CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

Concurrent Knowledge Systems
| Engineering

John C. Kunz

WORKING PAPER
Number 5

Tuly, 1989

Stanford University

Copyright © 1989

by
Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

c/o CIFE, Civil and Environmental Engineering Dept.,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 94305-4020

Concurrent Knowledge Systems Engineering

John C. Kunz

"Maximum anxiety causes anxiety." Bob Filman

ABSTRACT

To build a knowledge system, it is necessary to specify the purposes in building
the system, the domain description, reasoning and decision criteria, user and
system interfaces, and a set of case examples to use in testing. These issues
are offered as the major issues in building knowledge systems. This paper
argues that they should be developed concurrently so that each is understood
at an equal level of maturity at each stage of the knowledge systems
development process. The "maximum anxiety heuristic" is an organizing
principle to direct the attention of developers to these issues: the development
process should focus on one of these issues until some other appears to be
less well defined, or until some other causes greater anxiety. This opportunistic
development activity can be used throughout the software development
process, from concept definition through maintenance. The benefit of using this
heuristic is that all of the basic knowledge engineering issues will be addressed
explicitly, and addressing one helps to clarify understanding of the others.

i. M I

Based on the results of cognitive and computer science, human problem-
solving can involve analysis of heuristics, algorithmic procedures, hierarchical
descriptions of systems, and pictures. Thus, we can expect that Al reasoning,
representation, and interface methodologies will each serve useful yet limited,
distinct, and mutually supportive roles in the systems development process.
The goal of the maximum anxiety heuristic is to provide a concrete and effective
method for guiding knowledge system (KS) development activity so that the
most important perspectives on knowledge systems are developed concurrently
with equal maturity.

This section introduces the five issues of building knowledge systems and
presents simple examples of each. The next section discusses the relation of
this methodology to other problem-solving strategies, and Section 3 presents a
brief case example of the application of the methodology in the early system
and software requirements phases of system development.

1.A. Identify the Purposes of the System

In building a knowledge system, one question to ask is "What, precisely, are the
purposes of the system", both from the perspective of the user and from the
perspective of the expert. Creating a short statement of purpose helps focus the
design team on solving the problem, as distinguished from issues related to the
problem, and a simple statement of purposes helps other interested people to
understand the project purposes.

Examples of statements of purposes might be:

» The purpose of the system is to diagnose presence of any of three
pulmonary diseases by interpreting pulmonary function test data.

» The purposes of the system are to help development engineers to
identify all single fault failure modes in a system, to characterize
system functions when running with such faults, to develop
procedures for diagnosing and repairing those faults; and to help
operators to identify faults in an operating system,

 The purpose of the system is to identify all feasible plans for
manufacturing a particular metal part, given a set of raw materials;
description of the part features, dimensions and tolerances; machines
which are available for part fabrication; and characteristics of those
machines.

A useful design goal is that intended users -- users with good general domain
knowledge but only rudimentary skills in computer use -- should be able to sit in
front of a screen and discover most problems the computer can analyze with
only a few moments of training and some browsing. This kind of access
appears to be possible if the program embodies models of the problem domain
area and of the problem solving process to which the user can readily relate. In
addition, appropriate graphical diagrams on the screen, a small set of fixed top-
level menus, and help text all help with achieving this goal of providing access
to the technology by motivated untrained users.

 Often, operational and executive users will have somewhat different purposes
in wanting to use a system. Operational users often need to analyze individual
problems while executive users often want to analyze multiple related cases. In
attempting to identify the general objectives of the user, the knowledge system
developers should attempt to identify the project gestalt. What is the problem
faced by the user, and how does the user of the proposed knowledge system
currently solve the problem? How are simple cases now identified and handled
by users? How do users identify and handle difficult cases? The purpose of
understanding the way problems are currently solved is not to form the basis for
an exact model of current behavior, but rather to identify the issues which must
be considered and the answers to particular problems. In general, the goal of
the problem-specification process is to identify the purposes of building the

2 7/18/89

system, rather than to identify in detail how the problem is now or could be
solved.

The purposes are the specific aims of the project, and they are implemented as
top-level capabilities of the knowledge system. Thus, purposes can be viewed
as the actions which can be performed by the knowledge system as a whole.

The purposes specify the top-level features of the system from the user
perspective. These features are distinct from any system benefits. The usual
project goals are to achieve the benefits. Thus, the project purposes are distinct
from the overall project goals. For example, the purposes above might all be in
support of projects whose overall goal is to help users to analyze particular
problems better.

1.B. Describe the Representation or Model of the Domain

Knowledge system designers must describe the domain in which the problem
exits, or the context in which decisions to be made. In general, it is useful to
identify generic concepts of the domain and their attributes, as described by
experts to peers and to interested novices. In addition, it is necessary to identify
specific instances of the generic concepts as they are found in any modeled
systems of interest. Represented concepts might include components,
subsystems and states of a system, and attributes might include both
measurable parameters such as height and voltage, and they might include
states such as whether or not a subsystem is operational.

Examples of concepts and specific instances in a modeled system description
include:

» Descriptions of generic and particular parts in a system, such as heat
exchangers, pipes, valves, and measurement instruments; description
of the attributes of these parts, such as their specified dimensions and
tolerances, cost, power consumption, and connectivity to each other;
and principles describing flow of heat and mass in the plant.

» Description of generic and particular concepts in a problem-analysis
theory such as project management, including concepts such as
projects included in a program, activities of each project, capital and
consumable resources, functional definition of cost and value, and
policies for resource assignment.

