CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

Mechanization of Spatial Reasoning for
Automatic Pipe Layout Design

by
David Zhu and Jean-Claude Latombe

TECHNICAL REPORT
Number 39

October, 1990

Stanford University

IFE Center for Integrated Facility Engineering ° Stanford University

Copyright © 1990 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

Mechanization of Spatial Reasoning for
Automatic Pipe Layout Design

David Zhu and Jean-Claude Latombe
Robotics Laboratory
Department of Computer Science, Stanford University

Stanford, CA 94305, USA

Abstract

Artificial Intelligence has been very active in developing high-level symbolic
reasoning paradigms that have resulted in practical expert systems. However,
with a few exceptions, it has paid little attention to the automation of spatial
reasoning. On the other hand, spatial reasoning has attracted the interest of
several researchers in Robotics. One of the important problems that have been
investigated is motion planning, and very significant results have been obtained.
This paper describes an implemented system for designing pipe layouts auto-
matically using motion planning techniques. It introduces a new approach to
pipe layout design automation in which pipe routes are treated as trajectories
left behind by rigid objects (“robots”). We have implemented this approach in
a basic Pipe Router that is described in detail in this paper. We have extended
this router in order to make it capable of treating a variety of other constraints
which are typical of practical pipe layout design problems. These constraints
relate to the process carried out in the pipes, to the design of their mechanical
support, and to the constructability and the ease of operation and maintenance
of the designed pipe systems.

Acknowledgements: This research project was partially funded by a grant from CIFE (Center
for Integrated Facility Engineering) at Stanford and by Darpa Contract N00014-88-k-0620 (office of
Naval Research). The authors would like to thank Prof. P. Teicholz for suggesting the topic of the
project and for providing continuous encouragements. They also thank the R&D group at Bechtel
National Inc. and Dr. A. Riitahuhta of Tampela Inc. (Finland) for providing technical advice
throughout the project.

1 Introduction

Artificial Intelligence (AI) has been very active in developing high-level symbolic rea-
soning paradigms that have resulted in practical expert systems. However, with a
few exceptions in the area of “qualitative reasoning”, it has paid little attention to
the automation of spatial reasoning. Consequently, Al has been less successful in do-
mains that require involved spatial reasoning capabilities such as design and process
planning. In design, one must reason about the relationship between function and
shape. In process planning, it is necessary to reason about accessibility, stability, and
tolerances. The integration of design and process planning to ensure constructability
also relies on sophisticated spatial reasoning capabilities. The geometrical and physi-
cal knowledge needed in these domains is not conveniently captured in logic-oriented
constructs such as frames and production rules which are typical in knowledge-based
expert systems.

On the other hand, during the past ten years or so, spatial reasoning has attracted
the interest of several researchers in Robotics. One of the important problems that
have been investigated is motion planning [Schwartz, Sharir and Hopcroft, 1987]
[Latombe, 1990]. The basic motion planning problem is to compute a collision-free
path for a given object among obstacles from an initial configuration of the object
to a goal configuration. Very significant results have been obtained over the last
few years. Though theoretical results indicate that motion planning is intrinsically
difficult (PSPACE-hard), experimental results with implemented planners are more
encouraging and suggest that the problem is tractable in many practical situations
[Barraquand and Latombe, 1989a] [Faverjon and Tournassoud, 1989].

A recent stream of effort has been devoted to exploring the application of spatial
reasoning techniques developed in Robotics to other areas, especially mechanical de-
sign and process planning [Latombe, 1988] [Donald, 1989] [Natarajan, 1989] [Wilson
.and Rit, 1990]. The research reported in this paper participates in this effort. It has
resulted in the design and implementation of an operational system for designing pipe
layouts automatically using motion planning techniques. Pipe layout design (PLD) is
similar to motion planning in that both problems consist of finding geometric paths
satisfying input constraints. In this paper we exploit this similarity and propose a
new approach to PLD automation in which pipe routes are treated as trajectories left
behind by rigid objects.

PLD is a problem of major significance in chemical, refinery, and power plant design
[Gunn and Al-Asadi, 1987], and in ship and submarine design [Sheridan, 1976]. It
1s complex and time consuming due to the large number of pipes and constraints in-
volved. It often requires many iterations before a satisfactory design can be obtained.
Therefore, any progress toward automating PLD will benefit these industries in terms

of higher quality, reduced cost, and shorter turn-around time. Several CAD systems
have been built to help engineers solving this problem (e.g. [Bechtel, 1986] [Mitsuta et
al., 1986] [Kobayashi et al., 1986]), but none of them is truly satisfactory. Either they
only consider peripheral issues of the PLD problem (e.g. they are essentially graphical
display systems) or they do not actually address the geometrical issues raised by the
problem (e.g. these issues are hidden in a numerical function to be optimized or in
rules of thumb believed to mimick human expertise). In contrast, our approach takes
pipe routing for what it actually is, that is, a geometric planning problem. By treating
geometric issues in a systematic fashion, it can deal with a wide variety of constraints
that are typical of practical pipe layout design problems, including constraints aimed
at facilitating pipe construction, operation, and maintenance. Qur approach allows
one to have better control over the achievement of each individual constraint than the
optimization approach. It makes our system more robust than pure expert systems
which tend to work poorly, if at all, when they face situations not anticipated in their
knowledge. On the other hand, our system could certainly benefit from the other
approaches. For example, one could run optimization techniques to improve further
the layouts it produces, and apply expert rules to increase its efficiency in stereotyped
situations.

In another domain, VLSI routing, there has been a great deal of effort aimed at
developing efficient routing systems (e.g. [Sechen, 1988]). However, though VLSI
routing and pipe routing certainly have external similarities, the constraints to be
satisfied by the routes in the two problems are quite different. These differences make
the transfer of routing methods from one problem to the other more difficult (if at
all possible) than one would expect. Another related routing problem is the design
of hydraulic manifold blocks [Chambon et al., 1987].

Although the approach presented in this paper is new, a few routers have already
been proposed which apply techniques closely related to motion planning techniques.
But this relation was not explicitly mentioned, nor exploited in depth. In particular, a
“visibility graph” technique was presented in [Wangdahl, 1974] to route pipes in ships.
A “potential field” technique was proposed in [Hasan and Liu, 1987] for PCB routing.
On the other hand, the application of motion planning techniques to automated
structure design, a problem with some similarities with pipe routing, was suggested

in [Donald, 1983].

This paper is organized as follows. Section 2 provides the context for the rest of the
paper. We present the goal of our research in more detail, we give an overview of our
motion-planning-based approach, and we describe the system architecture deriving
from this approach. This architecture is organized around a core module called the
Pipe Router. In the other sections we mainly focus on the technical issues which un-
derlie the development of this module. In Section 3 we give the necessary background

in motion planning. In Section 4 we describe a basic Pipe Router embedding our
motion-planning-based approach. In Section 5 we present various extensions of the
basic router which allow us to deal with additional constraints in PLD problems. In
Section 6 we present our current research in pipe layout design.

2 QOverview

The PLD problem consists of finding the layout of pipes in a two-dimensional (2D)
or three-dimensional (3D) workspace. The pipes must connect nozzles (or terminals)
of given locations and avoid collision with obstacles (machines, walls, structure) of
given locations and shapes. The layout must often satisfy additional constraints
related to the process carried out in the pipes (e.g. a water pipe should not be
hanged above any electrical equipment) and to the design of mechanical support for
the pipes (e.g. pipes should traverse designated structures providing support), as
well as to the constructability and the ease of operation and maintenance of the pipe
system (e.g. valves should be accessible). Furthermore, there usually are optimality
criteria regarding the length and number of turns of the pipes which should be taken
into account in order to produce a satisfactory layout. The goal of our research
has been to develop an automatic PLD system capable of addressing this variety of
constraints in a systematic fashion.

