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Abstract: We consider the robot path planning problem in the presence of
non-integrable kinematic constraints, known as nonholonomic constraints. Such
constraints are generally caused by one or several rolling contacts between rigid
bodies and ezpress that the relative velocity of two points in contact is zero.
They make the dimension of the space of achievable velocities smaller than the
dimension of the robot’s configuration space. Using standard results in differen-
tial geometry (Frobenius Integrability Theorem) and nonlinear control theory,
we first give a formal characterization of holonomy (and nonholonomy) for robot
systems subject to linear differential constraints and we stale some related re-
sults about their controllability. Then, we apply these results to “car-like” robots
and “trailer-like” robots. Finally, we present an implemented planner, which
generates collision-free paths with minimal number of maneuvers for car-like
and trailer-like robots among obstacles. Potential applications of the planner
include navigation of autonomous robots, automated parking of personal cars
and trucks, autonomous navigation of luggage carriers in airport facilities, au-
tomatic planning of the movements of machines in a construction site, and
compuler-aided design of access ports for trucks in industrial and commercial

facilities.
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1 Introduction

In this paper, we consider the robot path planning problem in the presence of non-
integrable kinematic constraints, known as nonholonomic constraints [Greenwood,
1965]. Such constraints are generally caused by one or several rolling contacts be-
tween rigid bodies and express that the relative velocity of two points in contact is
zero. Thev make the dimension of the space of achievable velocities smaller than the
dimension of the robot’s configuration space. We call nonholonomic robot a robot,
whose motions are constrained by nonholonomic constraints.



A car is a typical example of such a nonholonomic mechanical system. In the absence
of obstacles, it can attain any position in the plane, with any orientation. Hence,
the configuration space 1s three-dimensional. However, assuming no slipping of the
wheels on the ground, the velocity of the midpoint between the two rear wheels of
the car is always tangent to the car orientation. The space of achievable velocities at

any configuration is thus two-dimensional.

Collision-free path planning consists of constructing a path in the free subset of the
configuration space — the set of configurations where the robot has no contact or
intersection with the obstacles — between two input configurations. Nonholonomic
constraints require that the tangent to the path at any configuration be within the
subspace of velocities selected out by the constraints. A collision-free path for a
nonholonomic robot typically has to include “maneuvers”, i.e. backing-up points
where the robot stops and changes the sign of the velocity (think, for example, of
the parallel parking of a car along a sidewalk). Finding a feasible path between two
configurations is one difficult problem. Another one is to minimize the number of
maneuvers, or at least to keep it reasonable, whenever possible.

The first part of the paper is a mathematical analysis of nonholonomic constraints.
Using standard results in differential geometry (Frobenius Integrability Theorem) and
nonlinear control theory, we give a formal characterization of holonomy (and non-
holonomy) for robot systems subject to linear differential constraints and we state
some related results about their controllability. In particular, we establish two effec-
tive results applicable when the robot is subject to a single (scalar) linear differential
constraint. The first result allows us to determine through simple computation if
this constraint is holonomic (i.e., integrable), or not. The second result states that
anv robot subject to a single (scalar) linear nonholonomic equality constraint is fully
controllable, that is: any two configurations lying in an open connected subset of the
configuration space can be connected by a path lying in this subset and respecting

the nonholonomic constraint.

The second part of the paper applies these results to two types of robotic systems,
which we name “car-like robots” and “trailer-like robots”. A car-like robot is kine-
matically similar to an automobile car. A trailer-like robot is kinematically similar

to a vehicle towing a trailer.

Finallv, in the third part of the paper, we present an implemented planner, which
generates collision-free paths for car-like and trailer-like robots moving among obsta-
cles. A version of the planner generates paths with minimal number of maneuvers in

rezsonable amount of time.

Research on collision-free path planning has been very active during the past ten
vears (e.g., see [Lozano-Pérez, 1983] [Schwartz, Hopcroft and Yap, 1987]). Today, the
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mathematical and computational structures of path planning for holonomic robots is
reasonably well-understood. Practical planners have also been implemented in more
or less specific cases (e.g., [Brooks and Lozano-Pérez, 1983] [Gouzenes, 1984] [Laugier
and Germain, 1985] [Faverjon, 1986] [Faverjon and Tournassoud, 1987] [Lozano-Pérez,
1987] [Barraquand, Langlois and Latombe, 1989]). However, path planning with
nonholonomic constraints has attracted much less interest so far.