Domain representation can be viewed as the nouns which are to be described
in the knowledge system along with their associated adjectives. Thus, problem
domains can be represented conveniently as units and slots using frame-based
representation systems.

3 7/18/89

1.C. Specify the Reasoning to Analyze the Model

Systems have behavior. For each specific problem to be analyzed, the
knowledge system developers must identify criteria by which problems are to be
analyzed and decisions are to be made. It is often necessary to specify the way
those criteria are to be applied, or the control of the analysis process. Some
decision-making criteria will describe implementations of principles of a field,
such as an algorithm for computing the shortest path through a network, and
other criteria will be heuristic, such as a process for approaching a diagnostic
problem.

Behavior might include procedures to find related systems, diagnose problems,
and display aspects of the structure or function of a system.

Examples of reasoning activities a system is to perform might include:
» Identify all likely single faults in a system;
« Identify all machines downstream of a particular machine,

- Schedule machine operations in a factory using a pamcular
scheduling heuristic;

* Infer some aspects of the behavior of a system by analyzing its
structure and function. ,

The reasoning defines the actions which objects can perform. The reasoning
processes will reference particular attributes of particular objects, for example to
determine the status and features of objects. In addition, the reasoning process
will make conclusions about objects, or change the values of particular
attributes of objects. Reasoning within a problem domain can be represented
conveniently as rules or as algorithms in a procedural language. The
reasoning procedures can usefully be associated with the objects they modify.

Reasoning procedures are often context-dependent: particular aigorithms and
heuristics work in some circumstances and not in others. One of the strengths
of knowledge systems is that they can express the context in which a reasoning
procedure is assumed to apply. The representation of a system should
explicitly include description of the states and conditions of a system, and the
reasoning procedures should then be conditional so that they apply when the
appropriate conditions are met. The premise of an If-Then rule prowdes a
~ natural place to state the conditions in which a rule applies.

Reasoning procedures are most flexible when they are generlc Thus, it is best
for rules and methods to refer to variables or patterns of data, rather than to
specific attribute values or to specific objects. Specific objects are best
described as frames within the representation of the problem. Specialized

4 7/18/89

utilities and editors can be built to display and modify attributes of object
descriptions easily.

Representation of a domain and reasoning about the domain are related. A
useful simple distinction between the two is that the representation includes
facts which can be asserted directly into or retrieved directly from the model.
Reasoning is the process of inferring values which are not explicitly represented
within the model. Thus, specification of the reasoning process must describe
both of the relations among facts which are complex enough that they must be
determined through an inference procedure and a strategy for carrying out the
inference procedure. Typically, inference is performed at the time that a fact is
asserted in the model or that an inquiry is made regarding the values of some
attribute in the model. Thus, reasoning knowledge is normally implemented as
rules or algorithms in a programming language.

Some reasoning may be performed by a representation system. For example,
frame inheritance specifies the way that attributes and their values are passed
from one object to some related objects. In addition, some systems support
particular constraint propagation algorithms automatically.

A useful development procedure is to start the knowledge system development
process by creating the rules and methods which can be used to analyze a
particular test case. Then the representation and reasoning can be generalized
as much as possible to handle a broader set of cases. Thus, initially rules and
methods will be associated with and will reference particular objects, particular
attributes and particular attribute values. During the process of generalization
of the reasoning, the references to particular objects, attributes and attribute
values can all be generalized to variables as possible and appropriate. The
initial reasoning procedure may be rather heuristic.

While attempting to generalize the reasoning, a valuable exercise is to ask
"Why" a particular heuristic or reasoning process should apply. Increasingly
general reasoning procedures can often be developed by attempting to elicit
the principles which underlie analysis of simple test cases.

1.D. Create User and System Interfaces

Knowledge systems typically include interfaces to the user, to sources of data
and to destinations for results. These input and output data often lie in other
systems applications on other computers.

The purpose of the user interface is to communicate the questions of the system
to the user, solicit and receive input from the user, and communicate resuits of
its analysis. When appropriate, the user interface also presents the reasons that
the knowledge system made a decision or the assumptions made in the system
about the structure and function of an application area. The most effective
interfaces exploit natural idioms of a domain, including commonly-used forms,
graphical diagrams and graphs.

5 7/18/89

Examples of elements of user interfaces include:

* A tree showing relations among concepts in a knowledge base, such
as CLASS-SUBCLASS, PART-WHOLE, or DOWNSTREAM.

* A graphical layout of a system, such as an architectural drawing for a
building, or a schematic of machines in a factory or parts in an
electromechanical system. The layout can include animation to show
flow of parts, material, or information.

 Graphical network showing successful rule invocation. Rule graphs
can be very useful for helping developers to extend and debug their
applications, but their fine level of detail often makes them of limited
value for users.

The system interface is not required for stand-alone applications. Often,
however, knowledge systems obtain data from existing data bases, and they
return results to other applications systems.

1.E. Create Procedures to Test Model Validity

Systems must be tested repeatedly during their development to assure their
validity and to determine whether changes fix identified problems or create new
problems. Test procedures should include criteria for selecting individual test
cases and, ideally, a "gold standard" for judging the accuracy of the
interpretation of those cases. It is then necessary to identify actual individual
test cases, the desired system responses for each individual test case, and
procedures for comparing the system output for those cases with the expected
results of analyzing those cases.

