CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

Indoor Automation with
Many Mobile Robots

Philippe Caloud, Wonyun Choi,
Jean-Claude Latombe, Claude Le Pape and Mark Yim

CIFE Working Paper
Number 12

January, 1992

Stanford University

ClFECenter for Integrated Facility Engineering * Stanford University

Copyright © 1992 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 94305-4020

IEEE International Workshop on Intelligent Robots and Systems

[ROS 90

INDOOR AUTOMATION WITH MANY MOBILE ROBOTS

Philippe Caloud, Wonyun Choi,
Jean-Claude Latombe, Claude Le Pape and Mark Yim
Robotics Laboratory

Stanford University
Stanford CA 94305 USA

Abstract: The goal of the GOFER project is to control the op-
erations of many mobile robots (several dozens) in an indoor envi-
ronment. This project raises many research issues: implementation
of non-conflicting sensor systems, man-robot and robot-robot com-
municalion systems and protocols, contingency-tolerant motion
control, multi-robot motion planning, multi-robot task planning
and scheduling. The aim of this paper is to provide an overview of
the project and present our current solutions to these problems.

Acknowledgements: This research has been funded by the
Center for Intcgrated Systems (CIS), the Center for Integrated
Facility Engineering (CIFE) and Digital Equipment Corporation
(DEC). Claude Le Pape was supported by ELF-Aquitaine.

1 The GOFER Project

The goal of the GOFER project is to control the opera-
tions of many mobile robots (several dozens) in an indoor en-
vironment (an office environment, a shop-floor, an airport, an
liotel) in order to automate a variety of tasks. Typical tasks
include transportation of objects (beverages, books, mail),
operation of machines (copiers, vending machines), cleaning,
maintenance and hazard detection. Different tasks may re-
quire different physical capabilities. However, many tasks
cssentially involve mobility and transportation of relatively
small objects.

The GOFER project raises many research issues: design
of non-conflicting sensor systems, man-robot and robot-robot
communication systems and protocols, contingency-tolerant
motion control, multi-robot motion planning, multi-robot
task planning and scheduling.

¢ In section 2, we discuss the development of robot hard-
ware. 'Although most of the hardware work consists
of integrating commercially available products (mobile
base, sensors, computing equipment), we have had to
develop some hardware components. For instance, most
marketed sensors are “active”. If several robots use
the same active sensors without precaution, they will
strongly interfere. The development of passive sensors
is consequently an important issue. Another important
issue is communication: we want any two robots to be
able to directly exchange information in order lo coop-
erate and coordinate their actions appropriately.

o In section 3, we present our current system for plan-
ning and execution. This system integrates a collection
of software components: a task planning system to
derive plans made of “high-level” actions (such as “go to
position P” or “get object O") from a description of the
tasks to be performed; a task allocation system to
order and allocate tasks or actions to robots; a motion

planning system to convert high-level actians into
molion commands; and an execution system to mon-
itor execution and react to unexpected events. These
components are implemented in COMMON-LISP on a
DEC-3100 workstation. The overall system is tested
with the help of a simulator specially designed to sim-
ulate actions of autonomous agents [12].

e In section 4, we discuss our current status and futurc
work concerning both the problems considered so far
(development of passive sensors, planning, contingency-
tolerant execution) and other research issues to consider
in the future (development of communication models,
definition of an architecture to coordinate all the phys.
ical and cognitive activities of a robot).

2 Hardware Development

Since the GOFER project is a relatively large project and
is expected to take many years to complete, we decided to im-
prove the robot hardware gradually by creating several gen-
erations of robots. This will allow the hardware to be more
up-to-date with what technology exists at that time. There-
fore, we tried to keep the design philosophy as follows: (1) use
as many off-the-shelf products as possible; (2) modularize the
parts as much as possible; (3) focus on advancing one technol-
ogy at a time instead of trying to improve everything at the
same time. By following the above philosophy, we were able
to construct each generation of the robot in a relatively short
amount of time for demonstrating research software while im-
proving the hardware without interruption. Currently, we are
developing the third generation of GOFER. Most of the fol-
lowing will apply to this generation.

The robots we currently use are semi-autonomous mobile
platforms receiving high-level commands from workstations
(Sun-3 and Macintosh 1I). Each robot is instrumented with
odometric, touch, and infra-red proximity sensors. In ad-
dition, we are currently implementing a laser-camera-based
range sensor. We are also investigating various devices for
communication among robots and with a computer network
(radio modem/ethernet and infra-red communications).

2.1 Mobile Platform

The hardware of GOFER consists of a 12 inch diameter
mobile base (B12 by Real World Interface') and interface
modules (see figure 1). The 3-wheeled 2 DOF mobile base
is equipped with two DC motors, four 6V gel-cell batteries
and an 8-bit microcomputer for low-level control. The mobile

ISee the “Real World Interface Mobile Robot Base B12 Guide
to Operations™.

base has a belt-driven synchro-drive mechanism which allows
the base to translate and rotate independently. When the
base rotates, only the top plate and the wheels rotate. Two
optical shaft encoders are directly attached to the motors to
provide linear position and angular position of the base. Mo-
tor control and inquiries about encoders, battery status and
motor status are achieved through a serial port (RS232).

The current interface modules consist of a touch sensor
module, an infra-red module, a laser-ranging module and a
computer module. FEach module, except the touch sensor
module, is built on its own modular plate and is placed one on
top of the other with the bottom one rigidly attached to the
top plate of the base. Interface modules are designed such
that they are completely independent of each other. Also,
each module communicates on 2 common robot bus which is
passed through each module. Therefore, each module can be
detached for test or repair without affecting the use of other
modules. This design allows easy expandability. It facilitates
debugging and experimentation with the robot hardware.

The computer module has a 5 slot VMEbus card cage. A
totally CMOS 20MHz MC68030 based computer board and a
custom-designed IO board are installed in it. The 68030 board
has battery backed 256 Kbyte SRAM, maximum 1 Mbyte and
four RS232 serial ports. It draws about 1 Amp. The IO board
has 64 general 1O lines and draws less than 100mA.