Our approach to automatic PLD is based on using spatial reasoning techniques orig-
inally developed for robot motion planning. In this approach, we regard each pipe
as the trace left behind by a rigid object moving in the pipe workspace. Using this
metaphor, we transform the PLD problem into the problem of planning the motion
of a collection of robots. Among the various approaches that have been proposed
for solving the robot motion planning problem [Latombe, 1990], we have selected the
so-called approzimate cell decomposition approach [Brooks and Lozano-Pérez, 1982]
[Zhu and Latombe, 1989]. Basically, this approach consists of representing the subset
of collision-free configurations of the robot as a collection of cells having the same
predefined shape. The connectivity graph representing the adjacency relation among
these cells is then constructed and searched for a channel (sequence of adjacent cells)
connecting the initial configuration to the goal configuration of the robot. If the search
terminates successfully, a path is extracted from the generated channel. We have se-
lected this approach because it has a unique set of attractive features. It is rather easy
to implement, relatively efficient and resolution-complete [Zhu and Latombe, 1989].
It also generates “channels” (sets of paths) rather than single paths, thus enabling a
lesser-commitment approach to pipe routing.

Our PLD system has evolved from this approach. The pipes are planned one at
a time. Planning a pipe corresponds to generating the path of a robot among the

“Functiona™
~Constraints

Expert Design
Knowledge

Constraint
Reformulator

Design
Analyzer

Pipe Router

{ Pipe Layout }—— Y

(Feedback
\lnterpreter)

Pipe Layout
Final

Figute 1: Architecture of Qur PLD System

obstacles and the previously planned pipes. In order to deal with the various design
constraints applying to the pipe layout to be generated, we reformulate them into
geometric constraints applying to the paths of the “robots” tracing the pipes. Some
of these constraints restrict the possible locations of the pipes; they are essentially
treated as additional obstacles to be avoided. The other constraints put requirements
on the shapes of the pipes; they restrict the set of valid channels in a connectivity
graph and are treated using history-dependent search techniques.

The PLD system deriving from this approach consists of four main modules depicted
in Figure 1: the Pipe Router, the Constraint Reformulator, the Design Analyzer, and
the Feedback Interpreter. The inputs to the system are divided into two parts: the
Functional Constraints and the Ezpert Design Knowledge. The output of the system
is the Pipe Layout (Final).

The Functional Constraints give the locations of the terminals of the pipes and the
shape and locations of the obstacles in the workspace. They are extracted from a
document known as the Piping and Instrument Diagram (P&I D) in the construction
industry. They are directly input into the Pipe Router.

The Functional Constraints alone do not completely specify a pipe layout. As indi-

cated above, we have identified three types of additional constraints: process con-
straints, structural constraints, and accessibility constraints. A pipe layout must also
satisfy these constraints (not all of them are strict constraints). These constraints
can be quite complex to express and to verify (e.g. they may require extensive stress
analysis using finite-element methods). An experienced pipe designer typically ab-
stracts them into simplified constraints which we call Expert Design Constraints.
These constraints cannot be used directly by the Pipe Router. The purpose of the
Constraint Reformulator is to rewrite them into geometric constraints usable by the
Pipe Router. In Section 5 we will give various examples of Expert Design Constraints
and we will discuss their transformation into geometric constraints.

The Pipe Router attempts to generate a pipe layout that satisfies the input Func-
tional Constraints and the reformulated Expert Design Constraints. Since the latter
are abstractions of more complex constraints, the generated layout, if any, must be
submitted to a post-design analysis in the Design Analysis module. This may involve
detailed process and stress analysis, to ensure that the real process and structural
constraints are actually satisfied, and simulation of construction, operation and main-
tenance plans, to verify that they are feasible. If the layout fails in this analysis, for
example if the pipe support designer fails to come up with a detailed design of the
pipe supports, then information related to the shortcomings of the layout is fed back
to the Pipe Router through the Feedback Interpreter. The layout is then modified by
taking this information into consideration.

At the current stage of our research, only the subset of Figure 1 shown in bold lines,
which include the Pipe Router and the Constraint Reformulator, have been designed
and implemented. Therefore, in this paper we focus our attention on the Pipe Router
(Section 4) and the Constraint Reformulator (Section 5). Prior to that, we give some
background in robot motion planning.

3 Background in Motion Planning

The basic robot motion planning problem can be stated as followed: Given a set of
obstacles B; (¢ = 1,...,¢) in a workspace W, find a collision-free path for a robot A
from a given initial configuration g, to a given goal configuration qg.q. Figure 2
illustrates a typical example of the basic motion planning problem where the robot is
a rigid object (shown grey) allowed to translate and rotate among obstacles (shown
black) in a 2D workspace. It displays a collision-free path followed by this robot.

We model W as the Euclidean space R? (2D case) or R? (3D case). A configuration
q of the robot A is a specification of the position of every point in A with respect
to a coordinate system embedded in W. The configuration space C of A is the
set of all the possible configurations of A [Lozano-Pérez, 1983]. For example, if A is

Goal Configuration

E
L”__'

Figure 2: Motion Planning Example

a disc in R? or a ball in R® (the two cases of interest in the rest of this paper), a
configuration q can be represented as the coordinates (z,y) or (z,y, 2 z) of the center
of the disc/ball. Then the workspace and the configuration space are both copies of
RV, with N =2 or 3.

Every obstacle B; (¢ € [1,q]) is mapped into C as a region CB; called a C-obstacle
which is defined by:

CB; = {q€C [AlqQ) N B; # 0}

where A(q) designates the region occupied by A at configuration q. The region:

Cfree =C \ U CBz

i€[1,q]

is called the free space. A collision-free path (more simply, a free path) between
two configurations Qi and Qe is any continuous map 7 : [0,1] — Cfree such that
7(0) = Qiniz and 7(1) = Qgoar- The basic motion planning problem is to find such a
free path.

Figure 3 illustrates the construction of C-obstacles when the robot is a disc of radius
r and the obstacles are polygons. The C-obstacles are obtained by growing the
workspace obstacles isotropically by the radius r.

Workspace Configuration

@ circular
robot

7/

[C-obstacle

G

Figure 3: Construction of C-Obstacles

Several general approaches to robot motion planning have been developed [Latombe,
1990]:

e The roadmap approach consists of capturing the connectivity of the free space
in a network of one-dimensional curves lying in the free space or its closure

[O’Dinlaing and Yap, 1982]. This network is then used as a set of standardized
paths for connecting the initial to the goal configuration.

e The cell decomposition approach consists of representing (exactly or approxi-
mately) the free space as a collection of cells of rather simple shapes and search-
ing the connectivity graph representing the adjacency relation among these cells
[Schwartz and Sharir, 1983].

e The potential field approach regards the robot represented as a point in its con-
figuration space as a particle under the influence of a potential field combining

an attractive potential generated by the goal and a repulsive potential generated
by the C-obstacles [Khatib, 1986].

The cell decomposition methods can be divided further between ezact and approzi-
mate methods. The former represent the free space exactly, while the latter represent
it approximately as a collection of cells of predetermined shape.

The approximate cell decomposition approach (used in our system) was introduced in
[Brooks and Lozano-Pérez, 1983], with subsequent contributions by other researchers.
In its most typical form, it consists of decomposing the robot’s configuration space
into rectangloid cells at successive levels of approximation. Cells are classified as
EMPTY or FULL, depending on whether they lie entirely outside or entirely inside
the C-obstacles. If they are neither EMPTY, nor FULL, they are labeled as MIXED. At

each level of approximation, the planner searches the connectivity graph of these cells
for a channel of adjacent EMPTY cells connecting the initial configuration of the robot
to its goal configuration. If no such sequence is found, it iteratively decomposes some
MIXED cells into smaller cells, label them appropriately, and searches the updated
connectivity graph for a channel. The process ends when a solution has been found,
or it is guaranteed that no solution can be found, or MIXED cells have become smaller
than some prespecified size.

In our PLD system, we use a non-hierarchical version of the approximate cell de-
composition approach. This means that we build a single decomposition of the con-
figuration space. If we fail to find a path, this decomposition is not refined into a
finer one. Indeed, when the robot is a disc or a ball, the particular geometry of the
C-obstacles makes it possible to generate a rather precise conservative approximation
of the free space in a single pass, with a reasonable number of cells. In addition, the
cross-section of a pipe is usually small relative to the size of the obstacles. In any
case, the parameters specifying the precision of this approximation can be set by the
system’s user as desired.

