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Abstract

This paper addresses the problem of planning robot motions in the presence of uncertainty, It
ezplores an approach to this problem, known as the preimage backchaining approach. Bast-
cally, a preimage is a region in space, such that if the robot executes a certain motion command
from within this region, it is guaranteed to attain a target and to terminate into it. Preimage
backchaining consists of reasoning backward from a given goal region, by computing preimages
of the goal, and then recursively preimages of the preimages, until some preimages include the
initial region where it is known at planning time that the robot will be before executing the motion
plan. In the paper, we first give a rigorous formalization of the problem of planning motions in
the presence of uncertainty; such a formalization is necessary because in many regards reasoning
with uncertainty is not reducible to straightforward intuition. Then, we tnvestigate in detail
the theory of the preimage backchaining approach; we give a new presentation of pretmages,
we ezplore the notion of mazimal preimages, and we estend the framework to the generation
of conditional motion strategies. Finally, we describe a complete set of algorithms that makes
it possible implementing the approach in a simplified two-dimensional world, which we call the
mini-world. The restrictions imposed on the mini-world are essentially aimed at reducing the
conceptual and computational complezity of the geometric computations required by the preim-
age backchaining approach. Nevertheless, the mini-world is still appropriate to handle realistic
navigation problems with omni-directional mobile robots.
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of Uncertainty, Preimage Backchaining.
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1. Introduction

In this paper, we address the problem of planning robot motions in the presence of uncer-
tainty. In principle, the robot may be any kind of rigid or articulated object capable of
controlling its motions within a workspace. In particular, it may be a manipulator arm,
a multi-joint multi-finger hand, a wheeled vehicle, or a free-flying vehicle. In practice,



however, the complexity of the motion planning problem augments exponentially with
the number of degrees of freedom of the robot system [45,48,6].

Motion planning in the presence of uncertainty is one of the important problems that
we have to solve in order to create autonomous robots [20]. By autonomous robots
we mean robots that are both automatic — i.e., that can execute tasks in the physical
workspace without human intervention -, and taskable — i.e., that accept high level task
descriptions. Such a description typically specifies what the user wants done rather than
how to do it. Therefore, at some level of reasoning, an autonomous robot has to plan the
motion commands and the sensing acts that are appropriate to achieve the goals, and it
must monitor their execution. Examples of sub-tasks that usually require motion plans
taking uncertainty into consideration are: grasping an object with the end-effector of a
manipulator robot, mating two mechanical parts in an assembly process, and navigating
from one location to another in an in-door environment. In this paper, we consider the
generic task of planning the motions of a single controlled object (i.e., the robot) among
fixed, un-movable, and rigid obstacles, from an initial region (a single location if there
was no uncertainty), where it is known that the moving object will be before executing
the plan, to a goal region. We distinguish among three types of uncertainty: uncertainty
on robot control (the robot does not execute motions exactly as they are specified),
uncertainty on dimensions and locations of obstacles in the initial world, and uncertainty
on on-line sensing. However, most of the paper concentrates on uncertainty on control
and on sensing.

The solution to a motion planning problem without uncertainty is the geometrical de-
scription of a collision-free path of the robot from its initial location to a goal one. The
solution to a motion planning problem with uncertainty is a motion strategy. Typically,
a motion strategy is an algorithm including motion and sensing commands, which takes
advantage of various sources of information (e.g., model of the motions, prior model of
the world, on-line sensing) in order to reduce uncertainty and lead the robot to the goal
position. Thus, a strategy may include motion commands merely aimed at acquiring
new pieces of information. However, reaching a goal position is the only imposed goal.
Reducing uncertainty is important only when it is a prerequisite to achieving this goal.
Although in this paper we consider motion strategies using sensing, this is not always
a requirement. For instance, Erdmann and Mason [18] investigate sensorless strategies
capable of dealing with uncertainty. However, such strategies require reasoning about
operations, such as pushing and sliding, which involve several independent moving ob-
Jjects. Planning sensory-based strategies requires reasoning at planning time about pieces
of information that will be known (with some uncertainty) only at execution time.

In this paper, we focus on an approach to motion planning with uncertainty known as
the preimage backchaining approach. Basically, a preimage of a target for a given motion
command is a region in space, such that if the robot executes the motion command
from within this region, it is guaranteed to attain the target and to terminate into it
despite uncertainty; terminating the motion in the target typically requires sensory-based
recognition capabilities. Preimage backchaining consists of reasoning backward from a
given goal. A search graph is built and explored by computing preimages of the goal for
different motion commands, and then preimages of the preimages, until some preimages



include the initial region. The preimage backchaining approach has been first introduced
by Lozano-Pérez, Mason and Taylor [35], with subsequent contributions by Mason [39],
Erdmann [17,18], and Donald [10,12].

The contribution of this paper is threefold. First, it gives a rigorous formalization of the
problem of planning motions in the presence of uncertainty (Sections 2 through 5); such
a formalization is necessary because in many regards reasoning with uncertainty is not
reducible to straightforward intuition. Second, it brings new fundamental insights in the
theory of the preimage backchaining approach (Sections 6 through 13, and Section 17);
in particular, it introduces a new formal definition of preimages (Section 8), which, we
believe, is clearer than the one used in previous papers; based on this definition, it ex-
plores the notion of maximal preimage (Sections 9 through 12); it also extends the formal
framework of preimage backchaining to the generation of conditional strategies (Section
17). Third, the paper describes a complete set of algorithms that makes it possible imple-
menting the approach in a simplified two-dimensional world, which we call the mini-world
(Sections 14 through 16); although rather simple, the mini-world is still realistic enough
for some applications: for instance, it can be the world of an omni-directional mobile
robots with a polygonal outline moving among obstacles bounded by polygonal outlines.
Throughout the paper, we use examples in the mini-world to illustrate our presentation;
the restrictions imposed on the mini-world are essentially aimed at reducing the con-
ceptual and computational complexity of the required geometric computations. A final
section (Section 18) relates our presentation to previous work.

During the last five years, a trend in research on autonomous agents interacting with a
dynamic and/or uncertain external world has been toward “reactive planning” (e.g., see
[22]). This trend grew up in reaction against the more traditional approach to planning,
which tends to decompose planning and execution between two successive phases. A new
extreme position related to this trend is to use no prediction of future states at all. A
criticizable effect of such a position is to produce planners that produce plans with no
provable properties relative to their correctness (but is there any more a plan?). We
think that planning is an essential capability of an autonomous agent in order to display
intelligent behavior, and whether it is performed off-line or on-line, it should produce plans
with well-defined properties, so that if their execution fails, it is possible to diagnose why.
Such a diagnosis is not important for correcting the plan (since it already failed), but to
determine the assumptions which were wrong, i.e. to learn from failure.

In this paper, we concentrate our presentation on the planning of strongly guaranteed
strategies. Strategies of this class are guaranteed to succeed whenever errors on control,
model, and sensing remain within predefined bounds specifying uncertainty. If such a
strategy fails, it means that one error exceeded these bounds during execution. Despite
some drawbacks (e.g., some motion planning problems may admit no strongly guaranteed
solution, or only complex ones), these strategies are most appropriate when off-line plan-
ning is prefered (e.g. in the context of industrial manufacturing [28]), or when on-line
interaction between the controller and the planner is limited (e.g. by the bandwidth of a
radio link). They also can be used on-line to plan motions to achieve short-term goals.
In addition, from a theoretical point of view, strongly guaranteed strategies raise many
interesting questions leading to study theoretical concepts with broader relevance. In the
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Figure 1: Configuration Space Examples

conclusion, we will introduce a weaker (i.e., larger) class of motion strategies, which still
has provable properties, while being more adapted to reactive planning.

2. Modeling Task Geometry

Let us consider an object, .A!, moving in a euclidean space called workspace. Any list of
parameters that completely specifies the position of every point on A at any instant ¢ with
respect to a fixed cartesian coordinate system W in the workspace defines a space called
the configuration space of A [34]. Any point in this latter space (i.e., any instantiated
list of parameters) is called a configuration of A.

There is an infinity of possible configuration spaces for .A. We assume that one of them,
denoted C, has been arbitrarily selected as the configuration space of A. At every instant,
the mapping of A into C is a point, P, called the effector point. In the following, A(c)
denotes the region occupied by A in the workspace, when P’s position in € (e, A’s

configuration) is c.
Example 1: Figure 1 shows several examples of configuration spaces:

- Figure 1 a: The configuration space of a two-dimensional rigid object A that can only
translate in the plane is ®? (more precisely, it is isomorphic to £?). A configuration (z,y)
consists of the coordinates of a fixed reference point on A with respect to W.

- Figure 1 b: The configuration space of a two-dimensional rigid object A that can both

translate and rotate in the plane is ®2 x S', where S! is the unit circle. A configuration

(z,y,6) consists of the two coordinates of a fixed reference point on .A and the orientation

of a fixed reference axis with respect to W. Similarly, if A is a three-dimensional rigid

object allowed to translate and rotate without restriction, C = ®3 x SO(3), where SO(3)

is the three-dimensional Special Orthogonal Group. Then, if orientation is represented -
using the Euler angles (1, 8, ), a configuration is the list (z,y,z,9,9, é).

- Figure 1 ¢: The configuration space of an articulated object with N rotating joints is a
subspace of (S!)¥ = S! x ... x S'. A configuration is a N-dimensional list (g1, g2, .-, qn),
each parameter ¢; specifying one joint angle. il

At this stage, a trajectory of A in the workspace can be described as a mapping 7 :
t € R — c € C. It can also be represented as a curve in configuration space x time
C xR

1A table of symbols is given in Appendix at the end of the paper.
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Figure 2: Mapping an Obstacle in Configuration Space

Now, let us assume that A’s workspace includes fixed obstacles B;, ¢+ = 1,2, .... The
region occupied by each obstacle B; in the workspace maps into C as another region called
a C-obstacle and denoted CB;2. By definition, CB; = {c € C / A(c) N B; # 0}.

Example 2: Figure 2 illustrates the case where both A and B; are convex polygonal
regions, A being only allowed to translate. The configuration of A is defined as the
coordinates of point P (when A is a rigid object only allowed to translate, the effector
point and the reference point coincide). The curve followed by P when A slides in contact
with B;’s boundary, without overlapping of A’s and B;’s interiors is the boundary of CB;.
It can be proved that CB; is also a convex polygon [34].

If we also allow A to rotate, then CB; is a volume in 2x S! = {(z,y,0)}. Each cut through
CB; perpendicular to the #-axis of C is a convex polygon. However, CB; is bounded by
curved surface patches (more precisely, ruled surfaces) [34]. B

Several practical methods exist for computing either the exact or an approximate rep-
resentation of a C-obstacle, when both A and B; are polyhedral (or polygonal) objects
[34,3,23,9,30]. In particular, Donald [9] describes a method for computing the mapping of
polyhedral obstacles, when A is a rigid polyhedral object allowed to both translate and
rotate.

If the obstacles B; are mobile obstacles, then it is possible to map the regions they occupy
in A’s workspace into regions of configuration space x time C x . Each cut C x {t}
perpendicular to the time axis includes the C-obstacle CB; at time {. In the rest of the
paper, we only consider fixed un-movable obstacles.

Let Csy.. = {c € C [ A(c)N(UB;) = 8} = C—UCB;. Cy,.. is called free space. Whenever
the effector point P is in free space, it means that A has no contact with any obstacle B;.
Let Coontact = {€¢ €C / A(c)N(UB;) # 8 and A(c)N(UB;) C d(UB:)}, where 8S denotes
the boundary of the closed region S 3. C.ontact is called contact space. Whenever Pis
in contact space, it means that A has made a contact with one or several obstacles B;.

2A connected region B; may map into C as a non-connected region C5B;.
3We assume that physical objects occupy closed bounded regions in the workspace. We use the same
symbols, A and B;, to denote both the physical objects and the regions they occupy.
g
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Figure 3: Contact Space

We always have 8(UCB;) C Ceontact, but, as illustrated by Figure 3 (there is no clearance
between A and B’s hole), it may happen that Ceontact 7 A(UCB;).

Mapping the geometry of the task into configuration space allows us to transform the
problem of planning the motion of a dimensioned object into that of planning the motion
of a point, P, from an initial region 7 to a goal region G. Both 7 and G are subsets of C.
The motion path of P is constrained to lie entirely in Cy,ee U Ceontact- Thus, configuration
space makes explicit the geometrical constraints imposed on the motion of A by the
obstacles. However, it is easy to verify that different geometries in the workspace may
result in the same geometry in configuration space; so, the mapping between workspace
and configuration space is not a bijective one.

