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Abstract

In distributed environments that collect or monitor data, useful data may be spread

across multiple distributed nodes, but users or applications may wish to access that

data from a central location. A common way to facilitate centralized access to dis-

tributed data is to maintain replicas of data objects of interest at a central location.

When data collections are large or volatile, keeping replicas consistent with remote

master copies poses a significant challenge due to the large communication cost in-

curred. Consequently, in many real-world environments exact replica consistency is

not maintained, and some form of inexact, or approximate, replication is typically

used instead. Approximate replication is often performed by refreshing replicas peri-

odically. Periodic refreshing allows communication cost to be controlled, but it does

not always make good use of communication resources: In between refreshes some

remote master copies may change significantly, leaving replicas excessively out of date

and inaccurate, and meanwhile resources may be wasted refreshing replicas of other

master copies that remain nearly unchanged.

This dissertation studies the problem of making better use of communication re-

sources in data replication environments than approaches based on periodic refresh-

ing. In this dissertation, analysis of approximate replication environments is framed in

terms of a two-dimensional space with axes denoting system performance (a measure

of communication resource utilization) and replica precision (a measure of the degree

of synchronization with remote master copies). There is a fundamental and unavoid-

able tradeoff between precision and performance: When data changes rapidly, good

performance can only be achieved by sacrificing replica precision and, conversely,

v



obtaining high precision tends to degrade performance. Two natural and comple-

mentary methods for working with the precision-performance tradeoff are proposed

to achieve efficient communication resource utilization for replica synchronization:

1. Maximize replica precision in the presence of constraints on communication

cost.

2. Minimize communication cost in the presence of constraints on replica precision.

Problem definition, analysis, algorithms, and implementation techniques are de-

veloped for each method in turn, with the overall goal of creating a comprehensive

framework for resource-efficient approximate replication. The effectiveness of each

technique is verified using simulations over both synthetic and real-world data. In

addition, a test-bed network traffic monitoring system is described, which uses some

of the approximate replication techniques developed in this dissertation to track usage

patterns and flag potential security hazards.
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Chapter 1

Introduction

In distributed environments that collect or monitor data, useful data may be spread

across multiple distributed nodes, but users may wish to access that data from a

central location. One of the most common ways to facilitate centralized access to

distributed data is to maintain copies of data objects of interest at a central location

using an operation called replication, as illustrated abstractly in Figure 1.1. In a

typical replication environment, a central data repository maintains copies, or replicas

of data objects whose master copies are spread across multiple remote and distributed

data sources. (In general there may be multiple data repositories, but to simplify

exposition we focus on a single repository.) Replicas are kept synchronized to some

degree with remote master copies using communication links between the central

repository and each source. In this way, querying and monitoring of distributed data

can be performed indirectly by accessing replicas in the central repository.

While querying and monitoring procedures tend to become simpler and more

efficient when reduced to centralized data access tasks, a significant challenge remains:

that of performing data replication efficiently and effectively. Ideally, replicas of data

objects at the central repository are kept exactly consistent, or synchronized, with

the remote master copies at all times (modulo unavoidable communication latencies,

of course). However, propagating all master copy updates to remote replicas may

be infeasible or prohibitively expensive: data collections may be large or frequently

updated, and network or computational resources may be limited or only usable at a

1
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users

data objects data objects data objects

source sourcesource

source data objects

data repository

(approx.) replicas of

monitoring
and

querying

Figure 1.1: Abstract replication architecture.

premium.

Situations where exact replica consistency is infeasible or only feasible at excessive

expense can be found in many contexts. As one example, consider sensors that contin-

uously monitor environmental conditions such as sound, wind, vibration, etc. Due to

recent advancements, it should soon be possible and relatively cheap to deploy large

numbers of battery-powered sensors that communicate via wireless links [36, 59, 91].

Since hundreds of thousands of sensors may be involved, sensor readings may change

frequently, and available bandwidth tends to be low in wireless environments, it is not

generally possible to propagate every new sensor measurement to a central location

for monitoring. Furthermore, even relatively light communication over wireless radio

links can consume considerable power, and maximizing battery longevity is a primary

goal when deploying small autonomous sensors [75, 80, 91], so communication must

be performed sparingly. Similar problems arise in other environments that use wire-

less or other low-bandwidth links to maintain replica consistency: when volatile data

is replicated on portable devices such as PDA’s or even recently developed wristwatch

devices.

Even in environments that use conventional wired networking, exact replica con-

sistency may still be infeasible due to large quantities of rapidly changing data. For

example, in video conferencing applications (e.g., [33]), the viewer screen frame-buffer
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can be thought of as containing replicas of video data generated by remote cameras.