The problem was first introduced by Laumond [Laumond, 1986}, who proved that
a car-like robot is fully controllable, even when the steering angle is limited. (Our
result on robot controllability with a single nonholonomic constraint is a generaliza-
tion of Laumond’s result, since it is established for any nonholonomic linear equality
constraint. But, it considers no such constraint as limited steering angle, which is
a nonholonomic nonlinear inequality constraint.) However, the number of maneu-
vers that would be generated by a planner implementing the constructive proof of
this result is unbounded, even when there exists collision-free paths with no or few
maneuvers that satisfy the nonholonomic constraint.

Building on his previous work, Laumond proposed an algorithm for planning smooth
— i.e., maneuver-free — collision-free paths of a nonholonomic circular robot whose
turning radius is lower-bounded [Laumond, 1987]. However, this interesting algorithm
fails whenever all free paths require one or more maneuvers. Tournassoud and Jehl
proposed a specific technique for planning paths with simple maneuvers for a car-like
robot turning in a corridor [Tournassoud and Jehl, 1988]. They also suggested a
generalization of this result by decomposing the empty subset of the workspace 1nto
corridor-like regions. Li and Canny first pointed out that results in nonlinear control
theory where transposable in order to characterize the controllability of nonholonomic
robots [Li and Canny, 1989]. We will re-establish their result in a simpler form, from
which we will derive a corollary expressing the full-controllability of robots constrained
by a single scalar nonholonomic constraint expressed in the form of a linear equality.

The planner presented in this paper is essentially the planner described in detail in
[Barraquand and Latombe, 1989]. It makes use of a discretized representation of the
workspace and the configuration space. We have run several experiments with it,
using simulated car-like and trailer-like robots with obstacle arrangements requiring
backing-up maneuvers. The experiments reported in this paper were carried out with
a version of the planner specifically designed to optimize the number of mancuvers.
In this version, the planner applies a brute force method that consists of performing a
dynamic search in the discretized configuration space with the number of maneuvers
as the cost function. Rather surprisingly, despite its conceptual simplicity, the planner
is relatively fast in reasonable, but non trivial, workspaces. To our knowledge, this
is the first implemented planner capable of finding collision-free path with minimal
number of maneuvers (at the resolution of the configuration space representation) for



nonholonomic robots.

Possible applications of the planner include navigation of autonomous robots, auto-
mated parking of personal cars and trucks, autonomous navigation of luggage carriers
in airport facilities, automatic planning of the movements of machines in a construc-
tion site, and computer-aided design of access ports for trucks in industrial and com-

mercial facilities.

2 Nonholonomic Constraints

2.1 Terminology

We denote by A the robot and W its workspace. A configuration of A is a specifi-
cation of the position of every point in A with respect to a Cartesian frame embedded
in W. The configuration space of A is the space, denoted by C, of all the possible
configurations of A. The configuration space of a mechanical system made of rigid
bodies is a smooth manifold [Arnold, 1978]. For instance, the configuration space of
a two-dimensional rigid body translating and rotating in W = R?is C = R? x S,
where S! denotes the unit circle. In virtually any practical situation, the range of
positions reachable by the robot’s bodies can be bounded, making C 1nto a compact

manifold.

In the following, we will represent a configuration q of A by a list of n parameters,
(41,92 -, G ), where n is the dimension of C. This representation corresponds to
defining an atlas of C. Each configuration q belongs to at least one neighborhood
covered by a chart of the atlas. The parameters q1,...,¢ are the coordinates of q
in this chart (see [Guillemin and Pollack, 1974] [Spivak, 1979]). These parameters
are also called generalized coordinates of A [Greenwood, 1965]. For instance, we will
represent the configuration of a car-like robot by q = (X, Y7,0), where X; and Y;
are the coordinates of the midpoint between the two front wheels of the car in the
Cartesian frame embedded in W and 6 is the orientation of the main axis of the robot
relativelv to the z axis of this Cartesian frame. Obviously, there is not a unique set
of generalized coordinates for a given robot. By definition, the various charts put
on a smooth manifold are C%-related, which allows to extend differential properties
established in a chart — i.e. with a generalized coordinate system — to all the other

charts.

Now, suppose that a scalar constraint of the form:

F(q,t) =0 (1)

with g € C and t denoting time, applies to the motion of A. Let us further assume that
[ is smooth with non-zero derivative. Then, in theory, one could use the equation



to solve for one of the generalized coordinates in terms of the other coordinates
and time. Thus, equation (1) defines a (n — 1)-dimensional submanifold of C. This
submanifold is in fact the actual configuration space! of A and the n —1 remaining
coordinates its actual generalized coordinates. Constraint (1) is called a holonomic
equality constraint. More generally, there may be k constraints of the form (1). If
they are independent — i.e., their Jacobian matrix has full rank — they determine a
(n — k)-dimensional submanifold of C, which is the actual configuration space of A.