In the rest of this paper, we mainly consider a simple two-dimensional (2D) configuration
space (z, y), called the mini-world, to which some restrictions apply. In particular, there
is a finite number of C-obstacles in C, and every C-obstacle CB; is a polygonal region;
C.ontact consists of a finite number of finite straight segments. The other restrictions will be
stated when relevant in further sections. Our presentation of the preimage backchaining
approach directly applies to the mini-world, and all the illustrating examples take place
in the mini-world (eventually with slight indicated differences). Although most of this
presentation remains valid in higher-dimensional configuration spaces, certain modeling
aspects and geometrical computations, not treated in this paper, are made considerably
more complex by increasing C’s dimension. Some geometrical computation problems in
higher-dimensional spaces are even still completely unexplored.

3. Modeling Task Physics

We are interested in planning motions with uncertainty. In particular (see Section ),
the motion of the effector point P may not be controlled perfectly. In addition, the
geometry of the workspace, and so the geometry of C, may not be known exactly. Due
to uncertainty, it may be useful (or necessary) to include sensing acts other than position
sensing in motion plans. However, the use of some sensors requires dealing with more
that just geometry. Certain physical properties of the workspace have to be modeled, and
mapped into constructs in configuration space. For instance, using visual sensing may



entail representing reflectance properties of obstacle surfaces.

In this paper, we assume that the robot is equiped with two sensors only, the position
sensor, which gives the current configuration of A, and the force sensor, which measures
the reaction force generated by obstacles when .4 pushes on them. Using force sensing
requires mapping forces into configuration space. The rest of this section describes how
wrenches (combination of forces and moments) resulting from the contact of A with
actual obstacles can be mapped into C as generalized force vectors resulting from the
corresponding contact of P with C-obstacles. Our description is inspired from Erdmann’s
work [17], where more detail can be found.

A wrench (F, M) applied to (or by) A is mapped into C as a force vector f applied to
(or by) P. The component of f along each parameter axis of C is proportional to the
acceleration of A caused by the wrench along the degree of freedom corresponding to this
axis. For instance, in the configuration space C = (z,y,6) of a rigid 2D object, a force
vector is made of three components respectively proportional to the linear acceleration of
A along the z- and y-axes, and to the rotational acceleration about the §-axis.

Let us assume that A’s and B;’s boundaries are both frictionless. When there is no contact
between .4 and any of the B;, then A cannot exert any force on its environment, so the
reaction force on A is null. Correspondingly, when P is in free space, the reaction force
on P is null. When there is a contact between A and an obstacle B;, if A pushes on B;,
then B; pushes back. It turns out that, in configuration space, P and CB; behave in the
same manner. The generalized force exerted by A on B; is mapped into C as a vector P
applied by P. It can be proved that the reaction wrench exerted by B; on A maps into
C as a force vector, f,.,.;, which is perpendicular to the boundary of CB; at the current
position of P. We say that CB; reacts to f.pp by generating f,.... If f,,,; is perpendicular
to the boundary of CB;, then f,.,.; = —fappi-

Let us now consider the case when the surfaces produce friction. A classical model of
friction on a surface in the workspace, based on Coulomb’s law, is known as the friction
cone (in fact, it is a half-cone). The cone’s axis is normal to the surface at the considered
point (see Figure 4 a); its extreme rays make an angle tan™! i with this axis, where g is the
coefficient of friction (we assume the same value for the static and dynamic coefficients).
An applied force that points toward the surface inside the cone causes the generation of an
opposite reaction force having the same intensity (see Figure 4 b). An applied force that
points toward the surface outside the friction cone results in a reaction force along one
extreme ray of the friction cone (see Figure 4 ¢); then, the resulting net force is tangent
to the surface.

The notion of friction cone in the workspace extends easily to the configuration space
of a translating object 4. In such a space, at any point on the surface of a C-obstacle
CB;, friction can be modeled using a friction cone. The angle of this cone derives from
the friction coefficients of the actual surfaces in contact. The applied force, the reaction
force, and the friction cone in configuration space are related in the same fashion as in the
workspace. The friction cone at a point on a C-obstacle boundary thus specifies the range
of possible orientations of the reaction force on P at that point. Erdmann [17] discusses
friction representation when .4 can also rotate. Ye* € C free U Ceontact, We denote F*(c*)
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Figure 5: Friction Cones in the Mini-World

the range of reaction force that can be generated at position ¢* 4. If ¢* € Cj,.,, then
F*(c*) = {0}.

In our mini-world, the friction coefficient is constant along every edge of every C-obstacle.
Thus, both the angle and the orientation of the friction cone remain constant along an
edge. If the edge is frictionless, then g = 0 and the cone reduces to its axis. The friction
cone associated with every C-obstacle vertex is the cone, the sides of which are the two
most extreme rays of the cones associated with the adjacent edges. Thus, we assume
that when P is in Ceoneaee at a C-obstacle’s vertex, the reaction force generated by the
C-obstacle can be any non-negative linear combination of the reaction forces that can be
generated by the two adjacent edges. Figure 5 illustrates friction cones in the mini-world.
Vc* € Coontact: v(c*) denotes the unit vector pointing along the axis of the friction cone,
and 2¢(c*) denotes the angle of the friction cone. Let € be an edge in Cooptact; v(€) denotes
both the unit outgoing normal vector to &, and the unit vector pointing along the axis of
the friction cone at any position on £. In the mini-world, Ve* € Contact, F *(c*) is the set
of all vectors included in the friction cone at c*.

We denote f the value of the reaction force on P, which is measured by the force sensor.

4As it will be explained further, c* denotes an actual position of P in C, while ¢ denotes a measured
position.
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Figure 6: Sticking and Sliding Generalized Damper Motions

4. Motion Commands

A solution to a motion planning problem in configuration space is a plan including motion
commands expressing intended motions of the effector point P. If there were no uncer-
tainty, one could consider formulating motion commands as geometrical paths (continuous
sequence of configurations) to be followed by P at execution time. However, since we ad-
dress the motion planning problem in the presence of uncertainty, we consider slightly
more sophisticated commands, called generalized motion commands.

A generalized motion command M is one of the form M = (CS,TC), where:

e CS is the control statement specifying the (possibly infinite) trajectory along
which the controller executing the command has to move P,

e TC is the termination condition specifying the condition upon which the con-
troller should terminate the motion of P.

The concept of control statement is illustrated by the following two examples.

Example 3: One type of control statement is pure velocity control. A velocity v is
specified, and executing the motion command causes P to move along a straight line in
C, with constant velocity v, when P is in free space and when P is in contact space with
v either pointing toward the outside of the C-obstacle or tangent to its boundary. The
motion command causes no motion of P when it is in contact space, with v pointing
toward the inside of the C-obstacle. il

Example 4: Another type of control statement, which makes use of force sensing, is
generaliéed damper control. The corresponding equation in C for this type of control is
f = B(Vyet — V), where v is the specified commanded velocity, f is the reaction force on
P, and v, is the net velocity of P; B is a constant, called the damper constant, which
relates velocities to forces. When P is in free space and when P is in contact space with
v either pointing toward the outside of the C-obstacle or tangent to its boundary, f = 0,
so that v,.; = v. Then, as with pure velocity control, generalized damper control along
v causes P to move along a straight line with constant velocity v. When P is in contact
space with v pointing toward the inside of the C-obstacle, f # 0, so that v,.; # v. Then,



two cases are possible: either v potnts inside® the friction cone at the current position of P
(see Figure 6 @), and P sticks to the boundary of the C-obstacle {no motion); or v points
outside the friction cone (see Figure 6 b), and P slides tangentially to the C-obstacle

boundary. B

Notice that both pure velocity control and generalized damper control, as we described
them, are ideal approximations of the behavior of actual controllers. Indeed, both suppose
that the controller can change the robot’s velocity instantaneously. Obviously this is
impossible with an object that has non-null mass. This approximation is one source of
error resulting in control uncertainty.

There are many other possible types of control statements than those presented in the
above examples. However, in our mini-world, we only consider those two. We denote pure
velocity control with commanded velocity v by V(v), and generalized damper control
with commanded velocity v by GD(v). Generalized damper is one sort of force-based
compliance, which has received considerable attention in the Robotics literature (e.g.,
see [44,38,55,26] for more detail). In particular, Mason [38] analyzes generalized damper
control in configuration space. Khatib [26] introduces the concept of “operational space”,
which is similar to configuration space in the case of a rigid moving object, and formalizes
the dynamic equations of a manipulator arm in this space; he applies this formalization
to define a hybrid position/force motion controller. Buckley [5] investigates generalized
spring control, another type of force-based compliant control, in configuration space; he
applies this type of control for planning motions of objects from contact to contact.

The termination condition TC is an expression of the general form tp(6t, cpo,51, fio,61)
where: tp is a predicate; 6t is the elapsed time since the beginning of the motion; C{o,64]
and fj 5 are the records of position and force sensing since the beginning of the motion.
Examples of termination conditions are [6¢ > Ty] and [c(6t) € S and angle(no, £(6t)) = 0].
[6t > T,] means that the motion has to be terminated when its duration exceeds 7.
[c(6t) € S and angle(ng, f(8t)) = 0] means that the motion has to be terminated when
the measured configuration is in region S and the measured force makes a null angle with
the given vector ny.

Notice that a termination condition may not be guaranteed to ever terminate a motion. A
particular case occurs when the motion physically stops by sticking against an obstacle,
while the termination condition does not recognize this situation (because it was not
anticipated at planning time). Then, although there is no more motion in the physical
sense, the controller does not know it and does not execute the next step in the motion

plan.

5. Modeling Uncertainty

When considering a real robot operating in a real world, one has to take into account
possible errors arising from many different sources. It has become rather common to
group possible errors into three different types: control errors, model errors, and sensing

5We say that v points inside the friction cone if the vector —v originating at the cone’s apex is
contained in the friction cone.
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errors. Control errors result from the fact thai no robot controller is perfect; for instance,
executing a motion command with CS = V(v) does not cause P to move exactly along
v in free space. Model errors arise from our inability to have an exact model of the
workspace (e.g., we cannot know the exact dimensions of the objects in the workspace).
Sensing errors are inherent to the fact that sensors are measuring devices that have limited

precision.

Let us consider that every error applies to the value of a parameter. Given the nominal
value p of a parameter p, the actual value p* of this parameter belongs to a set U,(p). We
call this set the uncertainty on the value of p. The set may be bounded or not, discrete
or not, finite or not. We assume a uniform probabilistic distribution of the actual value
of p over this set®. In our notations, we distinguish the actual value of a parameter from
its nominal value by using a star (*) as exponent.

In the following, Ucs(CS), Uc(C), U.(c), and Us(f) denote the functions specifying uncer-
tainty on control, model, position sensing, and force sensing. Below, we specify a possible
representation of these functions in the mini-world. In the rest of the paper, however, we
will assume no model error, i.e. Uc(C) = {C}.

Control uncertainty: Let v be the specified (i.e., nominal) commanded velocity in
either V(v) or GD(v). At any instant during the execution of the motion command, the
actual commanded velocity v* € U, (v), such that:

- angle(v*,v) < 4,

- |Iv*|l € Ay(v), an interval including ||v||,

where angle(v*, v) evaluates to the angle between v* and v, and ||v]| evaluates to the
module of v. (Note that v* may not be constant during the motion.)

Thus, at each instant, the orientation of v* is within a half-cone, called the velocity
cone. This cone’s apex is at the current position of P; its axis points along the direction
of v; its extreme rays make an angle 4, with this axis.

If CS = V(v) or GD(v) and P is in free space, the actual velocity of P is v*.

If CS = GD(v) and P is in contact space, the actual velocity of P is v?_, = £*/B+v* (see
Example 4). Let the negative velocity cone be the half-cone symetrical to the velocity cone
with respect to the apex. If the negative velocity cone is contained in the friction cone
at P’s current position, sticking is guaranteed (i.e., v2,, = 0), because P is guaranteed to
push against the C-obstacle within the friction cone; if the two cones have no intersection
(except their common apex), then sliding or moving away is guaranteed; in all other cases,
sticking is possible, but not certain. Notice that testing whether P may slide or stick on
a C-obstacle’s edge in the mini-world is made particularly simple by the fact that the
orientation of the friction cone remains constant along the edge. The test is illustrated
by Figure 7.