The touch sensor module is placed around a steel bumper
which encases the robot base. The bumper serves to protect
the base as well as house six additional 6V gel-cell batter-
ies. It expands the diameter of the base to 18 inches. The
touch sensor has two levels of 12 segment tape switches. Each
tape switch detects a pressure of 9 oz and provides on/off in-
formation. The batteries provide about 10 hours continuous
running time powering all the interface modules. By expand-
ing the diameter of the base and putting the heavy batteries
at the bottom of the robot, the stability of the robot is greatly
enhanced.

On the infra-red sensor module, 16 emitter/receiver pairs
are evenly distributed around the perimeter of the modular
plate and a control circuit board is located at the center of
the plate. Each infra-red emitier/receiver can detect an ob-
ject within 16 inches in 250 micro-seconds with an average
resolution of 0.25 inches. This is an intensity based device, so
it is inherently subject to color and specularity problems.

On the laser-ranging module, a laser diode and a CCD
camera are placed in a reconfigurable fixture. The fixture
allows the laser unit and the CCD camera to have different
offscts and relative orientations. More details about the-laser-
ranging sensor are provided in the following section.

2.2 Laser-Ranging Sensor

Ranging is achieved by emitting a plane of light and watch-
ing {rom some offset distance for intersections with this plane.
Then, triangulation is done to find the actual distance. An
infra-red laser diode and a cylindrical lens create the plane
of light. By turning a camera 90 degrees on its side, so the
scan lines run vertically, we can measure the distance to an
object by monitoring the composite video output. By mea-
suring the time from the beginning of any scan line to the
sudden increase in intensity that would correspond to an ob-
ject reflecting the laser light, we get a direct relation to the
pbject’s distance. An interference filter that allows only the

laser light frequency to pass is put over the camera to reduce
noisc.

This system provides 15360 data points per second, 512
ranging values over the 30 degrec field of view of the camera
30 limes per second. The timing information along with the
intensity of the reflection is then directly dumped into mam-
oty by DMA over the VM Ebus. The resolution varies with the
distance: closer objects are seen with betler resolution. The
resolution is also directly related to the offsel of the camera
with the laser plane. So a 6 inch offset produces a theoretical
resolution of 0.03 inches at one {oot and a resolution of 2.3
inches at ten fect.

2.3 Communication System

We have implemented a 2400 eflective baud radio modem
with the robots, but are now considering radio ethernct as the
technology is becoming available. This would give a higher
data rate as well as the well-accepted standard for local area
networking. Another system which we are considering is an
infra-red cthernet, where the robots dock next to an infra-
red communication port and communicate by being in close
proximity.

Camera

Laser-ranging Module

d . -I:.Laser

VMEbus Card Cage

Computer Module

[T BT

AL,

Infra-red Module
op floor cl>l mobile base

‘ Touch Sensor Module 1

| |]
L

Figure 1: A GOFER

3 Planning and Execution

The overall multi-robot system should be “taskable”: it
should accept task descriptions which specify what the users
want to be done rather than how to do it. Thus, the robotic
system must decide which actions to execute and when. The
global goal is Lo ensure the best service. This includes per-
forming tasks in a timely fashion, minimizing the cost of doing
so and bothering humans only when necessary. The reasoning
activities which concern planning and scheduling are currently
organized as follows:

o Task Planning: determine plans of “high-level” ac-
tions (such as “go to position P” or “get object O”)
from a description of the goals to be achieved.

base has a belt-driven synchro-drive mechanism which allows
the base to translate and rotate independently. When the
base rotates, only the top plate and the wheels rotate. Two
optical shaft encoders are directly attached to the motors to
provide linear position and angular position of the base. Mo-
tor control and inquiries about encoders, battery status and
motor status are achieved through a serial port (RS232).

The current interface modules consist of a touch sensor
module, an infra-red module, a laser-ranging module and a
computer module. Each module, except the touch sensor
module, is built on its own modular plate and is placed one on
top of the other with the bottom one rigidly attached to the
top plate of the base. Interface modules are designed such
that they are completely independent of each other. Also,
each module communicates on a2 common robot bus which is
passed through each module. Therefore, each module can be
detached for test or repair without affecting the use of other
modules. This design allows easy expandability, It facilitates
debugging and experimentation with the robot hardware.

The computer module has a 5 slot VMEbus card cage. A
totally CMOS 20MHz MC68030 based computer board and a
custom-designed IO board are installed in it. The 68030 board
has battery backed 256 Kbyte SRAM, maximum 1 Mbyte and
four RS232 serial ports. It draws about 1 Amp. The IO board
has 64 general 1O lines and draws less than 100mA.

The touch sensor module is placed around a steel bumper
which encases the robot base. The bumper serves to protect
the base as well as house six additional 6V gel-cell batter-
ies. It expands the diameter of the base to 18 inches. The
touch sensor has two levels of 12 segment tape switches. Each
tape switch detects a pressure of 9 oz and provides on/off in-
formation. The batteries provide about 10 hours continuous
running time powering all the interface modules. By expand-
ing the diameter of the base and putting the heavy batteries
at the bottom of the robot, the stability of the robot is greatly
enhanced.

On the infra-red sensor module, 16 emitter/receiver pairs
are evenly distributed around the perimeter of the modular
plate and a control circuit board is located at the center of
the plate. Each infra-red emitter/receiver can detect an ob-
ject within 16 inches in 250 micro-seconds with an average
resolution of 0.25 inches. This is an intensity based device, so
it is inherently subject to color and specularity problems.

On the laser-ranging module, a laser diode and a CCD
camera are placed in a reconfigurable fixture. The fixture
allows the laser unit and the CCD camera to have different
oflsets and relative orientations. More details about the-laser-
ranging sensor are provided in the following section.