Since streaming video data can be very large, it often becomes necessary to allow

some staleness on parts of the screen. As another example, consider the important

problem of monitoring computer networks in real-time to support traffic engineering,

online billing, detection of malicious activity, etc. Effective monitoring often requires

replicating at a central location a large number of measurements captured at remote

and disparate points in the network. Attempting to maintain exact consistency can

easily result in excessive burden being placed on the network infrastructure, thus

defeating the purpose of monitoring [53], but fortunately network monitoring appli-

cations do not usually require exact consistency [112]. As a final example, consider

the problem of indexing the World-Wide Web. Keeping an up-to-date Web index

requires maintaining information about the latest version of every document. Cur-

rently, Web indexers are unable to maintain anything close to exact consistency due

to an astronomical number of data sources and data that is constantly changing.

The infeasibility of exact replication in these environments and others is due in

large part to the potentially high communication costs incurred. Communication cost

tends to be of significant concern in many distributed environments, either because

the bandwidth available on the network links is limited (relative to the size and

update rate of the data collection), or because network resources can only be used

at some premium. This premium for network usage may stem from the fact that

increased congestion may cause service quality degradation for all applications that

use the network. Alternatively, the premium may be manifest as a monetary cost,

either in terms of direct payment to a service provider or as a loss of revenue due

to an inability to sell consumed resources to others. As a result of communication

resources being a valuable commodity, we have seen that in the applications described

above (sensor monitoring, replication on personal wireless devices, video conferencing,

network monitoring, and Web indexing), maintaining replicas exactly synchronized

with master copies cannot be achieved when data volumes or change rates are high

relative to the cost or availability of bandwidth capacity.
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1.1 Approximate Replication

In many applications such as the ones described above, exact consistency is not a re-

quirement, and replicas that are not precisely synchronized with their master copies

are still useful. For example, approximate readings from meteorological sensors of-

ten suffice when performing predictive modeling of weather conditions. In network

security applications, “ball-park” estimates of current traffic levels can be used to

detect potential denial-of-service attacks. Since exact data is often not a requirement

in applications that rely on replication, it is common practice to use inexact replica

consistency techniques such as periodic refreshing to conserve communication cost.

We use the term approximate replication to refer collectively to all replication tech-

niques that do not ensure exact consistency. Most existing approximate replication

techniques for single-master environments can be classified into one of two broad

categories based on the way they synchronize replicas1:

Periodic pushing: Sources propagate changes in master copies to the central data

repository periodically, sometimes in large batches.

Periodic pulling: The central data repository accesses remote sources periodically

to read master copies of data objects and update local replicas as necessary.

One motivation for performing periodic pushing is that one-way messages can be

used in place of more expensive, round-trip ones. Also, sources can control the amount

of their local resources devoted to replica synchronization. Periodic pulling, on the

other hand, has the advantage that sources are not required to be active participants

in the replica synchronization protocol. Instead, they need only respond to data read

requests from the central repository, a standard operation in most environments.

A principal feature shared by both these approaches is that the cost incurred for

consumption of communication resources is bounded and controllable, which is not

in general the case with exact synchronization methods. However, periodic pushing

1Depending on the environment, it may not be practical or possible for sources to communicate
with each other, so we assume that such communication is not allowed and synchronization of
replicas is performed directly between each source and the central repository. Studying environments
amenable to efficient intersource communication is a topic of future work.
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Figure 1.2: Precision-performance tradeoff.

or pulling does not necessarily make good use of communication resources for the

following two reasons:

1. Communication resources may be used wastefully while refreshing replicas of

data objects whose master copy has undergone little or no change.

2. When the master copy of a data object undergoes a major change that could be

propagated to the remote replica relatively cheaply, there may be a significant

delay before the remote replica is refreshed to reflect the change.

1.2 Precision-Performance Tradeoff

We study the problem of making better use of communication resources in approxi-

mate replication environments than approaches based on periodic pulling or pushing.

Our work begins with the observation that a fundamental tradeoff exists between

the communication cost incurred while keeping data replicas synchronized and the

degree of synchronization achieved. We refer to this characteristic property as the

precision-performance tradeoff, illustrated in Figure 1.2, where precision is a measure

of the degree of synchronization between a data object’s master copy and a remote

replica, and performance refers to how sparingly communication resources are used

(i.e., the inverse of communication cost). When data changes rapidly, good perfor-

mance can only be achieved by sacrificing replica precision and, conversely, obtaining

high precision tends to degrade performance.
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Since there appears to be no way to circumvent the fundamental precision-performance

tradeoff, we propose the following two tactics for designing synchronization algorithms

for replication systems:

(a) Push the precision-performance curve as far away from the origin as possible

for a given environment.

(b) Offer convenient mechanisms for controlling the point of system operation on

the tradeoff curve.

Tactic (a) leads us to focus primarily on push-based approaches to replica syn-

chronization, because they offer the opportunity for the best precision-performance

curves, i.e., more efficient use of communication resources, compared with pull-based

approaches. (We verify this claim empirically in Chapter 2.) The reason for this

advantage is that sources are better equipped than the central repository to make

decisions about synchronization actions since they have access to the data itself and

can obtain accurate precision measurements. Furthermore, our work uses metrics of

replica precision that are based on content rather than solely on metadata. Metadata

based metrics have been used to drive synchronization policies in approximate repli-

cation environments (see Section 1.5 covering related work), and are usually intended

to emulate an underlying metric based on content. For example, metadata metrics

based on temporal staleness or number of unreported updates reflect an attempt to

capture some notion of the degree of change to the content. If an appropriate content-

based metric is used instead, precision can be measured directly, potentially leading

to higher quality synchronization and precision-performance curves farther from the

origin, as desired.