6This assumption is directly related to our focus on (strongly) guaranteed strategies. Other types
of probabilistic distributions have been used to model uncertainty in Robotics (e.g., see [16,49]). More
sophisticated distributions could be used in addition to the uniform one in order for example to evaluate
the probability that a strongly guaranteed strategy will perform correctly or to guide trouble-shooting if
the guaranteed strategy happens to fail.

11
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Figure 7: Sticking Test With Control Uncertainty
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Figure 8: Representation of Model Uncertainty

dmin < d < dmax

In the mini-world, both Ugs(V(v)) and Ues(GD(v)) are denoted U (V).

Model uncertainty: Consider the configuration space with a single C-obstacle CB, as
shown at Figure 8 a. Assume that one of the dimensions of CB, d, is not precisely
known. Uncertainty on d can be defined by U; = [dpmin, dmaz). One way to represent such
uncertainty is to extend the configuration space into a generalized configuration space (see
Figure 8 b) by adding one extra-dimension corresponding to the d parameter. Each cut
perpendicular to the d-axis corresponds to a possible configuration space. The problem is
still to move a point, P. However, the difference with regular configuration space is not so
much that the new space is three-dimensional (z, 3, d); it is that P can only be controlled
along two of its axes (z and y). Indeed, as long as C-obstacles are rigid and un-movable,
P is constrained to move within one single plane perpendicular to the d-axis; but we do
not know the d-coordinate of this plane within the range [dpin, drmaz)-

This technique for representing uncertainty on configuration space geometry can be ap-
plied to N parameters (N>1), by adding N axes to configuration space. Parameters need
not be continuous ones. They may also take their values from discrete and finite sets. Let
GC be the resulting generalized configuration space; Uc(C) = GC.

As investigated by Donald [10,12], most of the preimage backchaining approach can be
extended to such a generalized configuration space. However, in the rest of the paper,
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and in the mini-world in particular, we assume that C’s geometry 1s perfectly known.

It is easy to model uncertainty on the friction cone, by defining a small cone and a
large cone. The only impact is on the sticking test illustrated by Figure 7. Sticking is
guaranteed only if the negative velocity cone is contained in the small friction cone; sliding
is guaranteed only if the negative velocity cone and the large cone have null intersection.
In the following, we only consider cases where sliding has to be guaranteed. Therefore,
we assume no uncertainty on friction cones (alternatively, we can think of using the large
friction cone only).

Sensing uncertainty: Let ¢ and f be the position and force measured by the sensors
at some instant. At the same instant, the actual position and force, ¢* € U.(c) and
f* € Ug(f), such that:

- U.(c) = X, (c), the closed disk of radius p. centered at c,

Il € DT = e, 1]+ <,

- If [[f]] > ¢y, then angle(f*,f) < ff; otherwise, the orientation of f has no significance.

Throughout the paper, we assume that time measurement is perfect. This is not quite
exact, because a real controller discretizes time. We also assume that the termination
condition of an executed motion command is continuously monitored, and that the motion
is instantaneously stopped (both in the control sense and the physical sense) when the
condition becomes true. Again, this is not exact. In fact, in first approximation, errors
on time measurement and on motion termination can be blended with other errors, by
enlarging control and sensing uncertainties. However, a more realistic approach would
be to treat them differently. An approach to the representation and the treatment of
uncertainty on time measurement, in the context of motion planning, can be found in

[41).

6. Preimage Backchaining

Let 7 be a region in configuration space C. Let M = (CS,TC) be a generalized motion
command. Let 7 be the farget of M, that is we want to bring the effector point P into
T by executing M. Uncertainty on control and sensing is specified by Ucs, U., and Us.
We assume no model error.

We call preimage of 7 for M any region P in C such that: if the effector point P is
actually in P at the time when the execution of M starts, then, despite uncertainty, it is
guaranteed both that the resulting motion will terminate and that P will be in 7 when
the motion terminates. In other words, if the precondition P € P holds before executing
M, then the postcondition P € 7 will hold after executing the motion command. We
will give a more formal definition of a preimage later in Section .

Example 5: Figure 9 (a; and a,) shows examples of preimages of a target T for velocity
controlled motion command with two commanded velocities v; and v,. F igure 9 (b; and
by) shows examples of preimages of 7 for generalized damper motion commands with the
same two commanded velocities. In every example, a possible termination condition is:
[c(6t) € T ® =,,(0) and angle(f(6¢), v(T)) < ¢(T) + 8;], where @ is the Minkowski’s
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Figure 9: Examples of Preimages

operator for set addition”. Preimages for generalized damper control are larger than
those obtained with velocity control, because generalized damper control has some limited
capabilities to comply with the obstacle geometry, by sliding along edges. B

Now, suppose that an algorithm is available for computing preimages of a target 7 for a
motion command M (we will investigate preimage computation in Sections through ).
Let us consider a motion planning problem specified by G, the goal region in which P has
to be moved, and Z, the region that is guaranteed to contain the initial position cf;, of P.
Preimage backchaining consists of constructing a sequence of preimages Py, Pa, ..., Py,
such that:

- P;, Vi€ [1,q], is a preimage of P;_, for a selected motion command M; (with Py = G);
-ICP,.

The inverse sequence of the motion commands which have been selected to produce the

preimages, [My, M,_, ..., My], is the generated motion strategy. We say that this strategy

is strongly guaranteed because its execution is guaranteed to achieve the goal success- '
fully, whenever the control errors and sensing errors remain within the ranges determined

by Ucs, U., and U;. As mentioned in the introduction, this paper focuses on this type of

strategy.

A motion planner is said to be strongly complete if it is guaranteed to generate a
strongly guaranteed strategy whenever such a strategy exists. At the eventual expense of
strong completeness, the problem of generating the sequence of preimages can be trans-
formed into the combinatorial problem of searching a graph by selecting motion commands

T ®L,,(0) is the edge T grown by p..
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Figure 10: Illustration of the Preimage Backchaining Approach

from a predefined discretized set. The root of this graph is the goal region G, and each
other node is a preimage region; each arc is a motion command, connecting a region to
a preimage for this command. Construction of this graph requires discretizing the set of
possible control statements. For instance, with velocity control and generalized damper
control, it requires discretizing the set of velocity orientations.

Example 6: Figure 10 illustrates the application of the preimage backchaining approach
to a simple example. Figure 10 a displays the initial region Z and the goal region G. Figure
10 b shows a preimage P, of G for the motion command M, = (GD(v;), TC,), where v,
is as shown in the figure and TC, detects contact against G by measuring the horizontal
component of the measured reaction force. P, has no intersection with the initial region
Z. Assume that we consider edge &, which is a subset of P;, as an intermediate target.
Figure 10 ¢ shows a preimage P, of £ for M, = (GD(v,), TC,). v, is shown in the figure.
TC; detects contact against £ by measuring both the vertical component of the reaction
force. Since & is part of Py, P, is also a preimage of P;. P, includes Z; so the problem is
solved. The generated strategy is [M,, M,]. B

Some motion planning problems orly admit conditional strategies (i.e. strategies with
conditional branching statements), or are more easily solved by generating such strategies.
The application of the preimage backchaining approach to the generation of conditional
strategies does not raise major difficulties, and will be considered in Section .

A strategy with no iteration or recursion can only result in the execution of a bounded
number of motion commands. It may be insufficient in the presence of infinitely many
C-obstacle algebraic surfaces. However, since this is unlikely to happen in real world
problems, we will not consider strategies with iteration or recursion in the rest of the
paper. The completeness of a planner restricted to the class of motion problems that
can be solved by executing a bounded number of motion commands is called bounded
completeness.

Notice that the preimage backchaining approach can also be useful to plan motions even
when there is no uncertainty. Although there exists more efficient path planning tech-
niques applicable to such situations, the approach may still present some interest. Indeed,
since the outcome of the planner is a channel formed by successive preimages, which is
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less constrained than a unique path, it leaves the controller more opportunities for facing
contingencies (e.g., unexpected obstacles) [8]. However, we will not explore this aspect of
the approach further in this paper.

Note also that the relevance of the preimage backchaining approach is not limited to mo-
tion planning. The principle of the approach may also be of interest for other types of
action planning problems, including the “robot planning” problems traditionally consid-
ered in Artificial Intelligence [42]. Indeed, a preimage is nothing else than a precondition
of a given postcondition (ideally, it is the weakest precondition). In motion planning,
it has a strong geometric flavor; but, in other domains, it may well have a more logic-
oriented flavor. In particular, goal regression, as presented in [54] and in [42] (Chapter
8), is a similar technique for planning in worlds represented as sentences in the first-order
predicate language. It resembles preimage backchaining in that it consists of propagating
goals backward by computing the weakest logical conditions whose satisfaction before
executing a sequence of actions guarantees the achievement of each of the goals after the
actions have been executed.

In the following sections, we explore in detail the theory of the preimage backchaining
approach applied to motion planning. One of our underlying preoccupations is to attempt
to reduce the cost of searching the preimage graph, by analyzing the notion of mazimal
preimage (with respect to set inclusion). Indeed, intuitively, a large preimage has more
chance to include the initial region Z than a small one; in addition, if it is considered
recursively as an intermediate target, a large preimage has more chance to admit large
preimages than a small one. Thus, considering larger preimages may reduce the size of
the search graph; in addition, it may have the side-effect of producing simpler strategies
(i.e., strategies with less motion commands). Another way of dealing with combinatorial
complexity would be to use heuristics for guiding the search; We will not explore it in this
paper because, except for simple cases, it seems that motion planning with uncertainty
tends to defy intuition and straightforward heuristics.

7. Actual and Observed Trajectories

Given a starting position ¢?, the control statement CS in a motion command M =
(CS,TC) specifies a nominal trajectory of P. However, due to control errors, executing
the motion command may produce another trajectory, 7*, called the actual trajectory.
Furthermore, due to sensing errors, the termination condition TC may observe 7 as
another trajectory, r, called the observed trajectory.

We represent an actual trajectory, 7*, as (c?., f*.), where c;. and f}. are functions mapping
the elapsed time 6t since the beginning of the motion into the actual position of P and the
actual reaction force on P at this instant. Notice that this representation is redundant.
For example, in the mini-world, if CS = GD(v), f%.(6t) is completely determined by the
actual velocity €}. (the first derivative of ¢Z.), the friction cone on each C-obstacle edge,
and the damper constant. In particular, Vé¢ > 0:

- ;. (6t) € Cypee = £2.(82) =0,

- €7.(6t) € Ceontact = ||f7.(88)]] = 0 o1 angle(v(cr.(6t)), £.(6t)) < #(cs.(61)).

We represent an observed trajectory, 7, as (c,, f,), where ¢, and f, are functions mapping
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the elapsed time since the beginning of the motion into the measured position and the
measured force at this instant.

When planning a motion command to achieve some target, the motion planner has to
consider the set of possible actual trajectories that can result from the execution of the
command, since they must all attain the target. It also has to consider the set of possible
observed trajectories, so that it can plan termination conditions that will guarantee the
controller to terminate the motion when the goal is attained.

This leads us to introduce several notions, which are useful to formalize and explore the
preimage backchaining approach.

One notion is the directory of actual trajectories, which contains a description of all the
possible actual trajectories that can be generated by executing a motion according to a
commanded control statement CS from a region S [39]:

DEFINITION 1: The directory of actual trajectories for a region S in C and
a control statement CS is the set, denoted D*(S,CS), of all the trajectories T* of P
that would be generated by an ideal controller executing every motion command M* =
(CS", false), with CS* € Uy5(CS), according to the exact specification of CS*, starting
from every position ¢} in S (i.e., ¢*(0) = ¢ € S). (The termination condition Yalse’ is
the constant termination condition which is never satisfied.)

The second notion is consistency between actual and measured data:

DEFINITION 2: A pair (c*,f*) of actual position and force, and a pair (c,f) of mea-
sured position and force are consistent if and only if (c*,f*) € U,(c) x Us(f).
An actual trajectory * and an observed trajectory T are consistent if and only if, Vét > 0:

(c7.(82), £5.(6t)) € U, (82)) x Up(£.(81)). Kiraj(7) A / ™ and T are consistent}.

Since the range of possible reaction forces at a position ¢* is F*(c*), we can also define
the consistency between an actual position and a pair of measured position and force:

DEFINITION 3: An actual position c* and a pair (c,f) of measured position and force
are consistent if and only if 3f* € F*(c*) : (c*,f*) and (¢, f) are consistent.
K;..(c, 1) L fe [/ ¢* and (c,f) are consistent}.