A constraint of the form:
F(a,) <0 or F(a,t) <0

where F is smooth with non-zero derivative, is a holonomic inequality constraint. It
typically acts as a mechanical stop or an obstacle. It simply determines a submanifold

of C having the same dimension as C.

Constraint (1) is only a kinematic constraint of some sort. Now, suppose that a scalar

constraint of the form:

G(q,9,t) =0 (2)

applies to the motion of A, with q € Tq(C), the tangent space of C at q. The pair
(q,q) belongs to TB(C), the tangent bundle associated with the manifold C. The
tangent space represents the space of the velocities of A. The tangent bundle 1s also
called the “phase space” in Physics and the “state space” in control theory. The
tangent space of a smooth manifold is a vector space of the same dimension as the
manifold. Hence, T4(C) has dimension n for every q € C. The tangent bundle TB(C)
is a smooth manifold of dimension 2n.

A kinematic constraint of the form (2) is holonomic if it is integrable, i.e. g can be
climinated and the equation (2) rewritten in the form (1). Otherwise, the constraint
is called 2 nonholonomic equality constraint. As we will see below, a nonholo-
nomic equality constraint restricts the space of velocities achievable by A at any
configuration q to a (n — 1)-dimensional linear subspace of Tq(C), without affecting
the dimension of the configuration space. If there are l: independent nonholonomic
equality constraints of the form (2), the space of achievable velocities is a subspace

of Tq(C) of dimension n — k.

A constraint of the form:

G(q,q,1) <0 or G(aq,q,t) <0

VIf constraint (1) depends on f, A’s configuration space is time-dependent, otherwise it 1s time-
independen:. Many usual holonomic constraints — e.g., the prismatic and revolute joints of a ma-

nipulator arm - are time-independent.
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where G is not integrable, is a nonholonomic inequality constraint. It restricts the set
of achievable velocitics at any configuration q to a subset of Tq(C) having the same
dimension as Tq(C). A constraint bounding the steering angle of a car-like robot is a

typical nonholonomic inequality constraint.

A nonholonomic constraint is generally caused by a rolling contact between two rigid
bodies. It expresses that the relative velocity of the two points of contact is zero.
When the motion in contact combines rolling and sliding, the expression, which de-
pends on the friction coefficient of the two bodies, is nonlinear. When there is no
sliding, the nonholonomic constraint is linear in q. The second case, although less
general than the first, is much simpler and quite widespread in practice. Therefore, in
the following, we will only consider constraints of the form (2) which are linear in q.
For instance, in the car-like robot example, this corresponds to assuming no slipping

of the wheels on the ground.

When dealing with constraints of the form (2), two important questions arise:

- Are they integrable?

- If they are not integrable, do they restrict the range of achievable configurations?

We investigate these questions in the next two subsections. Using the Frobenius
Integrability Theorem, we first give a necessary and sufficient condition of holonomy
(and nonholonomy) for constraints of the form (2). In the case of a single scalar
constraint, this result provides an effective way to verily that a constraint is actually
nonholonomic. Then, using classical tools from control theory (Control Lie Algebra),
we analyze the second question. We state a necessary and sufficient condition under
which nonholonomic equality constraints have no effect on the range of achievable
configurations. This condition instantiates to the important result that any robot
with a single scalar linear (in ¢) nonholonomic equality constraint is fully controllable.

2.2 Characterization of Nonholonomy

Any kinematic constraint of the form (2), which is linear in q can we rewritten as

follows?:

G(a,q) =w(q)-q = «'(a)i =0 3)
1=1
By definition, w is called a 1-(differential) form [Spivak, 1979]. For every q € C,
equation (3) determines an hyperplane denoted by A(q), which is included in the
tangent space Ty(C). A(q) is called the (n — 1)-distribution associated with w.

2For simplicity, in the rest of the paper, we will assume that the kinematic constraints do not
depend on time. However, all the results remain valid when constraints are time-dependent.
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Let us now consider the case where there are k constraints of the form (3). Then, A’s
motion is constrained by the following system of equations:

Gi(a,q) =w;i(q)-a = wi(@)g =0, j=1,..k (4)
. =1

Let us assume that the equations are independent. In general, at any given time ¢, for
every q € C, this system of equations determines a (n—k)-dimensional linear subspace
A(q) of Tq(C). The subspace A(q) is called the (n — k)-distribution associated with
the k& 1-forms (wy, ..., w).

In the presence of k independent constraints as in (4) and under some regularity
conditions which we assume to be satisfied (see [Isodori, 1985]), it is always possible
to find a set of n — k independent C* vector fields X1(q),-. .., Xn-k(q) spanning
A(q). Hence, for a robot subject to the constraints in (4), the velocity can always be

expressed as a linear combination of the Xj,..., Xn_¢.