Tactic (b) leads us to study two ways to offer users or applications control over

the position of system operation on the precision-performance tradeoff curve:

1. Users specify a minimum acceptable performance level (i.e., fix a y-axis position

in Figure 1.2), and the replication system attempts to maximize replica precision

automatically while achieving the specified level of performance.
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Figure 1.4: Precision Fixed/Maximize Performance.

2. Users specify a minimum allowable precision level (i.e., fix an x-axis position

in Figure 1.2), and the replication system attempts to maximize performance

while meeting the precision requirement provided.

In each of these complementary strategies, the user (or application) fixes the position

of system operation along one dimension (precision or performance), and the system

is expected to maximize the position along the other dimension. These converse

strategies for establishing a point of system operation on the precision-performance

curve are illustrated abstractly in Figures 1.3 and 1.4, respectively.

In this dissertation we study the two strategies introduced here for controlling the

operating point of a replication system in terms of precision and performance. For

each strategy, we propose methods by which users or applications may constrain one

dimension of the precision-performance space, and study algorithms for maximizing

the position along the other dimension. Our solutions for these two complementary
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strategies form the basis for offering a resource-efficient, user-controllable tradeoff be-

tween precision and performance in replication environments. We call our approach

to approximate replication TRAPP (Tradeoff in Replication Precision and Perfor-

mance).

1.3 Problem Statement

We now define the dual problems of maximizing precision or performance in more

detail. Recall that master copies of data objects are maintained at one or more

distributed data sources (Figure 1.1). Consider a data object whose master source

copy O undergoes updates over time. Let R(O) represent the (possibly imprecise)

replica of O at the central repository. Let V (O, t) represent the value of O at time

t. The value of O remains constant between updates. Let V (R(O), t) represent the

value of R(O) at time t. Object O can be refreshed at time tr, in which case a message

is sent to the repository, and the replicated value is set to equal the current source

value: V (R(O), tr) = V (O, tr).

For simplicity, we assume that the communication latency between sources and

the central repository is small enough to be neglected. However, the techniques

developed in this dissertation can tolerate nonnegligible latencies, as discussed later.

We do assume there is adequate space at the central repository to store all replicas

of interest. We also suppose that nodes are at all times connected to the network,

and that the infrastructure is robust, i.e., that node failures, network partitions, etc.

are infrequent. Coping with failures or disconnections in the context of this work is

outside the scope of this dissertation.

1.3.1 Maximizing Precision

For strategy (1) in Section 1.2, the goal is to maximize replica precision. Precision

is quantified using a simple and general metric called divergence: The divergence

between a source object O and its replicated copy R(O) at time t is given by a

numerical function D(O, t). When a refresh occurs at time tr, the divergence value
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is zero: D(O, tr) = 0. Between refreshes, the divergence value may become greater

than zero, and the exact divergence value depends on how the master source copy

relates to the replica. There are many different ways to measure divergence that are

appropriate in different settings, as we discuss further in Chapter 2.

For the purpose of measuring overall divergence in the central repository, we

associate with each data object O a numeric weight WO that can be determined

using a variety of criteria such as importance or frequency of access. The objective of

strategy (1) is to minimize the weighted sum of the time-averaged divergence of each

object,
∑

O [WO ·
∫
t D(O, t) dt], under constraints on communication resources.

Communication resources may be limited at a number of points. First, the ca-

pacity of the link connecting the central data repository to the rest of the network,

the repository-side bandwidth, may be constrained. Second, the capacity of the link

connecting each source to the rest of the network, the source-side bandwidth, may

also be constrained and may vary among sources. Moreover, all bandwidth capacities

may fluctuate over time if resource limitations are related to traffic generated by other

applications. We assume a standard underlying network model where any messages

for which there is not enough capacity become enqueued for later transmission.

1.3.2 Maximizing Performance

The objective of strategy (2) in Section 1.2 is to maximize performance by minimiz-

ing the total communication cost incurred during a period of time in which replica

precision is constrained. Each message sent between object O’s source and the central

repository (such as a refresh message) incurs a numeric cost CO ≥ 0, and costs are

additive.

Constraints on precision arise with respect to queries, which are submitted by

users or applications in order to access data. We consider situations in which aggre-

gation queries over numeric data objects are submitted to the central repository. The

repository is to provide answers to queries in the form of numeric intervals [L, H ] that

are guaranteed to contain the precise answer V that could be obtained by accessing

current master source copies, i.e., L ≤ V ≤ H . As discussed later, guaranteed answer



10 CHAPTER 1. INTRODUCTION

intervals can be produced by establishing bounds on replica divergence. Each query

submitted at the central repository specifies a precision constraint that specifies the

maximum acceptable width (H −L) for the answer interval. Two modes of querying

are considered in this dissertation. One-time queries request the answer a single time,

and do not persist once the (approximate) answer has been produced. By contrast,

continuous queries are ongoing requests for continually updated answers that meet

the specified precision constraint at all times.

