.

Thus, given a configuration space C, C-obstacles CB; in this space, and an initial and
final configurations ¢, and c;, collision-free path planning consists of constructing a
mapping 7 as defined above. We now describe various techniques applicable to this

problem.

3 Exact Decomposition: The Translational Case

The principle of an exact decomposition method is to decompose free space into non-
overlapping cells whose union is equal to free space. Any such decomposition is not

Throughout this paper, int(S), cl(S), and 8(S) respectively denote the interior, the closure, and the
boundary of the subset S C F, where E is a topoligical space.



13— 14

Figure 2: Vertical Trapezoidal Decomposition of Free Space
appropriate, however. Cells should have the following two characteristics. First, they
should be simple enough so that we can find a path between any two points in a cell.
Second, it should be possible to test adjacency between cells and to find a path crossing
the common portion of boundary between two adjacent cells.

In this section, we introduce the exact cell decomposition approach in the simple case
where the moving object A is a polygon only allowed to translate among fixed polygonal
obstacles. By decomposing the moving object and the obstacles into convex polygons,
we can easily construct possibly overlapping convex polygonal C-obstacles CB;, 1 = 1
to q (see Section 2). Let n be the total number of vertices of these C-obstacles.

Let us assume that Cy,.. is bounded by a rectangle R whose edges are parallel to the
and y-axes embedded in C. Thus Cj,.. = int(R)—U; CB;. The edges of R are equivalent
to mechanical stops on the physical translations of A along the z and y-axes.

DEFINITION 5: A open convex decomposition of Cy,.. 15 a finile collection of
open conver polygons, called cells, such that any two cells do not intersect and the
closed union of all the cells is equal to cl(Cy,..). Two cells ¢ and ¢ are adjacent if only
if cl(c) Ncl(c') is a line segment of positive length (i.e., a set of non-null measure).

Figure 2 shows a possible convex decomposition of the free space and the connectiv-
ily graph representing the adjacency relation between the cells. Cells are labelled by
numbers and the non-directed arcs of the connectivity graph are displayed as bold lines

connecting these numbers.

Consider an initial configuration ¢; and a final configuration ¢y, which are both in
free space. We want to generate a free path from ¢; to ¢s. The exact decomposition

approach in this specific case proceeds as follows [12):

1. Generate a convex decomposition of Cy, ..

2. Construct the connectivity graph CG representing the adjacency relation between



cells.
3. Scarch CG for a path linking the cell containing ¢, to the celi containing ¢,.

4. If the search terminates successfully return the corresponding sequence of cells;

otherwise, return failure.

The output is a sequence ¢y, ..., ¢, of cellssuch that ¢; € ¢, ¢z € ¢ and Vj € [1,p—1], ¢;
and c;,, are adjacent. Let f; designate the common edge of ¢; and c¢;41, re. fB; =
cl(¢;) Nel(cj41). One way to transform the sequence of cells into a path is to consider
the midpoints Q; of every edge f;, and to connect ¢, to Q, Q;to Q4 (J=1top— 2),
and Q,_; to ¢, by straight line segments.

The generation of a convex decomposition of a polygon is a classical problem in Com-
putational Geometry. The ‘Optimal Convex Decomposition’ problem is solvable in time
polynomial in the number n of edges [13] when there is no hole. But, as shown by Lingas
[29], the presence of holes makes this problem NP-hard. Nevertheless, a non-opti;ha;l
decomposition can be generated rather efficiently as shown below.

A simple technique consists of sweeping a line L parallel to the y-axis, inside R, from left
to right (‘line-sweep’ paradigm [42]). Whenever the line encounters a new vertex X, i X
is not inside a C-obstacle, one vertical line segment is created connecting X to the edges
immediately above and below it (see Figure 2). The C-obstacles edges, the boundary
of R and the vertical line segments determine a vertical trapezoidal decomposition of
Ctree- Two cells of this decomposition are adjacent if their closures share a portion of
a vertical segment. Before line sweeping, the vertices of the C-obstacles can be sorted
along the z-axis in O(nlogn). Then, as the vertical line L is swept from left to right the
segments of the intersections LNCB; (for allz € [1, q]) are kept dynamically in a balanced
tree. During line sweeping, using this structure, it is possible to concurrently create the
vertical line segments emanating from vertices, generate the connectivity graph CG
between the trapezoidal cells, and identify the cells containing the initial and final
configurations ¢; and c,. This whole sweep-line technique produces the decomposition
of Cfree in O(nlogn) time. The number of generated trapezoidal cells is O(n). The
number of arcs in CG is also O(n).

Graph searching can be done in various ways. A systematic ‘breadth-first’ exploration
of the graph takes O(n) time. Indeed, each node is explored at most once and each arc
is traversed at most once. Average time can be improved by using heuristics to guide
the search (see [36]).

Therefore, the total time complexity of the method described above is O(nlogn).

The method can be extended to the three-dimensional case. But the decomposition
phase is more time consumming. In particular, the optimal decomposition of a polyhe-
dron without hole is known to be NP-hard [29]. However, non-optimal decompositions
of polyhedra with holes are still possible in reasonable time.



4 Exact Decomposition: Case of a Segment

We now illustrate the exact decomposition approach to path planning in a more difficult,
but still specific case, where C-obstacles are bounded by curved surfaces. The robot A
is a line scgment (sometimes called a ladder) moving in a two-dimensional workspace
W among non-intersecting compact (possibly non-convex) polygonal obstacles B;. A’s
end-points are denoted P and Q. The configuration space C of A is 2 x S'. We
represent cach configuration by a triplet (z,y,8), where z and y are the coordinates of
P in Fy and 0 € [0,27) is the angle (modulo 27) between the z-axis of Fy and the

segment PQ).

The method presented below is due to Schwartz and Sharir [47]. The basic idea 1s
to decompose the set of A’s positions into regular regions, to ‘Lit’ these regions into
cells, and to represent the adjacency relation among the cells as a connectivily graph.
The regular regions are such that the C-obstacles maintain a constant ‘structure’ 1n_the
cylinders above these regions, and the cells projecting on a regular region make this
structure explicit. The boundaries of the regular regions are called critical curves.

The time complexity of the technique described below is O(n®), where n is the number
of vertices (or edges) of the obstacles. Assymptotically more efficient techniques have
been recently proposed (e.g. [27]). However, the method described below is a good
illustration of the exact decomposition approach and its principle is rather simple.

Throughout this section, we assume that the boundary of every obstacle in the
workspace is partitioned into open edges and vertices.

4.1 Critical and Regular Positions of the Segment

DEFINITION 6: A position (z,y) of A is admissible if there exists af least omne
orientation 6 such that (z,y,0) € Cjree-

For cach admissible position (z,y) of A, the set F(z,y) of all free orientationsof A -1.e.,
F(z,y) = {6 | (z,y,0) € Cjre} — is a finite collection of open intervals. Each interval
endpoint is a contact orientation of A, i.e. A touches the boundary of at least one
obstacle. In a similar fashion, we denote V(z,y) = {8 / (z,¥,0) € Coaua} the set of all
valid orientations of A at position (z, y). It is made of the closure of the open intervalsin

F(z,y) and eventual isolated orientations. The set L(z,y) = V(z,y) — F(=,y) contains
a finite number of orientations, which are called limit orientations of A at (z,y)-

DEFINITION 7: Let 8 be a limil orientation of A ai (z,y) and s an obstacle’s edge or
vertez touched by A(z,y, 8). If for all arbitrarily small clockwise (resp. counterclockwise)
rotations of A about P, s (if s is an edge) or al least one edge abulling at s (if s 15 a
vertez) inlersects PQ, then s is called a clockwise (resp. counterclockwise) stop at

(z,9)-

DEFINITION 8: A limit orientation 6 at (z,y) is exceptional if and only if

10
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Figure 3: Exceptional Orientations of the Moving Objects

A(z,y,0) does not touch a unique stop. A position (z,y) is regular if il has no ezcep-
tional orientation; otherwise il is critical.

Thus, a limit orientation # is exceptional at (z,y) if A(z,y,0) is touching more than
one stop, or if it is touching no stop. A(z, v, f) touches more than one stop if it touches
two vertices (Figure 3 a and b), or a vertex and an edge (Figure 3 ¢ and d), or a concave
vertex (Figure 3 ¢). Notice that in the latter case, the same vertex is counted as two
stops (a clockwise one and a counterclockwise one). A(z,y,0) touches no stop if the
only contact of A with an obstacle is at the @ extremity in one of the following two
ways: either A(z,y,8) is perpendicular to an edge with Q touching that edge (Figure 3
f), or Q coincides with a convex vertex X and, in a sufficiently small neighborhood of
X, the line perpendicular to PQ at Q intersects obstacles only at X (Figure 3 g).

Let (z,y) be a regular position of A. The set V(z,y) consists of finitely many disjoint
closed intervals, none being an isolated point. For each such interval [0y, 8,], the unique
stop touched by A(z,y,0;) (resp. A(z,y,02)) is a clockwise (resp. counterclockwise)
stop. If all orientations of A are free, then F(z,y) = [0, 27), where [0, 27) is the ‘circular’

interval with no extremity.

If 0 is a limit orientation at the regular position (z,y), s(z,y,8) designates the unique
stop touched by A(z,y,8). We denote o(z, y) the set of all the pairs [s(z, y, 6), s(z, y,8")]
such that s(z,y, 8) (resp. s(z,y,8")) is a clockwise (resp. counterclockwise) stop at (z, y)
and the interval (8,6') C F(z,y). If F(z,y) = [0,2), then we write o(z,y) = {[©, ]},
where § designates a ‘nonexistent’ stop. Given a pair (51, 82) # [Q, Q] in o(z,y,0), we
denote A (z,y,s,) the unique orientation such that A positioned at (z,y) touches s,
in such a way that s, is clockwise stop. Similarly, we denote Aoz, y, 32) the unique
orientation such that A4 positioned at (z,y) touches s, in such a way that s, 1s a
counterclockwise stop. By convention: A;(z,y, Q) = 0 and Ay(z,y, ) = 2.

13



One can show. the following:

LEMMA 1: Let (z,y) be a regular position of A. There czists an open neighborhood
U of this position that only consisls of regular postlions and such that, V(z',y') € U,
we have o(2',y") = o(z,y) (t.c., there 1s a I-1 onto correspondance between the an-
gular intervals of F(z',y') and those of F(z,y)). Moreover, if [s1,5] belongs 1o
o(z',y') = o(z,y), then A (2, ¥, 51) and Aa(z', ', 85) are continuous functions of (z', y')

for (',y') €U.

Thus the set of regular positions of A is an open subset of ®2. We now analyze how

this set is separated into regions by critical positions.

4.2 Critical Curves and Regular Regions

The locus of all critical positions of A is the union of a finite collection of curves, called
critical curves. The intuition behind these curves is that o(z,y), i.e. the structure of
C-obstacles above the position (z,y), changes when a critical curve is crossed.

Let d be the length of the segment A. Critical curves are obtained?, by considering the
exceptional orientations shown in Figure 3:

(1) For each obstacle edge E, the line segment at distance d from E is a Type I critical
curve (see Figure 4 a).

(2) For each obstacle vertex X, the circular arc of radius d about X and bounded by
the two half-lines containing the edges adjacent to X is a Type II critical curve (see
Figure 4 b and c).

(3) For each pair of obstacle vertices X, and X,, the line segment traced by P as A
translates while touching both X; and X, is a Type III critical curve (see Figure 4 d).

(4) For each obstacle edge E and convex vertex X at the extremity of E, the line
segment traced by P as A slides along E is a Type IV critical curve (see Figure 4 e).

(5) For cach obstacle edge E and convex vertex X not at the extremity of F, the curve
traced by P as A moves touching both F and X isa Type V critical curve (see Figure

4 f).

The Type V critical curve is a conchoid of Nicomedes, which is described by an algebraic

equation of degree 4.