Let (X,Y) be any pair of vector fields, such that for any q € C both X(q) and Y'(q)
belong to A(q). Given any configuration q, let us consider a path of A starting at q
obtained by concatenating four consecutive paths:

- the first path follows the flow of X during ét;

- the second path follows the flow of Y during é¢;

- the third path follows the flow of —X during ét;

- the fourth path follows the flow of —Y during ét.

We denote by q the configuration reached at the end of these four paths. A straight-
forward Taylor expansion shows that:

im I -9 _ gy . x —dX .Y
st—o 612

The expression dY - X — dX - Y determines a new vector field, which is commonly
denoted by [X, Y] and called Lie bracket of X and Y. Hence, the above motion of A
along vectors of the distribution A is biased with §2?[X,Y]. A necessary condition for
integrability of the distribution A is therefore that all the Lie brackets of all vector
fields in A be in A. This condition turns out to be also sufficient, which is precisely
the Frobenius Integrability Theorem in its general form:

THEOREM 1 (Frobenius Integrability Theorem — General Case): Let A
be a(n — k)-distribution on a n-dimensional manifold C associated with the k-form
(w1(q),....w(q)). In a neighborhood of any point qo € C, the following two condilions

are equivalent:

1. The distribution A is closed under the Lie bracket operation - i.ce., for any pair of
vector fields (X,Y) in A, [X, Y] is also in A.
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2. There is a foliation of C tangent to A —1.c., the constraints w;(q)-q=0,7 =1, k

are integrable.

A proof of this theorem can be found in [Spivak, 79].

Unfortunately, this result is stated in terms of vector fields on A, not in terms of the
wy, ..., wk- 1t does not provide an effective way to test the holonomy of the constraints
in (4).

When k = 1, however, the above characterization can be re-written with w. Let us
consider the case where the motion of A is constrained by a single constraint of the

form (3). Saying that this constraint is integrable is equivalent to saying that there
is a function V over C, such that:

dV(q) = Ma)w(a)

for some non-zero integrating factor A(q). Taking the exterior differential of the above

equation, we get:

0=d(dV)=dA\Aw+ Adw
Multiplying exteriorly this result by w, we obtain:

wAdw=0

which is a necessary condition for integrability of equation (3). It turns out that this

condition is also sufficient:

THEOREM 2 (Frobenius Integrability Theorem — Case of a Scalar Con-
straint): Let w(q) be a I-form on a manifold C and A the associated distribution.

In a neighborhood of any point qo € C, the following three conditions are equivalent:
1. wAdw =0 - i.e., the exterior product of w and its esterior differential is null.

9. The distribution A is closed under the Lie bracket operation- i.e., for any couple

of vector fields (X,Y) i A, [X,Y] is also mn A.
3. There is a foliation of C tangent to A - t.c. the constraint w(q)-q = 0 13 integrable.

A pedestrian proof of this theorem based on elementary calculus (Fixed point theo-
rem) can be found in [Barraquand, 1988]. As shown in [Spivak, 1979] (pp. 264-268)
the local results of Theorems 1 and 2 can be globalized to the whole manifold C

(integral manifold).

From the above theorem, we can infer an effective local characterization of holonomy
for z single scalar linear kinematic constraint of the form (3). Indeed, by definition

of the exterior differentiation of a differential form, we have:

S



Ow;  Ow;

dw = Z ( ! ———i>dq;/\dq-
1<i<j<n 0q;  9q; !

From the definition of the exterior product of differential forms and the above formula,

we get:

Jwy  Ow; dw; Owy Ow; 3w;)>
dw = == = - = 2422 Y Vdgi Adgj A d
wh 2 (w ((’ﬂu 3(1::) e (6% 3q;> o <3<1i aq; ) ) CE N

1<i<j<k<n
Therefore, the following corollary is a direct consequence of the Frobenius Theorem:

COROLLARY 1 (Characterization of linear holonomy for a scalar con-
straint): A single scalar linear kinematic constraint defined by:

G(a,d) = w(@) -4 = 3 wi(@)as =0

is holonomic if and only if the following relation holds for any 1,7,k € (1,n] such that
1<i<j<k<n:

Owr  Ow; Ow;  Owg Ow;  Ow;
Apip = w; it S B Bt At 2 11 =0
* “’(aqj aqk>+‘”J<aqk aqz-)*“”“(aq; aq)

2.3 Controllability of Nonholonomic Robots

Frobenius Integrability Theorem is the theoretical basis for some major results in
controllability theory for nonlinear control systems (e.g., see [Isidori, 1985]). The
applicability of these results to the analysis of the controllability of nonholonomic
robots was first noticed by Li and Canny [Li and Canny, 1989]. We first establish
a general characterization of the controllability of a nonholonomic robot. Then, we
consider the particular case where there is a single scalar nonholonomic constraint
and we establish a straightforward, but particularly useful, corollary of the general

result.