The motion planning approaches listed above can be generalized to the case where
there are multiple robots Ay, ..., A, moving in the same workspace. This extension
is important since we want to generate the layout of many pipes, each being traced
out by its own “robot”. One way to proceed is to consider the various robots as
the components of a single, multi-bodied robot A = {Ay, ..., A,}. The configuration
space of Ais C = C; X ... x Cp, with Cx (k € [1,p]) denoting the configuration space
of Aj. The obstacles are mapped into C and a free path is planned among the C-
obstacles. Such a path determines a set of p coordinated free paths for the robots 4,
in their respective configuration spaces.

The above approach to multi-robot motion planning is called the centralized planning
approach. Although it solves the problem in theory, it suffers, however, from a major
drawback: the dimension of C is equal to p times the dimension of each individual
space Cr (assuming all these spaces have the same dimension), and it has been shown
that finding a free path in a configuration space of dimension m requires exponential
time in m [Reif, 1979]. Hence, the approach tends to be intractable. In the particular
case of the approximate cell decomposition method, it yields a number of cells that
is exponential in the dimension of C. Another approach, which we use in our PLD
system, is called the prioritizing approach [Erdmann and Lozano-Pérez, 1986]. It
consists of planning the paths for the robots, one at a time. For each robot, the
considered obstacles are the workspace obstacles and those robots whose motions
have been already planned. This approach assumes implicitly that the interactions
among the robots are relatively weak. If this assumption is roughly satisfied, this
approach tends to run in time exponential in the maximal dimension of the Cy’s (i.e.

Ny

il o
ol g
(-Il_jl-'
il g

(a)

(b)

Figure 4: Example of the Basic PLD Problem

2 or 3 in the application to PLD), which is more tractable. At the other extreme,
if the assumption is truly not satisfied, the approach may need a prohibitively large

number of backtracking operations.

4 Pipe Routing

4.1 Basic Routing Problem

Let W be a bounded, connected subset of RV, with N = 2 or 3, representing the
pipe workspace. A pipe specification Py is a triple (T}, T, r:), where T} and 17
are the two distinct points in W representing the terminals that the pipe should
connect, and 7 is the radius of the pipe. A route for Py is the region Ry in W that
is swept out by a disc (in 2D) or a ball (in 3D) of radius r; when its center moves
along a curvilinear line L; connecting T} and TZ. This line is called the path of the

pipe route.

We formulate the basic PLD problem as follows:

Given a collection of obstacles B; (i = 1,...,q) in W and a set of pipe

10

specifications Py (k = 1,...,p), compute routes Ry C W (k = 1, ...,p), so
that:

- no route intersects an obstacle, i.e. : Vi €[1,q],Vk € [1,p] : Bi R = 0;

- no two routes intersect each other, i.e. : Vk, k' € [1,p],k # k' : R Re = 0.

(Since the routes must lie in W, the boundary of W is treated as the boundary of an
additional obstacle enclosing the workspace. We denote this “obstacle” by By.)

Figure 4 shows an example of the basic PLD problem in a 2D rectangular workspace.
In this example, there are two polygonal obstacles B; and B, (shown dark) and five
pipe specifications (Figure 4.a). A solution to this problem is shown in Figure 4.b.

In the sequel, we make the following assumptions:
- Both the workspace W and the obstacles B; are modeled as polygons or polyhedra.

- All the terminals are located in the boundary of the region £ = W\ U; B;. At every
terminal the path of the corresponding pipe is perpendicular to the boundary of £.

- The path of every pipe is a sequence of straight and circular segments. All the
circular segments in the same path L; have the same radius p; specified as an
additional parameter in the pipe specification.

- A Cartesian coordinate system Fyy is embedded in W. Every straight segment in
the path of a pipe is parallel to one of the axes of Fyy and (in the 3D case) every
circular segment is parallel to one of the planes determined by two major axes.

These assumptions are all reasonable in practice. In most cases, W is a parallelepiped
bounded by “walls”. The axes of Fyy are selected parallel to the edges of this paral-
lelepiped. “Good” pipe design tends to avoid slanted pipes.

4.2 Outline of the Algorithm

Our algorithm for solving the basic PLD problem is an adaptation of the approximate
cell decomposition method developed in robot motion planning. It considers the pipes
Py, k£ € [1,p], in sequence. For each pipe P, = (T§, T2, 71), it plans a collision-free
path for a ball of radius r; from T} to T? among the obstacles By, ..., B,, on the one
hand, and the pipe routes Ry, ..., Ri_1 already constructed, on the other hand. If
such a path L is found, it determines a route Rj;. Otherwise, the algorithm must
backtrack, i.e. it must change some of the routes R, ..., Rs_; in order to make room
for R¢. As mentioned in the previous section, this corresponds to applying a priori-
tizing planning approach. A general prioritizing heuristics to reduce backtracking is
to route bigger pipes before smaller ones.

11

We let A, designate the “robot” tracing out the route Ry and Cy denote its config-
uration space. The algorithm that is executed at each iteration in order to compute
the path L; of Ry consists of the following three steps:

1. Compute the C-obstacles due to the obstacles By, ..., B, and the existing routes
Ri, .- Rg—1 by growing them by the radius r of Py. Approximate the free
space in Cy as a conservative collection of (EMPTY) rectangloid cells.

2. Construct the connectivity graph of these cells and search this graph for a
channel, i.e. a sequence of cells such that the boundary of the first (resp. the
last) cell contains T} (resp. T2) and any two successive cells are adjacent.

3. If the search terminates sucessfully, extract a path Lj from the channel. Oth-
erwise return failure.

In order to facilitate the subsequent extraction of paths, the rectangloid cells gener-
ated at Step 1 have all their sides parallel to axes of Fy. Two cells are adjacent if the
intersection of their boundaries is a segment of non-zero length (in R?) or a rectangle
of non-zero area (in R?).

Figure 5 illustrates the operations performed by this algorithm in a 2D workspace
for a single pipe P;y. Figure 5.a shows the construction of the C-obstacles due to B;
and B; in the configuration space C;. Figure 5.b displays an approximation of the
free subspace in C; in the form of a collection of rectangular cells. Figure 5.c shows
both a channel between the two terminals 7} and T and a path L; in this channel.
Figure 5.d presents the corresponding route R; in the workspace.

The operations carried out by the above algorithm are described in more detail in the
following subsections. We also present the backtracking mechanism that is activated
when the path planning algorithm fails to construct a path Ly.

4.3 Cell Decomposition

The first step of the above algorithm generates an explicit representation of the space
that is available for the pipe Py — i.e. the free space in Cx — in the form of a collection
of rectangloid cells. To this purpose, it first maps the obstacles B; (1 =0 to ¢) and
the routes R; (j = 1 to k — 1) to C-obstacles in C;. We denote these C-obstacles
by CB; and CR;, respectively. Next, it computes a bounding approximation of these
C-obstacles in the form of a collection of rectangloids whose edges are oriented along
Fw’s axes. The complement in Cy of all these rectangloids is easily computed in
the form of a collection of rectangloids also oriented along F’s axes. This second
collection of rectangloids are the cells of the conservative representation of the free
space in C;. This approximation technique has been shown to be more efficient

12

T, (d)

Figure 5: Pipe Routing Example

than the more classical quadtree/octree decomposition, in the sense that it usually
generates a more precise approximation of the free space with a much smaller number
of cells (which subsequently facilitates graph searching) [Zhu and Latombe, 1989].

4.3.1 2D Case

CB;, for i = 0 to g, is obtained by growing B; isotropically by the radius r; of the
pipe to be routed. Since we model B; as a polygon, CB; is a generalized polygon
whose boundary is a sequence of straight and circular edges (see Figure 3). Each
straight edge of CB; is the locus of the center of the disc A, when it moves with
its boundary sliding in contact along an edge of B;. It is obtained by translating

13

E i+ gt

'Pj- 5 -n>0

(a) (b)

Figure 6: C-obstacle Due a Pipe Elbow

the corresponding edge of B; by ry, along its outgoing normal direction. Each circular
edge is the locus of the center of A, while it moves with its boundary being in contact
with a convex vertex V of B;. It is a circular arc of radius r; centered at V. Let
n be the number of vertices of B;. Algorithms compute CB; in O(n) time, if B; is
convex, and in O(n?logn) time, otherwise [Latombe, 1990]. In the second case, if
the intersection of B; with any disc of radius r; contains a small number of vertices
(that is then considered to be constant), a reasonable situation where B; is said to
have bounded local complezity [Sifrony and Sharir, 1987], the time complexity reduces
to O(nlogn).