The collection of critical curves is finite in a workspace with finitely many obstacle edges.
Each curve extremity is located either on an obstacle boundary, or at the extremity of
another critical curve. In addition, every critical curve is a smooth algebraic curve of
degree 1 (Types 1, 111, and 1V), 2 (Type II), or 4 (Type V). Thus, every two critical
curves can have only finitely many intersections, except if they coincide. A coincidence
happens, for example, when two parallel edges are separated by the distance 2d. In

27This classification differs slightly from that of Schwartz and Sharir {47}. The differences, however,

are only superficial.
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Figure 4: Critical Curves

theory, all coincidences can be eliminated by shifting some obstacles by very small
amounts. Thus, we will assume no curve coincidence.

Notice here that several critical curves constructed as above are likely to be supersets
of critical positions of A. Indeed, each curve is built by considering one or two features
(edge and/or vertex). Hence, the exceptional orientations for some sections of these
curves, which make these curve critical, may correspond to non-valid configurations.
As we will see, such a ‘redundant’ section of a critical curve needs not be explicitely

removed.

It follows from Lemma 1 and the above discussion that:

LEMMA 2: The set of admissible positions of A 1s divided by crilical curves inlo a
finite collection of open connected regions R, called regular region. The set o(z,y) is
constant in each such region. In addition, for any such region R, any (z,y) € R and

any pair [sy, 55] € o(z,y), the region
(R, s1,52) = {(z,4,0) / (z,y) € Rand 8 € (A (z,¥, 81), Aa(=, 9, 52)) }
is an open connecled region of Csyee. Il is called a cell®.

Each cell C = ¢(R, sy, 55) is homeomorphic to R°, hence has no hole.

3Throughout this paper, the word cellis given several formal definitions. Within each section, however,

the word keeps the same definition.
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For any cell C = ¢(R, s1,3,), ¢c(z,y) and pelz,y) designate the limit clockwise and

counterclockwise orientations at (z, y) such that:
(z,y,0)€C & (z,y) €l and § € (pc(z,y), Yelz, y))-

In addition, we write o(R) = o(z,y), where (z, y) is an arbitrary point in R.

The boundary of any regular region consists of closed sections of critical curves and

closed sections of obstacles edges.

4.3 Connectivity Graph

At this point we have decomposed free space into open connected cells separated by
‘vertical’ surfaces projecting on the (z,y)-plane along the critical curves. Let us now
examine how these surfaces can be crossed in order to connect adjacent cells. We will
analyze the crossing rules in more detail in the next subsection. -

The following lemma drawn from Differential Geometry allows us to discard some tran-
sitions between cells which would be quite cumbersome to analyze.

LEMMA 3: If there is a free path 7' between lwo free configurations projecling on
the (z,y)-plane al regular positions, then there 1s another free path T : 1 € [0,1]
(z(t), y(t),0(1)) € Cyree between the same two configuralions that saiisfies:

- The curve (z(t),y(t)) has a well-defined tangent everywhere along its length.

- The curve (z(t), y(t)) does not pass through any point common to two critical curves.
- Al each intersection of (z(t),y(t)) with a critical curve B, there is a neighborhood U
of this point in which 6(t) is constant and the tangent veclor (z(t), 9(t)) is constant and

lies transversal to .

Let C = ¢(R, 51, 52) be a cell. We extend by continuity the domain of ¢¢ and ¢ to the
closure cl(R) of R.

DEFINITION 9: Two cells C = c¢(R, sy, s9) and C' = c(R', s1,55) are adjacent if
and only if R and R' share an open section 3 of a critical curve and, for all (z,y) € B,

((,15(;(:12, y)a 'ﬂbc(:n y)) N (¢C'(x: ZI); ¢C'(x1 Z/)) 7& 6.

It immediately follows from Lemma 3 that if two cells C and C' are adjacent, any
configuration in C can be connected to any configuration in C’ by a differentiable path
whose projection on the (z, y)-plane crosses transversally, with a constant orientation

in some neighborhood of the crossing point.
DEFINITION 10: The connectivity graph CG is the graph whose nodes are all cells

c(R, 3y, 82), where R is a mazimal regular region in the (z,y)-plane and [s1,s2] € a(R).
An undirecied arc connects any {wo nodes labeled by adjacent cells.

It follows from the above that:



y(to)

Figure 5: Crossing a Type I Curve =

THEOREM 1: Given {wo configurations ¢; = (z1, y1,61) and c3 = (22, ¥2, 62) 1n Cpree,
such thal neither (z1,y,), nor (z2,ys) lies on a critical curve, there ezisis a free path
between them if and only if the two cells containing ¢, and ¢y are connecled by a path

in the connectivily graph CG.

This theorem is the basis for the algorithm sketched in Subsection 4.5. Before presenting
the algorithm, let us analyze the crossing of a critical curve in more detail.

4.4 Crossing Rules

Let 3 designate a critical curve section not intersected by any other critical curve. C and
C' designate two cells ¢(R, s, s2) and (R, 81, 53), such that [s1,32] € o(R), [s1,55] €
o(R'), and B forms part of the boundaries of R and R'. 7:1 € [0,1] — (=(2), y(¢), (1))
is a path such that the projected curve () = (z(t), y(t)) crosses f transversally at
t = 1o, with 6(1) constant and equal to o in some interval (fo — €,10 + €).

When { — {5 with ¢ < {4:
(bo(x(t), y(t)), do(=(t), u(t))) — ($c(z(l), y(to)), Ye(=(to), y(to)))-
When t — {5 with ¢ > {5:

($er(z(1), y(1)), Yer (2(2), (1)) — ($or(2(ta), y(to)), Yo (z(to), y(t0)))-

The crossing rule for a certain type of curve section f is the description of all the
connections between cells C and C’. Let us consider the case of a Type I curve as an

example, and analyze it in detail.

If B is a Type I curve section, it is a line segment parallel to an obstacle edge E at
distance d. Let R’ be the region between 8 and E and « the orientation of the segment
A when P ison 8 and Q on E (see Figure 5).



If o & (dc(z(to), y(to)), Ye(z(to), y(to))), then the two cells and C’ are adjacent 1f and
only if (dc(z(to), y(to)), Ye(z(to), u(te))) = (¢c+(2(to), y(to)), Yo (z(ko), ¥(Lo)))-

If « € (de(z(to), y(to)), Ye(z(to), y(to))), then when v(t) crosses [ the interval of
free orientations breaks into exactly two subintervals. The two cells C and C' are

adjacent if and only if (¢ci(z(to), y(to)), Yer((to), y(to))) = (delz(lo) y(to)), ) or
($c(z(ta), y(to)), Yer(2(to), ¥(k))) = (@, pe(z(to), y(to)))-

Thus, the crossing rule for a Type I critical curve section is:

The two cells c(R, sy, 8,) and c(R', s}, s4) are adjacent if and only if [s1, 5] = [51, 82], or
[Sl1y512] = [313 E]: ar [311) 322} = [E7 32]‘

It is straightforward to analyze in the same fashion all the other cases. Such an analysis
shows that whenever 7(t) crosses # the set o(z,y) is changing in one of the following

ways:

- One pair in oz, y) disappears, or one new palr appears. Z
- One element in one pair in o(z, y) changes.
The crossing rules for the different types of critical curves can be summarized by:

Connect c(R, sy,52) to c(R,sy,52) for each [s1,8,] € o(R) No(R'), and connect each
C(R7 31y 52)7 [Sh 32] € U(R) - (T(R,), zf any, to each C(RI) 5l13 5’2)7 [5’11 312] € O(RI) - U(R)r
if any.

This generic rule handles redundant sections of critical curves, since in that case a(R) =

a(R').

4.5 Sketch of the Algorithm

Given a set of compact polygonal obstacles, the length d of the segment A, and the
initial and final free configurations ¢, = (z1, y1,61) and ¢z = (=2, ¥, 6,) of A, such that
neither configuration projects on the (z,y)-plane on a critical curve, the path finding
algorithm sketched below generates a free path from ¢; to c; whenever one exists, and

returns failure otherwise.

This algorithm does not explicitly build the regular regions by collecting the curve sec-
tions bounding them together. Instead, for every curve section f, 1t gives an orientation
to A and we designate the two regions separated by B by right(8) and left(B). As a
consequence, the algorithm builds a connectivity graph which is slightly different from
the one defined above. In this new graph, each cell appears as many times as there are
curve sections forming the boundary of the regular region on which the cell projects.

Since each regular region may be bounded by both portions of critical curves and por-
tions of obstacles edges, it is convenient in the algorithm to treat edges as a special
kind of critical curve which cannot be crossed. In addition, since each curve section
may be followed in two directions, it is also convenient to implicitly treat it as a pair of
oppositely oriented sections (%, #7), such that right(f*) and left(B™) (resp. left(B*)
and right(f~)) are identified.
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At several points in the algorithm, we have to compute o(z,y) and the limit orientations
corresponding to the clockwise and counterclockwise stops appearing in o(z,y). This
can be done by rotating a half-line emanating from (z,y) and using a kind of line-sweep

algorithm.

With these preliminary rcmarké, the algorithmis the following:

1. Compute the boundary of the regular regions. Compute the set of all
critical curves (including eventual redundant sections). Add all obstacle edges to
this set. Find intersection points of the closures of these curves with each other.
For each curve, sort these intersection points according to their order on this curve
(this is easily done by defining a suitable parametrization for each possible type of
curve). Decompose each curve into sections, each lying between two consecutive

intersection points.

2. Compute the adjacency relation between cells. For every curve "s‘ec—
tion §, which is part of a critical curve, compute o(right(B)) and o(left(B)),
use the general crossing rule, and build a map ADJACENT which maps ev-
ery cell projecting on right(f) into the adjacent cells projecting on left(8). If
o(right(B)) = o(left(pB)), B is redundant and may be removed from further con-
sideration. For every curve section B which is part of an obstacle edge, set the

map ADJACENT to .

3. Form clusters of intersecting curve sections. At every intersection point Z
of two or more curve sections, form the circular list of all curve sections emerging
from Z sorted in clockwise order (this list is called a cluster). To this end, compute
and sort the outgoing tangential directions of the curve sections. Whenever two
such directions are equal, compute and sort higher-order derivative directions.

4. Locate initial and final cells. Draw the line segment between (z1,71) and
(z2,y2). Compute the intersections of this segment with all curve sections. Find
the curve sections 3; and f, whose intersections with the line segment are nearest
from (z1,7) and (z2,¥2), respectively. Identify the side of f; (resp. f2) that
contains (zy,y;) (resp. (z2,2))- Find the pair [s11, 521] (resp. [s12, $92]) such that
6, € (AL(z1, v1, 511), Ao(Z1, 41, 591)) (resp. 82 € (Ar(z2, ¥2, 512), Aa(Z2, Y2, $22))). Let
C:, i = 1,2, be the cell containing (z:, v, 6:)-

5. Search the connectivity graph. Build a connectivity graph defined as follows.
Each node is a cell ¢(R, sy, 55) where R is identified as one side of a curve section
B, i.e. right(B) or left(B). Two nodes c(R, 81,82) and c(R', s}, 85) are linked by
an undirected arc if one of the following two conditions is satisfied:

- R =left(B), R = right(8'), B follows f in a cluster, and [sy, 59| = s}, 59)-
- R =right(8), R' = left(B), and c(R', 51, 53) € ADJACENT(c(R, sy, 52))-
Initialize the graph with node C,. Then, expand each node that has not been
expanded yet. Stop either when the node Gy has been generated, or when there

is no more nodes to expand. In the first case, output the sequence of cells on the
path connecting C; to C, in the graph. In the second case, indicate failure.
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Figure 6: The Corner Example =

The union of the set of cells output by the algorithm and the set of common boundaries
between every two successive cells is a region of Cy,.. homeomorphic to R3. It i1s ‘easy’
to transform the sequence into a free path, by following and crossing the specified curve
sections appropriately and maintaining the orientation in the appropriate open interval.

Notice that in order to implement the algorithm, one would have to pay attention to
details not considered above. One delicate issue is related to the sorting of intersection
points. With limited precision arithmetic, the identification of two separately calculated
intersection points as being the same point is indeed problematical.

A detailed analysis of the algorithm shows that its time complexity is O(n®).