Examples of useful sets of test cases include:
 The simplest case which makes any sense;

» Simple extensions of the most simple case and the way they are to
be interpreted;

* A test case which is relatively complex which prototype versions of
the system will not be able to solve but which a second-generation
production system should be able to be solve;

» 100 test cases (i.e., a large representative sample), identified over a

period of time, which represent a broad set of situations of interest to
the developers and potential users.

6 7/18/89

The most useful suite of test cases includes all of the kinds of cases listed
above.

These sets of test cases can be rerun each time a change is made to the
system. By reviewing results of analyzing these test cases, developers can
determine whether desired performance enhancements were made and identify
whether any unintended changes were introduced into the analysis process. A
test suppont system can be built to compare actual with desired test results and
to repont discrepancies and changes since the test set was run previously.

The first test case, the simplest which makes any sense, is crucial for
developing the prototype. A measure of success and completion is that the
initial prototype system successfully can accept this simple test case and
interpret it properly.

One of the risks of rapid prototyping is building a prototype which cannot be
extended to handle important difficult cases. The second test case identifies a
difficult case of interest, and the set of 100 test cases normally should include a
number of additional difficult cases. The purpose of identifying difficult test
cases at the outset is to attempt to focus early attention on the issues of
extension. The initial prototype should not be designed to handle the difficult
cases. It should either be designed to be extensible to handle difficult cases, or
when it becomes clear that the initial prototype will not accommodate the
difficult cases, plans should be made to discard the initial prototype design and
to create a second prototype which addresses the design issues presented by
the difficult case.

2. Relation to other Problem-Analysis Strategies

Polya describes a related method for analyzing mathematical problems.
Polya's "How to Solve it" method has four steps [Polya]:

» Understand the problem by understanding what is unknown, what is
given, and the conditions on the problem. (He recommends drawing a
diagram.)

* Devise a plan to solve the problem. (Attempt to identify a related
problem and modify the plan which solves the related problem.)

» Carry out the plan

» Review the problem solution; check its reasonableness. (Check its
sensitivity to varying assumptions; attempt to use the result or the
method for some other problem.)

This four-step process was later elaborated and specialized in the software
development waterfall, as discussed below. Polya's remarks about how to

7 7/18/89

perform these steps are what is particularly interesting about his method. He
emphasizes using heuristics in problem solving, and he offers a number of
useful ones. For example, he recommends using diagrams to describe a
problem -- a technique widely used in classical physics, chemistry, engineering
and now model-based reasoning [Kunz]. He recommends using a variant
method of problem solving: he suggests identifying similar problems and
modifying their solutions to solve the given problem. Finally, he recommends
using sensitivity analysis to assess the robustness of the problem solution as
input parameters are pushed to their expected extremes.

The five-issue maximum anxiety method is obviously close to Polya's method.
Polya's first step relates to the "Purposes”, "Representation” and "User Interface”
issues in the building knowledge systems. His second and third steps relate to
the "Reasoning” issue. His fourth step is a embodied in the maximum anxiety
heuristic and analysis of each of the five issues of building knowledge systems.
The five-step maximum anxiety method includes a number of heuristics to help
guide the analysis, including all the major ones suggested by Polya.

An important difference between Polya's and the five-issue maximum anxiety
method is that maximum anxiety emphasizes an opportunistic rather than an
iterative control of the problem solving process. A second important difference
is that Polya emphasizes use of a variant method: he suggests identifying
similar problems and modifying their solution to solve the given problem. The
variant method is most likely to be effective in circumstances, such as
mathematics, in which there exists a well-understood body of existing problem-
solution techniques to survey and to adapt. In knowledge systems, we are just
beginning to develop a similar body of experience. Thus, while the variant
method may become more effective in the future, we now see most developers
building knowledge systems using ad hoc heuristic approaches or generating
new methods based on analysis of basic principles.

The classic waterfall model of software development was described in 1970 by
Royce [Royce] and has been elaborated often, such as in {[Boehm, Davis]. The
waterfall method was offered by Royce to describe and to prescribe the
traditional software development process.

8 7/18/89

System

Requirements %/

Softwa're

Requirements
[Y

Preliminary
Program Design

Analysis

Program
Design

J Y

Operations

Waterfall software development process described in [Royce]

Most traditional software development methodologies have followed some
variant of the waterfall method, often using slightly different names and slightly

different numbers of steps.

7/18/89

Software projects are often delivered later and are more expensive than
planned, and they often lack intended functionality and include bugs. One
source of these software development difficulties is that requirements are
difficult to specify precisely, and they often change as users see new
possibilities and developers identify new ways to represent and analyze
problems. Thus, while the waterfall method is simple to describe and easy to
use in principle, it alone has not been sufficient to provide the basis for effective
software development.

Knowledge systems technology has both helped and confused the software
development issues. The hardware and software are more powerful then ever
before. For example, in recent years the combination of interactive workstations
and new software development environments have allowed development of
knowledge-intensive applications which had not been attempted using
traditional software technology, and they have allowed use of rapid prototyping
throughout the development process. However, the KS problems are
particularly difficult: if some problem is simple, it has been or will be solved
using traditional technologies, so KS developers end with only the most difficult
problems. Knowledge is difficult to specify when it is at all complex. Finally, the
KS technologies provide powerful new techniques to work with, such as frame-
based representation, object-oriented programming and production rules, but
developers must learn to use these methodologies effectively.