CR;, for j =1 to k — 1, is also obtained by growing R; isotropically by the radius
rg. It has the form of a route of radius r; + ry following the same path L; as R;.
The shape of an elbow of CR; corresponding to a circular segment of L; (of radius
p;) depends on the relative values of r;, r, and p;. If p; > rj + rg, then the elbow of
CR; is bounded by two circular arcs of respective radii p; +r; + ¢ and p; —r; — 7
(see Figure 6.2). Otherwise, it is bounded by a circular arc of radius pi+rj+rron
one side and by a right corner on the other side (Figure 6.b).

We compute a rectangular approximation of CB; by first constructing the bounding
box of CB; whose edges are parallel to Fiy’s axes. We next cut this box into slices
parallel to its shortest side at a specified resolution (which determines the precision
of the approximation). Assume that these slices are parallel to the z-axis. For each
slice S, we compute the projection of the intersection of CB; and S on the z-axis, and
we lift this projection back into the slice, thus obtaining a rectangloid approximation
of CB; within S (see Figure 7).

Every grown route CR; is treated in a similar fashion. However, we take advantage

14

‘/S/ lifting

/ projection

-
X 1 X2 X

Figure 7: Computation of the Bounding Approximation of a C-obstacle

of the special shape of the routes to simplify.this process. In particular, since the
~ straight segments of a route are rectangles oriented along Fyy’s axes, they do not have
to be approximated.

4.3.2 3D Case

The isotropic growth by 7 of a polyhedral obstacle B; yields a generalized polyhedral
C-obstacle CB;, i.e. a volume whose boundary is made of pieces of planar, cylindrical
and spherical surfaces. Each planar face corresponds to a face F' of B; and is obtained
by translating F' by r; along its outgoing normal direction. Each cylindrical face
corresponds to a convex edge E of B; and is part of the surface of a cylinder having
E for its midline and r; for its radius. Each spherical face corresponds to a convex
vertex V' of B; and is part of the sphere of radius r; centered at V.

In order to compute a bounding approximation of CB;, we apply a recursive project-
and-lift technique [Zhu and Latombe, 1989], which we sketch below. Assume that
the longest dimension of the bounding box of CB; is along Fyy’s z-axis. We slice the
z-axis into intervals at some prespecified resolution and we compute the projection
T2y(CB; N [21, 25]) of the subset of CB; contained in every slice [zq, z,] into the zy-
plane. Next, we proceed recursively by slicing, say, the y-axis and projecting the
subset of 74, (CB; N [21, 23]) contained in every slice [y;, 9] into the z-axis. The latter
projection consists of one or several intervals. We lift each such interval [z1,z2] up to
a rectangloid [z1, 2] X [y1,ys] X [21, 29] in Ct.

We could compute the projection ., (CB; N [21,22]) from the explicit representation

15

of CB;’s boundary. Although the construction of this representation is not really
difficult, it is not needed as shown below (if we assume that B; is homeomorphic to a
sphere, hence is not traversed by any hole.) For every face F' of B;, we let CF denote
the face F' translated by ry along its outgoing normal. For every convex edge F of B;,
we let CE denote the truncated cylinder of radius r; having F as its midline. For every
convex vertex V of B;, we let CV denote the sphere of radius r; centered at V. Since
both the cylinders CE and the spheres CV are entirely contained in CB;, the projection
Tzy(CB; N [21, 25]) is obtained by projecting the subset of every element CF, CE, and
CV contained in [z, 2] into the zy-plane, and computing the external boundary of
the union of all the projections. These computations are straightforward (though, in
the case of a cylinder CE, several different cases have to be carefully considered). If
n in the number of vertices of B;, the overall computation takes O(n?logn) time in
the worst case, using a sweep-line technique [Preparata and Shamos, 1985] to trace
out the external boundary of 7, (CB; N [z, #]). This boundary consists of straight,
circular, and elliptical edges.

The isotropic growth of a route R; by ry yields a route of radius r; + r; following the
same path L; as R;. The straight segments and the elbows of the grown route are
treated separately. Each straight segment is parallel to a plane of Fy, say the zy-
plane. It is sliced into intervals along the z-axis. Each slice projects into the ry-plane
as a rectangle which is lifted up into a rectangloid. Each elbow of the grown route is
also parallel to a plane, say the zy-plane. Its cross-section by a plane at any constant
z has one of the two forms shown in Figure 6. Hence, each elbow can be sliced into
intervals along the z-axis, with each slice projecting into the zy-plane as a 2D route.
Each projection is approximated as in the 2D case and the resulting rectangular cells
are lifted up into 3D rectangloid cells.

4.3.3 Cashing in on Previous Computation

If the current route has the same radius as a previously generated route (a frequent
case in practice), we can reuse the approximations of the C B;’s computed for planning
the previous route. If two routes Ri-1 and Ry having the same radius are planned
consecutively, we can even save more work. Indeed, most of the cell decomposition
of the free space in Cx_; (and consequently, most of the connectivity graph) remains
valid in C;. One can proceed as follows. The decomposition built to represent the
free space in Cj_1 is copied into C; and, since the route R;_; is an additional obstacle
to Rk, the cells of the copied decomposition which are intersected by the route Ry_;
grown by r; = r;_; (and only these cells) are refined into smaller cells. Since this can
result in considerable saving of computation, it is generally desirable to plan routes
with the same radius consecutively. This is compatible with the general prioritizing
heuristics that suggests bigger pipes to be routed before smaller ones.

16

init

& current
cell

Figure 8: Estimation of the Length of a Path in a Partial Channel

(a)) - ©

Figure 9: Expected Number of Turns in a Cell

4.4 Channel and Route Generation

Once we have decomposed the free space in Cy, we construct the connectivity graph
G}, representing the adjacency relation among the generated cells. The node corre-
sponding to the cell whose boundary contains the terminal T} (resp. T?) is called the
initial (resp. goal) node (the initial and goal nodes coincide if the two terminals are
contained in the boundary of the same cell). A channel is constructed by searching
G} for a path connecting the initial node to the goal node.

Various techniques could be used to search Gy. In our implementation, we use an A*
algorithm [Nilsson, 1980]. The search is guided by an evaluation function f (N) =
g(N)+h(N) defined over the set of nodes in Gy. If there exist one or several channels
between the initial and the goal cells, the A* algorithm generates one channel which
minimizes the function f evaluated at the goal node. Since it is desirable to plan
paths of minimal length and minimal number of turns in order to generate satisfactory
layouts, we use the evaluation function f to encode this desire.

17

Hence, g(IV) is defined as a weighted sum of the length / (V) of the path Ly, constructed
so far and its number of turns n(N). However, since we construct L only after a
complete channel has been generated, I(N) and n(N) are only estimates derived from
the geometry of the channel. We compute I[(N) as the Manhattan length of the line
connecting the terminal T} to the center of the last cell generated so far and passing
through the midpoint of the intersection of every two successive cells (Figure 8 shows
this line in the 2D case). We compute n(N) by associating an expected number
of turns in every cell of the partial channel constructed so far, except the last cell.
We define the entrance of a cell « as the intersection of its boundary with that of
the previous cell (the entrance of the first cell is the point T}}) and its ezit as the
intersection of its boundary with that of the following cell (the exit of the last cell is
T%). In 2D, the expected number of turns in & is: 0, if the entrance and the exit are
contained in parallel sides of the cell and their projections overlap (Figure 9.a); 2, if
the entrance and the exit are in parallel sides and their ‘projections do not overlap
(Figure 9.b); and 1, if the entrance and the exit are not in parallel sides (Figure 9.c).
In 3D, the expected number of turns in & is 0, 1, 2, or 3 depending on the relative
orientation and position of the entrance and the exit of the cell. '

The function ~(N) is simply computed as the Manhattan distance between the center
of the cell corresponding to the node N and the terminal TZ.