2.2 Laser-Ranging Sensor

Ranging is achieved by emitting a plane of light and watch-
ing from some offset distance for intersections with this plane.
Then, triangulation is done to find the actual distance. An
infra-red laser diode and a cylindrical lens create the plane
of light. By turning a camera 90 degrees on its side, so the
scan lines run vertically, we can measure the distance to an
object by monitoring the composite video output. By mea-
suring the time from the beginning of any scan line to the
sudden increase in intensity that would correspond to an ob-
ject reflecting the laser light, we get a direct relation to the
pbject’s distance. An interference filter that allows only the

laser light {requency to pass is put over the camera to reduce
noise.

This system provides 15360 data points per second, 512
ranging values over the 30 degree field of view of the camera
30 times per second. The timing information along with the
intensity of the reflection is then directly dumped into mem-
ory by DMA over the VMEbus. The resolution varies with the
distance: closer objects are seen with better resolution. The
resolution is also directly related to the offsct of the camera
with the laser plane. So a 6 inch offset produces a theorctical
resolution of 0.03 inches at one foot and a resolution of 2.3
inches at ten fect.

2.3 Comimunication System

We have implemented a 2400 effective baud radio modem
with the robots, but are now considering radio ethernct as the
technology is becoming available. This would give a higher
data rate as well as the well-accepted standard for local arca
networking. Another system which we are considering is an
infra-red cthernet, where the robots dock next to an infra-
red communicalion port and communicate by being in close
proximity.

Laser-ranging Module

Laser

VMEbus Card Cage

Computer Module

i
NIRRT

Infra-red Module

l Touch Sensor Module]

l | |]

Figure 1: A GOFER

3 Planning and Execution

The overall multi-robot system should be “taskable”: it
should accept task descriptions which specify what the users
want to be done rather than how to do it. Thus, the robotic
system must decide which actions to execute and when. The
global goal is to ensure the best service. This includes per-
forming tasks in a timely fashion, minimizing the cost of doing
so and bothering humans only when necessary. The reasoning
activities which concern planning and scheduling are currently
organized as follows:

¢ Task Planning: determine plans of “high-level” ac-
tions (such as “go to position P” or “get object O”)
from a description of the goals to be achieved.

o Task Allocation: allocate tasks to robots with respect
to task characteristics and robot availability.

e Motion Planning: convert high-level actions into mo-
tion commands.

¢ Decision Making at Execution Time:
plan execution and react to unexpected events.

monitor

Distributed problem-solving is advocated for most of these ac-
tivitics. We believe that distributed problem-solving is more
efficient in all cases in which (a) communication with a central
system is too costly and (b) there is too much uncertainty in
the environment to make reliable predictions in advance.

3.1 Task Planning

A robot acquires goals in two ways. The first is to offer or
to be asked to achieve goals of other agents (human clients or
other robots). We deal with this situation in section 3.2. The
second is to autonomously generate goals with respect to the
cnrrent situation. For example, idle robots should contact
other agents through the communication network to deter-
mine what they could do for them. A robot generates a goal
({on-line myself) = true) as soon as it is free of other goals.

Task planning consists of determining programs of actions
that can be carried out to achieve goals. We consider plan
structures, which contain variables, and plan instances, which
are instantiated plan structures. A plan structure is defined
as an action hierarchy and a set of constraints.

s Action Hierarchy. The top-level action represents
the entire process to carry out. Each action can be re-
fined into either a sequence of more detailed actions,
a set of un-sequenced actions (to be performed either
in parallel or in any order), or a set of exclusive alter-
natives. The actions at the bottom of the hierarchy
are atomic {ormulas containing variables. For example,
(connect ?R 7P) corresponds to the connection of any
robot 7R with any communication network port 7P.

¢ Constraints provide a specification of admissible as-
signments of values to variables. Type specifications
such as ((type 7R) = (or mobile-robot workstation))
describe domains over which variables can vary. Vari-
able relations such as ((location ?R) = 7P} definc a
subsel of the cartesian product of these domaius.

A plan instance is an action hierarchy in which variables have
been replaced by values satisfying the constraints. For exam-
ple, [((type 7P) = port) (sequence (move mysell 7P) (connect
mysclf ?P))] is a plan structure enabling the achievement of
((on-line myself) = true). If port-22 is a particular port, then
(sequence (move myself port-22) (connect myself port-22)) is
an instance of this plan structure.

Given a new goal, we consider three planning steps. In the
first step, the robot determines plan structures to achieve the
goal. Plan structures are either retrieved from a library (as
in [6} and [7]) or constructed with the help of a constraint-
based (currently linear) planner. In the second step, the robot
instantiates plan structures. It uses a general constraint satis-
faction algorithm which allows to determine one, all, the best
or the n best substitutions of variables, with respect to some
user-provided evaluation function. For exawuple, it allows to
determine the substitution which minimizes an estimate of the
tolal duration of the plan. In the third step, the robot makes
final decisions. Depending on its planning policies, the robot
may have developed several goals, several plan structures for

the same goal and several plan instances for the same plan
struclure.
veloped to achicve individual goals are likely to interact [4].

The overall problem is complex since plans de-

One method consists of combining available plans, detectling
interactions and solving them. Currently, we apply another
method which consists of selecting one plan to execute prior
to the others.

Both the construction and instantiation of plan structures
are NP-complete problems. However, the use of power{ul con-
straint propagation techniques allows us to considerably re-
duce scarch. Furthermore, plan instantiation usually involves
a small set of variables (one to ten) and variable relations per-
mitting low-cost propagation steps (consistent with the local-
ity criterion [17] [10]). In the most complex case encountered
so far, the planner needs only 4.7 seconds Lo construct 5 plan
structures {(with on average 8 actions per plan) and 2.5 scc-
onds to instantiate them (to find the optimal plan instance).