1.4 Organization of Dissertation

The rest of this dissertation is organized as follows:

Chapter 2: Maximizing Precision We begin by tackling the problem of maximiz-

ing replica precision when communication performance is limited due to constraints

placed by users, applications, or the network infrastructure. The first step is to

provide a general definition of precision, based on replica divergence, that can be

specialized to a variety of data domains. We then present a replica synchroniza-

tion technique whereby sources prioritize data objects that need to be synchronized

based on precision considerations, and push synchronization messages to the central

repository in priority order. The rate at which each source sends synchronization

messages is regulated adaptively to ensure that the overall message rate conforms to

the performance constraints. We evaluate our technique empirically and compare its

effectiveness with that of a prior pull-based approach.

Chapter 3: Maximizing Performance Next we tackle the inverse problem: max-

imizing communication performance while maintaining acceptable levels of data pre-

cision as specified by users or applications at the granularity of queries over groups of

objects. We focus on continuous queries, or CQ’s for short, and propose a technique

for performing push-based replication that meets the precision constraints of all con-

tinuous queries at all times. Without violating any query-level precision constraints,

our technique continually adjusts the precision of individual replicas to maximize the

overall communication performance. Results are provided from several experiments
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evaluating the performance of our technique in a simulated environment. In addi-

tion, we describe a test-bed network traffic monitoring system we built to track usage

patterns and flag potential security hazards using continuous queries with precision

constraints. Experiments in this real-world application verify the effectiveness of our

CQ-based approximate replication technique in achieving low communication cost

while guaranteeing precision for a workload of multiple continuous queries.

Chapter 4: Answering Unexpected Queries Providing guaranteed precision for

a workload of continuous queries does not handle an important class of queries that

arises frequently in practice: one-time, unanticipated queries. Users or applications

interacting with the data repository may at any time desire to obtain a one-time result

of a certain query, which includes a precision constraint and may be different from the

continuous queries currently being evaluated, or the same as a current CQ but with

a more stringent precision constraint. Due to the ad-hoc nature of one-time queries,

when one is issued the data replicas in the repository may not be of sufficient precision

to meet the query’s precision constraint. To obtain a query answer of adequate

precision it may be necessary to access master copies of a subset of the queried data

objects by contacting remote sources, incurring additional performance penalties. We

study the problem of maximizing performance in the presence of unanticipated one-

time queries, and devise efficient algorithms for minimizing accesses to remote master

copies.

Chapter 5: Managing Precision for One-Time Queries A significant factor

determining the cost to evaluate one-time queries with precision constraints at a

central data repository is the precision of data replicas maintained in the repository.

We study the problem of deciding what precision levels to use when replicating data

objects not involved in continuous queries but subject to intermittent accesses by one-

time queries. Interestingly, this problem generalizes a previously studied problem of

deciding whether or not to perform exact replication of individual data objects. We

propose an adaptive algorithm for setting replica precision with the goal of maximizing

overall communication performance given a workload of one-time queries. In an

empirical study we compare our algorithm with a prior algorithm that addresses the
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less general exact replication problem, and we show that our algorithm subsumes it

in performance.

Chapter 6: Visual User Interfaces In the final chapter we address some user in-

terface issues related to approximate replication. A common method of end-user data

analysis is the use of automated data visualization techniques: computed-generated

charts and graphs that may permit various forms of user interaction. Most visualiza-

tion methods assume that data is exact, while data obtained by executing continuous

or one-time queries in an approximate replication system may not always be exact.

In particular, using our replication techniques, queries with precision constraints over

numeric data result in approximate answers in the form of numeric intervals. We

propose systematic means for adapting some standard data visualization methods to

handle interval approximations gracefully, with the goal of not misleading end-users

regarding data precision. We also discuss the possibility that users be permitted to

specify and adjust precision constraints for continuous queries over approximate repli-

cas directly in the visualization interface. End-user control over precision constraints

uncovers the important issue of motivating users to request only as much precision

as they need.

1.5 Related Work

We now cover previous work that is broadly related to this dissertation. Other work

not covered here is related to fairly specific aspects of this dissertation, and we cover

it in the relevant chapters after describing our techniques in detail.

A vast area of research is devoted to the study of protocols to ensure one-copy

serializability for replicated data that is updated and accessed via transactions [15].

A transaction is a sequence of reads and writes to data objects that must be executed

to ensure certain properties. For example, each transaction is to be sheltered from the

interim effects of other, concurrently executed transactions. One-copy serializability

guarantees that the net effect on the replicated data of executing multiple transactions

concurrently is equivalent to the effect of executing the transactions one at a time
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in some order, simultaneously on all replicas. A standard example of an application

domain for which transactional data access and one-copy serializability are imperative

is electronic banking.