Let us assume that the search of G} succeeds in producing a channel (&4, ..., k;) of s
adjacent cells. We construct a path L; within this channel which has minimal length
and minimal number of turns over all the paths lying in this channel. This is done
by selecting a point Q; in the exit of every cell ; (z € [1,5 — 1]) along the channel,
except the last one. Ly is constructed as the concatenation of s subpaths successively
connecting T to Q1 in &1, Q; to Qiyq in yyq, for i = 1,..,5—1,and Q,_; to TZ in &,.
The choice of the points Q; is done by applying the following constraint propagation
technique. Let B; denote the exit of the cell k; and fo = T}. Fori = 1to s —1,
we reset f3; to its intersection with the projection of Bi-1 into the line or the plane
containing f;, if this intersection is non-empty; otherwise, we leave it unchanged. In
a second pass, for = s — 1 to 1, we reset §; to its intersection with the projection
of f;y1, if this intersection is non-empty. In choosing Q;, we let Qg = T}, and for
t=1,...,6 =1, we set Q; to the projection of ®i-1 into B; if the projection lies within
Bi; otherwise we set Q; to the point in f; that is closest to the projection of Qi1
subject to the constraints described below concerning the turn radius of the pipe.
This selection guarantees to generate a path with minimum length and number of
turns within the channel.

The algorithm described above generates a pipe path L in the form of a polygonal
line connecting two terminals. The intermediate vertices of this line must be changed
into circular arcs of radius p; as illustrated in Figure 10. It may, however, happen

18

rk

Figure 10: Fitting Circular Arcs into a Path

that this transformation is impossible (for instance, two consecutive vertices of the
path are closer to each other than 2p;), or that a circular arc intersects a C-obstacle.
If either of these two events happens, we can either relax the optimality requirement
discussed above or resume the search of Gy at the cell of the current channel where
the problem was detected. (Remark: This algorithm is not complete. The problem of
finding a path with a lower-bounded curvature radius is directly related to the path
planning problem for a nonholonomic car-like robot with a limited steering angle
[Laumond, 1987] [Fortune and Wilfong, 1988] [Jacobs and Canny, 1989] [Barraquand
and Latombe, 1989b] [Latombe, 1990]. This problem is known to be very difficult.
Fortunately, in pipe layout design, the radius p; is usually small, and the two events
mentioned above happen relatively rarely.)

After a path L; has been constructed, we update the layout description by adding
the newly created route. This route becomes an obstacle to the pipes that remain to
be routed.

Remark: In the basic routing problem we assume that every pipe connects two
terminals. Though this is the most common situation in practice, there may exist
some pipes, called nets, which have more than two terminals. The channel and
path generation algorithms implemented in our PLD system have been extended to
handle the case of these multi-terminal nets. The extension works as follows. The
algorithm selects two terminals of the net and constructs a channel connecting these
terminals, regardless of the other terminals. It then selects an other terminal among
the remaining ones and search for a channel connecting this terminal to any of the
cells in the channel connecting the first two terminals. This process is repeated for
each of the remaining terminals in the net yielding a multi-branch channel. A path is
extracted from this channel by connecting the terminals in the same order as for the
construction of the channel. Figure 11 shows a route generated for a four-terminal
net.

19

- Figure 11: Example of a Multi-Terminal Net

4.5 Backtracking

If the search of Gy fails to produce a channel in the decomposition of the free space in
Ck, the algorithm must backtrack. That is, it must change the routes of some of the
previously routed pipes to make room for the current pipe P;. Backtracking requires
the Pipe Router to decide which routes to change and how to change them. One must
also avoid running iteratively through the same cycle of failures.

A simple approach consists of applying a chronological backtracking strategy by chang-
ing routes one by one in the reverse chronological order of their generation. However,
this approach is quite inefficient, because it often leads to changing routes that are
not relevant to the failure of finding a route for Py. This drawback is illustrated by
the example shown in Figure 12.a. In this example, P, and P, have been routed in
sequence. Then the algorithm fails to find a route for P3. A chronological backtrack-
ing strategy would first change P,, while it is obvious that the current route of P;is
the only one that is responsible for the failure.

Inspired by dependency-directed backtracking techniques [Latombe, 1976 and 1979]
[Stallman and Susman, 1977], we have developed a more sophisticated backtracking
strategy. If the search of Gy fails to find a route for Py, we augment the connectivity
graph G} by adding those rectangloid cells which are occupied by the bounding ap-
proximations of the previously generated routes. (As we will see in a moment, some

20

P3

P3 P3
(a) (b)

Figure 12: Identification of Relevant Routes to Rip Off

routes may be “protected”; only those cells corresponding to the other, un-protected
- routes are included in the augmented graph.) We search the augmented connectivity
graph G} for a channel. The cells of the generated channel that were not in the
previous graph allows us to identify the routes that are relevant to the failure. (If
no channel can be built in G, it simply means that, at the resolution of the approx-
imation of the free space, there is no route for Py, regardless of the other routes.)
The number of planned routes to be changed in order to make room for P depends
on the channel generated by the search of G}, (assuming that one can be generated).
We can reduce this number by searching G with an A* algorithm using an appro-
priate evaluation function. We then only change those routes that occupy cells in the
channel generated by the search of G}.. Figure 12.b illustrates the application of this
backtracking approach. Both the empty cells (shown white) and the cells occupied
by the routes R; and R, (shown grey) are in G3. The channel whose cells are shown
with bold contours is produced by the search of G4. The grey cells included in this
channel are traversed by the route R, only. The route R has no intersection with
the channel and hence need not be changed.

Once the algorithm has decided which routes to change, it still has to decide how to
change them. One approach would consist of locally modifying routes to free up all
the cells that are included in the channel generated by searching G,. This approach
could work well if there were available empty space around these routes for them to go.
Otherwise the local modification of a route would require other routes to be changed
and controlling the propagation of changes could be difficult to manage. Therefore, in

21

p2
(a) (b)

Figure 13: Interaction Among Routes

our PLD system, we adopted a more radical, but incomplete, approach which consists
of ripping off all the routes that should be changed and re-routing them after a route
has been planned for the current pipe P;. This essentially corresponds to routing
some of the pipes in a different order.

that were previously computed with aj] the routes R, through R, _, being present.
(Actually, this step is slightly more complicated and takes into account the fact that

obstacles CB; and the C-obstacles CR; corresponding to non-ripped pipes.) To reduce
free space fragmentation into too many cells (and hence ultimately reduce the cost
of the search), we apply simple heuristics to merge adjacent cells together into larger
ones. The new decomposition vields a new graph G which contains the channel

In order to make the approach work properly, however, several issues still have to
be addressed. F irst, after we generated R, we need to re-plan the ripped routes.
Re-planning these routes may require other routes to be retracted as illustrated in
Figure 13. In this example, Py and P, have been routed. Assume that R, is then
ripped off in order to make room for the pipe P3 and that the route Rs is generated

N\

P4

(a) (b)

Figure 14: A More difficult Example

to be removed, which may cause infinite looping if Rj3 is chosen rather than R;. To -
avoid infinite looping, we make use of the route protection mechanism described
below.

When the route of a pipe P; is ripped off to make space for routing Py, P; remembers
P in a protection list PL;. When a new route R; is generated for P;, the current
routes of the pipes in PL; are protected against P;. This means that if the generation
of R; fails, they should not be ripped off to make room for P;. If the algorithm
ultimately succeeds to re-route all the pipes P; (5 < k) whose routes were ripped
off, Py is removed from the corresponding lists PL;. To illustrate how protection
works, consider the previous example (Figure 13). When we remove R, to route P,
we store P3 in PL,. When we re-route P,, we must remove either Ry or Rs. Since
7R3 is protected, we decide to rip R; off. This allows us to plan a new route R, and
next a new route R;. Pz is then removed from PL,.

However, the channel found by searching G} may not be unique. If this is the case,
different subsets of routes could have been ripped off in order to make room for Py,
and perhaps the algorithm chose the wrong subset. This possibility requires the
above protection mechanism to be completed. As an illustration, consider Figure 14.
Suppose that having failed to plan a route for P4 (Figure 14.a), the algorithm decides
to rip Rs off (hence, Py is stored in PLj3). After P4 has been routed as shown in
Figure 14.b, the algorithm tries to re-route P and it fails. It then identifies the route

23

P1 P2 Pi P> P1 P2

\

t

(a) (b) (c)

Figure 15: An Example Where the Protection Mechanism Fails

of P4 as the only responsible for this failure. Since P is protected, its only remaining
alternative is to withdraw the previous decision to rip R3 off for routing P4. That is,
it re-establishes the situation shown in Figure 14.a and attempts to route P4. But,
this time, it rips R off, rather than R;.