4.6 Example

Consider the ‘corner example’ shown at Figure 6. Only the non-redundant critical curves
sections are shown in the figure (i.e., we assume that the redundant ones are removed
at Step 2 of the algorithm). There are 13 regular regions denoted R, through Ri;. We
leave the identification of each critical curve section as an exercise to the reader.

We have:

o(Ry) = {[E1, Es], [Es, Eil}

o(Ry) = {[Ey, B3], [Es, X1}

o(R;) = {[Eh Es]» [E37 E4]}

o(Rs) = {[E1, Es), [Es, B4], [Ey, X1}
o(Rs) = {[E\, Es), [E4, X1]}

U(RG) = {[El) E3]7 [E‘h E2]}

o(Ry) = {[E4,E3]} :
o(Rs) = {[E4, B2, [X1, Es}

o(Re) = {[Es, Ea), [Ey, Es), [Es, Eyl}
U(Rlo) = [Eh Ez], [1\’1, E:s], [Ea, E4]}

{
o(Ry) = {[Es, E2), [Ev, E4]}
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Figure 7: Connectivity Graph for the Corner Example

U(Rlil) = {[E41 EQ]) [Xl) E4]}
‘T(Rls) = {[E4, Ez], [Ez, E4]}

Figure 7 shows the resulting connectivity graph. This graph contains two connected
components, which means that Cy,.. has also two connected components. Practically,
this implies that the segement A cannot rotate around the corner. But it can move from
one end of the corner to the other with a ‘forward - backward’ or ‘backward - forward’

motion.

5 Exact Decomposition: General Method

In the previous two sections we illustrated the exact cell decomposition approach to path
planning in two specific cases. Below, we conclude our presentation of the approach by
the description of a general method which put no limitation* on the dimension k of
the workspace (k = 2 or 3) and on the possible motions of the robot A. The only
constraint imposed by the method is that both the moving object A and the obstacles
B; be described as semi-algebraic sets (see Subsection 5.1).

This general method works according to the same principle as the methods described
in the previous section. It consists of exactly partitioning C,.. into a finite collection of
semi-algebraic connected cells, computing the adjacency relation between the cells and
representing it as a graph, searching this graph, and transforming the obtained sequence

1This general method is also applicable to articulated objects, i.e. manipulator arms.

19



of cells into a path. As in Section 4, cells in Cy,.. are obtained by first computing their
projcctién in a lower-dimensional space and then lifting them in €. Since the dimension
m of C may be greater than 3, the projection/lift mechanism is recursive, that 1s, 1t
produces projections of cells on spaces of dimensions m — 1, m — 2,...,1, before lifting
them back through the same sequence of spaces. Due to this recursive computation,
this path finding method is sometimes called ‘projection method’.

The method is due to Schwartz and Sharir [48], who considered the more general case
of an articulated robot (e.g., a manipulator arm) with many degrees of freedom. It
makes use of a well-known result by Collins [15] for deciding the satisfiability of Tarski
sentences. We expose this result first. The general path finding algorithm based on this
result is sketched next. Our presentation, which is inspired from [54], concentrates on
the main ideas of the method. The actual algorithm requires to pay attention to many
details, including exact computation with algebraic numbers, which are not covered
here. We refer the reader to the original paper for more detail. -

5.1 Semi-Algebraic Representation of C-Obstacles
Let Q[Xl; ...; X,.] be the ring of polynomials in n real variables with rational coeflicients.

Let us assume that every object in W is represented as a conjunction of inequations of
the form P(z) < 0, where z € ®F and P € Q[Xy;...; Xi]. A point zo € R* belongs to
the object if and only if the all the inequalities are verified at this point.

Let us denote A4(a) and Ap(b), with @ and b € RF the representation of A and an
obstacle B;, respectively. Without loss of generality, we assume that A4 represents
A at configuration 0, i.e. when ¥4 and Fy coincide. As mentioned previously, the
configuration space C can always be embedded in an Euclidean space of some dimension
N. Any configuration ¢ of A can be represented as a vector of N real numbers related
by N — m independent polynomial equations with rational coefficients expressing the
fact that ¢ belongs to a manifold of dimension m.

Let us denote x the representation of ¢ as a N-dimensional vector and I'(x) the conjunc-
tion of the N —m polynomial equations constraining this representation. Let Y(x,a,b),
with @ € R* and b € R, be the conjunction of polynomial equations expressing that a
point, a, fixed with respect to F 4 is such that a(x) coincides with a point, b, fixed with

respect to Fy.

The C-obstacle corresponding to B; can be represented in RN by the following expression:

CB; = {x € RN / 3a € R*3b € R* : Au(a) A Ap,(b) A YX(x,a,b) AT(x)}.
Such an expression is an instance of a Tarski sentence over RN

DEFINITION 11: An atomic polynomial expression over R’ is one of the form:
P(z)pa 0
where = € R and P € Q[Xy;...; X;] and v< can be any comparaior in {=,#><><}

A polynomial expression over R’ is any finitc boolean combination of atomic polyno-
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mial erprcsszons over 7. A subset of R whose poinis verify a polynomsal ezpression is
called a semi-algebraic set. A Tarski sentence over R/ ¢s any polynomial ezpresston
over R9 prefized by a finite number of 3 and V quantifiers.

Tarski showed that any Tarski sentence has an equivalent quantifier-free polynomial
expression [52]. Collins [15] gave a constructive proof of this result (see Subsection 5.2).

Thus:

THEOREM 2: If both the moving object A and the obstacles B; are represeiicd as

semi-algebraic sets in R*, then all C-obstacles, hence Cy,.., are semi-algebraic subsels

of RN

5.2 Cylindrical Algebraic Decomposition of RN
DEFINITION 12: A decomposition of RY s a finite collection A of disjoint con-
nected subsets of RY whose union 1s RY. Each element ¢ of A is called a cell. A 15 an

algebraic decomposition if each cell in A 13 a semi-algebraic set homeomorphic to
R, with j =0,1,..., N (if j =0, then the cell consisls of a single algebraic point).

The fact that each cell in an algebraic decomposition is homeomorphic to some R/ means

that it contains no hole.

Two cells ¢; and ¢, of a decomposition A are adjacent® if and only (cl(c;) Nez) U(er N
cl(cs)) # 0.

A sample of an algrebraic decomposition A of RV is a function o : A — RV such that
for all ¢ € A, o(c) € ¢ and each coordinate of o(c) is an algebraic number®.

The projection of a point xy = (z1,...,Zn) € RN is xy_1 = (21,...,zn-1) € RV,
obtained by omitting the Nth component of the point. The projection of a subset of
RV is the set of projections of its members.

DEFINITION 13: A cylindrical algebraic decomposition Ay of RN (N > 0) 1s
an algebraic decomposition recursively defined as follows:

- For N > 1, there ezists a cylindrical algebraic decomposition An_y of RNV such that
for each cellc in An there is a cell ¢’ in An_; that 1s the projection of c. An—y 13 called
the base decomposition of Ay, and c is said 1o be based on c'.

- For N =1, Ay is just a partitioning of R inlo a finite set of algebraic numbers and
into the finite and infinite open infervals bounded by these numbers.

The collection of all the cells ¢ in Ax which have the same projection ¢’ in An_y 1s

called the cylinder over ¢.

5This definition of adjacency is consistent with the definitions given in the previous two sections. The
difference of formulation comes from the fact that here we consider cells of different dimensions.
6The set of algebraic numbers is the set of real roots of polynomials in Q[X].



A cylindrical sample of a cylindrical algebraic decomposition of RV, An, is a sample
o: Axy — RV, such that: '
- if ¢; and ¢, are cells of Ay having the same base then o(c;) and o(cy) have the same
projection in ®V!

_if N > 1, o recursively induces a cylindrical sample of the base decomposition An_;

of AN.

DEFINITION 14: Let signum(a) be —1, 0, or +1 whenever a <0,a =0, ora >0,
respectively. Let F be a sel of functions of N real variables. A decomposition A of RN 15
said {o be F-invariant if, for each cell c in A and each function f in F, signum(f(x))
is constani as x = (x),...,Ty) Tanges over c.

THEOREM 3 (Collins): Given any set P of polynomials in Q[X1;-.; Xn] there 1s
an effective algortthm which constructs a P-invariant cylindrical algebraic decomposiiion
An of RN together with a cylindrical sample of A. The time complezily of the aIgorzibm

ts double-ezponential in n.

The constructive proof of this theorem is the Collins algorithm constructing the P-
invariant decomposition Ay (we do not describe it here). Each of the cells produced by
the algorithm is described by a quantifier-free polynomial expression over RY. The algo-
rithm also produces the base decomposition An_; of Ay, the base decomposition An_o
of An_y, etc. The Collins algorithm takes time polynomial in the number of polynomials
in P (geometric complexity) and in their maximum degree (algebraic complexity)?, with
double exponential dependence on N. The number of cells generated by the algorithm

has the same order of magnitude®.

5.3 Application to the First-Order Theory of Reals

An immediate application of the Collins algorithm is the construction of a procedure
capable of deciding the satisfiability of input Tarski sentences. Two more specific ap-
plications are of special interest here: truth decision and quantifier elimination. We
illustrate these two applications below on simple examples. It is easy to generalize
these examples into general procedures. In the subsequent subsection we will use quan-
tification elimination to construct a cylindrical algebraic decomposition of Cy,.. and
truth decision to test adjacency between cells of this decomposition.

- Truth decision: The problem is to determine the truth value of a Tarskisentence that
includes no free variable. For instance, let us consider the sentence (3z)(Vy)[¢(z, y)],
where both z and y are variables in ®. Let P be the set of polynomials appearing in
expression ¢. Using Collins algorithm, we can build a P-invariant cylindrical algebraic
decomposition A of R, a base decomposition A’ of A, and a cylindrical sample o :
A — R? of A. The above given sentence is true if and only if: V¢’ € A’, there exists a
cell ¢ € A contained in the cylinder over ¢’ such that o(c) = (z.,y.) and ¢(z., y.) holds.

7The algorithm is also polynomial in the magnitude of coeflicients in P.
8The number of cells has no dependence on the magnitude of coeflicients.
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- Quantifier .elimination: The problem is to transform a given Tarski sentence with
quantifiers into a quantifier-free polynomial expression. For instance consider the sen-
tence (3y)¢(z, y), where ¢ is a polynomial expression over 2. Variable z is free, so that
the sentence defines a semi-algebraic subset of ®. We wish to define this subset by a
quantifier-free polynomial expression over R. Let A, A’, and o be as above. We denote
. the quantifier-free polynomial expression defining cell ¢, for any cell ¢ in A or A
Let ¥(z) be the disjunction of all the e, where ¢ is the base cell of at least one c € A
such that o(c) = (2., yc) and ¢(z, y.) holds. The two Tarski sentences (3y)¢(z,y) and
¥ (z) define the same semi-algebraic subset of 3.

5.4 General Approach for Path Planning

We now show how the Collins result can be applied to path planning. We assume that
the moving object A and the obstacles B; are represented as semi-algebraic subsets of
RE. Let the defining formula of A and B; be Ai(a) and Ag,(b), respectively, whefe a
and b € R*. As noted in Subsection 5.1, the C-obstacle CB; corresponding to the actual
obstacle B: in the workspace can be represented by a Tarski sentence, and:

UCB; ={xeR" /Taec R IbeR": Aula) A (\_/ Ag, (b)) A Y(x,a,b) AT(x)}.

We can use the Collins algorithm to generate a quantifier-free polynomial expression
over RN, ¥(x) = V ¢.(x), defining Cy, .., together with a P-invariant cylindrical alge-
braic decomposition A of RY (P is the set of polynomials in ¥), the successive base
decompositions of A, and a cylindrical sample o of A. This computation can be done
in doubly exponential time in the dimension N. Then, for each cell ¢ € A, we can check
if it is part of Cy,.. by testing if o(c) satisfies ¥.