The argument behind the five-issue maximum anxiety method is that it is
valuable -- and with KS hardware and software. it is now feasible -- to attempt to
develop all of the knowledge systems issues concurrently as work proceeds
down the software development waterfall. The five KS development issues
should each be considered at every step down {(and up) the waterfall. Royce
argued that preliminary program design should consider program design,
analysis, coding, testing and operations. (We now perform his preliminary
design by rapid-prototyping.) His preliminary design step was valuable
because it provided results for later use in program analysis, design, coding,
testing and operation. The five-issue maximum anxiety method extends his
argument and calls for attention to the entire development process throughout
each step of the process.

3. Case Example

This section is an edited transcript of a seminar discussion on Model-Based
Reasoning in Engineering. Italics indicate remarks about the session;
underlines indicate phrases written on the chalk board. LW is a Stanford civil
engineering graduate student who volunteered to discuss his project. Prior to
starting this knowledge engineering session, his research proposal stated that
he plans to use "knowledge-based techniques in a deterministic approach that
resembles simulation to produce precedence relationships for project activities
[using] an algorithm which emphasizes a fundamental model of the planning
process and exploits the use of project component relationships”.

10 7/18/89

JK: Let me get out a prop. Some of you know that | use an 'anxiety demon' [An
anxiety demon is a little finger puppet with long floppy arms.] Tell us, Lioyd,
about one of the five KS development issues, and let's talk about one of them,
and when my anxiety goes up, l'll wave the anxiety demon, and we'll talk about
the source of the anxiety, and then we will move on to address another issue.

LW: [think the most appropriate one to start with would be the purposes - or
problem definition. | think the problem is to build a model, and since it is a
model of construction planning, it should include the things in construction

planning. It should be intuitive and within the usual operations of a person in
the field who in fact is a scheduler. The purpose of the model is to build or
constr nstruction schedules for projects.

JK: You said 'build model'. You said 'build schedules . ..

LW: I'm being a little repetitive here. Build a model to construct a schedule in a
way which is similar to the way that humans construct schedules.

[The boxed items in this section show the description of the kndwledge systems
engineering issues as they were described on the chalk board during the
discussion.]

Purposes: Build model of construction process
- Build schedules of construction projects
- Intuitive
- Natural to scheduler in field

GL: Specifying how you are going to build it -- isn't that getting at the reasoning
process?

JK: OK. What | think is going on is that Greg is suggesting looking at the
problem from a different perspective. He is saying 'let's not talk about the
purposes any longer; let's talk about the reasoning.' | think he just applied the
maximum anxiety heuristic -- and that's good. In effect, he said: "l know enough
about this issue for now, so let's go talk about some other issue." How are we
going to solve this problem? Let's pursue this new issue.

HE: Is there a model of how people build schedules?
LW: | can only comment on how | do it. | usually start at the beginning of the

project and work toward the end. ing with the existin of the project,
which might be just an open field or a a level surface on a warehouse floor, and

then | Jook at the set of plans and specifications -- primarily the plans -- and ask

11 7/18/89

what project components are there that need to be constructed, and given the
current project status, what things do | need to do in order to complete the
project.

Reasoning: Go from start to end of construction|
process
- Look at current project status
- Look at plans
- Look at component specifications, identify
components that need to be constructed
- Identify things to do to complete project

AB: So you have activities. What about durations of activities? -

JK: | think we now have started to understand two issues, so as Anna has
suggested, let's apply the anxiety heuristic and change the focus of the
discussion from purposes or reasoning to something else.

GL: Anna just mentioned activities, which do not fit under the discussion of
purposes or reasoning. That seems like the structure of the problem, or
representation.

LW: Surely project components falls under representation.

Various: Activities. Status. Plans.

RL: The sense in which you said plans before was drawings.

JK: Here's an important observation. In engineering, we know that graphics
are often important. ... Let's look at the purposes and reasoning and see that
we have a relatively complete list of nouns to include in the representation.
[Schedules and projects appear to be basic concepts underlying the discussion

so far, so while not mentioned explicitly during the discussion, they were added
to the list of things to describe in the scheaduling model.]

12 7/18/89

Representation -- Things to describe in the
scheduling model:

Project beginning Project End
Project status Level surfaces
Drawings Specifications
Activity durations Activities
Schedules Projects

Components to construct

LW: And then we are going to end up with a bar chart.

JH: By bar chart you mean Gantt chart? And probably some sort of precedence
network?

LW: I'm not cenrtain [about the need for a precedence diagram].

JK: We are discussing some user interface. Let's add bar charts to the user
interface list.

[{When we discussed purposes, drawings and flow charts showing steps in the
construction process appeared to be user interface items. They were listed
under user interfaces on the chalk board to make these interface features
explicit.]

User Interfaces:
Construction drawings

Bar charts (Gantt chart)
Flow chart of steps in construction process

System Interfaces:

GL: Don't we have multiple models now? The bar chart is a model of the
schedule, and we have a model of the building . . . That is, we have a model of
the construction process with its activities, resources and time. The other is a
model of the physical building, and that looks to be a dlfferent model. And we
have to describe them both.

13 7/18/89

_HE: At this point I'm still confused about the scope of the problem. What are the
inputs that you want to provide, and what are the gutputs you want to get?

JK: Hossam, what you did was to raise your anxiety demon. You said "I'm
confused", and then you went back to the purposes. That's really good. You
were looking at representation, and you said | don't know what the purposes of
the system are.