3.2 Task Allocation

In this section, we consider the case in which robots are
ready to contribute to achieve goals of other agents. In this
case, we use a partially centralized method to determine an
appropriate task allocation. Each available robot commu-
nicates with a central task planning and scheduling system
(CTPS). The CTPS cannot communicate with un-connected
robots. However, most of these robots picked tasks in ac-
cordance with the CTPS. Hence, the CTPS approximately
knows what these robots are doing. Generally speaking, the
CTPS has a global view of (a) the tasks to be performed in
the environment and (b) the availability of robots to perform
these tasks.

The task allocation method is reminiscent of the contract
net problem-solving strategy [16] [15]. When the CTPS re-
ceives orders (goals) from clients, it generates plan struc-
tures enabling the achievement of these goals and provides
available robots with a description of pending goals and plan
structures.? Robots determine which roles they can play in
the execution of the plan structures. This means each robot
substitutes itself to variables the type of which is consistent
with its own type and propagates the substitutions to check
the satisfiability of variable relations. Then each robot uses
the constraint satislaction algorithm mentioned in section 3.1
to extend the substitutions and proposes complete substitu-
tions to the CTPS. Each proposal includes (a) a reference to
the considered goal, (b) a reference to the considered plan
structure, {c) a description of the substitution and (d) values
returned by evaluation functions considered during constraint
satisfaction (e.g. an estimate of the total execution time).

In general, the CTPS does not receive all the proposals
from all the robots at the same time. For example, some
robots connect after others made proposals. In some cascs,
the overall system will perform much better if the CTPS waits

2The CTPS can do this because plan structures do not depend
on the particular agents contributing to the satisfaction of goals.
Conversely, the CTPS cannot instantiate plan structures since it
does not know which agent is going to be available to do what.
More generally, “agent-independent” and “agent-dependent” plan-
ning steps can be distinguished. Any agent aware of a goal can
construct agent-independent plan structures with no information
about the current situation of agents in the environment. Con-
versely, deciding which particular agent will execute which plan
requires an assessment of the current physical capabilities and sit-
uation of the agents.

a few minutes before making a decision. The CTPS cannot
precisely predict that the best solution is to wait. However,
it can determine whether waiting is likely to be better than
making an immediate decision. Following other researchers
applying concepts from decision theory to planning problems
(see [8]), we provide the CTPS with a decision-theoretic defi-
nition of the allocation problem. We use an incremental algo-
rithm which makes use of statistical information to maximize
the expected value of a given utility function u. Given a set
of proposals and a set of goals, the CTPS must decide for
cach goal either to wait or to allocate the goal to a robot.
Decisions can be revised each time a new proposal arrives or
when an abnormal situation such as the unexpected absence
of a robot is detected. However, when a robot is already ex-
ecuting a plan, the corresponding decision cannot be revised.

Our current implementation relies on a decomposition as-
sumption. The value of u for a set of goals {goal-1 ... goal-n)
is a linear combination of (a) the sum over goals of the waiting
times preceding the allocation of the goal to a robot and (b)
the sum over goals of the utility of having the eventually cho-
sen robot achieving the goal, independently of when it starts
doing it. This means we want to maximize the expected value
of the expression aZwaiting-time(goal-i) + AT utility(goal-i
achieved as it is achieved) in cases in which the utility of
achieving a goal as it is achieved does not vary with the wait-
ing time. For example, any function of the execution dura-
tion and energy consumption satisfies this requirement. In
particular, the overall expression to maximize can be set to
—Xwaiting-time(goal-i) —Zexecution-time(goal-i) which cor-
responds to minimizing the average response time between
the generation and the satisfaction of a goal.

Given the decomposition assumption, the CTPS can cas-
ily compute the expected value of both terms given a set of
decisions {decision-1 ... decision-n} for {goal-1 ... goal-n}.
For each goal and each robot, the CTPS knows the plan in-
stance the robot proposes to execute. With this plan instance
and appropriate statistical information, the CTPS computes
the expected utility of having the goal achieved as the robot
proposes. Therefore, when the CTPS hypothesizes the assign-
ment of a robot robot-j to a goal goal-i, it knows the utility
of this assignment. Furthermore, it can estimate the waiting
time for goal-i under this hypothesis since robot-j will start
executing the plan instance as soon as the CTPS tells it to do
so. The evaluation is slightly more complex when the CTPS
hypothesizes that it will not assign goal-i to any of the con-
nected robots. In the absence of any other information, the
expected value of utility(goal-i achieved as it will be achieved
in the future) equals the mean value the function utility took
for similar goals achieved in the past. Similarly, the CTPS
rclies on statistical information to determine the sum of the
waiting times of m un-assigned goals when n robots are busy
and p robots expected soon.

An incremental algorithm is used to review proposals.
When a new proposal arrives, the CTPS determines whether
the current allocation remains the best. If it does not, then
it is replaced by the new optimal allocation. If the CTPS
receives other proposals in the meantime, they are reviewed
one after the other. When there is no more proposal to re-
view, the CTPS asks robots to execute plans with respect to
the optimal allocation. Robots to which tasks are assigned
respond with an acknowledgement and plan and execute the
corresponding motions in a distributed fashion.

3.3 Motion Planning

The motion planner developed within the GOFER project
rests upon three assnmptions:

o The geometry of the environment is mainly defined by
walls, machines and heavy furniture which do not (or
rarely) movein time. Therefore, robots can be provided
with an approximate map of the environment and refer
to this map to plan motions “in advance”.

e In most cases, two obstacles are either very close to cach
other (a machine may be against a wall) or sufliciently
distant to make it easy for the mobile robots to move
in the environment. This is not a very restrictive as-
sumption because shop-floors, office environments, ho-
tels, airports, are designed so that it is easy to move
inside. For example, the width of a corridor is such
that two mobile objects of an average shape and size
can easily pass each other. An important consequence
of this assumption is that we can compute an arlificial
road network on which robots will move whenever it is
possible.

e In general, there is too much uncertainty about the
places ‘where two robots will meet to solve every pos-
sible interaction in advance. During execution, robots
must apply procedures which ensure that no collision
occurs with other robots or, more generally, with other
unexpected obstacles.