In the mini-world, K}, (¢, f) can be computed as follows:

- if |[f]] < & then: Krou(€, 1) = 2,,(¢) N(Cree U Coontact);
- if [[f]] > &, then: Kposle, f) = B, (c) N{e™ € Cosntact / angle(v(c’),f) < P(c™) +6;}.

The third notion is confusability between actual data:

DEFINITION 4: Two pairs (c;,fy) and (c3,f;) are confusable if and only if 3(c, f)
such that (c},f7) € U.(c) x Us(f) and (c3,f;) € U.(c) x Us(f). Otherwise they are
distinguishable.

Two actual trajectories 77 and 7 are confusable if and only if, V6t > 0: (c7.(62), f7.(6t))
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and (c:;(ét),f;’;(ét)) are confusable. Otherwise they are distingnishable.

In the mini-world, two actual trajectories 77 and 75 are confusable if and only if the
following two conditions hold simultaneously, V6t > 0:

- distance(cy, (6t), ¢34 (6t)) < 2p.,

- if ||£7.(6t)[| > 2¢; and “f:;(&)” > 2¢y, then angle(f:;((st),f:;(&t)) < 28;.

If two trajectories are confusable, the motion planner cannot be certain that the controller
will be able to distinguish between them at execution time.

8. Formal Definition of Preimages

Given a target® 7 in C and a motion command M = (CS,TC), a preimage P is such
that any possible motion of P executed according to CS, starting from within P, follows
a trajectory 7 that is guaranteed to attain 7 (target attainment) in such a way that
TC stops P into the target (farget recognition). We formalize these two concepts -
target attainment and target recognition — below, by defining two predicates, Attain and

Achieve.

Let us denote Attain(7,CS,S) the condition that a motion executed according to CS is
guaranteed to attain 7 if the initial position of P is in . This condition can be formalized

as follows:
DEFINITION 5: Attain(7,CS,S) % [Vr* € D*(S,CS),3t > 0: c%.(t) € T].

Obviously: Attain(7,CS,S) < [Vcr € S: Attain(7, CS, {c;})].

A preimage P of T for M = (CS,TC) must satisfy Attain(7, CS, P), since any motion
from within P must attain 7. However, it is only a necessary condition. A region S
satisfying Attain(7,CS,S) may not be a preimage of 7 for M because executing M
from within S may not be guaranteed to terminate in 7 (it may even not be guaranteed
to terminate at all!). Appropriate termination of M is under the responsability of the
termination condition TC, which plays no role in the definition of Attain.

The termination condition TC = tp(&t, c[o,s¢, fjo,6¢) only applies to observed trajectories.
D*(S, CS) contains possible actual trajectories. Each such trajectory, 7*, may be observed
by TC as any trajectory 7 in K oj(7%).

Let us denote Achieve(7, M, P) the condition that the execution of M is guaranteed to
terminate in 7 if the initial position of P is inside P. It is formalized as follows:

DEFINITION 6:
Let M = (CS,TC) and TC = tp(5t,c[0,5t],f[0,5¢]).
Achieve(7,M, P) & [V7* € D*(P,CS),V1 € Kipaj(7") :

8We use two different words, target and goal, which the reader may consider rather indistinctively.
However, our convention is to use the world target when we are only interested in a single step of preimage
backchaining. We use the word goal when we are interested in a complete motion planning problem, which
may, or may not, require multiple-step recursion.
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-3t >0 tp(d, C[O,t],f{o,t]) = [rue;
et to = Inf{t/tp(t, co ), flos)) = frue};ci.(ty) €
7).

The formal definition of a preimage derives directly from the specification of Achieve:

DEFINITION 7: A preimage of T for the motion command M is any regson P such
that Achieve(7,M, P).

This formal definition does not provide an immediate practical method for constructing
preimages. However, we can easily derive the following properties:

PROPERTY 1:
a- Achieve(7,M, P) & Vc; € P: Achieve(T, M, {c’}).

b- If P is a preimage of T for M, then any subset of P is also a preimage of T for M.
c- If Py and P, ase both preimages of T for M, then P, UP, is a preimage of T for M.

These properties naturally lead to the notion of maximal preimage:

DEFINITION 8: The region P™*(T, M) &' {c:/Achieve(T, M, {c*})} is the maxi-
mal preimage of T for M.

As mentioned in the preceding section, the size of preimages is an important factor to
consider both for reducing the cost of searching the preimage graph, and for producing
simpler strategies. Since every preimage of a target 7 is included in a maximal preimage
Pmes(T, M), for some M, we are conducted to investigate the parameters in M influencing
the size of P™e=(7, M).

The size of P™**(T, M) depends on both the ability of the control statement CS to
attain 7 and the ability of the termination predicate TC to recognize achievement of
7. Dependence on CS is an important topic relating motion control to motion planning.
Because there is currently no substantial results (either theoretical or practical), we will
not discuss it further in this paper. In the next four sections, we address the dependence
of the maximal preimage on the termination condition.

9. Power of a Termination Condition

The following definition specifies a partial ordering on termination conditions for a given
target 7 and a given control statement CS:

DEFINITION 9: Let M, = (CS, TCy) and M, = (CS, TC3) be two motion commands
that only differ by their termination conditions. TC, is said to be more powerful than
TC; for CS and T if and only if P™*(T ' M,) C Pmas(T, M,).

Therefore, if TC, is more powerful than TC, for CS and T, then VP C C: Pis a
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Figure 11: Illustration of the Power of a Termination Condition

preimage of 7 for M, implies that it is also a preimage of 7 for M;.

Example 7: Consider the point-into-hole example shown at Figure 11 a. The two
horizontal edges on the sides of the hole are semi-infinite lines®. The target 7 is the edge
at the bottom of the hole and CS = GD(v). Assume perfect control (v* = v}, but no
position feedback (p. = o) and no force feedback (¢4 = 00). The termination condition
can only recognize achievement of the target by measuring the elapsed time since the
beginning of the motion. Therefore, any finite region P inside the shaded area displayed
in Figure 11 a is a preimage for the termination condition 6t > T', where T is the maximal
amount of time required for attaining 7 from within P. Consider the maximal preimage
P, with TC, = [t > T;], and the maximal preimage P, with TC, = [6t > T], where
Ty < T, (Figure 11 b). Clearly, TC; is more powerful than TC; for CS and 7. |

The power of a termination condition depends on both its arguments —i.e. the information
it has access to during motion — and the knowledge embedded in its predicate — i.e. the
information that is transmitted by the planner. We analyze these dependences in the
following two sections.

10. Rele of Arguments in a Termination Condition

The general form of a termination condition includes the following arguments: §t, the
elapsed time since the beginning of the motion; ¢ sy, the record of position sensing since
the beginning of the motion; and fjo 5, the record of force sensing since the beginning of
the motion. However, a particular termination condition may use only a subset of these
arguments. The following definition characterizes several types of termination conditions
depending on the arguments they actually use [17]°:

DEFINITION 10:

A termination condition using c(8t) and/or f(6t) is called a termination condition with

9Since some of the edges are not finite, this example occurs in a space that slightly differs from the
mini-world. However, all the other mini-world specifications apply.
10 A ctually, our terminology slightly differs from the definition given by Erdmann.
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Figure 12: Illustration of the Role of History in a Termination Condition

instantaneous sensing.

A termination condition using 8t is called a termination condition with time.

A termination condition using c(t) and/or {(t), for somet € [0, 6], is called a termination
condition with history.

In Example 5, we used a termination condition with instantaneous sensing, but without
time and history to illustrate the notion of preimage. Indeed, instantaneous position and
force measurements were sufficient to reliably recognize entry into the target. However,
as we show below, there are situations where time and history are useful (or needed!).

For instance, consider Example 7 again. Since no position and no force sensing are avail-
able, the motion command can only rely on the elapsed time ét to recognize achievement
of the target. Note that in this case the only termination conditions without time are
the constant conditions true and false. Only true can stop the execution of the motion
command, and the largest preimage of 7 for (CS,true) is T itself!

The example below illustrates the role of history in a termination condition:

Example 8: Consider the motion planning problem depicted at Figure 12 (this example
is extracted from [39]): the region Z of possible initial positions of P consists of two points
i, and i,; the region G of goal positions of P consists of two points g; and g,. Assume that
CS = GD(v), with v pointing downward, perfect control, imperfect position sensing (p.
is as shown in the upper right corner of the figure), and no force measurement. Thus, there
are two possible actual trajectories depending on the initial position of P. Uncertainty on
position sensing makes the two trajectories distinguishable only during the interval where
they are distant from each other by more than 2p.. Thus, by remembering sensing history,
the termination condition can terminate the motion inside the target. A specification for
such a termination condition is the following:

if 6t < Ty
then if xc(6t) - xc] < 2p.
then flag « 1;
else flag «— 2;
else if ((flag = 1) A (6t = T1)) V ((flag = 2) A (6t = T3))
then return(true);
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else return(false);

where:
- xc(6t) is the z-coordinate of the measured position of P along the horizontal z-axis;

- xc} is the z-coordinate of the actual position of ¢; along the z-axis;
- T} is the amount of time to attain point k, or k; (see Figure 12), depending on whether

the motion starts from ¢; or from 2;
- T; (i = 1 or 2) is the amount of time necessary to travel from ¢; to g;. B

Notice that the above example could not be solved by a three-motion strategy (left-down-
right) avoiding all the obstacles, because the relative position of i, and ¢, is different
from the relative position of 4, and g,. It could also be solved, however, by generating a
conditional strategy (see Section ) with two motion commands, none of them including a
termination condition with history. However, the important event (that the two possible
trajectories become distinguishable) is used to build the branching statement in the strat-
egy. Thus, history is incorporated in the control structure of the motion strategy rather
than in the termination condition. In fact, this seems to be a general way of remembering
sensing history, removing the absolute need for termination conditions with history.

Termination conditions with instantaneous sensing, but without time and history, can be
at best as powerful as termination conditions with instantaneous sensing and either time,
or history, or both. Nevertheless, they seem sufficient for solving many realistic motion
planning problems.

11. Termination Conditions With State

In this section, we explore how the planner can transmit some knowledge to the controller
in the termination predicate.

Remember that given a goal region G and an initial region Z, preimage backchaining
consists of constructing a sequence of preimages Py, Ps, ..., P, such that: (1) P; is a
preimage of P;_; for a selected motion command M;; and (2) T € P,, When P; is
constructed, it is known by recurrence that if the recursion upwinds successfully, P will
be inside P; before M; is executed. Thus, if the planner was able to construct P; and M;
simultaneously, it could embed this knowledge into the termination predicate tp; of TC;
(the termination condition of M;). This knowledge might contribute to augmenting the
power of TC;.

This is the idea analyzed in this section. Although the outcome is not a practical means
for constructing the resulting termination predicate, it is useful to establish limits on
termination conditions and preimages, before we explore techniques for constructing them.

Let us introduce the notion of termination condition with state:

DEFINITION 11: Let S be a region in C, T a target, and CS a control statement.
TC} = tp(8t, cpo,se, flo,5)) 18 specified as follows:

1. £L — D*(S,CS).
2. For every §t > 0 do:
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e For every 7 in L, if (c;.(8t),£.(6)) & U(c(68)) x U;{£(6t)), then remove T
from L.

e Q «— {ci.(6t) / ™ € L}. If Q C T, then evaluate TCY to true; otherwise
evaluate to false.

TC3 s called a termination condition with state, and tp} a termination predi-
cate with state. We denote M = (CS, TC}).

TCy embeds in its predicate the knowledge that the only possible actual trajectories are
those which may be produced by CS starting from within S. Indeed, the evaluation of
the termination condition does not consider trajectories that are not in D*(S,CS), while
some of these trajectories might be confusable with trajectories in D*(S, CS). Thus, there
may be cases where a termination condition not embedding the above knowledge is not
able to recognize achievement of 7, while TC} can.

Now suppose that the planner considers a region P as a candidate preimage of 7 for a
motion command whose control statement is CS. Using the termination condition with
state, it may attempt to construct the preimage of 7 relative to P:

DEFINITION 12: The region Ilp(T,M$) = {c; € P/Achieve(T, M3}, {c:})} is called
the preimage of T relative to P (for the control statement CS in M3}).

Obviously, if P = IIp(7,M3}), then P is a preimage of 7 for M}. Furthermore, we prove
the following lemma:

LEMMA 1: If P # Up(T,M3}), then there exists no termination condition TC such
that P is a preimage of T for M = (CS,TC).

Proof: First, note that by definition: IIp(7, M3}) C P. So, if P # (7, M), it implies
that P - IIp(7,M}) # 8.