The above bactracking algorithm allows the Pipe Router to eventually consider all
the possible orderings on the pipes, without looping. It has been implemented in our
PLD system and works well for most reasonable routing problems. However, it is
not complete, and there are two major causes to that. First, the above protection
mechanism is too strict, as illustrated in the example of Figure 15. Routing P, after
P, has been routed as shown in Figure 15.a, causes R to be ripped off and therefore
P, to be remembered in PL;. When the algorithm attempts to re-route P, after it
has routed P, as shown in Figure 15.b, it fails. Recovering from the failure would
require to rip the current route of P, off, but it is protected. On the other hand,
the algorithm cannot withdraw its anterior decision to rip the route of Py off since
there was no other possible responsible for the failure to route P,. Nevertheless,
there exists a solution for the routing problem shown in Figure 15.c. The basic
reason why our backtracking algorithm fails in this example is that the protection
mechanism identifies pipes as being responsible for the failures, while pipes routed in
a certain way are the actual causes for the failure. In Figure 15.a, the failure to find
a route for P, is caused by P; with its current route. In order to be more complete,
the backtracking algorithm should keep open the possibility of changing the route
of Py in order to find a route for P,. Modifying the algorithm accordingly would
not be very difficult, but it would result in a much larger solution space to explore,
and therefore a much less efficient PLD system. In fact, the backtracking algorithm

24

implemented in our system is even more radical. In the example of Figure 14, after
it has re-established the situation shown in Figure 14.a and before it attempts to
route P4 again, it stores P3 in a permanent protection list attached to P4. This list
prevents the routing of P4 to ever cause the removal of the route of P3 in the rest of
the routing process. Permanent protection slightly worsens the incompleteness of the
Pipe Router, but it definitely increases its efliciency.

The other cause of incompleteness is that the algorithm does not consider the possi-
bility of modifying the path of a route within a channel. This second cause will be
handled by a new algorithm, called parallel routing, that we are currently developing
(see Section 6).

The backtracking algorithm described above is also applicable to 3D workspaces. The
main difference in 3D is that mis-routing a pipe is more likely to cause unnecessary
turns in some of the routes planned later rather than search failures. For example,
in the example of Figure 12.a, if the workspace was three-dimensional, P3 could be
routed, but it would have at least two extra turns. In our PLD system, we use a
heuristic function to activate the backtracking algorithm when it detects unnecessary
turns or recognizes pipes with unrealistic numbers of turns. We expect that the
parallel routing algorithm under development will considerably reduce the number of
backtracking operations in the 3D case.

4.6 Implementation and Experimentation

This basic Pipe Router described above has been implemented in Allegro Common
Lisp running on a Macintosh II for 2D and 3D workspace. In our current implemen-
tation, a 3D workspace is discretized into multiple 2D layers. Figure 16 shows an
example where two pipes are routed one after the other in a 3D workspace with two
layers. The window “Workspace” shows the projection of the pipe routes into the
zy-plane of the workspace. The first pipe lies entirely in the first layer; the second
pipe lies in part in the first layer, and in part in the second layer (darkest portion).
The windows “Layer 1” and “Layer 2” show the first and the second layers of the
corresponding configuration space. Figure 17 gives another example with more pipes.

5 Extensions

If we look to Figure 1 again, we see that the basic Pipe Router can generate pipe
layouts that satisfy input Functional Constraints. However, as mentioned in Section
2, a pipe layout must also satisfy a variety of other constraints input as Expert Design
Constraints. In this section we describe how these constraints are processed in our
PLD system. The constraint classifications and constraint treatments discussed in

25

workspace

workspace layer 1

Figure 16: Output of the Basic Pipe Router

26

Layer |

Workspace

= = =

Figure 17: Pipe Layout Produced by the Basic Pipe Router

27

this section have been inspired by [Mitsuta et al., 1986].

5.1 Expert Design Constraints

Expert Design Constraints are abstractions of more involved constraints whose accu-
rate verification requires running complex programs. We have identified three types
of such constraints, which we call process constraints, structural constraints,
and accessibility constraints.

Process constraints relate to the process that is carried out in the pipes. Examples
of such constraints are the following:

A high-temperature pipe should have an expansion loop to insure thermal flexibility.

A pipe carrying water should not be hanged above any electrical equipment.

Two pipes carrying chemicals « and S, respectively, should be distant of each other
by more than d feet.

A drainage pipe should be non-ascending.

- A heat-sensitive pipe should be kept sufficiently away from high-temperature equip-
ment.

Structural constraints relate to the mechanical properties of the pipes, more precisely
their capacity to stand without falling down. Examples of such constraints are the
following:

- No large portion of any pipe should be far away from a major support structure
such as a wall or a beam.

- A pipe should go as much as possible through existing pipe racks.

- A pipe should not have a vertical drop of more than d.,,. feet to avoid being over-

stressed.

Accessibility constraints relate to the constructability of the pipe layout, and its ease
of operation and maintenance. Examples of such constraints are the following;:

- There must be access paths for removing all major equipments for off-site repair.

- If a frequently used valve is to be installed along a pipe, there must be at least
one point along the pipe that is less than 3 feet above the ground or a designated
platform so that the valve can be installed at that point.

28

- Free paths should remain to access pipes subject to frequent maintenance, both for
humans and machines.

Expert Design Constraints, even in the more codified and more quantitative form
required by our system, cannot be used directly by the Pipe Router. They must first
be reformulated into geometric constraints. So far, we have found that Expert Design
Constraints translate into only two kinds of geometric constraints:

- Location constraints, which specify preferred location, undesirable location, and
forbidden location for a pipe. They are derived from Expert Design Constraints such
as “a heat-sensitive pipe should be kept sufficiently away from high-temperature
equipment” and “a pipe should go as much as possible through existing pipe racks.”

- Shape constraints, which apply to the shape of the pipe routes. They are derived
from Expert Design Constraints such as “a pipe should not have a vertical drop of
more than d,,., feet to avoid being over-stressed” and “a drainage pipe should be
non-ascending.”

The translation is carried out by the Constraint Reformulator. Basically, we have
identified a list of schemas for Expert Design Constraints, and the Constraint Refor-
mulator consists of one translation program for each schema.

However, many of the generated location and shape constraints still cannot be pro-
cessed by the basic Pipe Router as described in the previous section. In the following
two subsections we describe extensions of the basic Plpe Router which have been
implemented for treating these constraints.

5.2 Location Constraints

The location constraints specify the preferable, undesirable, or forbidden regions for a
pipe route to go through. They are conceptualized as virtual obstacles which repulse
pipes and wvirtual sinks which attract pipes. These virtual obstacles and virtual sinks
may be directional, i.e. they may only repulse (or attract) pipes running along a
certain direction.

A virtual obstacle can be hard or soft. Forbidden regions are protected by hard virtual
obstacles, which then act as real obstacles, while undesirable regions are protected
by soft virtual obstacles which can be traversed by pipes, but at some additional
cost. Pipes and virtual obstacles can be given various types such that a pipe of a
certain type only “sees” virtual obstacles of certain types. For example, the Constraint
Reformulator creates a virtual obstacle of type “high-temperature” surrounding every
high-temperature equipment (e.g. a furnace). This virtual obstacle is only visible
to pipes classified as “heat-sensitive”. This means that the Pipe Router will treat

29

the “high-temperature” virtual obstacle as a regular obstacle when routing a heat-
sensitive pipe, and will ignore this virtual obstacle when routing another pipe. This
notion of virtual obstacle was previously suggested in [Mitsuta et al., 1986].

A non-directional hard virtual obstacle that is visible to a pipe Py is treated as a
regular obstacle when the free space of C; is decomposed into cells. Hence, no cells
enclosing the corresponding C-obstacle are included in the connectivity graph Gy. If
the hard virtual obstacle is directional, then the cells corresponding to the C-obstacle
are included in the connectivity graph Gy, but the links corresponding to the non-
traversable directions are removed from the graph.