A kev concept in controllability theory is the so-called Control Lie Algebra. It can be
defined as follows. Let A be a (n—k)-distribution on a n-dimensional integral manifold
generated by a set of independent smooth vector fields X,,..., Xn—x- The Control
Lie Algebra associated with A, denoted by CLA(A), is the smallest distribution
which contzins A and is closed under the Lie bracket operation. Stated otherwise,
C' L A{A} is the distribution generated by X,...., Xu_r and all their Lie brackets



recursively computed. By construction, CLA(A) verifies the conditions of Irobenius
Theorem, and is therefore integrable. Obviously, the dimension m of C LA(A) verifies:
m>n—k.

The following theorem derives from the original work of Chow [Chow, 1939}, which
was subsequently elucidated by several authors (e.g., [Lobry, 1979]):

THEOREM 3 (Controllability of Nonlinear Systems): Let A be a (n — k)-
distribution on a connected open subset S of a n-dimensional compact manifold C.
Let CLA(A) be the Control Lie Algebra associated with . Any two points q and Q2
in S can be connected by a path in S following the distribution A if and only if the
dimension of CLA(A) is equal to n.

In other words, this theorem says that the nonlinear system generated by the dis-
tribution A is fully controllable if and only if its Control Lie Algebra has maximal
dimension.

Remark: The above theorem is stated for an open subset & of a n-dimensional
manifold C. Hence, S is also a n-dimensional manifold, so that the theorem could
more directly be stated for a manifold. However, in path planning, we consider the
configuration space C of the robot and the open subset of C which consists of all the
configurations where the robot does not touch or intersect any obstacle. This subset
is denoted by Cje. (for free space). The above formulation of the theorem explicitly
characterizes the controllability of A in Cje. (with S playing the role of a connected
component of Cy,..). ®

There is an immediate corollary of this theorem which is particularly useful for char-
acterizing the controllability of a robot that is constrained by a single scalar nonholo-
nomic equality relation. The constraint can be represented by a (n—1)-distribution A
generated by {X1,..., X1} According to the Irobenius Theorem, for each q € C,
there must exist at least one pair of integers z,7 € [1,n — 1] such that the Lie bracket
[X:, X;] does not belong to A. Therefore, the Control Lie Algebra has a dimension
m strictly greater than n — 1. Since it cannot be greater than n, it is equal to n.

Therefore:

COROLLARY 2 (Controllability with a Single Scalar Linear Nonholo-
nomic Equality Constraint): Any robot, which is subject to a single scalar linear
nonholonomic equality constraint is fully controllable — i.e., any two points lying n
an open connected susbset of the configuration space can be connected by a path lying
in this subset and respecting the kinematic constraint.
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Figure 1: Car-Like Robot

3 Application to Two Examples

3.1 Car-Like Robot

Let us consider a front-wheel-drive four-wheel car®. We model the car by a two-
dimensional object translating and rotating in the plane, as lustrated in Figure 1.
The configuration space of the car is D x S, where D is a compact domain of R%.
We parameterize the car configuration by the coordinates X; and Yy of the midpoint
F between the two front wheels and the angle 0 between the z axis of the Cartesian
frame embedded in the plane and the main axis of the car. The velocity parameters
are Xf? }f znd 0. The control parameters of the car are the velocity v € R of the
front wheels (if v > 0, the car moves forward) and the steering angle ¢ measuring the
orientation of the front wheels with respect to the main axis of the car.

In order to establish the nonholonomic constraint applying to the motions of the
car, let us consider the midpoint 2 between the two rear wheels (see Figure 1). Let
(X,,Y;) be the coordinates of R. Assuming a pure rolling contact between the wheels
and the ground - i.e., no slipping — the velocty of R is always parallel to the main
axis of the car. Hence, we have:

X, = Acos0 Y, = Asind.

3Qur presentation can easily be modified to treat other types of car-like robots.
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Figure 2: Trailer-Like Robot

with @maz < , then only a subset of the velocity orientations is feasible.

The constraint bounding the values of ¢ translates into a nonholonomic nonlinear
inequality constraint on the motions of the car. Corollary 2 does not apply any
longer. Nevertheless, it has been shown by Laumond [Laumond, 1986] that the car
remains fully controllable. Although the proof given by Laumond is specific to car-
like robots, this result suggests that it might be possible to give a more general
characterization of the controllability of nonholonomic robots than Corollary 2, which
would be applicable when there are nonholonomic inequality constraints in addition

to the nonholonomic equation.