In this context, we advocate a distributed approach wlere
each robot is responsible for its own motion planning. The
planning technique is based on the pre-computation of a road
network. Each robot is provided with this network and uses
an A* algorithm [13] to compute a path which follows this
network. The pre-computation of the network and the motion
planning algorithm are presented below. Motion coordination
and collision avoidance are ensured at execution time with
the help of “behavior rules” and “potential fields” discussed
in section 3.4.

To design a road network, we first compute two tlrape-
zoidal decompositions of the workspace along two orthogo-
nal directions.®> FEach cell is a trapezoid whose upper and
lower edges are edges {or parts of edges) of obstacles (the
surrounding rectangular {rame is considered as a special ob-
stacle). When a cell has at most one neighbor cell at each of
its lelt and right sides, a road is designed through the cell to
connect its lelt and right edges. Let us call these cells C-cells.
Any sequence of contiguous C-cells is called a channel. The
roads in the contiguous cells of a channel can be connected.
This results in a road which connects the left side of the left-
most cell to the right side of the rightmost cell of the channel.
We call T-cell a cell which has more than one neighbor cell
at its left or at its right. Let us suppose that a given T-cell
T has two neighbor cells at its right. In this case, two roads
separated by an obstacle are connected to the right edge ol T
A vertical road must be designed to connect these two roads.
The key idea is that the decomposition into cells along the
orthogonal direction provides us with a channel which over-
laps the T-cell T. The road designed in this channel can be
used to connect the two roads at the right of T. Therefore,
the computation of the road network can be summarized as

3We restrict ourselves to a two-dimensional problem: the mobile
robots are disks moving among polygonal obstacles without holes
inside a rectangular frame. We describe the decomposition along
the x axis. The same algorithm applies along the y axis.

a few minutes before making a decision. The CTPS cannot
precisely predict that the best solution is to wait. However,
it can determine whether waiting is likely to be better than
making an immediate decision. Following other researchers
applying concepts from decision theory to planning problems
(see [8]), we provide the CTPS with a decision-theoretic defi-
nition of the allocation problem. We use an incremental algo-
rithm which makes use of statistical information to maximize
the expected value of a given utility function u. Given a set
of proposals and a set of goals, the CTPS must decide for
each goal either to wait or to allocate the goal to a robot.
Decisions can be revised each time a new proposal arrives or
when an abnormal situation such as the unexpected absence
of a robot is detected. However, when a robot is already ex-
ecuting a plan, the corresponding decision cannot be revised.

Our current implementation relies on a decomposition as-
sumption. The value of u for a set of goals {goal-I ... goal-n}
is a linear combination of (a) the sum over goals of the waiting
limes preceding the allocation of the goal to a robot and {b)
the sum over goals of the utility of having the eventually cho-
sen robot achieving the goal, independently of when it starts
doing it. This means we want to maximize the expected value
of the expression aZwailing-time(goal-i) + BTutility(goal-i
achieved as it is achieved) in cases in which the utility of
achieving a goal as it is achieved does not vary with the wait-
ing time. For example, any function of the execution dura-
tion and energy consumption satisfies this requirement. In
particular, the overall expression to maximize can be set to
—Zwaiting-time(goal-i) —TLexecution-time(goal-i) which cor-
responds to minimizing the average response time betwecen
the generation and the satisfaction of a goal.

Given the decomposition assumption, the CTPS can eas-
ily compute the expected value of both terms given a set of
decisions {decision-1 ... decision-n} for {goal-1 ... goal-n}.
For each goal and each robot, the CTPS knows the plan in-
stance the robot proposes to execute. With this plan instance
and appropriate statistical information, the CTPS computes
the expected utility of having the goal achieved as the robot
proposes. Therefore, when the CTPS hypothesizes the assign-
ment of a robot robot-j to a goal goal-i, it knows the utility
of this assignment. Furthermore, it can estimate the waiting
time for goal-i under this hypothesis since robot-j will start
executing the plan instance as soon as the CTPS tells it to do
so. The evaluation is slightly more complex when the CTPS
hypothesizes that it will not assign goal-i to any of the con-
nected robots. In the absence of any other information, the
expected value of utility(goal-i achieved as it will be achieved
in the future) equals the mean value the function utility took
for similar goals achieved in the past. Similarly, the CTPS
rclies on statistical information to determine the sum of the
waiting times of m un-assigned goals when n robots are busy
and p robots expected soon.

An incremental algorithm is used to review proposals.
When a new proposal arrives, the CTPS determines whether
the current allocation remains the best. If it does not, then
it is replaced by the new optimal allocation. If the CTPS
reccives other proposals in the meantime, they are reviewed
one afler the other. When there is no more proposal to re-
view, the CTPS asks robots to execute plans with respect to
the optimal allocation. Robots to which tasks are assigned
respond with an acknowledgement and plan and execute the
corresponding motions in a distributed fashion.

3.3 Motion Planning

The motion planner developed within the GOFER project
rests upon three assumptions:

¢ The geometry of the environment is mainly defined by
walls, machines and heavy furniture which do not (or
rarely) move in time. Therefore, robots can be provided
with an approximate map of the environment and refer
to this map to plan motions “in advance”.

o In most cases, two obstacles are cither very close to cach
other (a machine may be against a wall) or sufficiently
distant to make it easy for the mobile robots to move
in the environment. This is not a very restrictive as-
sumption because shop-floors, office environments, ho-
tels, airports, are designed so that it is easy to move
inside. For example, the width of a corridor is such
that two mobile objects of an average shape and size
can easily pass each other. An important consequence
of this assumption is that we can compute an artificial
road network on which robots will move whenever it is
possible.

In general, there is too much uncertainty about the
places ‘where two robots will meet to solve every pos-
sible interaction in advance. During execution, robots
must apply procedures which ensure that no collision
occurs with other robots or, more generally, with other
unexpected obstacles.