On the other hand, the existence of soft virtual obstacles visible to Py is taken into
account by modifying the decomposition of the free space and the evaluation function
f(N) = g(N) + h(N) used by the A* algorithm searching G;. The C-obstacles
corresponding to these virtual obstacles are computed as described in Subsection 4.3
and they are also approximated by rectangloids. The free space in Cx is decomposed
into cells of two types, those which do not contain soft C-obstacles and those which
do ‘contain soft C-obstacles. A penalty is associated with each cell containing a
soft C-obstacle (the penalty may depend on the type of the corresponding virtual
obstacle). This penality is included in the computation of the function g(N), e.g. we
may multiply the basic cost (estimated length and number of turns) by the penalty
factors (> 1) associated with the traversed cells. If the virtual obstacle is directional,
then this penalty is included only if the cell is traversed in the undesirable directions.

The decomposition of the free space in C, treats virtual sinks much in the same way
as soft virtual obstacle, but with a bonus associated to the corresponding cells. If the
virtual sink is directional, the bonus applies only if these cells are traversed in the
preferred directions.

Figure 18 illustrates the routing of a heat-sensitive pipe around a furnace. The striped
area around the dark obstacle representing the furnace depicts a (non-directional)
hard virtual obstacle. The heat-sensitive pipe avoids traversing this area, while a
normal pipe goes through it.

Figure 19 shows an example where the workspace contains a pipe rack modeled as
a directional virtual sink (along the vertical direction as shown in the figure) and
a directional hard virtual obstacle (along the horizontal direction). One of the two
routes does not traverse this sink since this would have caused a considerable increase
of its length. The other route traverses the sink along the preferred direction.

30

Figure 18: Routing a Heat-Sensitive Pipe Around a Furnace

Figure 19: Example of a Pipe Routed Through a Pipe Rack

31

5.3 Shape Constraints

The other type of geometric constraints applies to the shapes of the pipes. The Pipe
Router deals with these constraints at two levels: at the channel generation level and
at the path generation level. At the channel generation level, it restricts the search
of G so that the generated channel, if any, contains at least one path that satisfies
the shape constraints. In order to produce a channel containing paths satisfying the
shape constraints, the A* search algorithm of the Pipe Router has been modified so
that the cost of including a cell in a channel depends on the channel generated so far.
We call the search now carried out by the algorithm history-dependent search.

T2

Figure 20: Drainage Pipe

Let us first illustrate history-dependent search with an example. The goal is to route
a drainage pipe connecting terminal 7" to terminal 72 as shown in Figure 20. In
order to simplify the presentation, we assume that the workspace shown in the figure
1s a vertical 2D workspace. The route of the pipe must be non-ascending between
the initial and the goal terminals. The following history-dependent search technique
allows the Pipe Router to find a channel that contains at least one route path that is
non-ascending.

1) The history information stored in the last cell of a partial channel is the maximum
elevation A, of a path at the exit of that cell. In the initial cell, k4 is set to the
elevation of the initial terminal 7. In any subsequent cell &, it is set to the A,,,, of the

32

LN

Kg

kio

-

26- aaaaaaaaaaaaaaaaaa K

T

z‘lr -

zZZy

T2

B X

Figure 21: Decomposition of the Configuration Space for the Drainage Pipe

previous cell of the channel, or to the maximum elevation of the points in «, whichever
is smaller. For example, consider Figure 21, which shows the decomposition of the
free space in the configuration space of the drainage pipe. The history information
oz is set to z in the initial cell £y, to 23 in the next cell k4, as well as in the following
two cells k3 and x4 (assuming that the channel (s, k2, K3, £4) is being built).

2) The history information Amq, is used as follows in the cost function g(V). The
extra-cost derived from the values of h,,,, is 0 if the minimum elevation of the entrance
of the cell corresponding to IV is not greater than the value of A,,,, at the previous
node, and +oo otherwise. Thanks to k.., in Figure 21, the only way to expand the
partial channel (k1, k2, k3) is by adding x4, since the extra-cost of adding s or &g
would be infinite.

3) The history information is also used to estimate the remaining difficulty of com-
pleting a partial channel into a channel connecting the initial terminal 7" to the goal
one T2, and incorporate this estimate in the heuristic function h(N). For example, we
may estimate the difficulty to 0 if the value of h,,,, at the current node N is greater
than or equal to the elevation of T2, and to +oo otherwise. Then the difficulty of find-
ing a channel traversing «s is co. No channel including this cell would be considered
for expansion. This difficulty estimate is admissible, i.e. it guarantees the optimality
of the channel found by the A* algorithm. We may also use a less conservative esti-
mate to improve search efficiency. For example, if the difference Ak between A, at

33

the current node and the elevation of T2 is positive, we could estimate the difficulty of
expanding the partial channel to the ratio of the horizontal distance from the current
cell to T? by Ah, rather than 0. This non-admissible heuristic would allow us to
anticipate routing difficulties earlier.

Note that this history-dependent search technique is exactly the one used by some
motion planners to generate a collision-free trajectory for a robot among moving
obstacles. Indeed, such a trajectory is planned as a path in the configuration x time
space of the robot [Erdmann and Lozano-Pérez, 1986] [Latombe, 1990]. Just as the
route of the drainage pipe must be non-ascending, this path must not go backward
along the time axis.

In history-dependent search, we propagate non-local information along the partial
channels while they are constructed. This information may be used both in the cost
function g(N) and in the heuristic function h(N) to guide the search. However, it
is not always easy to determine which information needs to be propagated and how
to compute it efficiently. In that respect, a difficult shape constraint is one which
requires the route of a pipe to include a certain number of expansion loops. One way
to deal with such a constraint is to generate a channel regardless of the constraint,
then to extract an appropriate path from the channel, and if the second step fails
(which would be most likely) then generate another channel. However, even for such
a difficult constraint, there exists pertinent history information to propagate through
the partial channels. For this particular constraint, this information is the number of
turns n having appropriate dimensions — i.e. the number of expansion loops — that
are possible in the channel generated so far. The information n can then be used to
estimate the difficulty of completing a partial channel as the ratio of the number of
turns that remain to be made by the distance between the current cell and the goal
terminal.

5.4 Implementation and Experimentation

The extensions described above (and others not described here) have been imple-
mented in our Pipe Router. Figure 22 shows how several different constraints can
work together in a more complex environment. There are four obstacles B;, By, Bs,
and By and a pipe rack. By, B,, and By are regular obstacles. Bs is a hot obstacle (e.g.
a furnace). Pipes P; and P, are heat-sensitive and are therefore routed away from
Bs. Pipes P3, P4 and Pj are drainage pipes (to make the illustration more easily
understandable, we assume the draining direction to be along the y rather than the
z-axis. In fact the system allows us to specify any of the three major axes as the
draining direction.)

34

P3 P4Ps P1 P2

Hot Obstacle

o
RS
RS

-

)

o

Q

Figure 22: A more complex example

6 Current Work

In this paper we have described a novel approach to pipe layout design in which pipes
are treated as the paths left behind by robots moving in a 2D or 3D workspace. We
have described a basic Pipe Router based on a well-known motion planning approach,
approximate cell decomposition. We have extended this router to handle various
process, structural, and accessibility constraints. The extended router described in
this paper has been completely implemented in a PLD system. Experimentation has
shown that this system can handle intricate constraints and generate satisfactory pipe

layouts.

35

So far, we have paid relatively little attention to the efficiency of the system, though
the implementation is reasonably fast. Better efficiency could obviously be achieved
by using a faster computer, but we doubt that it would be sufficient to solve problems
involving several hundred pipes as is the case in a chemical plant or a submarine.
We are now attacking the efficiency problem with two different and complementary
approaches: hierarchical design and parallel routing.

Regarding hierarchical design, our goal is to develop methods for decomposing the
pipe workspace into modules and for identifying collections of pipes that can be
grouped into macro-pipes. Workspace decomposition into modules is based on the
observation that most complex pipe systems consist of several subsets (the modules)
whose layouts are relatively independent of each other. Pipe grouping is based on the
observation that in many pipe systems there are several pipes starting at terminals
located close to each other and ending at terminals located close to each other. We
can take advantage of this situation by treating these pipes as one “macro-pipe”. The
notions of modules and macro-pipes are actually used by human experts.