3.2 Trailer-Like Robot

The trailer problem is an extension of the car problem, which consists of adding one
or more bodies to be towed by the car. For example, the two-body trailer problem
consists of analvzing the behaviour of the mechanical system defined by a car towing
a single body. In this problem, there are two kinematic constraints: the velocity of
the midpoint between the rear wheels of cach body is tangent to the orientation of
the body.

More generallv. one can consider the n-body trailer system, which consists of a car
o . } o 3
towing 1 — 1 bodies serially hooked (c.g., a luggage carrier in an airport). Figure 2

13



displays a schematic model of such a system. The midpoint between the front wheels
of the first body (the car) is denoted by P,. The midpoint between the rear wheels
of the k** body is denoted by Pi. We therefore have (n + 1) points P, ..., P,, whose
coordinates are denoted by (Xo,Yo),---,(Xn,Ys). The orientation of the k'* body
with respect to the = axis of the Cartesian frame embedded in the plane is denoted by
0:. The configuration- space of the n-body trailer is D x (8')", where D is a compact
domain of R2. We parameterize the trailer configuration by (Xo, Yo,01,.--, 0.). The
velocity parameters are Xo, Yo,él, ey 6,.. The control parameters are the same as for
the car-like robot, that is, the velocity v and the steering angle ¢.

There are n kinematic constraints, one for each body. In order to establish these
constraints, it is convenient to represent the points Fo, ..., Pa in the complex plane,
ie.: P. = Xy + iYy. Denoting by L; the length of the k** body, we can write the
geometric constraint between the bodies k — 1 and k as:

P, = Py — Liexp(z0x)

which can be rewritten:

Pk = PO — ZL[ CXp(iOl) (8)

=1

The kinematic constraint of the k' body is:
P = A exp(i0;)

which is equivalent to:
g(exp(—zOk)PK) =0

where $(z) denotes the imaginary part of the complex number z. Combining this
characterization with the derivative of equation (8) and using the linearity of the <
operator, we obtain the kt* kinematic constraint:

k-1 .
Lkgk = ——/\ro sin Ok + YE) CcOs 0!: — Z L[O[ COS(O[ — 0k)
=1
In particular, we obtain for & = I:
L101 — —XNosin0, + Y, cos 0, (9)
which is precisely the kinematic constraint (6) of the car problem.
For k = 2, we get:

L0, = —Xgsin0; + Yocos 0y — Ly0y cos(0, — 01) (10)

Equations (9} and (10) are the kinematic constraints of the two-body trailer problem.
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Thus, the equations governing the motion of the two-body trailer system are:

Xg = wvcos(6y + @)

}:/0 — ‘US{in(Gl +¢) (11)
~. 01 = 'USII:
0'2 — vcosfsiniﬁl —82}

L,
where the third and fourth relations are derived from the first two and constraints
(9) and (10).

We now analyze the integrability of the kinematic constraints applying to the mo-
tions of the two-body trailer system. Since there are two independent kinematic
constraints, we cannot use the simple charaterization of holonomy given by Corollary
1. However, the Frobenius Theorem (general case) still applies. As suggested in [Li
and Canny, 1989], we can compute the dimension m of the Control Lie Algebra asso-
ciated with the two constraints. We show below that m is maximal, i.e. m =n = 4.
Applying Theorem 1, this result directly entails that the two-body trailer system 1s
non-holonomic. Applying Theorem 3, it entails that the two-body trailer system 1s
fully controllable.

PROPOSITION 1: The Control Lie Algebra associated with the two kinematic

constraints of the two-body trailer system has mazimal dimension m = 4.

Proof: A straightforward computation shows that the following two vector fields, X
and X,, satisfy both constraints (9) and (10):

X, = (=Lysind; Lycosl 1 0)T
X, = (Lycost Lysinf; O %5111(01—02))T
We next compute:
X, = [X,Xs] = (=Lisinb, Lycos0; 0 %cos(&l—Oz))T
X, = [XnX) = (0 0 0 (L))

Finallv we verify that the four above vector fields are independent:
L4
det( X1, X0, X3, X4) = f;: >0

Therefore. tze Control Lie Algebra has maximal dimension m = 4. =



4 Planning with Nonholonomic Constraints

4.1 Overview of the Planner

Let the workspace W of a robot A be populated by some stationary obstacles B;,
i =1,...,q. These obstacles map in the configuration space C of A to regions CB;

called C-obstacles and defined by:
CB; ={qeC [ A(q)NB: # 8}

where A(q) denotes the region of W occupied by A at configuration q. The subset
Ciree = C\ U™, CB; is called free space. If both A and the B;’s are modelled as
closed regions, the CB;’s are closed; Cyce 1s an open subset of C, hence a manifold of

dimension n.