In another session, we discussed an iterative versus an opportunistic control
strategy. Here is an example of our applying opportunistic control. We are not
starting at one place in a list of things to do and then going down that list. We
are focusing our attention wherever we seem to have the most information to
gain. | think that the opportunistic or anxiety-driven control strategy really helps
the KS development process because it helps us to develop each of the issues
with equal maturity.

Let's continue with anxiety. Notice that we have discussed four |ssues now. My
anxiety demon is up now. Let's talk about testing.

LW: | would compare the results of this model with the results of a human
scheduler.

RL: Would you compare the decision process along the way and compare
intermediate steps, or would you look only at the end result?

LW: | would look at the beginning and end of the process, but not the
intermediate steps.

JH: | would suggest doing the opposite. When you start the process, you want
o see that your model is working efficiently and the way you think it ought to.

JK: Good question. How do you decide whether to look at the process early on
or not? How do you make that decision? How do you ask that question?

HE: Doesn't it depend upon what the problem is . ..

JK: Exactly. You can't look at the particular issue of what to test in more and
more detail and resolve the ambiguity. You can resolve the problem only by
looking at one of the other KS development issues -- in this case, the purposes
of the system.

HE: He said he wants to bring a model of the scheduling process into the
‘system.

JK: Now, you can decide to actually model the decision-making process, and
recognize and accept that a lot of work is involved, or you can say that the
process is not really a crucial issue for your purposes, and you can finesse it.
We can't say now how to resolve the issue, but we have pointed out the

14 . 7/18/89

consistency which should be maintained between the purposes, representation,
reasoning and testing.

Test procedure

Compare KS schedule with one built by a
human

Process: No

Result: Yes

LW: | would say that we should test the process, not the results. That's the
opposite of what | had just said.

GL: So what you are saying is that you want to achieve the same scheduling
results, but you also want to follow the same reasoning path as the human
scheduler.

LW: Yes.

JK: One additional testing issue. It would be good to look, real soon, at what is
the simplest test case that makes any sense at all. You should make the
comparison, but you should identify a test case which would be recognizable by
another professional as being real, but which is so simple that you can make
some progress with it quickly. So, what is that simplest case?

DJ: You mean a case for a simple prototype?

JK: Yes.

LW: Hereitis. [LW puts a diagram of a simple house on the table].

Test procedure

Compare KS schedule for constructing a
building with one built by human
Process: No Yes
Result: Yes :
Simplest possible test case: playhouse

15 7/18/89

JK: OK, let's look where we are. We have been going for 10 minutes, and we
have said a little bit about each of the KS development issues, and that is good.

HE: I'm still not sure about the inputs and outputs.

JK: We can now turn on our anxiety demons and ask what we are most
uncertain about. Now is a good time to scan all five issues, anxiety demon in
hand, and ask what we have greatest anxiety about, and we can explore that
issue.

JH: A lot of people have anxiety about the purposes in building the system, and
| think he wants to model the process of constructing a schedule, not model the
construction process -- not model how you build the building and crane
movements and so forth -- but model how the scheduler analyzes the
scheduling process.

LW: | agree. | want to model the process of building the sehedule, not the
process of building the project.

GL: So the thing you are modeling is the human expert scheduler.

JK: You are modeling the process of scheduling.

Do we have anything in representation that talks about the scheduling process?
| don't see it . . . So we should add something. We don't know what it means
yet, but since the concept is key to your work, we will have some representation
of it so that the concept description is explicit. We will have some reasoning in
support of it. We will have to see it through the interface, test it, and of course
we have some purpose in considering it.

How are you going to know a process when you see one? ls it a list of steps?
LW: Itis an algorithm. It will have boxes and arrows. A flow chart.

HE: At this point, | would suggest looking at a small example -- the playhouse.
Various: Discussion about purposes and reasoning.

JK: Look at what we have said so far about each of the issues. People are
asking about the purposes and the reasoning. So we are applying the anxiety
demon. This questioning is good. My only counsel is to not spend lots of time
deciding what to do next because we want to develop each of the KS issues
with equal maturity, so we will address not one or another issue but both. The
only question is the order of addressing issues.

Let's make an arbitrary choice. Let's look at the reasoning. Maybe you can
give us a 30 second overview of how the reasoning takes place.

16 7/18/89

LW: I can't do it in 30 seconds. | can describe the whole algorithm | had come
up with in three or four minutes. But, we can look at it at a high level.

So, | figure out where the project is going to be built. Let's assume that it is a
warehouse floor where we need ng special preparation. Itis 16' x 16"

JK: Wait now. ldentify building site?

LW: Yes. It goes back to the current status comment under the description of
reasoning. Hopefully nothing will have to be modified on the site.

So | look at the little building and | decide what to do first. Say | choose a

stringer on the bottom which is § inches by 6 inches by 8 feet long. 1 go grab it
and | lay it down on the warehouse floor.

RL: How do you know you do that first?

LW: Based on the fundamental principle -- and this principle should be

included explicitly in the representation -- that you have to have support for
physical objects before you can use them.

JH: Haven't you skipped a step? Haven't you already broken the plan gg
into objects? One of your components is a stringer, and it is at the bottom .

JK: The focus of the discussion has changed -- from the playhouse as a whole
to the physical components of the playhouse. So you made a transition
change.