Recent work on efficient replication protocols that guarantee one-copy serializabil-

ity is found in [52]. Research on transactional replication has typically assumed that

each replicated data object may be read and updated from any node in a distributed

environment, a more general scenario than the one covered in this dissertation. A cen-

tral issue in the general setting is how to decide, for each object, which nodes should

maintain replicas. The replica placement problem has been studied extensively; recent

work in this area is found in [119].

Another critical issue in replication environments is coping with node failures

and network partitions. A plethora of techniques have been proposed for ensuring

one-copy serializability in the presence of failures and partitions, most based on the

concept of quorums. Work on quorums began in the late 1970’s [43, 106], and was the

subject of a significant body of research throughout the 1980’s and into the 1990’s,

e.g., [4, 5, 10, 35, 51, 77, 88]. Recently, the emergence of small, wireless devices

has motivated the need for replication protocols that permit mobile nodes to operate

on data replicas despite being entirely disconnected from the main network. By

considering transactions executed on mobile nodes during disconnected periods as

only tentative, one-copy serializability can be achieved upon reconnection [45].

Overall, significant effort has been devoted to working around various problems

while always guaranteeing one-copy serializability to meet the strict requirements of

applications like electronic banking. However, there are many important applications,

such as the network and sensor monitoring scenarios described above, for which rigid

transactional semantics are not necessary. Furthermore, transactional semantics may

hinder these applications because replication protocols for ensuring one-copy seri-

alizability tend to consume significant resources and introduce long and sometimes

unacceptable processing delays [45]. Therefore, in practice many applications will

enforce weaker replication semantics than one-copy serializability [92].

A number of replication strategies have been proposed based on abandoning strict
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transactional replication protocols that guarantee one-copy serializability, and per-

forming asynchronous propagation of all database updates in a nontransactional

fashion [32, 97], in order to reduce response time and improve availability. These

approaches alleviate many of the problems associated with transactional protocols,

but they do not focus on reducing communication cost except for some batching

effects since all updates are propagated eventually.

The focus of this dissertation is on conserving communication cost in nontrans-

actional environments by performing approximate replication. The need for approx-

imate replication is perhaps most obvious in the distributed World Wide Web envi-

ronment. Partly this need arises because exact consistency is virtually impossible in

the presence of the high degree of autonomy featured on the Web, but also because

the volume of data is vast and aggregate data change rates are astronomical. On the

Web, two forms of approximate replication are currently in heavy use: Web crawling

and Web caching. Mechanisms for synchronizing document replicas in Web reposito-

ries via incremental Web crawling, e.g., [24, 34, 117], are typically designed to work

within a fixed communication budget. The order in which individual documents are

refreshed is determined by the crawling scheduler with the goal of optimizing the

overall precision of Web document replicas in the repository. Typically, the metric of

precision used is based on some notion of temporal staleness: the average amount of

time during which Web document replicas in the repository differ in some way from

the remote master copy, e.g., [25]. In Web caching environments, synchronization

of a set of documents selected for caching is typically driven by constraints on the

temporal staleness of cached replicas (the constraints are commonly referred to as

time-to-live (TTL) restrictions), and the goal is to minimize communication, e.g.,

[27].

Web crawling can be thought of as an instance of the Performance Fixed/Maximize

Precision scenario, while Web caching represents an instance of the inverse Precision

Fixed/Maximize Performance scenario. Due to the high degree of autonomy present in

the Web environment, solutions to these problems almost always employ pull-oriented

techniques for replica synchronization. In addition, owing to the wide variety of

content found on the Web, synchronization techniques usually optimize for temporal
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staleness, a simple precision metric based solely on metadata. (Other metadata-based

precision metrics have also been proposed, such as the number of updates not reflected

in the remote replica, e.g., [54].)

For replication environments in which greater cooperation among nodes is possible

and more is known about the nature of the data and needs of the users, push-oriented

synchronization based on richer content-based precision metrics tends to lead to more

desirable results, i.e., higher quality synchronization at lower cost, as discussed in

Section 1.2. The CU-SeeMe video conferencing project [33] represents an interesting

instance of a push-oriented synchronization approach using direct, content-based pre-

cision metrics, which focuses on the Performance Fixed/Maximize Precision scenario.

In CU-SeeMe, refreshes to different regions of remotely replicated images are delayed

and reordered at sources based on application-specific precision metrics that take into

account pixel color differences. Another domain-specific approach has been proposed

for moving object tracking [120], which focuses on the Precision Fixed/Maximize Per-

formance scenario, or alternatively aims at maximizing an overall “information cost”

metric that combines precision and performance.