In order to construct a path from an initial configuration ¢, represented by x; to a final
configuration c, represented by x3, we have to find a sequence {ci, ¢z, ..., ¢ } of cellsof A,
such that x; € ¢, X, € ¢, and ¢; is adjacent to c;4, for alli € [1,p—1]. By evaluatingthe
polynomial expression defining each cellin Cy, ., with x = x; and X = X, we can 1dentify
the first and last cells of the sequence. Constructing the rest of the sequence requires
to build and search the connectivity graph CG representing the adjacency relation on
the set of cells partitioning Cs,... The adjacency condition for two cells ¢; and ¢y 1s
(cl(cy) Nea) U (e Nel(cy)) # B, which is equivalent to (cl(cy) Neg # B)V (crncl(c) # 9).
Any of the two conditions in the later disjunction can be expressed as a Tarski sentence.
For instance, ¢; Ncl(cz) # © holds if and only if the following Tarski sentence is satisfied

[2):
(3x)(Ve)(Fy)[(e > 0) A ¢, (x) = (distance(x,y) < €) A ¢, (¥)]-

(Read: It exists a point x in ¢; such that for every e > 0, there exists a point y in ¢,
distant of x by less than €.)

Thus, testing adjacency between two cells and consequently building the connectivity
graph CG are decidable problems that can be solved by applying the Collins algorithm
to the above Tarski sentence.
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As mentioned-in Subsection 5.2 the time complexity for generating the cell decompo-
sition of Cj,.. 1s polynomial in the number of polynomials in P and in their maximum
degree, with a double exponential dependence on N. For a rigid object NV 1s fixed.
Therefore, the decomposition of Cy, .. is generated in polynomial time. The number of
prodiced cells is of the same order, so that the connectivity graph CG can be built in
polynomial time il adjacency of two cells can be checked in polynomial time. The num-
ber of polynomials in the expression i, defining each' cell in the decomposition of Cy,..
and their maximum degree are polynomial since the algorithm that constructs these
expressions is itsell polynomial. Therefore, since the number of variables appearing in
the Tarski sentences representing adjacency between two cellsis 2N +1, hence fixed, the
construction of the connectivity graph CG is polynomial. However, 1t has a multiple

exponential dependence on N.

A more efficient test of cell adjacency than the above one is proposed in [48]. We will only
sketch it here. The improved test requires that C be represented® as a Euclidean space.
$™_ where m is the dimension of C, and that the cylindrical decomposition A of ®™-be
‘well-based’ (see [48]), a concept which recursively applies to the base decomposition of
A. Since a well-based P-invariant cylindrical algebraic decomposition of an Euclidean
space may not exist, without rotating the coordinate axes, this leads to some additional
technical complications, which we will not present here. Well-basedness implies that the
closure of any cell ¢ € A is a union of cells in A. In addition, we can assume that the
initial and final configurations of the robot are contained in cells of the same dimension
as C, i.e. m, since the other cells form a measure zero subset of C (if the assumption
is not satisfied at one configuration, an arbitrarily small shift of the configuration will
achieve it). Then it can be proven that, without losing completeness, path finding
can be confined to those cells in A that have dimension m or dimension m — 1 (i.e.,
codimension 1), where m is the dimension of C. Thus, adjacency has only to be tested
between a cell of dimension m and a cell of dimension m — 1, which can be done rather
efficiently. If two such cells are adjacent, the second 1s contained in the closure of the
first. Using this test, Schwartz and Sharir describe a general path-planning algorithm
whose time complexity is polynomial in the number of polynomials in P and in their
maximal degree, with a double dependence on m.

Consider that CG has been constructed and that a sequence of adjacent cells {c1y -y Cp}
has been found by searching it. We now want to generate a path 7 from the initial to the
goal configuration, which completely lies in the sequence of cells (recall that each cell is
a connected set). We assume that C has been represented as a Euclidean space R™ (see
the above paragraph) and that the decomposition A is well-based, so that ¢, ..., ¢, are
alternatively m-dimensional and (m — 1)-dimensional cells (odd indices correspond to
m-dimensional cells and even indices correspond to (m — 1)-dimensional cells). Without
loss of completeness, we can construct T as the concatenation of (p + 1)/2 sub-paths
connecting x; to o(cy), o(cy) to a(es), ...y o(cp—3) to o(cp—1), and o(c,—1) to xz. Let
us consider that the projection 7/ of T has already been gencrated within ¢}, ..., ¢,

911 C is of the form R* x S!, this requirement leads to consider two distinct copies of R™ (m = k+1).
If C is of the form R x SO(3) (m = 6), it leads to remove one singular orientation, but since the
corresponding set of points in C has a dimension less or equal to m — 2, i.e. a codimension at least 2,
omission of these points does not aflect the connectivity of Cy,ce-
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the base cells.of ¢, ..., ¢,. Each sub-path 1n ' can be lifted in ¢, -.., ¢, as follows.
Assume i to be odd. The z,, coordinate along the sub-path of 7 in any cell ¢; can be
obtained by linecarly interpolating between the values of z., at the beginning and the
end of the sub-path, using the proportion of distance between the boundaries of ¢; 1n the
+z,, and —z,, directions and by extending the interpolation to the closure of ¢;, which
includes c;41. Two cases have to be distinguished in order to construct the interpolation
cquation: (1) the two cells ¢; and c;4;1 have the same base cell (i.e., ¢t = ¢ ,), and (2)
the two cells ¢; and ¢;4, have adjacent base cells (¢} # ¢iyy). In both cases, if ¢; 1s a semi-
infinite cell, an artificial boundary has to be generated by adding (resp. substracting)
a fixed appropriate amount to the cell boundary below (resp. above) the sub-path in
order to make the interpolation possible. The projected path 7' can be generated 1n the
same way by lifting in A’ a path 7 generated in the base decomposition of A’. Thus,
recursively, the problem is reduced to the generation of a path in a base decomposition
in, R, which is trivial. The constructed free path is piecewise of class C?.

=

Therefore: ! -

THEOREM 4 (Schwartz and Sharir): The problem of planning a free path of a
semi-algebraic rigid object A among semi-algebraic fized rigid obstacles B; can be solved
in time polynomial in the number of polynomials defining the objects in the workspace
and in the mazimal degree of these polynomials.

So, if both A and the obstacles are polygonal (resp. polyhedral) objects in a two-
dimensional (resp. three-dimensional) workspace, the time complexity of the above
method is polynomial in the number of edges (resp. faces) of the objects.

The above general approach to path finding requires performing exact computations
with algebraic numbers. This is a delicate 1ssue not treated here. The paper by Schwartz
and Sharir [47] provides many details on exact computation with algebraic numbers. It
also analyzes the effect of the growth in size of the integers involved in the computations
on the total time complexity of the algorithm. It turns out that the algorithm still
requires time polynomial in the number of polynomials defining the object and in the
maximal degree of these polynomials. However, it is also polynomial in the size of the

coeflicients in the polynomials.

The Collins decomposition generates many cells allowing 1ts application to the general
problem of deciding Tarski sentences. It is probably too general for path finding. The
more specific (and more elaborate) method presented in Section 4, although based on the
same general idea, generates fewer cells in the three-dimensional configuration space of
the segment robot. Each of these cells turns out to be a union of the Collins cells which
would have been produced by the above method'®. This suggests that decompositions
coarser than the Collins one may still be appropriate for path planning and that general
algorithms of less time complexity than the algorithm presented above exist. Such an
approach has been explored by Canny [10], resulting in an algorithm which is simply

exponential in the number of degrees of freedom.

10The trapezoidal decomposition presented in Section 3 also produces cells that are unions of Collins

cells.
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6 Approximate Decomposition: Translational Case

In this section and the next, we describe another type of path finding decomposition
methods based on approximate decomposition of configuration space. We will only
consider the cases of polygonal and polyhedral workspaces.

An approximate decomposition method typically consists of decomposing € into a col-
lection of disjoint open rectangloids. Two cells are adjacent if their closures share a
portion of an edge. Each cellis compared to the C-constraints defining the C-obstacles
and is labelled EMPTY, FULL, or MIXED, depending on whether it lies completely inside
Cfree, completely outside, or partly inside and outside. The problem of finding a free
path is thus transformed into the problem of finding a sequence of adjacent EMPTY cells.
If no such sequence is found, MIXED cells may be decomposed further if there 1s some
chance that a free path traverse them. This leads to an interesting hierarchical de-
composition-of configuration space, which allows to adapt the size of the cells to_the
occupancy of C by C-obstacles. AR -

Unlike exact decomposition methods, the methods described below are not based on a
preliminary analysis of critical surves or surfaces. Hence, the boundaries of the cells
which they produce have no ‘physical’ meaning. Instead, the rationale of approximate
decomposition methods is the simplicity of the shape of the cells in order to allow

repetition of elementary computations.

As with exact decomposition, we begin our presentation of approximate decomposition
methods with the simple case where the moving object A is a polygon only allowed to
translate among fixed polygonal obstacles. Each C-obstacle CB;, ¢t = 1 to ¢, is a convex
polygon that can be represented as a conjunction of C-constraints (see Section 2):

(z,y) €CB; & N(aiz + by + cin < 0).
k

As in Section 3, we assume that Cys.. = int(R) — U; CB;, where R is a given rectangle
whose faces are oriented according to the z and y-axes embedded in C. The method
described below is based on an approach first introduced by Brooks and Lozano-Pérez

31,7,8].
Consider an initial configuration ¢, and a final configuration ¢, both in free space. We

want to generate a free path from ¢, to ¢;. The overall path finding algorithm proceeds

in a hierarchical fashion as follows:

1. Generate an initial decomposition of R into disjoint open rectangular cells whose
closed union is equal to cI(R), and label every cell by EHPTY, FULL, or HIXED.

9. Fori = 1,2 do: while the cell c containing ¢; is HIXED and larger than a preset size,
decompose c into smaller cells and label the new cells; at the end of the iteration,
if ¢ is still not EMPTY, return failure; otherwise, if 1 =1, ¢ is called the initial cell
and if i = 2, it is called the final cell

3. Build the connectivity graph CGenpry representing the adjacency relation between
EMPTY cells and search it for a path from the initial cell to the final cell.
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Figure 8: Example of a Quadtree ~

4. If the search of Step 3 terminates successfully, return the corresponding sequence
of cells.

5. If the search of Step 3 terminates unsuccessfully, consider all EHPTY cells and
those MIXED cells which are larger than a preset size. Build the connectivity graph
CGuyrxep representing the adjacency relation between these cells, and search it for
a path from the initial cell to the final cell.

6. If the search of Step 5 terminates successfully, decompose the MIXED cells along
the path into smaller cells, label these new cells, and go back to Step 3.

7. If the search of Step 5 terminates unsuccessfully, return failure.

If successful, this algorithm returns a sequence of rectangular cells. A free path can
easily be produced by linking ¢; to c; by a succession of straight segments passing
through the mid-points of the edges separating consecutive cells.

The hierarchical decomposition of R can be done by recursively dividing R and the
successively obtained MIXED cells into four identical rectangles. Such a decomposition
produces a quadtree [46,20,34,4].

DEFINITION 15: A quadtree i3 a {ree of degree 4. Each node represents a rectangle,
and is labelled EMPTY, FULL, or HIXED. A node may have successors only if it is labelled
MIXED. The four successors of a MIXED node represeniing a rectangle r represent four
reclangles of the same size oblained by decomposing r.

Figure 8 shows the quadtree decomposition of a simple configuration space and a portion
of the corresponding quadtree graph. The depth of a node in the quadtree determines
the size of the corresponding cell. The height of the quadtree determines the resolution
of the decomposition. During the construction of the quadtree, it is easy to maintain a
representation of the adjacency relation between the leaves of the quadtree.
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In the above algorithm we must specify the resolution oini of the initial decomposition.
All MIXED cells whose depth is less or equal to oy are decomposed. Later on only those
MIXED cells which are located on a potential path are decomposed further. A maximal
resolution o,,.. must also be specified. No KIXED cell whose depth 1s equal to om.: gets

decomposed further.