In this context, we advocate a distributed approach where
cach robot is responsible for its own motion planning. The
planning technique is based on the pre-computation of a road
network. Each robot is provided with this network and uses
an A* algorithm [13] to compute a path which follows this
network. The pre-computation of the network and the motion
planning algorithm are presented below. Motion coordination
and collision avoidance are ensured at execution time with
the help of “behavior rules” and “potential fields” discusscd
in section 3.4.

To design a road network, we first compute two trape-
zoidal decompositions of the workspace along two orthogo-
nal directions.®> Each cell is a trapezoid whose upper and
lower edges are edges (or parts of edges) of obstacles {the
surrounding rectangular {rame is considered as a special ob-
stacle). When a cell has at most one neighbor cell at each of
its left and right sides, a road is designed through the cell to
connect its le[t and right edges. Let us call these cells C-cells.
Any sequence of contiguous C-cells is called a channel. The
roads in the contiguous cells of a channel can be connected.
This results in a road which connects the left side of the left-
most cell to the right side of the rightmost cell of the channdl.
We call T-cell a cell which has more than one neighbor ccll
at its left or at its right. Let us suppose that a given T-ccll
T has two neighbor cells at its right. In this case, two roads
separated by an obstacle are connected to the right edge of 7.
A vertical road must be designed to connect these two roads.
The key idea is that the decomposition into cells along the
orthogonal direction provides us with a channel which over-
laps the T-cell T. The road designed in this channel can be
used to connect the two roads at the right of T. Therelore,
the computation of the road network can be summarized as

3We restrict ourselves to a two-dimensional problem: the mobile
robots are disks moving among polygonal obstacles without holes
inside a rectangular frame. We describe the decomposition along
the x axis. The same algorithm applies along the y axis.

the computation of roads inside channels along the x and y
dircections and the design of suitable intersections. Figure 2
provides an example of a road network generated in our labo-
ratory. Each road is composed of twolanes. The lines between
the obstacles represent the spines of these lanes.

To compute a path {from an initial location to a goal loca-
tion (as specified by a task-level plan), a robot first tries to
find a path from the initial location to any road of the net-
work and from any road of the network to the goal location.
This results in the creation of “connection lanes” allowing
the robot to reach some lanes belonging to the network from
the initial location and to reach the goal location from some
other lanes of the network. The road network is temporarily
updated by including these connection lanes. Then the robot
uses an A* algorithm to determine a path from the initial to
the goal location by searching the graph whose vertices are
the intersections between the lanes and whose edges are the
lanes of the road network. The solution provided by this al-
gorithm is a sequence (Linit Xinit L1 X1... X w1 Ln X goat Lgoat)
of lanes L; and crossroads X;, such that Lini and Lgear are
connection lanes and Ly ... L, are lanes of the road network.

H {
] I | | a
] H]

fstd

Y
} T HL_
| { et |

Figure 2: A Road Network

3.4 Execution

In the previous sections, we have been considering robot
planning activities. We now present an execution system used
to monitor execution and react to unexpected events. Hier-
archical Petri nets (as originally developed with the SONIA
scheduling system to simulate the execution of job-shop sched-
ules [10]) are used to interpret the plan decomposition. Given
a chosen plan instance, a robot generates a net (5 T) com-
posed of states, action transitions and hierarchy tran-
sitions. Action transitions correspond to the actual perfor-
mance of individual actions such as (connect myself port-22).
Hicrarchy transitions correspond to the interpretation of the
plan decomposition. Figure 3 shows parts of the nets gener-
ated for an individual action, a sequence of actions, a set of
un-sequenced actions and a set of exclusive alternatives.

Let us provide some background on Petri nets prior Lo ex-
plain how they are used to guide execution. Each state s in
Scan be provided with tokens. A state is active when it pos-
scsses at least a token. Each transition tin Tis a couple
(in(t) out(t)) of subsets of S. A transition ¢ is aclive when
cvery slate s in in(t) is active. An aclive transition can be
sclected for execution. States in in(t) give a token when exe-
cution begins. States in out(t) receive a token when exccution
ends. Resource states corresponding to individual or com-
pound resources can be added to the net. A resource state s
is in in(t) if t consumes or require the use of a resource. A

resource state s is in out(t) if t produces a resource or gives it
back at the end of the execution.

When the net is used to perform simulations (as in {10)),
it is “timed” (as in [3]). Hierarchy transitions are instanta-
neous and durations of action transitions are computed with
respect to statistical rules reflecting the stochastic nature of
the action process. When the net is used to guide execution
monitoring, its transitions are interpreted by the monitoring
system. Interpreting a hierarchy transition ¢ consists of (1)
decrementing the number of tokens of each state sin in(t) and
(2) immediately incrementing the number of tokens of each
state sin out(t). Interpreting an action transition ¢ consists of
(1) decrementing the number of tokens of each state s in in(t)
and (2) initiating the control of the corresponding eflectors.
At some point in time (uncompletely predictable, depending
on the stochastic nature of the action process), the robot is
able to determine whether the action succeeds or fails. When
the action succeeds, the robot increments the number of to-
kens of each state s in out(t) and the process of interpreting
transitions continues. When the action fails, the robot dis-
cards the net and determines other ways to achieve its goal.

individual
action

o380

&ﬁ

becomes

sequence

of actions
< becomes

unordered
action set

becomes

L

state
action transition
hierarchy transition

set of
alternatives
O
O = action =
o]

Figure 3: Derivation of Petri Nets

becomes

i}

The control of the execution of an individual action may be
a complex activity requiring the use of dedicated techniques.
The most interesting example in the current system is robot
motion. As mentioned in section 3.3, the method employed
to coordinate the motions of several robots is to make them
use behavior rules which implement space allocation policies:

o A robot must not enter a crossroad if there is another
robot in the crossroad.

e A robot moving in a connection lane (Linit or Lgoat)
must stop when it detects another robot moving in a
lane that the connection lane intersects with.