Now assume the existence of a termination condition TC = tp(&t, Cpo,54), fo,st]) such that
P is a preimage of 7 for M = (CS,TC), while P # IIp(7, M3). Consider a sample
motion, commanded according to CS from an initial position inside P — Ip(7,M3).
Assume that TC terminates this motion (in 7), while TC3 would not have termi-
nated it. Such a sample motion necessarily exists, otherwise P = p(T,MJ}). Let
us denote 7 the observed trajectory and ¢, the instant when TC becomes true. Thus
to = Inf{t/tp(8t, c 064, f.10,5t)) = true}.

Since TC3 would not have terminated the motion at #,: dry € D*(P,CS) such that
T € K¢45(13), while ci:(to) ¢ 7. This falsifies the condition Achieve(7, M, P), and
therefore contradicts the initial assumption that P is a preimage of 7 for M.

An immediate consequence of the above lemma is the following theorem:

THEOREM 1: A region P is a preimage of a target T for a control statement CS if
and only if P = Ilp(7,M}), where M} = (CS, TC}). The equation P = Op(T,M3) is
called the characteristic equation of preimages.
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This theorem means intuitively that there is no way to provide a termination condition
with more useful knowledge than is in TC}. Note however that we cannot say that TC}
is the most powerful termination condition for CS and 7. Indeed, TC} does not denote
just one termination condition, but an infinity of them (one for each region in C). This is
due to the fact that the termination predicate tp} is the value of a function of P. This
value (i.e. the predicate itself) is fixed only when P is known.

The notion of termination condition with state can easily be generalized to termination

“conditions without instantaneous sensing, history or time. For instance, a termination
condition TCs with state and time, but without sensing, i.e. without history and instan-
taneous sensing, is specified as follows:

1. £L — D*(S,CS).
2. For every 6t > 0 do:

o Q «— {cr.(6t)/r € L}. If @ C T, then evaluate TCs to true; otherwise
evaluate to false.

In Example 7, the termination condition &t > T is equivalent to TCgs for a certain S
easily related to 4t.

12. Maximality of Preimages

Consider two regions P; and P, that satisfy the characteristic equation of preimages for
a target 7 and a control statement CS. In general, their union is not a preimage of
7. Indeed, P, and P, may be preimages for different termination predicates, and there
may exist no termination predicate capable of recognizing achievement of 7, if the initial
position of P is only known to be within P; U Ps.

In correlation with this fact, preimages of a target 7 for a given control statement CS
do not admit a unique maximal element (with respect to set inclusion) over all possible
termination conditions (as we saw in Section , a unique maximal preimage exists when
the termination condition is given in addition to the control statement). The following
two examples show that: (1) there may exist no maximal preimage, and (2) if there exists
one, there may be an infinity of them.

Example 9: Let us consider again the point-into-hole problem under the same conditions
as in Example 7. There exists a non-countable infinity of preimages, none being maximal. .
The union of all these preimages, which is an un-bounded region, is not a preimage;
indeed, no termination condition can terminate reliably a motion starting from anywhere
in this region, just by waiting a predefined finite amount of time. B

Example 10: Now consider the point-onto-point problem depicted at Figure 13, with
perfect generalized damper control, commanded velocity pointing downward, and no po-
sition sensing. The goal region consists of a single point g. Each point on the vertical
half-line above ¢ is a maximal preimage. There is a continuous infinity of them. B

It is reasonable however to expect that if free space is bounded and if there are a fi-
nite number of algebraic constraints on the motion of P imposed by the surfaces of the
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Figure 13: The Point-onto-Point Problem

obstacles!! then there exists at least one maximal preimage over all possible termination
conditions.

13. Preimage Computation

Within the preimage backchaining framework, we would like to be able to compute a
complete description of the preimages of a target T for a contrel statement CS, i.e., a finite
description of all the preimages. For example, if there exists a unique maximal preimage,
then its description subsumes all other preimages, since any preimage is a subset of the
maximal preimage; thus a description of the maximal preimage is a complete description
of the preimages. If there exist no maximal preimages or several of them, then we may
hope that the set of preimages still admit a finite description usable by the preimage
backchaining algorithm for building the search graph; for instance, in Example 9, it would
be “every region included in the infinite shaded area”; in Example 10, it would be “every
point along a half-line drawn upward from the goal point g”.

Unfortunately, neither the specification of the predicate Achieve, nor the characteristic
equation of preimages, provide an algorithm for computing preimages, maximal or not. In
fact, we know no generally applicable algorithm for computing a complete description of
preimages, at least for a realistic type of control statement. We even do not know whether
it is possible to produce such an algorithm. In order to realize the difficulty of computing
preimages, one may consider the supposedly simpler problem of constructing an algorithm
for verifying that an input candidate region P is a preimage of a target 7 for a motion
command M. Even this problem still has no known general solution. In principle, it
requires to check that when any observable trajectory r in {r / 3 € D*(P,CS) :
T € Kyoj(7*)} terminates, then every actual trajectory r* in {r* € D*(P,CS) / T €
Ktra(1*)} has attained T; but, there may be a non-countable infinity of possible actual
and observable trajectories. In general, it is not known how to characterize them finitely.

Despite the above remarks, there exist algorithms for constructing preimages. Some obvi-
ous ones work under very restrictive assumptions on control and/or sensing, for example

HErdmann [17) gives an example showing that in the presence of an infinite number of C-obstacle
algebraic surfaces in a bounded free space there may exist no maximal preimage.
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that control is perfect. We will describe no such algorithms, but it is easy to imagine
simple ones by looking to some of the examples given above. Their applicability is very
limited. Instead, in the next three sections, we present an algorithm, which imposes no
such limitative assumptions, but which does not usually produce complete description of
preimages. Using this algorithm may result in a non-optimal overall backchaining preim-
age program. It may also augment the incompleteness of this program'?. However, its
applicability is quite general.

14. Backprojection from Target Kernel

This section and the next two present a technique for constructing preimages, which
may not be maximal. Below, we introduce and formalize the basic ideas underlying
this technique. The two subsequent sections describe algorithms performing the required
geometric computations in the mini-world.

The technique presented consists of: (1) identifying a subset of the target (the kernel)
such that if it is attained then achievement of the target is recognizable by a computable
termination condition without state, history, and time; and (2) determining a region (the
backprojection) from which a given motion command is guaranteed to attain that subset.

We already used F*(c*) to denote the range of reaction forces that can be generated at
position ¢*. Let us now denote F&g(c*) the range of reaction forces that can be generated
at position ¢* when the specified control statement is CS. VCS : Fegler) € F5(c*). In
particular, let CS = GD(v); if ¢* € Cy,e, then fén(v)(c*) = {0}; if ¢* € Ceontact, then
F&pwyler) = {f* / Iv* € U, (v) : £ = £, (c*, Bv")}, where £, (c*, Bv") is the
reaction force to Bv* at c*. f*,__(c*, Bv*) depends on the friction cone at c* as follows
(see Figure 4): if Bv* points inside the friction cone, then ., = —BV7; otherwise £,
is equal to the projection of —Bv™, perpendicular to the cone’s axis, onto the closest

extreme ray of the cone.

We can define the confusability of two actual positions for a given control statement as
follows:

DEFINITION 13: Let ¢} and c} be two actual positions in Cypee U Ceontact, and CS
a control statement. ¢} and cj are CS-confusable if and only if 37 € Fegler) and
f; € Fgslcs) such that (cf,ff) and (c3,f5) are confusable. Otherwise they are CS-
distinguishable.

Notice the role of CS in this definition. If both ¢} and ¢} are in Ceontact, We may expect
detectable reaction forces, which may make the two positions distinguishable. However,
a position in C.ontact entails a detectable reaction force only if P is guaranteed to push
sufficiently hard on the C-obstacle’s boundary at that position. In order to know if it
is the case, CS must be taken into consideration. For instance, if CS = GD(v), the
reaction force on P at a position €* in Ceontact is guaranteed to be detectable if and only
if, ¥v* € Uy(v) : ||f%ce(c”, BV®)|| > 2¢;4. Thus, two positions ¢f and c3, which are closer

12 A pother source of incompleteness is the discretization of control statements (see Section )
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Figure 14: Kernel of a Rectangular Region in Free Space

than 2p. from each other, are GD(v)-distinguishable if and only if, Vv* € U,(v), the
following three conditions hold:

(et BV > 225,

(s, BV > 265,

- angle(§pe (e, BY), T, Bv) > 26;.

The third condition is equivalent to: angle(v(c?), v(c3)) > 28, + é(ct) + 4(c3).

If two positions are CS-distinguishable, then it is guaranteed that the controller will be
able to distinguish between them during a motion according to CS.

The kernel of a region for a given control statement is defined as follows:

DEFINITION 14: Let S be a region in CpreeUCoontace and CS a control statement. The
kernel of S for CS is the subset of S defined as: Xcs(S) & {c*r€eS /VYe*eC-S:c*
and ¢™ are CS-distinguishable}.

Thus, Xcg(S) is the subset of S which consists of every point in S that, given CS, cannot
produce a measured position and a measured force consistent with those produced by a
point outside S. The dependence of the kernel of a region on the control statement must
be emphasized, since it seems to have been ignored by previous authors (e.g., [17]).

Example 11: Consider the target 7 in Figure 14. It is a rectangular region in free space.
Xv)(T), Vv, is obtained by shrinking 7 by 2p.. Note that it is important that 7 be
shrunk by 2p., and not just by p,. Indeed, as illustrated by the figure, any position c¢*
closer than 2p, from the boundary of 7 may produce a measured position consistent with
that produced by a position ¢! outside 7. B

Example 12: The target 7 in Figure 15 a is an edge in contact space adjacent to two
other edges £ and &. The angle between T and &y is smaller than 26, while the angle
between 7 and &, is greater than 26 r- CS = GD(v), with v pointing downward. Assume
that, Vv* € U, (v), Ve* € TUE UE,: £ eact(c*s BV)l| > 2¢5. Xap(v)(T) is drawn in bold
line in Figure 15 4. The portion of 7, which is closer from &; than 2p, has been removed
because actual reaction forces generated by contacts with 7 and with &, can produce the
same values on the force sensor. Wi

PROPERTY 2:
- V'Sl and 52 g cfree U Ccontact : XCS(SI) UXCS(SL’) g XCS(SI U 52)'
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Figure 15: Kernel of an Edge in Contact Space

B
Figure 16: Recognition of Achievement of a Target in Free Space

- If 8, and S, are non-connected, then Xcs(S1)UXcs(Sz) = Xes(S1 U S,).

If a motion command is guaranteed to attain a point in the target kernel, then it is possible
to reliably recognize achievement of the target when the only positions that are consistent
with instantaneous sensing are in the target. This is illustrated by the following example
and formalized further.

Example 13: Let us consider Example 11 again. If a motion is guaranteed to enter the
kernel Xy(v)(7), then it is also guaranteed that at some instant 6t > 0 during the motion,
the measured position ¢(6t) belongs to the region denoted 7_,, in Figure 16. This region
is obtained by shrinking 7 by p.. When c(§t) € 7_,, is true, it is guaranteed that the
target 7 has been achieved, since no actual position of P outside 7 is consistent with
c(6t) (do not confuse consistency and confusability!). i

Now, in order to characterize the motions which are guaranteed to attain the target kernel,
let us introduce the notion of backprojection:

DEFINITION 15: Let T be a target in C and CS be a control statement. A backpro-
jection from T for CS is any region B such that Attain(7,CS, B). B™**(T, CS) &f
{cz/Attain(T, CS, {c:})} is the mazimal backprojection from T for CS.

The notion of backprojection differs from the notion of preimage because it does not
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Figure 17: Examples of Backprojections

address the target recognition issue. In the following, we only consider backprojections
that are maximal. Thus, often, we do not mention that they are maximal.

Example 14: Figure 17 a shows the backprojection from a segment'® 7, in free space.
Any motion according to V(v) starting from within the backprojection is guaranteed to
attain the target segment, although, due to position sensing uncertainty, no termination
condition will be able to recognize it. Figure 17 b shows the backprojection from an edge
T, in contact space, for GD(v). &

The following theorem can easily be proven from the previous two definitions:

THEOREM 2: B™**(Xcs(7), CS) is a preimage of T for M = (CS,TC), where TC
= [K;..(c(60), £(60)) € T).