Given two configurations q; and q in Cyree, the path planning problem is to construct
a path connecting q; to g, and lying in Cyrec, .. amap 7 :5 € [0,1] — 7(s) € Ciree,
such that 7(0) = q; and 7(1) = q2. In the presence of nonholonomic constraints, the
tangent to this path, ‘2—;, must lie in the subset of the tangent space of C selected out

by the constraints.

We have implemented a general-purpose path planner based on the following main
ideas [Barraquand and Latombe, 1989]:

- The configuration space is discretized and explored in a trial-and-error fashion.
The exploration is guided by potential functions using a classical best-first search
algorithm [Nilsson, 1980]

- The workspace is used as a major source of inspiration for building potential func-
tions with “good” characteristics, i.e. with few local minima or local minima having

small domains of attraction.

- The workspace is represented in the form of a bitmap (distributed representation),
which allows us to implement very efficient algorithms for computing the potential

functions and checking collisions.

We report the reader to [Barraquand and Latombe, 1989] for a detailed presentation

of the planner.

We have experimented with this planner on a variety of simulated robots, including
holonomic mobile robots and manipulator arms with many (8 and 10) degrees of
freedom. We have also run several experiments using simulated car-like and trailer-
like robots. For these robots, interesting experiments were carried out with a version
of the planner specifically designed to minimize the number of mancuvers.
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Figure 3: A Parallel Parking Maneuver

The planner operates in a best-first fashion over a discretized representation of the
configuration space. The “normal” version of the planner makes use of a potential
function defined over the configuration space. Basically, it follows the negated gra-
dient of this function until it reaches the goal configuration or a local minimum of
the potential. It escapes local minima, either by filling them up to the lowest sad-
dle points (when there is a small number of degrees of freedom), or by generating
Brownian motions (when there is a large number of degrees of freedom). Using these
simple techniques, the planner was able to plan the motions of holonomic mobile
robots among complex obstacles in 1 to 3 seconds* and the motions of manipulator
arms with 8 and 10 degrees of freedom in 1 to 5 minutes.

The version of the planner aimed at minimizing the number of mancuvers does not
use any potential function. It applies the same best-first secarch strategy starting
at q,, but the cost function is the number of maneuvers. The algorithm maintains
two lists of configurations, the CLOSED and the OPEN lists. The CLOSED lst
contains all the configurations whose successors in the discretized configuration space
have alreadv been generated. The OPEN list contains all the attained configurations
whose successors have not been generated yet. The CLOSED list is simply represented
by marking the corresponding cells of a large n-dimensional array (of the order of 128°

“All the experiments reported in this paper were conducted on a MIPS-based DEC 3100
\Workstation.
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for a car-like robot and slightly less than 64* for a trailer-like robot). Hence, the access
time to CLOSED is constant. The OPEN list (which is much smaller) is represented
as a heap [Aho, Hopcroft and Ullman, 1983}. Every modification and access to OPEN
is made in logarithmic time.

In order to generate the successors of a configuration, the planner discretizes the
control parameters and, for each set of values of these parameters, it integrates the
velocity parameters of the robot along a short distance. For example, for a car-like
robot, the integration of the velocity parameters X;, Yy and 0 (see relations (7))
yields: :

6(t) = 0(0) + txene

X,(t) = X,(0)+ 25 (sin(¢ + 0(0) + t2522) — sin(¢ + 0(0)))

sin

Yi(6) = Y;(0) — =E5 (cos(¢ + 0(0) + t*52) — cos(¢ + 0(0)))

The planner generates six successors of a configuration by successively setting the
values of the two control parameters v and ¢ to the six values in:

{-———Uo, UO} x {'—d)ma::) 0, +¢ma-x}

The integration time is 1 and vo is set to approximately twice the discretization

interval of the X; and Y parameters.

In the case of the trailer-like robot, the generation of the successors of a configuration
is slightly more involved. While the first three equations in (11) can be integrated
analytically when the values of the control parameters (v and ¢) are constant, this
is not the case for the last equation. The planner solves this equation using a fourth
order Runge-Kutta method. The paths thus generated do not exactly satisfy the

second nonholonomic constraint.