In order to label cells, one can associate with every HIXED cell a logical expression,
called C-sentence, specifying the C-obstacles intersecting the cell. A C-sentence 1s of

the form [8]:
e;
Ve

where ¢;; is a C-constraint of the form ajz + by + ci < 0. Each conjunct Ay e
corresponds to a particular C-obstacle CB;. When a cell ¢ is decomposed into smaller
cells the C-sentence associated with ¢ is used to label each new HIXED cell. During the
labelling process (described below), it may get simplified and the simplified C-sentence
is associated to the new cell. The rectangle R may be regarded as the unique successor
of a fictitious cell whose C-sentence is the disjunction of the expressions describing the

C-obstacles.

The algorithm for labelling a new cell and simplifying the C-sentence is shown below (8]
Its input parameters are ¢ and S. ¢ designates the new cell. S designates a C-sentence,
whose initial value is the C-sentence associated with the parent of c. The cell ¢ 1s said
to be inside a C-constraint ey if all points (z,y) In ¢ satisfy e;; it is outside e if all
points (z,y) in ¢ contradict e;; it is cut by the C-constraint if it is neither inside, nor
outside e;x. The computation for testing whether a cell ¢ is inside a C-constraint e, or
outside, or neither is quite simple:

- ¢ is inside e if its four vertices verify: apz + by + cix < 0.

- ¢ is outside e if its four vertices verify: agz + buy + cik 2> 0.

- ¢ 1s cut by e;x otherwise.

procedure LABEL(c,S)
for each conjunct A in S do
for each C-constraint e in A do
if ¢ 1s 1nside e
then remove e from A;
else if ¢ 1s outside ¢
then remove A from S;
exit from loop;
endif;
endif;
enddo;
if A 1s empty
then label ¢ with FULL;
exit from procedure;
endif;
enddo;
if S 1s empty

28



then label ¢ with EMPTY,
else label ¢ with MIXED;
associate S with ¢
endif;
endprocedure;
Attachment of simplified C-sentences to BMIXED cells may considerably accelerate the
labelling process, since the number of C-constraints to be considered usually decreases

rapidly with the size of the cell.

Notice, however, that the procedure LABEL 1s somewhat conservative. Indeed, 1t treats
each line a;pz + bixy + cix = 0, as an infinite line, independently of the other lines, and
therefore some cells may get labelled HIXED, while they do not actually intersect any
C-obstacle. However, such an ‘error’, which never leads to generate incorrect paths, 1s
ultimately corrected, when the cell gets decomposed further.

Unlike exact decomposition methods, the above method 1s not complete since 1t cannot
be guaranteed to find a free path, whenever such a path exists. This is due to the fact
that it approximates free space as a collection of cells of predefined shape. Thus, at any
resolution, the collection of EMPTY cellsis a conservative approximation of Cy,.., 1.e. the
closed union of the EMPTY cells is included in Cj,... However, at the eventual expense of
generating a very large number of cells, the representation can be as close as we want
from the exact free space by setting 0., appropriately. The above method guarantees
that every MIXED cell which ‘may contain a portion of a free path and whose depth 1s
less than o,,,, will be decomposed into smaller cells if a free path is not found before.
Thus, the overall path finding method is said to be resolution-complete.,

The above approximate decomposition method can easily be extended to the three-
dimensional case. The translating object .4 and the obstacles are polyhedra. The
C-obstacles CB; are convex polyhedra. We assume that Cg,.. = int(R) — U; CB;, where
R is a parallelepiped whose faces are oriented according to the z, y, and z-axes em-
bedded in C. The path finding method remains basically the same. Only the represen-
tation of the decomposition of R is changed into a tree of degree 8, called an octree
[20,34,4]. An octree1s obtained by recursively decomposing a parallelepiped into 8 iden-
tical parallelepipeds. Comparing a cell ¢ of an octree to a C-constraint, now of the form
a;xz + by + cinz + dix < 0, requires checking the 8 vertices against the constraint.

Notice that, although the extension to the three-dimensional case is conceptually
straightforward, the number of cells in an octree augments much quicker with the height
of the tree than the number of cells in a quadtree.

7 Approximate Decomposition with Rotation

Extending the previous method to the case of a moving polygonal/polyhedral object A
allowed to both translate and rotate among polygonal/polyhedral obstacles is not diffi-
cult, conceptually. However, C-constraints are more complex than in the translational
case. Indeed, each of them is applicable orly for some orientations of 4. Moreover,

C-constraints determine curved C-surfaces.
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In Subsection 7.1, we directly extend the hierarchical cell decomposition method de-
scribed above to the rotational case. In Subsections 7.2 and 7.3, we present variants of

the approximate decomposition approach to path finding.

We only treat the case of a two-dimensional workspace. Extension to the three-
dimensional case is usually not difficult, but may result into impractical algorithms.
Indeed, the number of cells to be generated 1s roughly exponential in the dimension of
C. One practical way to deal with a three-dimensional object allowed to both translate
and rotate is to limit the number degrees of freedom to be considered at every position.
For example, one could allow the object to rotate only in some intermediate regions.
There is no general method, however, to determine these intermediate regions.

Hence, throughout this section C = R2 x S'. For practical reasons, we will represent 1t
as R2 x [0,27]. We will also assume that the range of free positions of A is bounded
by a rectangle R C ®?. Thus, the representation of Cy,.. is bounded by the R x [0, 2]
parallelepiped. -

7.1 Hierarchical Cell Decomposition

The approximate cell decomposition of the previous section can readily be extended
to the case of an object allowed to both translate and rotate in a two-dimensional
workspace. Indeed, we can represent the three-dimensional parallellepiped R x [0, 2]
by an octree and apply the same path finding and cell labelling algorithms. However,
there are some differences related to how cells are to be compared to C-constraints.

Each C-obstacle CB; now determines in R x [0,27] a volume bounded by patches of
ruled surfaces. We have:

(z,y,0) € CB; & A0 € 6 = (au(8)z + bi(0)y + cix(0) < 0)]

where 8;; is the angular interval in which the C-constraint in the right-hand side applies
(see Section 2). Thus, the C-sentence associated with each HIXED cell still has the form:

VA

but e;; now denotes a conditional C-constraint of the form 6 € 6;x = (@ (8)z +bu(0)y+
C,‘k(g) S 0)

Let ¢ = (z.,z%) x (v, ¥.) % (0., 0.) be 2 parallelepipedic cell. ¢ is inside ¢; if and only
if:

- (8.,6") C i (i.e., the constraint applies in the whole cell),

- and Y(z,y,0) € ¢ ai(8)x + bir(0)y + cix(8) < 0.

It is outside ¢; if and only 1if:

- (6.,6") N6 = B (i.c., the constraint applies nowhere in the cell),

-orVY(z,y,0) € (zc, 2) % (ye, yi) x [(6c,67) 1 bik]: ai(0)z + bik(8)y + cin(6) > 0.

This means that we have to compare a parallelepiped (z., zL) X (yc, yo) X (6,,0,) C c,
where (8,,02) = (6., 0.) N &k, to a constraint a;(0)z + b (0)y + cun(0) < 0.

(o5 Radi'sd
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Consider the projection on the (z,y)-plane of the portion of the C-surface a;{f)z +
bix(6)y + c(8) = 0, which is comprised within the interval (6,,8,). Let (z,y) be a point
outside this projection; the segment connecting (z,y, 61) to (z,y,02) is completely inside
or completely outside the constraints ai(8)x +bi(0)+cu(8) < 0. Inversely, let (z,y) be
a point inside the projection of the surface; the segment connecting (z,y,0,) to (z,y,02) .
crosses the C-surface, so that part of it liesinside the constraint and part of it lies outside.
Thus, we can compare a cell to a constraint by first projecting the (6, 6) slice of the
C-surface on the (z, y)-plane, and then by comparing a rectangle to this projection. The
computations necessary for this comparaison are rather straightforward. We refer the
reader to [8] for a detailed description.

Extending the above method to a polyhedron allowed to both translate and rotate in
three-dimensional workspace requires to approximate a six-dimensional configuration
space by a 20-tree (a quadtree is a 2’-tree, an octree Is a 23-tree). This is very likely to
be impractical. Indeed, in such a tree, the number of cells at depth 1 is 64; at depth 2,
it is 4096, at depth 3, it is 262144, etc. And at depth 3, each dimension is divided in
only 8 intevals; for the angular axis, these intervals have an amplitude of 7/4. Except
in very favorable situations, such a coarse resolution prevents the method from finding

a free path.

7.2 Orientation Slicing

This method, due to Lozano-Pérez [31,32], is based on a decomposition of the range
[0, 27] of possible orientations of A into a finite number of intervals. The basic idea 1s
to consider the areas swept out by A in all these intervals (see Figure 9) and to treat
these areas as new objects only allowed to translate. A path is generated as a sequence
of sub-paths, each for one of these objects, such that any two consecutive sub-paths

corresponds to adjacent angular intervals.

The overall algorithm is the following:

1. Decompose the range of orientations of 4, [0, 27], into a finite numbe of consecutive
closed intervals [0y, 84], k = 1 to p, such that 8, = 0, 8, = fx4s (for all k € [1, p—1]),
and 8] = 27 (6, is allowed to be equal to 6}).

2. For every k € [1, p], approximate the area swept out by A when its position (z, y)
is fixed and when its orientation § varies from ) to 6; by a bounding convex
polygon denoted SA,. Attach a frame Fs4, to SA,, which coincides with F 4
when A’s orientation is 6.

3. For every k € [1,p], treat the polygon SA, as a moving object only allowed to
translate. The configuration space of SA; 1s Ck = R2. Compute the C-obstacles
CB; (convex polygons) in ck.

4. For every k € [1,p], decompose C%. .. into convex polygons, called cells, and
construct the connectivity graph CGy representing the adjacency relation between
these cells. If 8, (resp. 62) € [0x,0}], then label the cell containing (z1,y1) (resp.
(22, y2)) as the initial (resp. final) cell.
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Figure 9: llustration of the Orientation Slicing Method

5. Combine the graphs CGy into a new connectivity graph CG by linking any two
nodes X, € CGy, and X, € CGy, (k1 # k2), whenever these two nodes represent
overlapping cells when C* and C* are superposed, and 0;, = bk, (modulo 27).

6. Search CG for a path linking the initial cell to the final cell. If the search ter-
minates successfully, then return the sequence of cells along the path; otherwise,

return faillure.

We can regard CBy; as a bounding polygonal approximation of the projection of the
slice through CB; comprised between 8 and ;. Thus CBy ; % [0k, 8] is a prism bounding
CB; within the [fy, ;] slice. Any two cells in CG) can be adjacent only by their vertical
faces. Two cells in CG, which are not contained in the same slice, can be adjacent 1f
they belong to two adjacent slices and if the intersection of the top face of one with the
bottom face of the other is a two-dimensional region.

The above method may fail to find a free path if the intervals [0k, 6}] are too large.
In case of failure, it is possible to refine these intervals and to run the method again.
However, unlike with the method of Subsection 7.1, there 1is no obvious information
that can be used to select which intervals has to be refined. In addition, there is no
simple way to capitalize on the computations performed for one interval in order to
simplify future computations when this interval gets decomposed. Therefore, refining

all intervals may result in excessive computing time.

Extension of the above method to a polyhedral object moving in a three-dimenstonal

workspace is simple in principle, but impractical in most cases.
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7.3 Position Partitioning

This method, whose principle is due to Germain [19], has several similarities with the
exact decomposition method described in Section 4. However, it does not make use of

the critical curves defined there.

" Assume, without loss of generality, that the origin of F4 is in A. Then, the set of
possibly admissible position of A (i.e., the set of positions which admit free orientations
of A) is the empty subset of the workspace, & = int(R)—U B;. The position partitioning
method consists of decomposing this set into a finite collection of open convex polygons
Ry, k =1 to p, such that Uy cl(Ri) C cl(€) and VEk # & R0 Ry = @. For each polygon
R., we compute the range of orientations of A which are free for all positions of A in
Ri. Let us denote F(Ry) this range. Then, we approximate Cy,.. by prismatic cells
of the form Ry x I, where Iy = (6i,6};) is a maximal connected interval in F(Ry).
Finally, we construct the connectivity graph among these cells and we search the graph.
All these computations are described in more detail below. ~

The decomposition of £ into convex polygons may be an exact decomposition — then,
U cl(Ry) = cl(€) ~ or it may be an approximate decomposition ~ then, U, cl(Ry) C
cl(€). Approximate decomposition makes 1t possible using only very simple polygons,

e.g. rectangles.