LW: That's not the only change. | chan from talkin roblem
component to an activity. You gave me only 30 seconds . . . [Laughter]

Reasoning: Go from start to end of
construction process
- Look at current project status
Look at drawings
Look at specifications of components
Identify things to do to complete project
Use principles :
Break drawing into components
Map components to activities
Find activity precedence using support
principle
Find activity duration

17 o 7/18/89

- GL: So far you have told us about the building drawing, but you haven't said
anything about how you reason about the drawing. You went directly from a
building to a site to placing a stringer. We are talking about the results of the
scheduling process, and not the process. Before, you said that the site did not
need modification. How did you decide that it needed no modification?

JK: For now, let's ignore the assumption that the reasoning can be specified.
We can do a left-to-right depth first search of the reasoning process and get
bogged down in enormous detail which will not be lmportant in the grand
scheme of things.

LW: The next thing is to map components to activities. That is a complicated
mapping. [Discussion]

JK: Let's pop up a little. This discussion of how to do the mapping from
components to activities is good. | think what is going on in general is that we
are focusing on what the system inputs are: in particular, is the object-activity
mapping an input to the system, or does the system have to provide reasoning
to perform the mapping? The details of the issue are important, but it is also
important to know where the particular issue fits into the KS development
process.

RL: We have very much a problem-definition issue.

JK: Right. The functionality of mapping is required; we have definitely agreed
on that. Either mapping is input, or it is to be provided within the proposed
system, or more likely, there will be some of each with some mapping input and
some reasoning to elaborate and apply the input mapping.

LW: OK. | propose that the inputs include a list of activities and their associated
objects for the proposed building. Also, include the relations among those

objects, such as topological -- mgo_r‘lﬂuzx enclosed-by and adjacent-to, for

instance.

18 7/18/89

Representation:

Schedules Projects

Project beginning Project End
Project status Level surfaces
Drawings Building Sites
Components Activities
Buildings Site preparation
Floors

Scheduling Process (Flow charts)

Specifications: (lengths, widths, depths)

Relations: (enclosed-by, adjacent-to,
Supported-by)

Actions: (Choose, Grab, install components)

Principles: (object needs support before
installation)

GL: Now are these inputs that the end user provides?
JH: Whether it comes from a user or the keyboard or a file isn't important.

JK: We haven't talked about system interface yet, just user interface. Is it fair to
say that there is no planned system interface: all input will come from the user
using the mouse and keyboard and all output will be on the display screen?

LW: Yes.

RL: So the question is whether the list of activities is part of the permanent
knowledge base, represented as objects or rules or something, or whether the
activities are simply data for the program, to be input by a user?

JH: So, we are not focusing on going from a drawing to a schedule, which is a
very large problem, but rather, given some activities and objects and some
topological relations among objects, inferring the schedule. So this issue is a
very small piece of the whole scheduling problem, so we can say that the
system will not be terribly useful to Joe contractor down the road, but that's OK.

JK: So the system interface is a Nil? No CAD interface. No project
management software. No finite element analysis. The system will be self-
contained.

LW: Yes.

19 | 7/18/89

Interfaces
User Interfaces:

Construction drawings
Bar charts (Gantt chart)
Flow chart of steps in construction process

System Interfaces: Nil

GL: The system does not reason that to build the building takes particular
activities. That reasoning is done by the user before using the system. So,
back to the purposes, we assume that somebody has already identified the
activities, relations and precedences.

LW: No, the system identifies the precedences. The system output is the
precedences.

RL: The output is the precedences plus the activity durations. The distinction
we make between planning and scheduling is that planning creates the list of

actions. Scheduling derives their sequences and the times they are to be
performed.

Purposes: Build model of construction
scheduling process
- Construct schedule of a construction project
- Intuitive
- Natural to scheduler in field
- Inputs: Activities, associated objects, relations
- Outputs: Activity precedence, durations

GL: | have a question about representation. If the activities and their relations
are input explicitly, why do we need to represent drawings? What do we need
those drawings for if we are not going to reason about them?

JK: We did something with respect to maximum anxiety. What did we do? We
looked at what had been written before and critiqued it and found questions

20 7/18/89

about it. Greg applied the anxiety demon to what had been done, while before
we had applied it to what had not yet been done. That's good.

GL: We had assumed that the system would take those drawings and produce
a schedule from those drawings. That's not what we are doing now.

JK: We have spent a half an hour now designing our system. This is a good
time to go back and critique what we have done. So is the representation a
good one? Again, we have to ask that question by looking at the various KS
development issues and making sure that our representation describes the
things we need to achieve our purposes, look at the way the reasoning is
supported by the representation, and so on.

RL: These notions of objects and activities and relations: we haven't discussed
how to implement them as objects or relations or attributes or rules or whatever.

JK: Right. We have spoken so far only informally about engineering concepts.
Let's assume that we are now close enough on our basic engineering approach
to the five KS development issues, and let's start to formalize these descriptions
using the specific idioms of our knowledge systems development environment.
With respect to the software development waterfall model, we are now going to
jump from the system requirements to the software specification step.

Representation is a good place to start with formalizing the engineering notions
which we have described informally. We want to end up with a representation
of the generic concepts in our models of buildings, of drawings and schedules,
and of the scheduling process. We can now look at our list of engineering
notions under our representation list, identify the concepts or nouns, and
identify the attributes of those concepts. | thirk the generic concepts might be
listed as shown below. Each of these concepts represents a noun in the model
of the scheduling process or the building model. Each of these objects has
attributes, where the attributes of concepts which we have discussed so far are
enclosed in parentheses.

Schedules (Activities)

Projests (Schedule, beginning time, end time, status,
components)

Level surfaces [Subclass of Sites]

Drawings

Sites (length, width, Level?)