The array in which the CLOSED list is represented is in fact an array of paral-
lelepipedic neighborhoods in the paramaterized configuration space. Whenever the
planner generates a new configuration, it determines the parallelepipedic neighbor-
hood to which the configuration belongs. If the neighborhood is marked (hence, 1s In
CLOSED), the configuration is discarded. Otherwise, the configuration is recorded
as it (not the neighborhood) in the OPEN list. Hence, the planner never explores
from the same neighborhood twice, but it records the discretized path traced by the
search exactlv. Collisions are checked by intersecting the robot at cvery attained
configuration with the obstacles in the workspace. As the workspace is represented
in bitmap form. the test of intersection is very quick and independent of the number

of obstacles [Barraquand and Latombe, 1989].
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Figure 7: Parking a Trailer

In theory, if a path exists between two input configurations, the planner ultimately
generates a path with minimal number of maneuvers (at the resolution of the config-
uration space discretization). Despite conceptual simplicity of the brute force algo-
rithm applied, the planner was able to solve all the problems submitted to it, with
the configuration space discretization mentionned above. The problems were solved
in reasonable amount of time, typically a few minutes (see the next two subsection
for more detail). Most of them are non-trivial and would require significant effort
for 2 human to solve. It is clear, however, that this version of the planner 1s only
applicable to robots whose configuration spaces have small dimension. The two-body
trailer-like robot, which has a four-dimensional configuration space, stands very close

to the practical limit of the planner.

The normal version planner, which uses adequate potential functions to guide the
search, is more time and space efficient, but it no longer minimizes the number of
maneuvers. [n practical applications, we would probably have to compromise between
the time devoted to planning and the number of maneuvers. However, we have no
simple and svstematic solution for making such a compromise. Sometimes, as 1t
will be illustrated by an example, minimizing the number of maneuvers also results
in paths that are much longer than paths that could be generated if a few more

meneuvers were allowed.
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[N



Figure

8: Trailer Maneuvering in a Cluttered Workspace




4.2 Experimental Results with the Car-Like Robot

We experimentated with the planner using a simulated car-like robot with various
values of the maximal steering angle ¢mq- and several workspaces.

Figure 3 shows an example of the parallel parking problem with a very limited steering
angle (@mar = 30 dégrees). The running time for that example was 30 seconds.

Figure 4 shows an example with backing-up maneuvers in a cluttered workspace when
the maximal steering angle ¢maz is 45 degrees. The running time was about 1 minute.
Ten maneuvers (i.e. changes of the sign of v) were necessary in this example.

Figure 5 shows an example of maneuvering in an unstructured workspace represented
as a 5127 bitmap with the same maximal steering angle ¢maz (45 degrees). The
running time was about 2 minutes. Four maneuvers were necessary in this example.

Figure 6 shows an example with a very long robot where only three maneuvers were
needed. However, in this case, minimizing the number of maneuvers leads to a very
long path, relatively to paths which could be generated by allowing more maneuvers.

4.3 FExperimental Results with the Trailer-Like Robot
We also conducted several experiments with a simulated two-body trailer-like robot.

Figure 7 shows an example where the trailer has to be parked with a very limited
steering angle (@mar = 30 degrees). The running time was 2 minutes.

Figure 8 shows an example where the trailer has to maneuver in a cluttered workspace
with a maximal steering angle ¢mq equal to 45 degrees. The running time was about

5 munutes.

5 Conclusion

In this paper, we have presented an implemented path planner, which is able to gen-
erate complex paths of nonholonomic mobile robots among obstacles. The generated
paths have minimal number of backing-up maneuvers. The approach taken in the
planner essentially consists of discretizing both the workspace and the configuration
space of the robot, and performing a dynamic programming search in the discretized
configuration space. The bitmap representation of the workspace allows the planner
to consider anv distribution of obstacles in the workspace, with no limitation on the

shape or the number of obstacles.

Prior to the presentation of the planner, we proved the controllability of the car-like
and trailer-like robots, using general results from differential geometry and nonlinear
control theorv. These results can also be applied to other nonholonomic robots. An
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important result is that a robot constrained by a single scalar lincar nonholonomic

equality constraint is fully controllable.

The implemented planner has solved in a reasonable amount of time several non-
trivial planning problems for car-like robots (three-dimensional configuration space)
and trailer-like robots (four-dimensional configuration space), with limited steering
wheel angle. Since it operates in a very systematic fashion, the planner can solve
any problem with a reasonable discretization of the configuration space. However,
major improvements of the approach are necessary to deal with significantly finer
discretizations and higher-dimensional configuration space. Allowing a non-optimal,
but still reasonable, number of maneuvers and guiding the search for a path by
appropriate potential functions as in [Barraquand and Latombe, 1989] is certainly
a promising direction, although it is still not clear how it can be done in a systematic

way.
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