Proof: According to the definition of a backprojection, any execution of M from within
B™*(Xcs(T), CS) is guaranteed to enter Xcs(7). In addition, whenever the effector
point P is actually in Xgs(7), the termination condition TC specified in the theorem is
guaranteed to be satisfied. Thus, any execution of M from within B™**(Xcs(7), CS) is
guaranteed to terminate before the motion has traversed the target. Since the termination
condition cannot be satisfied as long as P is not actually in 7, no execution of M can
terminate before entering 7. Thus, B™**(Xcs(T), CS) is a preimage of T for M =
(CS,TC). §

It is interesting to remark that the termination predicate is independent from the control
statement.

If we have at our disposal an algorithm for computing target kernels (see Section ), another
one for computing backprojections (see Section ), and a third one for computing K5, (c, f)
(see Section ), the above theorem directly provides a technique for computing preimages.
Obviously, however, the technique is not guaranteed to construct a preimage whenever
one exists. For instance, in example 10, the goal region consists of a single point g in

130ur convention is to use the word segment in free space and the word edge in contact space.
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Figure 18: Backprojection from the Kernel of an Edge in Contact Space

free space. Xv(v)({g}) = 8 and B™=(Xy()({g}), V(v)) = 0. More generally, in the
mini-world, any target in free space having one of its dimensions smaller than 2p. has
an empty kernel. Furthermore, when this technique generates a preimage, this preimage
may not be maximal as illustrated by the following example.

Example 15: Let the target 7 be the edge in contact space shown in bold line at Figure
18 a. Assume CS = GD(v), where v points vertically downward. Figure 18 & displays
the backprojection P, (shaded region) from the kernel of 7. Figure 18 c¢ displays the
backprojection P, (shaded region) from 7. P,, which includes Py, is a preimage for M
= (GD(¥),[If(t)] > e). B

One ad-hoc way to improve the backprojection-from-kernel technique is to complement it
by predefined solutions for well-identified particular cases such as those presented in the
above example. Whenever such a case is identified, the corresponding solution is retrieved
and selected; in all other cases, the more general backprojection-from-kernel technique is

applied.

In the next two sections, we give two algorithms, one for computing the kernel of a region,
the other for computing the maximal backprojection from a region. The applicability
of both algorithms is limited to the mini-world with generalized damper control. The
computation of K* ,(c,f) in the mini-world has already been presented in Section .

*
pos

15. Computation of Region Kernels

In this section we describe an algorithm for computing the kernel X (S) = Xapv)(S) of
a closed polygonal region S in the mini-world for generalized damper control. Examples
11 and 12 shown above already illustrated the cases of a region in free space and an edge
in contact space. Here, Figure 19 is used to illustrate the computation carried out by the
algorithm with a region lying both in free space and in contact space.

The algorithm consists of the following two major steps. Comments are printed in italics.
The example shown at Figure 19 is commented next to the description of the algorithm.

Algorithm TK:
1. (See Figure 19 b)
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Figure 19: Kernel of a Region Lying in Both Free Space and Contact Space

e Decompose S into convex polygonal regions S; (1 = 1,2, ...) such that J; 5; = S.

e Represent every S; as the conjunction of the linear constraints imposed by
every line supporting a segment of S;’s contour, i.e.:
Si = Ax,[z coson, + ysinoy, < di].

o & x, — segment of S;’s contour supported by the line [z cosax; + y sinag; =
dy,)-

o S! — N[z cosan;, + ysinay, < di, — Br.], where Bi, = 2p. if Eik; C Chyees
and /Bk.‘ = 0if Si,k,‘ C Ccontact- ’

(This operation results in shifting in by 2p. every segment of S;’s contour, if st
lies in free space. Indeed, every position in S; closer than 2p. from such a seg-
ment is confusable with a position in free space on the other side of the segment.
This is not the case if the segment is an edge in contact space, since the other
side of such an edge is interior to a C-obstacle and so, is not accessible'*.)

e X, (S) — U;S.
2. (See Figure 19 c)

e Mark every edge £ C Ceontaet Such that:
Ve* € £ = Vv € Uy (V) : |If7,(c*, BV*)|| > 2¢5.

o & (j =1,2,..) — edges of the polygon bounding S, which are in Coontaer and
are marked.

14 Actually, this is true only if the thickness of the C-obstacle is greater than 2p..
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e Compute £} as follows:
& =&
- for every marked edge € C Cepntace — S, such that angle(v(€), v(&;)) < 26y,
do: £ — &}~ EB Ya,.(0).

e Xy (S) — X(S)U(U;ED.

Example 16: Consider Figure 19. The region S is a triangle (Figure 19 a) and v is
pointing downward.

At step 1, a single region S; = S is considered. Two segments of S;’s contour, &, and
£,, are situated in free space; the other segment, &3, is an edge in contact space. Step 1
shifts & and & in by 2p., while it leaves £ unchanged (the thickness of the obstacle is
greater than 2p.). Figure 19 b displays Sj.

At step 2, three edges in contact space, &, £ and & are marked; indeed, given v, they
are the only ones guaranteed to produce a detectable reaction force. The angle made
by & and &, is less than 26y; the angle made by & and & is greater than 26,. Step 2
removes the portion of & that is closer from &, than 2p. (see Figure 19 c).

Figure 19 d shows the computed kernel of S for GD(v). B

Let n be the number of vertices in contact space, and g the number of vertices of S. The
time complexity of Step 1 of algorithm TK is the complexity of the decomposition of S
into convex polygons. The complexity of a non-optimal decomposition is O(qlog q) [52].
The time complexity of Step 2 is O(n x ¢). In general n >> ¢, and the overall complexity
of TK is O(n x q).

16. Computation of Maximal Backprojections

In this section we describe an algorithm for computing the maximal backprojection from
a region S in the mini-world for generalized damper control. We first present an algorithm
applicable when S is either an edge in contact space or a segment in free space. Then, we
propose an algorithm for treating the case when S is a collection of edges and segments,
or a two-dimensional region. The first algorithm is basically a more detailed version of
the algorithm described by Erdmann [17,18].

Let us first consider a region S, which is either an edge in contact space!®, or a seg-
ment in free space. The control statement is GD(v). The algorithm below computes
B™*(S, GD(v)). It consists of five major steps. Step 1 eliminates some non-interesting
cases. Steps 2 through 5 actually compute B™**(S, GD(v)) and they are illustrated by
Figure 20.

Algorithm MB1:

1. (This step is here for completeness. It treats some non-interesting cases, resulting
in B™*(S,GD(v)) = S.)

15[f we want S to be a portion of an edge, we first partition the edge into shorter colinear edges, such
that one of the new edges is exactly S.
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Figure 20: Illustratlon of Steps 2 through 5 of Algorithm MB1

If one of the following two conditions is not satisfied:

(1) the negative velocity cone at any position on S lies entirely in one of the two
sides (open half-planes) of the line supporting S,

(2) if S C Ceontact, then the negative velocity cone at any point on S lies within the
side pointed out by the outgoing normal to S,

then B™**(S, GD(v)) «— S, and exit.

. (This steps consists of marking every C-obstacle’s verter where P could either stick,
or slide away from S. It is illustrated by Figure 20 a.)

e Mark every vertex X of every C-obstacle, which satisfies either one of the
following two conditions:

(1) 3v* € U,(v) : v* points inside the friction cone at X, and X is not an
extremity of S,

(2) X is the extremity of both S and another edge £, and 3v* € U,(v) : v~
points outside the friction cone at any position on £, and its projection on &
points away from G.
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e If S is a segment in free space, then treat its extremities as fictitious vertices,
and mark both of them.

3. (The contour of the backprojection from S is made of S itself, portions of C-
obstacles’ edges, and portions of the ertreme rays of the negative velocity cones
erected at the marked vertices. This step contributes in buslding the contour by
erecting the extreme rays and determining their interesting portions. It 1s sllustrated
by Figure 20 b.)

e Erect the two extreme rays of the negative velocity cone at every marked vertex;
LR « list of erected rays; activate every ray in LR.

(Portions of a ray can be active or inactive. Activating a ray makes the whole
half-infinite line active.)

e While LR # @ do:

— R « first ray in LR, remove R from LR.

— If R intersects either S, or the active portion of another ray, or a C-
obstacle’s edge, then:

- 7, «— nearest intersection point from the marked vertex;

- inactivate R beyond Z;; denote Z; as an extremity of R; if the intersec-
tion at Z; occurs with a ray R’, remember R’ as the reason for inactivating
R beyond Zi;

- if R is remembered as the reason for inactivating a ray R" beyond point
Z,, and if Z, is situated on the now inactive portion of R, then: erase

Z, as an extremity of R”; re-activate R” beyond Z,; and reinsert R" into
LR.

e Whenever the extremity Z of the active portion of a ray is located on a C-
obstacle’s edge, partition this edge into two colinear edges adjacent at Z.

(Figure 20 b shows the erected rays. The active portions of them are represented
as bold lines. The lowest edge of the upper C-obstacle is decomposed into smaller
colinear edges.)

4. (This step gives an orientation to each of the lines that may participate to the contour
of the backprojection from S. It prepares step 5, which consists of tracing along these .
lines. See Figure 20 c.)

e Orient S in such a way that any v* € U,(v) points toward the right of this
orientation.

¢ Orient each ray so that the interior of the negative velocity cone lies on the
right-hand side.

e Orient every edge of every C-obstacle’s contour so that the ingoing normal to
the edge points toward the right.
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5. (This step consists of tracing out the backprojection region by tracing along some
of the lines according to their orientation. During this process, the backprojection
always lies on the left side of the line that ss currently traced. We get a list of the
successive vertices on the contour of the backprojection; this list 13 denoted 0B. See

Figure 20 d.)

e F, — initial extremity of S (according to the orientation given to S);
F; « final extremity of S;
£ — S,
i — 1;0B — (Fy, F).

e While F; # F, do:

- & « first active portion of a ray or C-obstacle’s edge starting from F; on the

left of &;

- i «— i+ 1; F; « final extremity of &; insert F; at the end of 9B.

e B™*(S,GD(v)) « Polygon(0B), where Polygon(0B) is the function that
evaluates to the closed polygonal region bounded by the contour linking the
vertices listed in OB'®.

Let n be the number of vertices in contact space. Step 2 of MB1 marks O(n) vertices.
At Step 3, O(n) rays are erected. Each one has O(n) intersections with other rays.
These intersections can all be computed at the beginning of the iteration in the second
operation of Step 3. During the iteration, each ray is reinserted O(n) times in LR. Thus,
the complexity of Step 3 is O(n?). This is also the complexity of the overall algorithm.

Consider now a region § = S; U ... US,, where S;, Vi € [1, g}, is either an edge in contact
space, or a segment in free space. For all i = 1 to ¢, we can compute B™**(S;, GD(v))
using algorithm MB1. Obviously, U; B™**(S;, GD(v)) is a backprojection from S for
GD(v). But, as shown by the following example, it may not be the maximal one. Indeed,
there may exist positions in C from where we are certain that a motion according to
GD(v) will attain either one of the S;, without knowing which one. Such positions are
in B™**(S, GD(v)), but in none of the B™**(S;, GD(v)).

Example 17: Consider the case where C;,.. = C. Let S be made of two segments S, and
S, as shown in Figure 21 a. Obviously the maximal backprojection from S; U S, with v
pointing downward (shaded region in Figure 21 b) is larger than the union of the maximal
backprojections from S; and S, (shaded regions in Figure 21 ¢). i

When a region S consists of several edges and/or segments S;, the backprojection from
S for some commanded velocity v is a strict superset of the union of the backprojections
from the individual edges/segments S;, if and only if there exist i and j such that: a
portion X; X, of a right ray'” bounding B™*(S;, GD(CS)) and a portion Y;Y; of a left
ray bounding B™**(S;, GD(v)) intersect at a point Z, within the two portions or at one

16Computing the maximal backprojection as a closed polygonal region results in inserting some portions
of rays abutting at sticking edges. However the probability that a motion reaches such a vertex is zero.
17We can always distinguish between the right and left extreme rays of the negative velocity cone.
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Figure 21: U; B™*(S;, GD(v)) # B™=(U; S;, GD(v))

of their extremities X, and/or Y; (see Figure 21 ¢). Let us denote X 1 ZY, the combination
of the two segments X;Z and ZY,, which do not lie in the interior of B™**(S;, GD(v))
and B™%*(S;, GD(v)). In order to obtain the maximal backprojection from S, we have to
complete the union of the maximal backprojections from the individual edges/segments
S; by the maximal backprojection from X\ ZY, (white region in Figure 21 ¢), for every
such intersections.

The computation of the maximal preimage of X 1 ZY, is achieved by the algorithm MB2
below, which is a direct adaptation of MB1.