The computation of F(Ry) is the core of the position partitioning method. Below, we
give two lemmas which reduce this computation to the computation of the set of valid
orientations of A at a single position among transformed obstacles.

The set of valid orientations of A at (z,y) is V(z,y) = {8 / (=, v,8) € Coatia}. For any
R, C &, we define:

V(Rk) - ﬂ V(:D,y)‘

(=.y)ER,
The first lemma states that the set of free orientations of .A over the open region Ry 1s
equal to the set of valid orientations of A over the closure of Ry. For more clarity, we

denote Ry the closure of Ry. Thus: Ry = cl(Ry).
LEMMA 4: F(R,) = V(T&%).

Let Vs(z,y) = {8 / int(A(z,y,0)) N B = 8}, where B 1s a closed region of ®2. Thus,
the set of valid orientations of A at position (z, y) among the obstacles B; is V(z,y) =
Vi.5:.(z,y). The following lemma reduces the computation of V(R)) to the computation
of Vg:(zx, yx) at a single point (zx, yx) defined with respect to R, for a certain region B’
obtained by ‘growing’ B = U; B; by OR;. This is illustrated by Figure 10 in the typical
case where (zx, yx) 1s a vertex of Ry.

LEMMA 5: Let B=U;B;. We have

V(E) = VBeﬁ(o,o)(Ik; Yk)
where (zx,yx) 15 a point fized relatively lo Ry, R(0,0) designates the polygon Ry ob-
tained by translating the point (zx,yx) al the origin of the (z,y)-plane, and © 1s the
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Figure 10: Growing an Obstacle by a Cell

Figure 11: Computation of Vp(z,y)

Minkowsks operator for set difference.

The region B © R,(0,0) is a closed polygonal region if 2. Therefore, Vot (0.0)(Zks Yk)
(hence F(Ry)) is a finite union of closed angular intervals. Some of these intervals may
consist of a single orientation. It is easy to compute Vu:(z, y) using a technique inspired
{from the line-sweep paradigm, after having determined the intersections of the circles
centered at (z,y) and passing through the vertices of A (resp. B'), with the edges of B’
(resp. A) [33], as Figure 11 illustrates.

At this point, we know how to approximate free space as a collection of parallelepipedic
cells of the form Ry x It;. Two cells Ry x Iy and Ry x Iy are adjacent if and only if:
- The boundaries of R, and R share an open portion of an edge. '

- Iy N Iqe 1s an interval of non-null measure.
It 1s casy to verify that two adjacent cells can be connected by a free path.
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Path planning consists of searching the connectivity graphk CG representing the adja-

cency relation between cells.

This method may fail to generate a free path while one exists. In case of failure, one may
attempt to refine the decomposition of the empty space & and run again the method.
However, like with the orientation slicing method, no simple information is available to
determine which part of the decomposition to refine. Clearly, there 1s a tradeofl between

the resolution of the decomposition and the computing cost.

Extending the position partitioning method to the case of a polyhedron moving in a
three-dimensional workspace is delicate. Indeed, the set Vsez_z[(o,o)(zkv Yr, zx) would be
more difficult to characterize and of course to compute.

8 Retraction Method (Principle)

An alternative to the decomposition approach to path planning is the retraction ap-
proach. The basic idea is to approximate free space as a net of curves contained 1n free
space and describing the topology of free space. A mapping (retraction) associates a
unique point on these curves to any free configuration. Once the net of curves has been
generated, path planning is reduced to the combinatorial search problem of finding a
path in the net from the retraction of the initial configuration to the retraction of the

final configuration.

In this section, we present the theoretical principle of retraction in the simple case
of a polygonal object A translating among polygonal obstacles; in this case, the net
of curves is a Voronoi diagram, a well-known construct in Computational geometry
[17,23,28]. In the next section, we will present an ad-hoc method based on the retraction
idea, applicable to the case of a two-dimensional object translating and rotating among
polygonal obstacles. Additional information on the retraction approach can be found
in the literature (e.g. [37,38,39,40,10]).

The configuration space of A is C = ®?, and the C-obstacles are (possibly overlapping)
convex polygons CB;. Assume that the range of possible positions of A is bounded by
a polygon R. Thus: Cy,.. = R — U;CB;. The boundary of Cy,.. s represented as a set
of vertices and open edges.

DEFINITION 16: Let f = 9(Cjre.). For any c € Cjyee, let:

clearance(c) = min distance(c, (z,y))
(z.)€B

and
near(c) = {(z,y) / distance(c, (z,y)) = clearance(c)}

where ‘distance’ denotes the Euclidean disiance in R2. The Voronoi diagram of Cqree
is the set {c € C;,.. [ card(near(c)) > 1}, where card(E) 1s the cardinal of set . It 1s
denoled Vor(Cy,..).
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Figure 12: Example of Voronoi Diagram =

Figure 12 shows a simple Voronoi diagram in a configuration space containing two C-
obstacles. One can see that Vor(Cy,..) consists of a finite collection of straight and
parabolic curve segments. A straight segment in Vor(Cy,e.) is the set of configurations
that are closest from the same pair of edges. A parabolic segment is the set of configu-
rations that are closest from the same pair consisting of one edge and a vertex. The pair
(edge,edge) or (edge,vertex) of closest elements from any configuration on a straight or
parabolic segment determines the equation of the curve supporting the segment. Each
straight or parabolic segment is called an arc of the Voronot diagram. Each endpoint
of a segment is called an edge of the diagram.

Let us now consider a free configuration ¢ ¢ Vor(Cy,..). There exists a unique edge or
vertex Z of B = cl(Cy,..) which is closer from ¢ than any other edge or vertex in 3. Let
p € B be the point such that clearance(c) = distance(c,p). If Z is an edge then p € Z;
if it is a vertex then p = Z. Consider the line L passing through ¢ and p. If we move
along L away from p and beyond ¢, then clearance(c) increases at maximal rates'! until
it reaches a point in Vor(Cy,..)- This point, denoted Im(c), is the image of ¢ on the
Voronoi diagram. Passing this point, either clearance(c) drecreases, or the direction of
maximum positive increase changes. The function Im can be extended to all Cy,.. by
puiting Im(c) = c for all ¢ € Vor(C,..). It is easy to verify that the function I'm 1s
continuous. In topology a continuous function f : E — F C E, whose restriction to F
is the identity is called a retfraction [21].

Let 7:[0,1] — Cj,.. be a free path between two free configurations ¢; and ¢;. Thanks '
to the continuity of Im, Imo 7 : [0,1] — Vor(Cy,..) 1s a path between Im(c,) and
Im(c;). This gives the following theorem, which expresses that the connectivity of Cy, ..

and the connectivity of Vor(Cy,..) are ‘equivalent’:

THEOREM 5: Let Cy,.. be the inierior of a polygonal region with polygonal holes. Let
¢; and ¢y be two configurations in Cs,... There exists a free path from ¢; to ¢y tf and

1114 is easy to verify that Vclearance(c) is a vector supported by L and pointing away from p.
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only if there exists a path from Im(c;) fo Im(cy) with Vor(Cy, ..}

The path finding algorithm known as the retraction method derives directly from the

above theorem. It consists of the following steps:

1. Compute the Voronoi diagram Vor(Cyye)-

2. Compute the points Im(c;) and Im(c,) and identify the edges of the Voronoi
diagram containing these two points.

3. Search Vor(Cy,..) for a sequence of arcs ey, ..., €q, such that Im(c;) € e, Im(c2) €
e,, and Vi € [1,¢ — 1] e; and e;4, have a common end-point.

4. If the search terminates successfully return Im(c;), Im(c,), and the sequence of
arcs along the path in Vor(Cy,..); otherwise, return failure.

There exist algorithms for computing the Voronoi diagram in O(nlog®n) time (see
[26,28]) and in O(nlogn) time (see [23]), where n is the number of vertices in g =
8(Cjrec)- The number of arcs in the diagram is O(n). At Step 2, for each configuration
c; (i=1,2), one can:

- First, compute both the distance of ¢; to every edge and every vertex of B, and the
point p; of # to which it is closest,

- Second, determine the intersections of the ray drawn from p; through ¢; with the
Vor(Cree), and select the intersection which is closest from p;.

These computations require O(n) time. Finally, the search at Step 3 can be done using
the A* algorithm and takes O(n) time. Thus the overall time complexity of this path
planning method is O(nlog® n) or O(nlogn). The most expensive step is Step 1, but
it depends on Cy,.. only. Subsequent path finding in the same free space between other
pairs of configurations can be done omitting Step 1 and takes O(n) time. In addition,
there exists linear techniques to update the Voronoi diagram when a few C-obstacles

are changed.

9 Freeway Method

The path finding method presented in this section is an ad hoc retraction-like method
applicable to a robot moving both 1n translation and rotation in a two-dimensional
workspace among fixed polygonal obstacles. The method is due to Brooks [9], whose
original goal was to capture the effects of both translating and rotating an object into
a more intuitive representation of free space than configuration space. In fact, since
configuration space is just a general concept, the ‘new’ representation can easily be
related to configuration space. Instead, it turns out that the actual contribution of the
freeway method is that it makes it possible to build a description of the connectivity
of Cj,.., known as the freeway net, without having to completely compute C-obstacles.
The intuition behind the freeway method is similar to the intuition behind applying
retraction to path finding, i.e. always keep the moving object as far away as.possible
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fre

Figure 13: Example of a Freeway ~

from a pair of obstacles. Consequently, the freeway net resembles a Voronoi diagram,
but its construction is based on some ad hoc assumptions and it incompletely describes
the connectivity of Cj,.., so that the freeway method itself s incomplete. Nevertheless,
experiments have shown that it can solve many problems efficiently, when the workspace
is not densily occupied by obstacles.

The freeway method consists of extracting geometric figures called freeways from the
workspace, to connect them into a graph called the freeway net, and to search this graph.
A freeway is a straight linear generalized cylinder [5] whose axis, the spine, is annotated
with a description of the free orientations along the freeway. Figure 13 illustrates the
geometry of a freeway between two obstacles in a two-dimensional workspace bounded
by a rectangle. Figure 14 shows additional freeways in the same workspace. The moving
object A can be displaced along a freeway (or part of it) if there is a connected set of
free orientations of A along the spine. In addition, whenever two spines intersect, A can
transfer from one freeway to the other if the ranges of free orientations of A along both
spines have non-empty intersection. The freeway net 1s a representation of the possible
motions of A along spines and between spines. This graph describes (incompletely) the
connectivity of Cj,... A path in this graph determines a class of homotopic free paths

of A.

The freeway method successively consists of extracting freeways from the descripiion
the obstacles B; in the workspace, computing the range of free orientations at some
points along the spines of the freeways, constructing the freeway net, and searching this
graph for a path. We present these steps in the following subsections. We assume that
A and the B;’s are modeled as polygonal regions of ®? and that the workspace is itself a
bounded polygonal region of R2. We denote £ the subset of the workspace not occupied

by obstacles.
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Figure 14: Overlapping Freeways
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Figure 15: Two-Dimensional Straight Linear Generalized Cylinder

9.1 Extraction of Freeways

The geometry of a freeway in R2 is that of a truncated two-dimensional straight linear

generalized cylinder (see Figure 15).

DEFINITION 17: A two-dimensional straight linear generalized cylinder s a
region of R? obtained by sweeping a siraight line segment, the cross-section, along and
perpendicularly 1o a straight line, the spine. An origin and an orienlalion 13 defined on
the spine. The cross-seclion is partitioned by the spine inlo lwo segments, the right and
the left cross-sections. The lengths of the right and left cross-sections are continuous,
piecewise linear functions of the abscissa along the spine. These functions are the right
and left radii. The two lines drawn by the extremilics of the cross-section are called the
right and left sides of the cylinder.
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Condition (1) is not achieved Condition (2) is not achieved

Figure 16: Pairs of Edges Not Producing a Generalized Cylinder

Freeways are extracted from & by considering all pairs of edges in 9(€). Any edge
E is contained in an infinite line that divides 2 into two half-planes. The outgoing
normal vector of E points toward the half-plane called the free half-plane of E. A pair
of edges (B, E;) produces a generalized cylinder if and only if 1t satisfies the following

two conditions:
(1) For i,j € {1,2}, i # j, one extremity of E; is in the free half-plane of E;.
(2) The inner product of the outgoing normal vector of £, and E, is negative.