¢ A robot moving in a lane must keep a minimum distance
between itself and any other robot preceding it in the
same lane.

e A robot must never enter a crossroad X if there is not
enough space in the next lane L;;; to completely leave
the crossroad X,

o A robot arriving at a crossroad must take note of all
the robots already waiting on other lanes and wait for
these robots to pass (this rule implements a first-come
first-served crossroad allocation policy).

¢ A robot uses its motion planner again as soon as the
total amount of time it spent waiting since the last
crossroad becomes greater than a given constant. In
this case, the robot tries to find a new path (from the
current location to the goal location) in the road net-
work in which the next crossroad of its current path
is removed (this rule implements a solution to unlikely
deadlocks [2}).

In addition, potential field techniques are used to avoid colli-
sions with unexpected obstacles. When a robot moves inside
a lane, we want il to stay as close as possible to its nomi-
nal path and to reach the next crossroad in its plan. These
simple behaviors are implemented with attractive potential
fields (similar to those described in [9]). But we also want the
robot to stay in its lane and avoid collisions with known and
unknown obstacles. These behaviors are implemented with
repulsive potential fields (see [2] for details).*

4 Current Status - Future Work

We currently have three robots equipped with odometric,
touch and infra-red proximity sensors. They are able to ac-
complish simple tasks such as pushing a box, tracking walls in
a corridor and following each other. One of these robots will
soon have a laser-ranging sensor. The current version of the
planning and execution system is written in COMMON-LISP.
Experiments with this system are performed on a DEC-3100
workstation with the help of a simulator designed to simulate
actions of autonomous agents [12]. We are conducting exper-
iments to check the efficiency of the task allocation strategy
and determine in which cases a centralized analysis of task
interactions allows to improve the behavior of the system.

Planning and scheduling algorithms will soon be experi-
mented with the three robots. We will use the “action net-
work” system [14] to control the use of potential fields during
robot motion. Each robot will be provided with an action net-
work to dynamically modify potential fields as the situation
of the robot changes.

Other research issues include the development of models to
trigger communication acts and the definition of an architec-
ture to coordinate all the physical and cognitive activities of
a robot.

¢ There are many cases in which appropriate reactions
to unexpected events include communication. Hence a
need to design methods allowing robots to determine (in
a given situation) which pieces of information are worth
getting (or spreading) and to plan communication acts
accordingly. This includes the design and the represen-
tation of various communication operators and, most
importantly, the design of mechanisms allowing error
propagation to stop.®

4 Another approach to motion execution monitoring, which we
investigate in parallel, is described in [5).
5Unless each robot carefully verifies critical picces of information

e Another issuc is the design (or the choice) of an archi.
tecture to coordinate the physical and cognitive activ-
ities of a robot. Currently, a blackboard-like system is
used to coordinate planning and scheduling activities
(sce {11]), a Petri net interpreter deals with plan execu-
tion (cf. section 3.4), and action networks are consid-
ered to control the use of potential fields, There are a
lot of similarities between the three systems. In the long
term, we would like to define a unique control system
to replace them, without sacrificing the advantages of
each approach: explicit definition and implementation
of control reasoning, efficiency and concurrency.

References

[1] G. W. Allport. and L. Postman. The Psychology of Rumar.
Russell and Russell, 1965.

[2] P. Caloud. Distributed Motion Planning and Motion Coor-
dination for Multiple Robots. Working Paper, Stanford Uni-
versity, 1990,

[3] J. Carlier, P, Chrétienne and C. Girault. Modeling Scheduling
Problems with Timed Petri Nets. Fourth Buropean Wark-
shop on Theory and Applications of Petri Nets, 1983.

[1] D. Chapman. Planning for Conjunctive Goals. Artificial In-
telligence, 32(3):333-377, 1987.

[5] W. Choi, D. Zhu and J.-C. Latombe. Contingency-Tolerant
Robot Motion Planning and Control. IBEE/RSJ Interna-
tional Workshop on Intelligent Robots and Systems, 1989,

[6] M. P. Georgefl and A. L. Lansky. Reactive Reasoning and
Planning. Sixth National Conference on Artificial Intelli-
gence, 1987,

[7] M. P. Georgeff and F. F. Ingrand. Decision-Making in an
Embedded Reasoning System. Eleventh International Joint
Conference on Artificial Intelligence, 1989.

[8] E.J. Horvitz, J. S. Breese and M. Henrion. Decision Theory
in Expert Systems and Artificial Intelligence. International
Journal of Approximate Reasoning, 2(3):247-302, 1988.

[9) O. Khatib. Real-Time Obstacle Avoidance for Robot Manip-

ulators and Mobile Robots. International Journal of Robotics

Research, 5(1):90-98, 1986.

C. Le Pape. Des systémes d'ordonnancement flexibles et op-

portunistes. Thése d'Université, Université Paris X1, 1988.

C. Le Pape. A Combination of Centralized and Distributed

Methods for Multi-Agent Planning and Scheduling. IEEE In-
ternational Conference on Robotics and Automation, 1990.

{10}

(11]

C. Le Pape. Simulating Actions of Autonomous Agents.
Working Paper, Stanford University, 1990.

N. J. Nilsson. Principles of Artificial Intelligence. Springer-
Verlag, 1982.

N. J. Nilsson. Action Networks. Rochester Planning Work-
shop: “From Formal Systems to Practical Systems", 1988,

H. Van Dyke Parunak. Manufacturing Experience With the
Contract Net, Fifth Workshop on Distributed Artificial In-
telligence, 1985.

R. G. Smith. The Contract Net: A Formalism for the Con-
trol of Distributed Problem Solving. Fifth International Joint
Conference on Artificial Intelligence, 1977.