Components (Components, length, width, depth,
enclosed-by, adjacent-to, supported-by)

Activities (Object, start time, end time, successotrs,

predecessors)

Floors [Subclass of Sites]

Footings and stringers [Subclasses of Components]

Principles (Defining rule)

Scheduling Process (Starting activity)

Specifications: (lengths, widths, depths)

21 7/18/89

Actions (Object)

Grab [Subclass of Actions]
Install [Subclass of Actions]
Choose [Subclass of Actions]

In general, each of the generic objects identified above may have associated
instances. Many of the instances will be able to perform actions -- as specified
in the reasoning. We could now describe these concepts as units and slots in a
frame-based representation system.

One example reasoning procedure is the process which defines the principle
that an object needs support before installation. In this case, the components
might be able to determine whether they have the vertical support which is
required before they can be installed.

Let's look in detail at reasoning which defines the support principle. = The first
rule shown below states that a firmly supported object is vertically supported
and, from the perspective of support, ready for installation. The first premise
limits the scope of the variable ?Object to all components defined in the KS.
The second premise selects objects which have firm support, such as a
foundation of a building assuming that the representation describes foundations
as having firm vertical support. The conclusion states that the the value
Vertically-Supported will be given to the Support-Status attribute of objects
which satisfy the premises.

If (?Object is in class Components) and
(The Vertical-Support of ?0Object is Firm)
Then
(The Support-Status of ?Object is Vertically-Supported)

The next rule below states that an object is also vertically-supported when its
vertical support is Vertically Supported.

If (?Object is in class Components) and

(The Vertical-Support of ?0bject is ?Support) and

(The Support-Status of ?Support is Vertically-Supported)
Then

(The Support-Status of ?Object is Vertically-Supported)

These two rules together define the transitive Closure of the Vertically-
Supported relation.

Since these two rules make conclusions about an attribute of components, in an
object-oriented representation they will be associated with the generic
components object. Together, they implement the principle that an object
requires vertical support before it can be installed. These two rules could be

22 7/18/89

implemented using the actual syntax of a knowledge engineering development
shell.

In a similar fashion, rules and procedural code could be written to implement
the KS purposes and detailed reasoning capabilities as listed below:

Find-Precedences (Project) "Method to invoke rules and methods
which construct a schedule of this construction project. This find-
precedence process uses defined activities with their associated
components and their relations.”

Find-Duration! (Activity) "Method to invoke rules and methods which
determine the duration of this activity. Note that determination of
precedence and duration are independent processes."

Show-Gantt (Activity) "Method to invoke rules and methods which
display a Gantt chart for the project, starting at the named activity. As
necessary, this procedure invokes the Find-Precedences method to
determine precedence of activities for the project, and it may invoke the
Find-Duration method."

Show-Drawing (Project) "Method to display the graphical diagrams for
this project.”

Show-Processes (Activity) "Method to display the successor
construction activities for this activity in a node-and-arrow tree form."

4. Discussion

An implication of these perspectives being distinct and mutually supportive is
that the criteria for judging the effectiveness of work in one area is not within
itself but rather with respect to its contribution to the other development areas.
For example, the effectiveness of a set of frames cannot be judged by
examining the frames themselves in ever greater detail. Rather, their
effectiveness must be judged by their support for other knowledge system
development issues: identifying purposes of the system, the reasoning to
analyze the problem, and explanation of the problem-solution process.
Similarly, rules and explanation facilities must be evaluated in the context of all
of the issues of knowledge system development and testing.

Following the maximum anxiety heuristic is particularly valuable because some
aspects of knowledge system development are relatively easier than others,
and this heuristic forces developers to consider the easy and the difficult parts of
system development concurrently. For example, representation of structural
knowledge is usually relatively easy, whether done using a frame or a rule
system. Thus, there is a natural tendency to focus on description of the domain
and to avoid specification of complicated problem analysis. An even more
insidious problem is that modern Al technologies support representation,
reasoning and graphical interfaces relatively well, but they provide no direct
support for problem specification or testing. Thus, there is a strong tendency to

23 7/18/89

build domain models, make them do something later, and finally figure out what
they should be doing and whether or not they are doing it.

The methodology of rapid prototyping supports problem definition and testing. It
allows developers to create precise problem statements and to demonstrate
and test problem solutions quickly. A recommended technique is to propose a
system development -- in a few written pages, possibly with some initial
computer experiments to probe the feasibility of some basic technology; then to
create and analyze a prototype system; then to create a functional system
specification, and finally to start system development. The functional
specification will evolve during system development, eventually becoming part
of the user documentation.

In creating an initial proposal or prototype of a knowledge system, it is usually
most useful to start addressing the knowledge system development issues by
working on a whiteboard for an hour or so. Once an initial definition of each is
in place, the developers can move to the computer and start creating elements
of a system including units, rules, methods and graphical explanations. After
some plateau has been reached with a system development, it is usually
valuable to return to the whiteboard to continue applying the maximum anxiety
heuristic with the five knowledge system development issues.

In starting building a knowledge system, a developer can initially focus on any
of these development issues. Continual use of the maximum anxiety heuristic is
important, but choice of issue to address initially is not important. During the
first day or so of prototype development, it is appropriate to switch between the
five development issues rapidly -- every few minutes. After several days of
prototype development, it may be productive to spend up to an hour or so on
any one development issue. Only after a functional specification is written and
a development project is well underway is it likely that a complete day can be
spent effectively on one issue without serious regard for other issues.