Our goal is to establish generic push-oriented approximate replication strategies

that exploit and expose the fundamental precision-performance tradeoff common to

all environments, in a manner suitable to a wide variety of applications that rely on

replication. Some initial steps toward this goal have been made by others in previous

work. To our knowledge, the first proposal on this topic was by Alonso et al. [7],

and recently others have extended that work, e.g., [100, 124]. All of this work falls

into the Precision Fixed/Maximize Performance category, with precision constraints

specified at the granularity of individual objects. One portion of this dissertation

focuses on the inverse problem of Performance Fixed/Maximize Precision, which to

our knowledge has not been studied in a general, application-independent setting with

flexible precision metrics.

The portion of this dissertation that addresses the Precision Fixed/Maximize Per-

formance problem departs significantly from previous work by considering precision

constraints at the granularity of entire queries rather than at the granularity of indi-

vidual replicated objects. The rationale for this choice is twofold. First, we sought to
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align the granularity of precision constraint specification with the granularity of data

access. (Since queries may be posed over individual data objects, our mechanism

generalizes the previous approach.) Second, precision constraints at the per-query

granularity leave open the possibility for optimizing performance by adjusting the al-

location of precision requirements across individual objects involved in large queries.

Indeed, much of our work focuses on realizing such optimizations using adaptive

precision-setting techniques, which we will show to enable significant improvements

in synchronization efficiency. Our work is also unique in focusing on user control

over query answer precision, which may lead to unpredictable precision requirements.

Specifically, to our knowledge it is the first to consider the problem of efficiently eval-

uating one-time queries with user-specified precision constraints that may exceed the

precision of current replicas, thereby requiring access to some exact source copies.



Chapter 2

Maximizing Precision when

Performance is Constrained

2.1 Introduction

In this chapter we study the problem of maximizing the precision of replicas in the

presence of constraints on communication cost. Constraints may be imposed by users,

applications, or the environment, which limit the availability of network or computa-

tional resources for performing replica synchronization. We focus on constraints on

communication resources, but our techniques apply more generally to other types of

resource limitations. In the presence of bandwidth limitations it may not be possible

to maintain data object replicas at the central repository (recall Figure 1.1 in Chap-

ter 1) always exactly synchronized with master source copies. (We assume that the

communication latency between sources and the central repository is small enough to

be neglected and treat replicas that would be fully synchronized if the communication

latency is factored out as being exactly synchronized, for our purposes.) When exact

synchronization is prevented due to bandwidth limitations, exact precision of data

replicas modulo communication delays cannot be guaranteed. Instead it is desirable

to maximize replica precision by minimizing the inconsistency between data in the

repository and the remote source data. If users or applications access data replicas

in the repository at unpredictable times, then a suitable objective is to minimize

17
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Figure 2.1: Generic framework for best-effort synchronization.

inconsistency averaged over time.

We use the term best-effort synchronization for the process of maintaining the

repository as close as possible to exactly synchronized with the sources at all times,

in the presence of limited bandwidth resources. A generic framework for best-effort

synchronization is illustrated in Figure 2.1. Sources contain master copies of data

objects that are updated locally. Object updates are not directly visible to the central

repository, which maintains replicas that must be synchronized explicitly with source

copies. The basic synchronization action is refreshing, in which a source sends a

message to the repository containing information with which to update one or more

replicas to match the current source copies. We assume the data repository contains

replicas of all source objects of interest (or data derived from source objects, such as

an index), and we deal only with the problem of keeping the values of the replicated

objects as up-to-date as possible in the face of bandwidth limitations.

2.1.1 Chapter Outline

This chapter is structured as follows. The rest of Section 2.1 provides an overview

of our approach to best-effort synchronization. In Sections 2.2 and 2.3 we model

and analyze the problem formally to form the basis of our solution, which relies on
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prioritization of synchronization actions. In Section 2.4 we present a distributed adap-

tive algorithm for priority-based scheduling of synchronization actions that regulates

communication while attempting to maximize replica precision. We then evaluate our

algorithm empirically in Section 2.5. Next, in Section 2.6 we propose ways to achieve

cooperation among nodes in competitive environments. We propose techniques for

reducing the processing overhead of our algorithm on sources in Section 2.7, and

discuss ways to provide guarantees on divergence under certain conditions in Sec-

tion 2.8. Finally, we discuss related work in Section 2.9 and summarize the chapter

in Section 2.10.

2.1.2 Synchronization Scheduling and Source Cooperation

In best-effort synchronization, some policy for synchronization scheduling determines

when replicas of data objects should be refreshed. (Remember we are assuming that

due to limited resources it is not possible to refresh every object on every update.) In

most refresh scheduling policies, e.g., [16, 25], the data repository plays the central

role: refreshes are scheduled entirely by the repository and implemented by polling the

sources, without sources participating in the scheduling. These policies must try to

predict which source data objects have changed, and by how much [25, 40]. If source

data objects do not behave in predictable ways, the refresh schedule is likely to result

in poor synchronization. Since the best synchronization policy obviously depends on

how source data objects change, improved synchronization can be achieved through

some level of source participation in the refresh scheduling process, as discussed in

Section 1.2.