Regarding parallel routing, our goal is to reduce the time spent in backtracking op-
erations when pipes strongly interact in their workspace. The inherent drawback of
the routing method described in this paper is that it commits every pipe to a specific
path within a channel too early, without anticipating the interaction of this pipe with
the remaining unrouted pipes. Such an early commitment may yield poor choices pre-
venting the routing of some remaining pipes and causing the backtracking algorithm
to be activated. The more crowded the space, the more likely such poor choices. The
best way to completely avoid backtracking would be to consider all the pipes simulta-
neously in the Cartesian product of their configuration spaces, using the centralized
planning approach developed in multi-robot motion planning (see Section 3). But
this approach would lead us to work in a very high-dimensional configuration space
and we know that planning algorithms are exponential in the dimension of the config-
uration space. These considerations led us to start developing a lesser-commitment
approach to pipe routing which proceeds mostly as described in this paper, but delay
the construction of a path in a channel until sufficient information is available. In
this approach under development, we allow multiple paths to traverse the same cells
and we use local planning techniques for “coordinating” these paths.

We realize that the treatment of some of the constraints, especially the shape con-
straints, is still rather ad hoc. But after we have established the relationship between
pipe routing and motion planning, we expect to improve our routing system by fur-
ther exploit the research done in motion planning, especially in the area of motion
planning with constraints (e.g nonholonomic and dynamic constraints).

36

References

[1]

(4]

[5]

Barraquand, J. and Latombe, J.C., (1989a) Robot Motion Planning: A Dis-
tributed Representation Approach, Report No. STAN-CS-89-1257, Department
of Computer Science, Stanford University. (To appear in International Journal

of Robotics Research.)

Barraquand, J. and Latombe, J.C., (1989b) “On Non-Holonomic Mobile Robots
and Optimal Maneuvering,” Revue d’Intelligence Artificielle, 3(2), Hermes,
Paris, 77-103.

Bechtel (1986) “Expanding CAD Applications on Petroleum Projects,” Bechtel
CAFE Bulletin.

Brooks, R.A., and Lozano-Pérez, T. (1982) A Subdivision Algorithm in Config-
uration Space for Findpath with Rotation, Al Memo 684, Al Laboratory, MIT,
Cambridge, MA.

Chambon, R. et al. (1987) “An Expert System for Objects Placing in Three-
Dimensional Space,” KBES in Engineering: Planning and Design, 447-459

[6] Donald, B.R. (1983) “The Mover’s Problem in Automated Structural Design,”

[7]

[8]

[9]

[10]

[11]

[12]

Proceedings of the Harvard Computer Graphics Conference, Cambridge, MA.

Donald B.R. and Pai, D.K., (1989) On the Motion of Compliantly-Connected
Rigid Bodies in Contact, Part II: A system for Analyzing Design for Assembly,
TR 89-1048, Department of Computer Science, Cornell University, Ithaca, NY.

Erdmann, M. and Lozano-Pérez, T. (1986) On Multiple Moving Objects, Al
Memo No 883, Artificial Intelligence Laboratory, MIT.

Faverjon, B. and Tournassoud, P. (1989) “A practical Approach to Motion Plan-
ning for Manipulators with Many Degrees of Freedom,” Preprints of the Fifth
International Symposium of Robotics Research, Tokyo, 65-73.

Fortune, S. and Wilfong, G.(1988) “Planning Constrained Motion,” Procveedings
of the Fourth ACM Symposium on Computation Geometry, 445-459.

Gunn, D.J. and Al-Asadi, H. D. (1987) “Computer-aided Layout of Chemical
Plant: a Computational Method and Case Study,” Computer Aided Design,
Volume 19 number 3, 131-140.

Hasan, H. and Liu, C.L. (1986) “A Force-Directed Global Router”, Proceedings
of the Stanford Conference on VLSI Design, 135-150.

37

[13]

[14]

[15]

[16]

[17]

[18]

[23]

[24]

[25]

Jacobs, P. and Canny, J. (1989) “Planning Smooth Paths for Mobile
Robots,” Proceedins of the International IEEE Conference on Robotics and Au-
tomation, Scottsdale, AZ, 2-7.

Khatib, O. (1986) “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” International Journal of Robotics Research, 5(1), 90-98.

Kobayashi, Y. et al. (1986) “Knowledge Representation and Utilization for Op-
timal Route Search,” IEEE Transactions on Systems, Man, and Cybernetics,
454-462.

Latombe, J.C., (1976) “Artificial Intelligence in Computer-Aided Design: the

Tropic System” IFIP Working Conference, Austin, TX, edited by J.J. Allan,

North Holland, 61-120.

Latombe, J.C. (1979) “Failure Processing in a System for Designing Complex
Assemblies,” Sizth International Joint Conference on Artificial Intelligence (1J-
CAI), Tokyo, Japan.

Latombe, J.C. (1988) “Spatial Reasoning: From Robotics to Engineering,” Sec-
ond Toyota Conference on Organization of Engineering Knowledge for Product
Modeling in Computer Integrated Manufacturing, Nagoya, edited by T. Sata,
Elsevier, 83-105

Latombe, J.C. (1990) Robot Motion Planning, Kluwer Academic Publishers,
Boston.

Laumond, J.P. (1987) “Finding Collision-Free Smooth Trajectories for a Non-
Holonomic Mobile Robot,” Proceedings of the 10th International Joint Confer-
ence on Artificial Intelligence, Milan, Italy, 1120-1123.

Lozano-Pérez, T. (1983) “Spatial Planning: A Configuration Space Approach,”
IEEE Transactions on Computers, C-32(2), 108-120.

Mitsuta, Toru et al. (1986) “A Knowledge-Based Approach to Routing Problems
in Industrial Plant Design”, 6th International Workshop on Expert Systems and
Their Applications, Avignon, France, 237-255.

Natarajan, B.K. (1989) “Some Paradigms for the Automated Design of Parts
Feeders,” International Journal of Robotics Research, 8(6), 98-109.

Nilsson, Nils J. (1980) Principles of Artificial Intelligence, Morgan Kaufmann
Publishers, Inc., CA.

O’Dﬁnlaing, C. and Yap, C.K., (1982) “A Retraction Method for Planning the
Motion of a Disc,” Journal of Algorithms, 6, 104-111.

38

[26]

[27]

(30]

[31]

[32]

[33]

Preparata, F.P. and Shamos, M.I. (1985) Computational Geometry: An Intro-
duction, Springer-Verlag, New York.

Reif, J.H., (1990) “Complexity of the Mover’s Problem and Generalizations,”
Proceedings of the 20th IEEE Symposium of Foundations of Computer Science,
144-154.

Sechen, C. (1988) VLSI Placement and Global Routing Using Simulated Anneal-
ing, Kluwer Academic Publishers.

Schwartz, J.T. and Sharir, M. (1983) “On the Piano Movers’ Problem: I. The
Case if a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal
Barriers,” Communications on Pure and Applied Mathematics, 36, 345-398.

Schwartz, J.T., Sharir, M. and Hopcroft, J. (1987) Planning, Geometry, and
Complezity of Robot Motion, Ablex, Norwood, NJ.

Sheridan, H.C. (1976) “An overview of a CASDAC subsystem-Computer-Aided
Piping Design And Construction (CAPDAC),” Naval Engineers Journal, 87-98.

Sifrony, S. and Sharir, M. (1987) “A New Efficient Motion Planning Algorithm
for a Rod in Two-Dimensional Polygonal Space,” Algorithmica, 1, 367-402.

Stallman, R.M. and Sussman, G.J. (1977) “Forward Reasoning and Dependency-
Directed Backtracking in a System for Computed-Aided Circuit Analysis,” Ar-
tificial Intelligence, 9(2), 135-196.

Wangdahl, G.E. et al. (1974) “Minimum-Trajectory Pipe Routing,” Journal of
Ship Research, Vol. 18, No.1, 46-49.

Wilson, R.H. and Rit, J.F. (1990) “Maintaining Geometric Dependencies in
an Assembly Planner,” Proceedings of the IEEE International Conference on
Robotics and Automation, Cincinnati, OH, 890-895.

Zhu, D. J. and Latombe, J. C. (1989) New Heuristic Algorithms for Efficient
Hierarchical Path Planning, Tech. Report STAN-CS-89-1279, Computer Science
Department, Stanford University. (To appear in IEEE Transactions of Robotics
and Automation.)

39