These two conditions impose that E; and E, ‘face’ each other. Figure 16 show examples
of pairs of edges that do not satisfy these conditions.

Given a pair of edges (I, Ey) satisfying the above two conditions, a generalized cylinder
(from now on, we omit the other qualifiers) GC is constructed as follows. GC’s spine
is the bisector of the angle formed by the lines containing E; and Es; if these lines are
parallel, the spine is parallel and equidistant to both of them. Each side of GC 1s made
of one edge (E, or E,) extended at each extremity by a half-line parallel to the spine.
This construction is illustrated by Figure 17. The choice of the bisector for spine 1s
reminiscent of the construction of a Voronoi diagram in the workspace.

GC partly lies outside £ and we now select those pieces of GC which completely lie
within £ as illustrated by Figure 18. First, GC is intersected with the region R? —
£. The intersection is then normally projected on the spine, and the corresponding
slices are removed from the cylinder. The truncated GC is thus sliced into several
truncated generalized cylinders. Truncated cylinders whose sides do not include portions
of both E, and I, are discarded. In the example of Figure 18, it only remains one slice
denoted ®. This way of removing slices from generalized cylinders is empirical and
may seem a bit radical. However, one must keep 1n mind that there are usually many
generalized cylinders leading to many overlapping freeways. In particular, some of the
edges bounding the obstacles intersecting GC can usually be paired with either £, or
E, to produce other generalized cylinders overlapping GC. The success of the freeway
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Figure 17: Construction of a Generalized Cylinder
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Figﬁre 18: Removing Slices from a Generalized Cylinder

method derives from this multiplicity of freeways.

When all the pairs of edges of 3(£) have been considered, the remaining truncated
generalized cylinders are the freeways to be used for path finding.

Each freeway is an instance of the general case shown in Figure 19. The spine of a
freeway is oriented from the ‘big’ end toward the ‘small’ end; if the freeway has parallel
sides, an arbitrary orientation is selected. The origin of spine abscissae is taken at the
freeway’s end (when it exists, the big end), such that any point in the freeway projects
on the spine at a positive abscissa. Thus, the geometry of every freeway is completely
specified by 7 parameters illustrated in Figure 19: L, B, B,, S, S,, ¢ and W.

Extraction of the initial non-truncated set of generalized cylinders takes O(n?), where
n is the number of edges in d(€). Intersecting R? — £ with a generalized cylinder can be
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Figure 19: Parameters Specifying a Freeway

done in time O(n). If the intersection is not empty, the intersection can be projected
on the spine in time O(n). Therefore, the time complexity of the complete operation 1s

o(n?).

9.2 Freeways as Cross-Sections Through Configuration Space

After having extracted freeways, the next step is to compute the range of free orienta-
tions of A when it moves along the spine of a freeway. Before explaining how this can
effectively be done, we must define more accurately what it means for A to ‘move along’

the spine.

We represent a configuration ¢ of A by (z,y,8), where z and y are the coordinates of
the origin of O4 (the origin of F,) in Fy, and 6 € [0,2x) is the angle (modulo 27)
between the z-axes of Fy and F4.

When A ‘moves along’ the spine of a freeway, we impose that O4 stays on the spine. In
other words, we constraint potential paths in Cy,.. to be contained into planes projecting
on the (z,y)-plane of C along the spines of the extracted freeways. This makes sense
since each spine is equally distant from two obstacle edges. Determining the range of
free orientations of A along the spine of a freeway is thus equivalent to computing the
intersection of a plane parallel to the #-axis with C-obstacles. In fact, as we will show
later, the range of free orientations has to be determined only at some points on the

spines.

Since O4 moves on a line which is equidistant from two obstacle edges, 1t 1s preferable
to select it so that the maximum distance from O to the points on the boundary of A
is the smallest possible. This is achieved by taking O, at the center of the minimum
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Figure 20: Radius Function of the Moving Object ~
spanning circle'? of the set of vertices of .A. The computation of the minimum spanning
circle of a set of points is a classical problem in Computational Geometry [42]. A naive
algorithm does the computation in O(n%) time, where n is the number of vertices of
A. Improved algorithms do the computation in O(n%) [42], or even in O(n4logna)
(O(n4) if we already know the convex hull of the points, which is the case when A is a

convex polygon) [11].

9.3 Determination of Free Orientations

We now describe the technique proposed by Brooks for approximating the range of free
orientations of A along a spine of a freeway. This technique makes use of a function,
called the radius function of A, and of its inverse. We first define these functions (see

Figure 20).

DEFINITION 18: A half-line issued from O4 is called a ray. The angle £ (modulo
27) between the z-azis of Fu and the ray is called the angle of the ray with respect to
A. The radius function R(€) of A is defined as the infimum of the distances from O4
10 the lines which both are normal to a ray of angle £ and do not intersect A.

We have (see Figure 20):
RE) = max {dscos(€ ~n)}

where:
- d; is the distance from O4 to the ith vertex of A,
- 7; is the angle of the ray passing through the ith vertex of A.

R(£) specifies how close a line perpendicular to the ray of angle { can be from Oy
without intersecting the interior of A. The inverse image of an interval [0,7] by R is

12The minimum spanning circle of a set of points is the smallest circle that encloses all of them.
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Figure 21: Bounding A by a rectangle

the function R™!(r) defined by:
R7}(r) = {¢§/R(§) <r}-

V¢ € R7!(r), a line perpendicular to the ray of angle £ and distant from O4 by more
than r is guaranteed to have no intersection with A.

Let us assume that A is a convex polygon (otherwise, we approximate it by 1its convex
hull). Then, R7!(r) can easily be computed as follows:

Rir)=1[0,27) — U L

1<i<n 4
where:
-L; =01 r > d;,
- I; = [n — | arccos &-|, i + | arccos 7|}, modulo 2, ifr <d;.

Let us now use the inverse radius function for computing the free orientations of A
along the spine of a freeway ®. In order to simplify computation, we approximate A by
a bounding rectangle. By doing so, we obtain a subrange of the free orientations of A.

Let us denote s the spine abscissa of O and 1 the angle between the z-axis of F 4 and
@’s spine. We enclose A in a rectangle RECT(s, ¥) defined as follows (see Figure 21).
Two sides of RECT (s, 1) are parallel to the spine, the right and left ones. The distance
from O4 to these sides are R(¢p — 7/2) and R(¢ + x/2), respectively. The other two
sides are the front and the rear sides. The distance from O4 to the front side is R(%).
The distance from O 4 to the rear side is conservatively d = max,<i<n{di}. The later
choice is conservative, but the independence of d from 1 presents practical advantages
as it will be appearent below. Notice that the bounding rectangle RECT (s, ) depends
on the orientation of A relative to the spine of ®.

Let V(s), with 0 < s < L, denote the set of orientations ¥, when O4’s spine abscissa
is s, such that RECT(s, ) is completely contained within ®. Since RECT(s,¥) 1s a
bounding approximation of A, V(s) 1s a subset of the range of free orientations of A.
V(s) can be computed using the formulas given in the following iemma.
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LEMMA 6: For a freeway ® construcled from two non-parallel edges, we have:

-tf 0 <s5<d, then:

- ifd <8< L, then:
V() = BH(L — ) YURT(S) + )0 (R(S) = )
U[(RY(B,) +2)n(RY(B) - F)N R:%,a(as +W)n R;a(as + W))) (2)

2

where a = tan ¢, R o = R(Y + () — a (), and R (u) ={¢ /[ Rea(¥) < u}.

In the particular case where ® is a traditional 1-cylinder of radius W, relation I 1s

unchanged and relation 2 simplifies to:

V(s) = R™(L — s) N (R™Y(W) + -’25) A(RH(W) — g).

Relation 1 is obvious, since for 0 < s < d, the rear side of RECT(s,v) does not lie
within ®, whatever is 1’s value. (Notice here the pratical advantage of the conservative
definition of d.) The best way to understand relation 2 1s to parse 1t:

- The first part of the main conjunct, R7(L — s), expresses the constraint that the
abscissa of the front side of the rectangle must be less than L.

- The first sub-expression in the second part of the main conjunct, (R7'(S;) + Zrn
(R71(S5;) — %), expresses that the distance from the spine to the light (resp. left) side of
d is nowhere smaller that S, (resp. S;). The conjunction of R™(L — s) and this sub-
expression is a sufficient condition insuring that RECT(s, ¥) lies within & (for s > d).
However, it is a too strong condition.

- The next two elements in relation 2, (R™*(B,)+Z)N(R™'(B1)—5), express the fact that
the distance from the spine to the right and left sides of ® cannot be greater than B,
and B, respectively. These two conditions are too weak and remained to be composed
with conditions considering the non-parallel sides of &.

- The last two elements in relation 2, R”% _ (as+ W)ﬂR;la(as + W), express a necessary
and sufficient condition that the bounding rectangle be between the two lines containing
the non-parallel sides of ®. Indeed, for each line, we can first write:

Ry —3) S ofs + R($) + W
and .
R+ 0) < als + R + W
where o = tan ¢. The above two elements in 2 directly derive from these relations.

Using formula 2 to compute V(s) requires being able to compute R;L(u), where
R.o(¥) = R(¢ + () — aR(y). This can be done casily by noticing that the sum of
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two radius functions has the same form as a radius function, whose inverse can be
computed as shown above. Indeed, if: '

R(€) = max {d:cos(€ — )}

1<t<n

and
S(€) = 12«;{5,{(1]- cos(€ — %)}

then:

R(&) + S(&) = max  (d;cos(é — m;) + d cos(€§ — n3))

1<i<n , 1<j<n’
where each term inside the ‘max’ can be written in the form e;; cos(§ — vi;)-
j 3

Since both the right and left radii of ® are non increasing functions of the spine abscissa,
one can easily verify the important following lemma:

LEMMA 7: Vsl,52 € [0, L] 18 __<__ 89 = V(Sg) (_; V(31).

This property is the key to the construction of the freeway net, because 1t will permit
us to determine free orientations of A only at some points along freeways’ spines.

Notice that V(s) may consist of several disconnected intervals.

9.4 Construction and Search of the Freeway Net

At this point, we have built a collection of freeways. For each freeway @, the expressions
giving V(s) describe the complement of a bounding approximation of the cross-section
of C-obstacles in a plane containing the spine of ® and perpendicular to the (z, y)-plane.
We thus have a partial representation of free space. We now use this representation to
construct the freeway net FN, which determines all the possible ways for A to move

along spines.

Let X be the set of every point P such that the spines of two freeways intersect at P
inside both freeways. Since there are O(n?) freeways (n is the number of edges in 9(£)),
a straightforward computation of X requires O(n*) time.

The nodes of FN are created as follows:

for every freeway ¢ do:
for every point P of ®’s spine that 1s in A" do:
- let s be the spine abscissa of P;
- create one node of F'N for every maximal connected interval in V(s).

The corresponding interval of V(s) is associated to each node of F'N. Since each interval
is originally defined with respect to a spine’s orientation, an appropriate constant angle
has to be added to both extremities of the interval, so that all the intervals are defined

with respect to the same reference, for instance the z-axis.

In addition, the initial and goal positions of O are used to create the inilial and goal
nodes of FN. We assume here, for simplification, that cach of these positions is on a
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Figure 22: A Path Produced Using the Freeway Method ~
spine. The interval of V(s) containing the initial (resp. goal) orientation of A at the
initial (resp. goal) position is associated with the corresponding node of F'N. If the
initial and goal positions of A are not located on freeway spines, then a technique has
to be devised for moving A from the initial position to a spine, and from a spine to the

goal position.
The arcs connecting the nodes of FN are created as follows:

(1) Let Ny and N, be two nodes corresponding to two different points on the same free-
way spine at abscissae s; and s;. Let Z; and I, be the two intervals of free orientations
of A associated with these nodes. If Z; NZ, # @, then N, and N, are connected by an
arc in FN. Indeed, thanks to Lemma 7, at any orientation in Z; N Iy, A can move 1n

free space from abscissa s; to abscissa s,, and vice-versa.