Aside from enabling better synchronization between sources and the repository,

there are other, more practical, advantages of source cooperation in synchronization

scheduling. First, sources can have a say in weights given to different data objects

when prioritizing them for refresh. Moreover, sources can exercise control over the

portion of their own bandwidth devoted to replica synchronization, e.g., giving prior-

ity to servicing local user queries as they occur and participating in replica synchro-

nization with any spare bandwidth. In contrast, synchronization policies determined
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entirely by the central repository can easily underutilize available source bandwidth,

leading to poor synchronization, or overutilize source bandwidth, causing a degrada-

tion of local processing. This problem is exacerbated when the resources available for

synchronization fluctuate over time, e.g., due to sharing network bandwidth, CPU

cycles, or disk I/O’s with bursty user requests.

2.1.3 Overview of Approach

We study the problem of best-effort synchronization assuming source cooperation with

the goal of maximizing replica precision in the presence of constraints on bandwidth

resources. We focus on approximate replication environments with a large number of

sources that synchronize their data with a shared repository. (Recall that we assume

the repository contains replicas or derivations of all data objects of interest, i.e., we are

not considering cache replacement algorithms.) The bandwidth resources for replica

synchronization may be limited at a number of points. First, the capacity of the link

connecting the central data repository to the rest of the network, the repository-side

bandwidth, may be constrained. Second, the capacity of the link connecting each

source to the rest of the network, the source-side bandwidth, may also be constrained

and may vary among sources. Moreover, all bandwidth capacities may fluctuate over

time if resource limitations are related to traffic generated by other applications. We

assume a standard underlying network model where any messages for which there is

not enough capacity become enqueued for later transmission.

While we cast our approach as coping with limited network resources (bandwidth),

our ideas apply more generally when other types of resource limitations are present.

For example, sources may have limited computational resources available for replica

synchronization due to local processing load. Data repositories also may have limited

resources for incorporating updates, especially if they perform expensive processing

such as data cleaning, aggregation, or index maintenance. Accounting for the con-

sumption of processing resources at the central repository by tasks such as these may

require different cost models than the one we use here and is therefore left as a topic

of future work.
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Divergence and Prioritizing Refreshes

In approximate replication, the value of an object replica at the central repository may

differ from the master value at the source. This difference is called divergence, and

the goal of maximizing precision is equivalent to minimizing divergence. Divergence

is a convenient metric for quantifying the degree of synchronization: Synchronization

has the property that it is bounded in one extreme (exact synchronization) and un-

bounded in the other. Therefore, numerically a divergence metric can range over the

nonnegative reals, with zero divergence representing exact synchronization and larger

divergence values representing less than perfect synchronization. The precise scale

depends on the divergence metric used, discussed next.

Divergence can be measured using a number of possible metrics including Boolean

freshness (up-to-date or not), number of changes since last refresh, or value deviation.

(We define these metrics formally in Section 2.2.1.) The best metric to use depends

on the data and the replication objectives. Regardless of the divergence metric used,

the goal in best-effort synchronization is to maximize overall repository precision

by minimizing the (weighted) sum of the divergence values for each master source

copy of a data object and its replica in the repository. Weights may be assigned to

give certain objects preferential treatment based on criteria such as importance or

frequency of access. Regardless of the weights used, the ideal situation of maximal

overall repository precision occurs when the sum of divergence equals zero. The

choice of divergence metric and weighting scheme should reflect the objectives of

the replication environment in terms of repository precision, since those parameters

directly affect the synchronization policy. We will revisit these issues in detail later

in this chapter.

If enough resources are available it is possible to achieve near-zero overall diver-

gence. In environments with limited resources, since not all changes can be prop-

agated, refreshes should be prioritized based on the divergence metric and weight-

ing scheme. Surprisingly, we will see that prioritizing refreshes based solely on the

weighted divergence between master copies and replicas of data objects does not gen-

erally lead to good refresh schedules. We establish a priority policy that achieves

much better synchronization. We will describe and justify our policy in Sections 2.2
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Figure 2.2: Our approach to best-effort synchronization.

and 2.3, respectively.

Coordinating Refreshes Across Multiple Sources

When multiple sources are synchronizing their objects with a shared repository, as

in Figure 2.1, they must share refresh resources such as repository-side bandwidth.

Hence, refreshes should be prioritized across all the sources. In the kinds of environ-

ments we are considering, sources are not typically aware of the state of the content

at other sources. Furthermore, no single entity can keep track of the overall priority

order across a large number of sources without incurring considerable communication

overhead.

We propose a simple and effective algorithm for scheduling refreshes from a large

number of sources that incurs low communication overhead while achieving synchro-

nization that closely follows a global priority order. Our general approach is illustrated

in Figure 2.2. The idea is for each source to prioritize its own modified objects locally

based on the overall priority policy. Ideally, as we will see later, all modified objects

having priority above a global refresh threshold T should be refreshed. However, since

the best refresh threshold T varies over time due to fluctuating available bandwidth

and divergence rates, measuring the best value for T and broadcasting it to all sources
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is impractical, especially when the number of sources to coordinate is very large and

bandwidth is limited. Consequently, each source must maintain its own independent

copy of the refresh threshold, and some protocol for loosely regulating the individual

thresholds needs to be in place.