Algorithm MB2:

1. e Mark every vertex of every C-obstacle as in Step 2 of MB1.
e Mark X, and Ys.

2. Erect rays, activate portions of rays, and partition edges exactly as in Step 3 of

MB1.

3. Orient lines exactly as in Step 4 of MB1.

4. o Fy Yy Fy, — Z; Fy — Xy;
& — F\ Fy;
1 — 2, OB — (Fo, Fl, Fz),

e While F; # F, do:

- £ « first active portion of a ray or C-obstacle’s edge starting from F; on the
left of &; ‘
-4 « i+ 1; F; « final extremity of &; insert F; at the end of 0B.

o Bm=(X,ZY,, GD(v)) — Polygon(dB), where Polygon(dB) is the function
that evaluates to the closed polygonal region bounded by the contour linking
the vertices listed in 0B.
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Figure 22: Ilustration of Algorithm MB3

The complexity of MB2 is the same that the complexity of MBI, i.e. O(n?), where n
is the number of vertices in contact space. However, since MB1 is applied before MB2,
results of computations done by MB1 can be saved, and re-used at Steps 1, 2, and 3 of
MB2.

Let $ = US; be a finite union of segments in free space and edges in contact space. The
maximal backprojection from S is computed by the algorithm MB3 below.

Algorithm MB3:

1. Compute B = {JB™**(S;, GD(v)) using MB1.

2. While the boundary of B includes two successive segments X, Z and ZY5, such that
X1Z is supported by a right ray and ZY; by a left ray, do:

B — BU B™=*(X| ZY,, GD(v))
where B™*(X| ZY,, GD(v)) is computed using MB2.

When MB3 terminates, B = B™**(S, GD(v)). Let n be the number of vertices in contact
space and ¢ the number of edges and segments in S. The time complexity of MB; is
O(g x n?).

Example 18: Figure 22 illustrates the computations performed by MB3. The region S
consists of three edges Sy, S;, and S;. The commanded velocity points downward. Step
1 computes the regions marked 1, 2 and 3; these are the backprojections from S, So,
and S3, respectively. Step 2 first computes the regions marked 4 and 5. This creates two
intersecting right and left rays, so that Step 2 iterates and produces the region marked 6.
The resulting backprojections is the union of regions 1 through 6. B

Finally, if § is a closed region bounded by straight edges and/or segments S;, i = 1 to ¢ (see
for instance the kernel region at Figure 19), then B™*(S, GD(v)) = B™=(US;, GD(v)),
and can be computed using MB3.

Remark: MB3 is to be applied to a region S, even if it is made of a single segment /edge,
as illustrated below. Figure 23 a shows the backprojection from a single edge S computed
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Figure 23: A Difference Between MB1 and MB3

by MB1, and Figure 23 b shows the backprojection computed by MB3. In this example,
the difference between the two backprojections is computed at Step 2 of MB3. This case
can happen only when a vertex is the extremity of two edges along which the motion is
guaranteed to slide. Including the difference into the backprojection is consistent with
computing backprojections as closed regions.

17. Generation of Conditional Strategies

The simple kind of graph searching algorithm used in Section to introduce the preimage
backchaining approach can only generate linear strategies, i.e. sequences of motion com-
mands. However, some motion planning problems only admit conditional strategies for
solutions. In addition, as suggested in Section , conditional strategies are an alternative
to the use of termination conditions with history. In this section, we extend the original
framework in order to make it possible generating conditional plans.

Let us start with an example illustrating the need for conditional strategies. We use
this example to sketch an approach for planning such strategies. We give a systematic
presentation of the approach next to the example.

Example 19: Consider the two-dimensional point-onto-hill problem depicted in Figure
24 a (this example is drawn from [39]). The “hill” consists of three edges, the top edge
G, the left edge &;, and the right edge £. Both the left and the right edges are infinite
half-lines abutting to the top edge!®. The problem is to move the reference point P onto
G. The initial region 7 is all free space. We assume perfect generalized damper control

18This example occurs in a space that slightly differs from the mini-world.

38



/‘-

b
Figure 24: The Point-onto-Hill Problem

(v* = v), no position feedback (p. = o0), perfect force sensing (¢; = 0 and §; = 0), and
frictionless edges (Vc* € Coontact @ 9(c*) = 0).

A motion of P with a commanded velocity pointing downward until contact (i.e. until f
> 0) is guaranteed to terminate in G U &, U&,. Then, the orientation of the reaction force
makes it possible determining which of the three edges has been actually attained. If it is
the top edge, the goal is achieved; if it is the left edge, then P must be moved by sliding
along & towards the right until the orientation of the measured force shows that P is in
G; if it is the right edge a sliding motion towards the left is needed.

A conditional strategy is necessary for solving this problem. Ideally, it may be generated
as follows:

- First, the planner considers the goal G and generates two preimages of G, P; and P,, for
two motion commands, M; and M, (see Figure 24 b); M; = (GD(v,), TC), where v,
points toward the right, slightly downward, as shown in the Figure. M, = (GD(v,), TC),
where v, points toward the left, slightly downward. In both motion commands, TC =
[angle(f(6t), v(G)) = 0]. It turns out that & C P; and & C Ps. So, &, is a preimage of
G for M,, and &, is a preimage of G for M,.

- Then, the planner considers {G, &, &} as a set of targets. It generates a preimage
P of GU & U &, for the motion command M = (GD(v),||f(6¢)]] > 0), where v points
downward. Not only P = I, but the three conditions angle(f,n) = 0, with n = v(G),
v(&1), and v(&,), are guaranteed to make it possible recognizing which target has actually
been achieved at execution time. Thus, the planner can generate the following strategy:

execute M = (GD(v), ||f]| > 0);
if angle(f,v(&)) =0
then execute M; = (GD(v1), [angle(f(6t), »(G)) = 0]);
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P3
.

if R4 then execute M4,
if R1then execute MfT;
else execute M2;
exit;
if R5 then execute M5;
execute M3;
exit;

Figure 25: Representation of a Conditional Strategy as a Graph

else if angle(f,v(&;)) =
then execute My = (GD(v2), [angle(£(6t), v(G)) = 0]);

RC, = [angle(f,v(&)) = 0], RC, = [angle(f, v(&,)) = 0], and RC; = [angle(f, v(G)) =
0] are called recognition conditions. They allow the robot controller to identify which
target has actually been achieved after the first motion in the strategy. (RCj; does not
appear in the strategy because, if it evaluates to true, no action has to be taken.) B

Let us now formalize the approach outlined above. We define the preimage of a set of

targets as follows:

DEFINITION 16: Let ST = {71, Ts, ..., T,.} be a set of targets, M = (CS,TC) a motion
command, and RCy, RC,, ..., RC,, n conditions, called recognition conditions. TC =
tp(6t, cpo,6, fo,67). RC; = rp;(4, cpo,a), fio,a)), where A is the argument evaluating to the
duration of the execution of M, when the execution terminates.

A preimage of ST for M and {RC,, ..., RC,} is any region P in C such that ezecuting
M from within P is guaranteed to attain and terminate in U; T;, in such a way that when
the motion terminates the following two conditions are satisfied:

- 3i € [1,n] : RC; evaluates to ‘true’,

- Vi € [1,n]: RC; evaluates to ‘true’ = T; has been achieved.

The definition does not impose that the T; be disjoint, so that several conditions RC;
may evaluate to true when the motion terminates.

In the following, we represent a conditional motion strategy as a labeled graph. Figure 25
shows an example of such a graph and the corresponding strategy. Nodes are alternatively
region nodes and motion nodes. Each motion node Ny has a single parent Np (a region
node), and one or several children N7, through N7z, (region nodes). Every arc connecting
NMm to Ny, is labeled by a recognition condition RC;. The region P labeling Np is
a preimage of {7i,...,7,} (the regions labeling Nz, through Nz,) for M (the motion
command labeling Np) and {RCy, ..., RC,}. The graph has a root labeled by the initial
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region 7, with a unique child labeled by the nuil motion (the fictitious motion that does
not move P). This node makes it possible selecting the first motion command from the
sensory data at the initial position ¢} ;, of P. If every motion node in the graph has a
single child, then the strategy is a linear one. We assume that the graph contains no
cycle, but several nodes may have the same label.

Note that this graph may not define a unique strategy. Indeed, the conditions labeling
the arcs originating at the same motion node need not be exclusive (i.e, Vi # j: RC;
evaluates to true A RC; evaluates to false). We assume however that the arcs are scanned
sequentially by the conditional branching statement according to some predefined order,
as illustrated in Figure 25.

Now we can reformulate the preimage backchaining search algorithm as follows:

Algorithm PB:

1. Create the region nodes Nz and Ng labeled by the initial region 7 and the goal
region G, and the motion node N,,; labeled by the null motion. Create an arc
connecting Nz to N, ..

2. ST — {G}; T’ — T.
3. While 7' # 8 do:

® Select a subset st of S7, a motion command M = (CS,TC) and n recognition
conditions RC;, where n is the number of targets in st. Compute a preimage

P of st for M and {RC4, ..., RC,}.

e Create a motion node Ny labeled by M, n region nodes Ny, labeled by the
targets in ts, and a region node Np labeled by P. Create an arc labeled by
RC; from Ny to every Nz, and an arc from Np to Nu.

¢ Z—{c"€I'NnP/Vc"e€C-I'NP:3c, c* €U,(c)and c™ €U c)}.

(We assume that we do not know how P has reached Z, or will reach Z. Thus,
even if a portion of T is in contact space, it is not guaranteed to produce a
detectable reaction force. Since position sensing is the only sensing data, with
which we can reliably plan, we define Z as the subset of the positions inI'NP
that cannot be confused with positions outside I' N P using posttion sensing
only.)

e If Z # @ then create an arc from N, to Np, and label it by the condition
(K0, (c(0),£(0)) C TN P).

(The arguments of K, are ¢(0) and £(0) since the duration of the null motion
13 0.)
e ST —SU{P}hT' «1'- 2.

4. Return the strategy described by the subgraph made of all the nodes and arcs
accessible from N7. '
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At this point it remains the problem of computing the preimage of a set of targets. This
problem requires being able both to compute the preimage of the union of the targets
and to generate recognition conditions. Thus it is at least as difficult as the problem of
computing the preimage of a single target. However, the backprojection method presented
in the previous section can easily be adapted to handle a set of targets. Given the
algorithms described in Section and , the following theorem, which is an extension of
Theorem 2, directly provides a technique for computing the preimage of a set of targets
in the mini-world:

THEOREM 3: Let {7,,T,,...,T,} be the set of targets and CS a control state-
ment.  B™*(U; Xcs(7;), CS) is a preimage of {Ti,...,T,} for M = (CS,TC) and
{RC,...,RC,}, where RC; = [K:,,(c(6t),£(§t)) C T;] and TC = |V, RC,.

The technique provided by this theorem consists of backprojecting from the union of the
kernels of the targets. Note that backprojecting from the kernel of the union of the targets
could produce a larger preimage of the union of the targets, but then there would be no
guarantee that the targets are distinguishable from each other.

This technique combined with the PB algorithm significantly augments the range of
motion planning problems in the mini-world that we can solve automatically.

18. Bibliographical Noies

Research on robot motion planning has become active in the mid-seventies, when the
goal of automatically programming robots from a geometrical description of the task was
first considered attainable [32,33,50]. Since the early eighties, a great deal of effort has
been devoted to this domain. Part of this effort was motivated, on the one side by the
difficulties encountered in using explicit robot programming systems [28,29], and on the
other side by the goal of introducing autonomous robots in hazardous environments (e-g.
nuclear sites, space, undersea, mines). Although automating robot programming has
turned out much more difficult than it first appeared, significant results with practical
relevance have recently been obtained. Mazer’s thesis [40] includes a chapter detailing
why robot programming is difficult.