G. L. Steele. The Definition and Implementation of a Com-
puter Programming Language Based on Constraints. Phid
Thesis, Massachussets Institute of Techinology, 1980.

prior to propagate them, we can expect errors concerning impor-
tant issues to propagate much quicker than less important errors
(as for human rumors [1]). Error propagation is consequently an
important problem in domains in which important errors can be
made.

e A robot must never enter a crossroad X, if there is not
enough space in the next lane L;4; to completely leave
the crossroad X;.

e A robot arriving at a crossroad must take note of all
the robots already waiting on other lanes and wait for
these robots to pass (this rule implements a first-come
first-served crossroad allocation policy).

e A robot uses its motion planner again as soon as the
total amount of time it spent waiting since the last
crossroad becomes greater than a given constant. In
this case, the robot tries to find a new path (from the
current location to the goal location) in the road net-
work in which the next crossroad of its current path
is removed (this rule implements a solution to unlikely
deadlocks [2]).

In addition, potential field techniques are used to avoid colli-
sions with unexpected obstacles. When a robot moves inside
a lane, we want il to stay as close as possible to its nomi-
nal path and to reach the next crossroad in its plan. These
simple behaviors are implemented with attractive potential
fields (similar to those described in [9]). But we also want the
robot to stay in its lane and avoid collisions with known and
unknown obstacles. These behaviors are implemented with
repulsive potential fields (see [2] for details).!

4 Current Status - Future Work

We currently have three robots equipped with odometric,
touch and infra-red proximity sensors. They are able to ac-
complish simple tasks such as pushing a box, tracking walls in
a corridor and following each other. One of these robots will
soon have a laser-ranging sensor. The current version of the
planning and execution system is written in COMMON-LISP.
Experiments with this system are performed on a DEC-3100
workstation with the help of a simulator designed to simulate
actions of autonomous agents [12]. We are conducting exper-
iments to check the efficiency of the task allocation strategy
and determine in which cases a centralized analysis of task
interactions allows to improve the behavior of the system.

Planning and scheduling algorithms will soon be experi-
mented with the three robots. We will use the “action net-
work” system [14] to control the use of potential fields during
robot motion. Each robot will be provided with an action net-
work to dynamically modify potential fields as the situation
of the robot changes.

Other research issues include the development of models to
trigger communication acts and the definition of an architec-
ture to coordinate all the physical and cognitive activities of
a robot.

¢ There are many cases in which appropriate reactions
to unexpected events include communication. Hence a
need to design methods allowing robots to determine (in
a given situation) which pieces of information are worth
getting (or spreading) and to plan communication acts
accordingly. This includes the design and the represen-
tation of various communication operators and, most
importantly, the design of mechanisms allowing error
propagation Lo stop.®

* Another approach to motion execution monitoring, which we
investigate in parallel, is described in [5).
5Unless each robot carefully verifies critical picces of information

e Another issuc is the design (or the choice) of an archi-
tecture Lo coordinate the physical and cognitive activ-
itics of a robot. Currently, a blackboard-like system is
used to coordinate planning and scheduling activities
(sce [11]), a Petri net interpreter deals with plan exccu-
tion (cf. section 3.4), and action networks are consid-
ered to control the use of potential fields. There arc a
lot of similarities between the three systems. In the long
term, we would like to define a unique control system
to replace them, without sacrificing the advantages of
each approach: explicit definition and implementation
of control reasoning, efficiency and concurrency.

References

{1} G. W. Allport and L. Postman. The Psychology of Rumor.
Russell and Russell, 1965.

{2] P. Caloud. Distributed Motion Planning and Motion Coor-
dination for Multiple Robots. Working Paper, Stanford Uni-
versity, 1890.

{3] J. Carlier, P. Chrétienne and C. Girault. Modeling Scheduling
Problems with Timed Petri Nets. Fourth European Work-
shop on Theory and Applications of Petri Nets, 1983.

[1] D. Chapman. Planning for Conjunctive Gonls. Artificial In-
telligence, 32(3):333-377, 1987.

[5] W. Choi, D. Zhu and J.-C. Latombe. Contingency-Tolerant
Robot Motion Planning and Control. IEEE/RSJ Interua-
tional Workshop on Intelligent Robots and Systems, 1989.

{6] M. P. Georgeff and A. L. Lansky. Reactive Reasoning anc
Planning. Sixth National Conference on Artificial Intelli-
gence, 1987.

(7] M. P. Georgefl and F. F. Ingrand. Decision-Making in an
Embedded Reasoning System. Eleventh International Jaint
Conference on Artificial Intelligence, 1989.

[8] E. J. Horvitz, J. S. Breese and M. Henrion. Decision Theory
in Expert Systems and Artificial Intelligence. Intermational
Journal of Approximate Reasoning, 2(3):247-302, 1988.

[9] O. Khatib. Real-Time Obstacle Avoidance for Robot Manip-

ulators and Mobile Robots. International Journal of Robotics

Research, 5(1):90-98, 1986.

C. Le Pape. Des systémes d'ordonnancement flexibles et op-

portunistes. These d’Université, Université Paris XI, 1988.

C. Le Pape. A Combination of Centralized and Distributed

Methods for Multi-Agent Planning and Scheduling. IEEE In.
ternational Conference on Robotics and Automation, 1990.

(10]

(11)

C. Le Pape. Simulating Actions of Autonomous Agents.
Working Paper, Stanford University, 1990.

N. J. Nilsson. Principles of Artificial Intelligence. Springer-
Verlag, 1982.

N. J. Nilsson. Action Networks. Rochester Planning Waork.
shop: “From Formal Systems to Practical Systems"”, 1988,

{12]
(13]

(4]

1. Van Dyke Parunak. Manufacturing Experience With the
Contract Net. Fifth Workshop on Distributed Artificial In-
telligence, 1985.

R. G. Smith. The Contract Net: A Formalism for the Can-
trol of Distributed Problem Solving. Fifth International Joint
Conference on Artificial Intelligence, 1977.

(15]

(16]

G. L. Steele. The Definition and Implementation of a Com-
puter Programming Language Based on Constraints. PhD
Thesis, Massachussets Institute of Technology, 1980.

(17]

prior to propagate them, we can expect errors concerning impor-
tant issues to propagate much quicker than less important errors
(as for human rumors [1]). Error propagation is consequently an
important problem in domains in which important errors can be
made.