(2) Let Ny and N; be two nodes corresponding to the same point in space on two
different spines. Let Z; and Z, be the intervals of free orientations assoclated with these
nodes. If Z, N T, 5 @, then N; and N, are connected by an arc in FN. Indeed, at the
corresponding point, A can transfer in free space from one of the freeway to the other.

The constructed freeway net can then be searched for a path between the initial node to
the goal node. A A* algorithm can be used [36]; various heuristic functions are possible.
A path in the net determines a class of homotopic {ree paths in Cj,... A particular path
can be selected by rotating A, if necessary, only at the intersections between spines.
Figure 22 shows a path produced using this technique (this example is drawn from

Brooks’s paper [9]).

Experiments with the freeway method has shown that it works fast in ‘relatively unclut-
tered’ workspace. However, the method is not complete, and may not always find a free
path when one exists. Indeed, it embodies several empirical choices, whose justification
is merely intuitive, for instance: the spine of each freeway is the bisector of the two lines
containing a pair of edges, cach freeway is extended at each vertex by parallels to the
spine, O 4 is constrained to remain on spines, etc. One of the major drawbacks when
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the workspace is densely occupied by obstacles, is that freeways are often too short to
contain the rectangle enclosing 4. Even in rather uncluttered workspaces the freeway

method may fail.

Some of the limitations of the method could be alleviated. For example, 1t is possible
 to construct additional freeways by introducing fictitious edges in the workspace and by
considering spines which are not bisectors of the lines containing edges. But, the size
of the freeway net and the cost of searching it would increase significantly. Probably, it
is better to take the freeway method as it is, i.e. fast and incomplete, and not try to
make it too complicate, i.e. slow and still incomplete.

10 Visibility Graph

Besides decomposition and retraction, the visibility graph method is another approach
to path finding. However, unlike the other two, it 1s not universal, 1.e. its principle 1s
only applicable to the specific case where configuration space 1s made of (generalized)
polygonal obstacles. Nevertheless, historically, the visibility graph method has been one
of the earliest path finding methods used to control a robot (SHAKEY project [35]).
Due to its conceptual simplicity, it remains quite popular for implementing mobile robot
systems. Furthermore, it can be combined with other types of methods to handle more
difficult cases, e.g. to deal with rotation.

We have C = R? and the C-obstacles are possibly overlapping convex polygons. The
principle of the visibility graph method is to construct a path as the concatenation
of line segments connecting the initial to the final configurations through C-obstacle
vertices. Therefore, it produces paths which lie in valid space®.

Let us consider a polygonal object A translating among convex polygonal obstacles B;.
We want to plan a path between any given initial and final valid configurations ¢, and

Co.

DEFINITION 19: Lei VG be the graph constructed as follows:

- VG’s nodes are the initial and final configurations ¢; and c,, and the vertices of the
C-obstacles.

- Two nodes are connected by an undirected arc if and only if they are ‘mutually visthle’,
i.c. the line segment joining the corresponding two points lies complelely 1n valid space.
VG s called the visibility graph in C.

Figure 23 shows the visibility graph for a simple configuration space with three C-
obstacles (the graph arcs include the obstacle edges).

The visibility graph contains a path from ¢; to ¢; if and only 1f there is a valid path
between the two configurations. In addition, if a valid path exists, the shortest valid
path (according to the Euclidean metric in #?) is made of line segments passing through
vertices of the C-obstacles. The graph VG contains such a path, which is shown in bold

line in Figure 23.

130ne can grow C-obstacles slightly, so that the visibility graph method produces {ree paths.
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Figure 23: Example of Visibility Graph

The overall algorithm of the visibility graph method is the following:

1. Compute the vertices of the C-obstacles and construct the visibility graph VG.

2. Starting at ¢, search VG for a path from ¢; to c,.

3. If c, is attained, then return the list of vertices along the path; otherwise indicate

failure.

In order to construct VG, one may consider each node X in VG. By rotating a half-
line emanating from X and using a line-sweep algorithm, one can construct the arcs
connecting X to other nodes in VG.

Searching VG can be done using the A* algorithm [36]. The heuristic function f to
guide the search is a function which maps each node X into an estimate of the length
of the shortest path from ¢, to ¢, passing through X. We may take:

f(C1:C27X) :g(clyX) +h(X) C2)

where g(c;, X) is the length of the shortest path discovered so far between ¢, and
X, and h(X,cy) is the Euclidean distance in R2 between X and c,. Since we have
0 < h(X,¢3) < dyaia(X, c2), where dyaiia( X, c2) denotes the (unknown) length of the
shortest path between X and c; in Cyaia, the heuristic function is admissible. Then,
the visibility graph method is guaranteed to return the shortest path from ¢, to ¢, if a
valid path exists, and to indicate failure, otherwise.

LEMMA 8: With a A* scarch algorithm using an admissible heuristic function, the
visibility graph method is complete and generales the shortest valid path whenever a valid

palh erists.

Let 1 be the number of vertices of the C-obstacles. The construction of the arcs outgoing
from a node in VG using the rotating half line-sweep takes O(nlog n) time, so that the
total time for constructing VG is O(n”?logn). The resulting graph contains O(n) node
and O(n?) arcs, so that the combinatorial search of VG using the A" algorithm with
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Figure 24: Simplification of the Visibility Graph

Figure 25: Simplified Visibility Graph

an admissible heuristics takes O(n?) time. Therefore, the total time complexity of the

visibility graph method is O(n? log n).

The above method can be improved in several ways. For instance, some arcs in VG
need not be generated. Indeed, the line segment connecting two points X, and X n
free space may be part of a shortest path, only if the infinite line containing the two
points does not intersect the interiors of the C-obstacles to which these points belong n
an arbitrarily small neighborhood of these points. The remaining segments are called
supporling segmenis and there are exactly four of them among the vertices of any two
disjoint convex polygons [45]. This is illustrated by Figure 24. The supporting segments
are shown as plain lines, the non-supporting segment in free space are shown as dashed
lines. Thus, considering only supporting segments reduces the size of the search graph
(see Figure 25). In addition, more efficient graph construction techniques are applicable
if the C-obstacles are known to be both convex and disjoint [53,44,3,45].

The visibility graph technique can be extended to the case where both A and the B;s
are generalized polygons bounded by line segments and circular arcs. In this case,
C-obstacles are also generalized polygons (see [25]). The ‘generalized’ visibility graph is
built as explained above using actual vertices of the generalized polygonal C-obstacles,

and is completed by fictitious vertices as follows [25]:

~ Let X be a vertex (or the initial or final configuration) and E a circular arc. If there
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Figure 26: Generalized Visibility Graph

exists a point X’ on E such that the open line segment joining X and X' lies in free
space and the infinite line supporting the segment is tangent to £, then X’ is included
as a fictitious vertex in the generalized visibility graph, and X and X' are connected by

an arc.

- Let E and E' be two circular edges. If there exists a point X on E and a point X' on
E' such that the open line segment between these two points lies in free space and the
infinite line supporting the segment is tangent to both E and E', then X and X' are
included in the graph as fictitious vertices, and they are connected by an arc.

- Any two vertices X and X' located on the same circular edge of a C-obstacle are

connected by an arc.

Figure 26 shows the generalized visibility graph in a configuration space with two gen-
eralized polygonal C-obstacles. Only supporting segments are shown in the figure.

The same rotating line-sweep technique as above is applicable and allows to compute
the generalized visibility graph in O(n” log n) time.

Unfortunately, the visibility graph method is not applicable to the case of a three-
dimensional polyhedral configuration space. Indeed, in such a space, there may exist no
valid path consisting of a sequence of straight line segments joining the initial and final
configurations through C-obstacle vertices. For instance, the polyhedral C-obstacles
may form kinds of ‘tunnels’. However, the problem of finding shortest valid paths among
polyhedral obstacles has recently attracted interest in Computational Geometry. It can
be shown that, as illustrated by Figure 27, shortest valid paths are sequences of line
segments adjacent at points on polyhedron edges. Canny [10] shows that the problem
of generating such paths is NP-hard in n and the best bound so far is due to Reif and
Storer [44] who give a 27°")_time algorithm. Papadimitriou [41] gives an algorithm that
finds a path which is at most (1 -+ ¢€) times the length of the shortest path, in time that
is polynomial in n and 1/e. The basic idea of this algorithm is to break edges into short
segments and to search a graph with these segments as nodes.

Algorithms for finding shortest paths among polyhedra are quite technical and of limited
interest in robot path planning. In fact, the visibility graph method 1s attractive for
robot motion planning in two-dimensional workspace, more because 1t is conceptually



Figure 27: Shortest Path Among Polyhedral C-Obstacles

simple, easy to implement, and relatively time efficient, rather than because 1t generates
shortest paths. It is more appropriate to apply other methods such as those described
in the previous sections to the three-dimensional path planning problem.

The visibility graph method can neither be extended to the case of a robot translating
and rotating in a two-dimensional workspace. However, it can be combined with other
techniques in order to handle rotations of the robots. For instance, it can be combined
with the ‘orientation slicing’ technique described in Subsection 7.2. A visibility graph
VG, can be built for every orientation interval [fy, 6], by first computing a bounding
polygonal approximation of the area swept out by the moving object when it rotates
from 6 to 6, about the reference point, and next, considering this approximated area
as a translating object, computing the polygonal C-obstacles to this object. The graphs
V Gy can be combined into a larger graph VG by linking any two nodes X; € VG, and
X, € VGy, (k1 # k3), whenever the two points X; and X, can be connected by a straight
segment intersecting no C-obstacle in both C*¥ and C*, and 6; = 6y, (modulo 27). A
path consisting of interweaved pure translations and pure rotations can be generated

by searching VG.

11 Conclusion

Until rather recently path planning has not been considered a central and difficult
problem in the development of advanced autonomous robots. It was often thought that
appropriate heuristics would be sufficient to solve it in almost every case. Research on
motion planning became quite active after the mid-70’s, when the importance of the
problem started being recognized. Theoretical studies and practical implementations
showed it was also a difficult problem.

Work on path planning has attracted the interest of a many researchers in the 80’s.
Much progress has been done and the problem is now fairly well understood. Several
approaches have been proposed and, within each of them, different techniques have been
developed. Some of these methods may have practical applications, provided they are
carefully engineered if order to fit the characteristics of the application tasks. Indeed,
the computational complexity of both the path planning problem (lower bound) and the
proposed techniques (higher bounds) has been analyzed in depth. Since this complexity
increases exponentially with the number of degrees of freedom of the robotic systems,



it is clear that there is no universal efficient solution. But experiments with various

implementations have shown that some of the existing techniques can be very efficient

in restricted domains.

It is clear that path planning for one robot among fixed obstacles is only one facet
of the larger motion planning problem. Research on the other facets (dealing with
multiple robots, mobile obstacles, dynamic constraints, incomplete knowledge, mexact
knowledge, ...) currently attracts a lot of interest, but is still at an early stage and the

application of existing approaches i1s more remote.

Existing path planning techniques can be applied to material movements in several
ways. For example, they can be implemented as utilities in a CAD system, in order
to allow the designer to anticipate the effects of his decisions on the execution process.
Several software packages in the construction industry include tools for simulating the
movements of material (such as pipes and beams) and machines, some have collision-
checking capabilities, but none can perform automatic path planning automatically.
Automatic path planning could also be useful within process planners. But it 1s clear
that a major goal should be to make them available on-line on automatic material
transportation robotic systems. In addition to making these systems more autonomous,
this would greatly facilitate the integration of material physical movements with the
updatings of information (e.g., where objects are at every instant, what processing
steps have been performed so far), which is necessary to control material flow systems.
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