During the last ten years, most of the effort has been oriented toward solving the path find-
ing problem, i.e. the problem of planning motions without uncertainty. Over the last few
years, it has produced several major results, both theoretical and practical. Theoretical
results mostly concern lower and upper bounds of the complexity of multiple variants of
the path finding problem (e.g., see [48,6]). In particular, it has been shown that planning
the motion of a robot with arbitrarily many degrees of freedom is PSPACE-hard [45],
and that its time complexity is polynomial in the number of algebraic surfaces bounding
the objects if the number of degrees of freedom is fixed [47]. Some path-finding methods
have been produced as a side-effect of these results, but most of them involve very large
constants and polynomial exponents. Another important result is the development of the
notion of Configuration Space used throughout this paper, both as a conceptual tool and
as a technique for exploring motion planning problems. This notion was popularized by
Lozano-Pérez in the early eighties [34] and has given birth to many techniques for com-
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puting C-obstacles and finding collision-free paths among obstacles {e.g., [3,23,30,12,37}).
Finally, relatively fast path-finding aigorithms have been defined and implemented. Al-
though these algorithms are not complete (they may fail to find a path while one exists),
they can solve many practical problems. In particular, Faverjon and Tournassoud [21]
reports a system using an adaptation of Khatib’s Potential Field method [25] for plan-
ning the motion of a manipulator with eight degrees of freedom, operating in the complex
environment of a nuclear reactor. Lozano-Pérez et al. [36] and Mazer [40] describe an
impressive system, Handey, capable of planning all the motions required for assembling
two polyhedral parts, in the absence of significant uncertainty. These practical techniques
could bring substantial improvement to the programming of operations such as painting,
welding, and riveting.

The problem of planning motions in the presence of uncertainty is conceptually more
difficult than the path finding problem. It has attracted less attention so far, and less
results have been produced. Three basic approaches to this problem have been developed
to some extent. '

The first has been proposed simultaneously by Lozano-Pérez [33] and Taylor [50], and is
known as the skeleton refining approach. It consists of: first, retrieving a plan skeleton
appropriate to the task at hand; and second, iteratively modifying the skeleton by inserting
complements (typically sensor-based readings). Complements are decided after checking
the correctness of the skeleton, either by propagating uncertainty through the steps of
the plan skeleton [50], or by simulating several possible executions [33]. Subsequent
contributions to the approach has been brought by Brooks [2], who developed a symbolic
computation technique for propagating uncertainty forward and backward through plan
skeletons, and by Pertin-Troccaz and Puget [43], who proposed techniques for verifying the
correctness of a plan and amending incorrect plans. Backward propagation of uncertainty
in this approach can be regarderd as a particular case of preimage backchaining with
known motion commands.

The second approach to motion planning with uncertainty has been proposed by Dufay
and Latombe [15], and is known as the inductive learning approach. It consists of assem-
bling input partial strategies into a global one. First, during a training phase, the system
uses the partial strategies to make on-line decisions and execute several instances of the
task at hand. Second, during an induction phase, the system combines the execution
traces generated during the training phase, and generalizes them into a global strategy.
In fact, the training phase and the induction phase are interweaved. The generation of
a strategy for the task ends when new executions do not modify the current strategy. A
system based on these principles has been implemented, and experimented successfully on
several part mating tasks. Some aspects of this approach have been extended by Andreae

1.

Both the skeleton refining and inductive learning approaches deal with uncertainty in a
second phase of planning. The plan skeleton and the local strategies used during the
first phase could be produced using path-finding methods assuming null uncertainty. The
second phase takes uncertainty into account, either by analyzing the correctness of the
current plan, or by directly experimenting with the local strategies and combining them
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into execution traces shaped by actual errors. In contrast, the rationale of the third
approach, preimage backchaining, is that uncertainty may affect the overall structure of
a plan, in such a way that a motion strategy may not be generated by modifying or
composing plans generaied assuming no uncertainty. This can be illustrated by several
examples. Consider the task of inserting a peg into a hole; in the absence of uncertainty
(or equivalently with large clearance), the best strategy is to position the peg above the
hole, to align the two axes, and to move the peg downward; iu the presence of uncertainty,
and with no chamfer, the best sirategy is to tilt the peg before insertion, in order to be
certain to generate a contact between the tip of the peg and the entrance of the hole. In
a navigation task, with no uncertainty, the shortest route is ‘he best; with uncertainty, a
route providing enough landmarks to make execution monitorable is necessary; it may be
very different from the first one.

In addition to be based on a different rationale, preimage backchaining is a much more
rigorous approach to motion planning with uncertainty, than the other two approaches.
Consequently, it is natural to expect that preimage backchaining raises new theoretical
issues, which were not considered in the other approaches. It does not mean that these
issues are not present in the other approaches, but that they are hidden by their ad-
hocness. Conversely, solving these issues is a prerequisite to implementing the preimage
backchaining approach, but not to implementing the other approaches. This expresses the
fact that in general it is easier to build ad-hoc implementations of ad-hoc approaches than
ad-hoe iraplementation of rigorous approaches. It explains why preimage backchaining
has not yet been implemented, although as shown in this paper an implementation in a
two-diinensional world is possible.

The preimage backchaining approach was first presenied by Lozano-Pérez, Mason, and
Taylor [35]. This paper set up most of the basic framework. It directly introduced a
definition of preimages based on the use of termination condition with state. We think
that our definition is simpler. It allows us to analyze theoretical issues related to the
maximality of preimages in a step-by-step fashion. Key concepts prior to this definition
are the directory of actual trajectories and the notions of consistency between actual and
measured data. The concept of trajectory directory was previously used by Mason [39]
as a tool to specify a termination condition with state.

Mason [39] investigated several control schemes for searching the graph of preimages. He
proved the strong bounded-completeness of the original scheme presented in [35].

Erdmann [17,18] contributed to the approach in several ways. He separated the problem .
of computing a preimage into two sub-problems, reachability and recognizability. By con-
sidering reachability alone, he introduced the notion of backprojection, and used it for
computing non-maximal preimage. Algorithm MB1 is a detailed variant of Erdmann’s
algorithm. Algorithms MB2 and MB3 are improvements allowing to backproject from
multiple edges/segments and from a polygonal region. Donald [12] presents another tech-
nique based on a plane sweep algorithm for computing the backprojection from a polygonal
region. In order to compute preimages as backprojections, Erdmann introduced the no-
tion of first entry set, which seems to be more powerful than the notion of target kernel. It
is not clear however how this notion could be implemented in a program. An extension of
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the algorithm for computing backprojections to a three-dimensional configuration space
is proposed in [17]. An investigation of friction modelling in configuration spaces with
rotational axes is made in the same publication.

Donald [10,12] extended the preimage backchaining approach to model uncertainty by
introducing the notiou uf generalized cuiiiguration space. He also inroduced the notion of
Error Detection and Hecovery (EDR) strategies, which may fail. Such strategies, however,
either succeed or failed recognizably.

Buckley [5] proposed an application of preimage backchaining to the analysis of the cor-
rectness of a given motion plan. He also described a procedure for planning motion
strategies in the forward direction. This procedure is based on the notion of forward pro-
jection (a more appropriate terminology would probably be post-image). The procedure
requires to discretize configuration space into atoms and builds a transition graph be-
tween the atoms. It is not clear however how to select the resolution of the discretization.
Bucklvy uuplancaicd s planacer vpersting in a three-dimeisional configuration space with
translational axes.

Hopcroft and Wilfong [24], Valade [53], Laugier and Théveneau [31], and Koutsou [27] an-
alyzed motions in contact space, without paying special attention to uncertainty. Within
the preimage backchaining approach, their work could contribute in defining heuristics
for searching the preimage graph.

The complexity of problems of plaiining compliant motiions with uncertainty have been
analyzed in a few papers (see [41,13,6,7]). Canny and Reif [6,7] have proven that the
three-dimensional compliant motion planning problem is non-deterministic exponential
time hard. Donald [13] has shown that planning a guaranteed planar multi-step strategy
with sticking termination conditions can be domne in time polynomial in the number of
vertices in the polygonal environment, and roughly simply exponential in the number of
steps in the strategy. The method presented in this paper corroborates this theoretical

result.

19. Conclusion

In this paper, we have addressed the problem of planning motions with uncertainty.
Autonomous robots need motion planning capabilities, and subtasks such as part mating
and navigation in cluttered environments require being able to deal with uncertainty.

We have focused the paper on the preimage backchaining approach to motion planning
in the presence of uncertainty. First, we have given a detailed formalization of the class
of problems we are interested in (models of task geometry, task physics, motion com-
mands, and uncertainty). Then, we have defined preimage backchaining and analyzed
several underlying theoretical issues related to the power of termination conditions and
the maximality of preimages. Finally, we have proposed the first complete set of algo-
rithms making possible implementing preimage backchaining in a simplified world, the
mini-world. These algorithms are based on the two concepts of target kernel and back-
projection. These algorithms are certainly the most important outcome of this paper.

Although rather simple, the mini-world is still realistic enough for some applications.
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For instance, it can be the world of an omni-directional mobile robot, with a polygonal
outline (typically a rectangular or hexagonal vehicle), moving among obstacles bounded by
polygonal outlines (e.g., pieces of furniture, machines). Possible application tasks for such
a robot is the transferring of objects in office, clean room, anc shop-floor environments.
We are currently implementing the proposed algorithm for a similar robot. Our goal with
this implementation is not only to give an experimental validation of these algorithms. It
is also to show that sophisticated methods for dealing with uncertainty, such as preimage
backchaining, can make it possible building low-cost smart robots.

There are many directions in which the preimage backchaining approach could be usefully
extended. These are some of the questions we would like to answer in the future. How
to build practical procedures for computing preimages and solve realistic motion plan-
ning problems in spaces of dimension higher than 2 with rotational axes? What control
schemes are the most appropriate to the preimage backchaining approach (for instance,
Shekhar and Khatib [46] proposed a compliant scheme with selectable compliance center,
which might result in larger preimages, but in a higher-dimensional space)? How to ef-
ficiently generate weak guaranteed strategies such as those proposed by Donald [12,14],
in order to build a reactive motion planner with provable properties? How to associate a
monitoring plan to a motion plan, so that if during the execution of the motion plan an
error exceeds uncertainty bounds, possible failure of the motion plan can be recognized
by the monitoring plan executed in parallel? Answering these questions will require a lot
more research.
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Appendix: Table of Symbols

CS
TC
V(v)
GD(v)
B

Viyet

Moving object

Obstacle (i = 1, 2, ...)

Configuration space of A

Effector point (mapping of A in C)

Region occupied by 4 when P’s position in C is ¢
C-obstacle (mapping of B; in C)

Free space

Contact Space

Intial region of P in a motion planning problem

Goal region of P in a motion planning problem

Target of a motion command

Initial actual position of P before executing a motion plan
Initial actual position of P before executing a motion command
Generalized motion command

Control statement

Termination condition

Pure velocity control statement

Generalized damper control statement

Damper constant (in generalized damper control)

Net velocity (in generalized damper control)

tp(ét, C[0,5t), f0,6¢) General form of the termination condition

Uc5(CS)

Uc(C)
v

v
U,(v)
c

c'
U.(c)
f

fﬁ

Uy (f)
v(c*)
v(€)

2¢(c7)

Control uncertainty

Model uncertainty

Specified commanded velocity

Actual commanded velocity

Uncertainty on commanded velocity

Measured position of P (configuration of .A)
Actual position of P

Uncertainty on position sensing

Measured reaction force on P

Actual reaction force on P

Uncertainty on force sensing

Unit vector pointing along the friction cone at ¢* (Ve* € Ceontact)
Unit outgoing normal vector to edge &

Angle of the friction cone at ¢* (V¢* € Coontaer)

49



2¢(€)
g,

pe

£

Oy

.

£

r
D*(S,CS)
5t

c‘f

fT

cr.

£
re

Keraj(T7)
I»(7T, M5})
Pmes(T, M)
F*(c*)
Fesler)
f:leact(cma f:ppl)
Xcs(S)
K;..(c, 1)
B™*=(T,CS)
distance(cy, c3)
angle(vy, vs)
Il

Zpc(c)

D

Angle of the friction cone along edge &

Uncertainty on the orientation of the commanded velocity
Radius of the position uncertainty disk

Uncertainty on the module of the measured force

Uncertainty on the orientation of the measured force

Observed trajectory

Actual trajectory

Directory of actual trajectories

Elapsed time since the beginning of the execution of a motion
Function mapping §¢ into the measured position along trajectory
Function mapping ét into the measured force along trajectory
Function mapping éf into the actual position along trajectory 7*
Function mapping ¢ into the actual force along trajectory *
Set of observed trajectories consistent with actual trajectories 7
Preimage of 7 relative to P

Maximal preimage of 7 for M

Range of reaction forces that can be generated at position c*
Range of forces that can be generated at position ¢* under CS
Reaction force to f; ; at position ¢*

Kernel of region S for CS

Set of actual positions of P consistent with measurements ¢ and f
Maximal backprojection from 7 for CS

Euclidean distance between two points ¢, and c,

Un-signed angle between two vectors v; and v,

Module of vector v

Position uncertainty disk centered at ¢

Minkowski’s operator for set addition
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