The sociology of the user environment usually affects all of the issues of
knowledge system development. For example, the purposes of the system, the
explanation and testing will each be affected by the environmental
requirements for interactive or automatic operations, real-time or batch
performance, and desirability of particular tabular or graphical input and output
forms. Thus, developers must determine how a computer might fit into the
working routine of potential users. While the expert must provide the requisite
expertise for the system, it is important that developers learn the way users will
function with a computer-based system and introduce user-oriented interface
with appropriate editors, displays and reports.

Soliciting effective user input is a difficult and important process. Royce argues
briefly for customer participation in the software development process,
especially during requirements generation, preliminary system review, design
review and in evaluation of test results. The QFD method [xxx] has been used
to solicit user input regarding system design. The user input will be important in
specifying the approach and much of the content for each of the five KS

24 _ 7/18/89

development issues. Thus, the QFD and maximum anxiety methods are
complementary.

The user objectives will help to specify both the nature of the user interface and
the system explanation. In addition, the users' working environment will
determine whether the system can be interactive or whether it must be fully
automatic, whether a workstation is an appropriate delivery device or whether
some other computer is more appropriate. In addition, if the current user
environment includes use of a computer, it may be necessary to access some of
the data used in the current system or some of its analysis results. Finally, it
may be desirable to duplicate or at least to be consistent with its style of
computer-user interaction.

The development process should include phased development with frequent
milestones, heavy emphasis on testing, and regular deliverables. Usually,
creating an initial testable prototype within one month is a realistic and useful
goal. It is usually possible and appropriate to plan to place an application in
controlled field test (alpha-test) in 6-12 months, in broader field test (beta-test) at
9-15 months and into field use within 6 months of starting beta test. The initial
fielded system will be a useful subset of the eventual system, but there is
usually so much benefit to early solicitation of user support that aggressive
delivery is worthwhile.

This methodology has been used repeatedly and effectively in creating many
different prototype applications. Some of these prototypes have been created
starting with little more than some intuitions, and others have been created after
a functional specification has been developed. The maximum anxiety
methodology is particularly useful in specifying the purposes of the system, an
issue addressed in some level of detail by creation of a functional specification,
but it has aiso proven to be helpful in converting the statements of a functional
specification into the computational idioms of the knowledge system
development environment in which the project is being built.

The maximum anxiety heuristic continues to apply to the problem of creating a
real application after a prototype has been built because the effectiveness of
representation, reasoning strategies and explanatory facilities must be
assessed by their support for other knowledge system development issues.

25 7/18/89

5. Summary

Throughout the knowledge system development process, opportunistically
address each of the five issues identified below in bold face. The associated
questions are useful in clarifying these issues.

Purposes

Why is the knowledge system being built?

Who are the users?

What work can the system do to help users work effectively?

What work can users do to help the system perform?

What are the inputs and outputs of the system?

How do representation, reasoning and interfaces generalize to related
problems?
Representation (Expressed as Objects with attributes and
values) -

What are the specific things (nouns or objects) referenced in problem
examples?

What are generalizations of specific objects?

What are generic concepts (Nouns or objects) of the domain?

What are measurable attributes of concepts and specific instances?

What are interesting but unmeasurable attributes of objects and

instances?

What attributes are referenced by reasoning procedures?

What are relations among objects?

What are principles of analysis procedures?

Are all the objects and attributes used in reasoning or user interface?
Reasoning (expressed as rules and algorithms)

What are the conditions or constraints under which attribute values
hold? ‘

Are constraints described explicitly in the representation, or in rules
and code?

What are the specific procedures used to analyze the problem?

In what contexts do reasoning procedures apply?

What are generlalized versions of specific analysis procedures?

What are the behaviorsof specific instance objects?

How can reasoning principles be specified?

How are behaviors propagated between objects?
Interfaces (natural idioms, systems interfaces)

What interface is required for the expected level of user sophistication?

What are the graphical idioms used by domain professionals?

What are tabular or text idioms used by domain professionals?

26 7/18/89

What are useful connections to other computers and systems to
input/output data?
Test procedures:

What is the simplest possible test case?

How does (will) system output compare with expert analysis of the
simplest case?

What are 100 representative test cases?

How does (will) the system compare with accepted interpretation of all
test cases?

How are results explained in terms of principles of the analysis
procedure?

Are results robust as input and state variables are pushed to their
extremes?

27 7/18/89

Bibliography

Boehm, B.W., "Software Engineering", IEEE Transactions on Computing, vol. C-25, pp.
1226-1241, Dec. 1976.

Davis, A.M., Bersoff, E.H., Comer, E.R., "A Strategy for Comparing Alternative
Software Development Life Cycle Models", IEEE Transactions on Software Engineering,
Vol. 14, No. 10, October 1988, pp. 1453-1461.

Kunz, J., Stelzner, M.J., Williams, M.D.: "From Classic Expert Systems to Models:
Introduction to a Methodology for Building Model-Based Systems", in Topics in Expert
Systems Design (in press), North-Holland.

Polya, G., How to Solve It, Princeton University Press, 1945.

Royce, W.W., "Managing the Development of Large Software Systems: Concepts and
Techniques", in Proceedings of WESCON, August 1970, pp. A/1-1 - A/1-9.

Acknowledgements: | appreciate the cooperation of the participants in Stanford
University Department of Civil Engineering class CE217 for their thoughtful
comments in creating the case example used in this paper.

28 | 7/18/89