One way to regulate and coordinate the source refresh thresholds without incurring

too much communication overhead is to rely on occasional feedback messages from

the repository requesting that sources raise or lower their thresholds. Relying on

negative feedback messages from the repository to raise thresholds (in order to reduce

the refresh rate) is dangerous since network resources are already overutilized, so

unrecoverable network flooding situations can result. Instead, we propose an adaptive

threshold-setting algorithm based on positive feedback. In our algorithm, sources by

default gradually increase their thresholds, to conservatively reduce the refresh rate in

case there is not enough bandwidth. If the repository detects a surplus of bandwidth,

it sends positive feedback messages instructing sources to decrease their thresholds

thereby increasing the overall refresh rate to fill the surplus.1

A detailed presentation and justification of our threshold-setting algorithm is given

in Section 2.4. In Section 2.5, we show experimental evidence that our algorithm

achieves low overall divergence without incurring excessive communication overhead,

even in environments with a large number of sources and fluctuating resources and

data update rates. We also demonstrate quantitatively the advantages of source coop-

eration in refresh scheduling over having the repository determine the synchronization

schedule unilaterally as in [25].

Making Cooperation Appealing

A global priority policy, as we have been assuming, may not be realistic in environ-

ments where sources do not agree on the same policy for refresh priority. Moreover, a

repository may have criteria for what to maintain up-to-date that conflicts with the

objectives of some sources, e.g., when the sources and repository belong to different

administrative domains as is common on the Web. In Section 2.6 we describe how to

1We differ from the control theory use of feedback terminology, but we feel that “positive feed-
back” is a good term for increasing the refresh rate.
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extend our synchronization techniques to reconcile the potentially different objectives

among sources and between sources and the repository.

Since participating in refresh scheduling may be taxing on the computational re-

sources of the sources, in Section 2.7 we outline lightweight mechanisms for sources to

monitor the priorities of modified data objects and schedule refreshes. Techniques for

incorporating changes propagated from sources into a repository without disrupting

computation at the repository have already been proposed in, e.g., [2, 3].

Bounding Divergence

In Section 2.8 we propose a way to provide guaranteed upper bounds on divergence in

certain environments. We present a synchronization scheduling policy that minimizes

the average upper bound on divergence to suit applications that require strict guaran-

tees. By contrast, the rest of this chapter addresses the related but distinct problem

of minimizing the actual divergence, whose value may be unknown to applications

accessing replicated data.

2.2 Basis for Best-Effort Scheduling

In this section, we begin by formalizing our notion of divergence, then use the formal

definition as a basis for a priority policy for best-effort synchronization scheduling.

2.2.1 Divergence

Consider a data object whose master source copy O undergoes updates over time. Let

R(O) represent the (possibly imprecise) replica of O. Let V (O, t) represent the value

of O at time t, and let ν(O, t) represent the version number of O at time t. The version

number of O is incremented by one each time the value of O is updated; the value and

version number of O remain constant between updates. Let V (R(O), t) represent the

value of R(O) at time t, and similarly let ν(R(O), t) represent the version number of

R(O) at time t. Object O can be refreshed at time tr, in which case a message is sent to

the repository, and the replicated value and version number are set to equal the current
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source value and version number: V (R(O), tr) = V (O, tr); ν(R(O), tr) = ν(O, tr).

(Recall our assumption that the communication latency between sources and the

central repository is small enough to be neglected.)

In general, let the divergence between a source object O and its replicated copy

R(O) at time t be given by a numerical function D(O, t). When a refresh occurs at

time tr, the divergence value is zero: D(O, tr) = 0. Between refreshes, the divergence

value may become greater than zero, and the exact divergence value depends on

how the master source copy relates to the replica. There are many different ways

to measure divergence that are appropriate in different settings. We define three

divergence metrics here, but the scope of our work is not limited to these specific

metrics.

1. Staleness: Ds(O, t) = 0 when ν(R(O), t) = ν(O, t); Ds(O, t) = 1 when

ν(R(O), t) 6= ν(O, t).2

2. Lag: Dl(O, t) = ν(O, t)− ν(R(O), t).

3. Value Deviation: Dv(O, t) = ∆(V (O, t), V (R(O), t)), where ∆(V1, V2) can be

any nonnegative function quantifying the difference between two versions of an

object.

Note that the first two metrics (staleness and lag) are based entirely on metadata

(version numbers). The value deviation metric captures in general any metric that is

based on object content rather than metadata. As discussed above, we feel that in

many cases a carefully crafted divergence metric based on content can be preferable to

one based only on metadata. However, in many domains a good content-based metric

is not available, or its use might be expensive or impractical. For these reasons, as

well as for purposes of comparison with previous work and for completeness, we use

metadata-based divergence metrics in many of our examples and experiments.

When the value deviation metric is appropriate, it usually corresponds to an

application-specific function that models some cost associated with the discrepancy

2Staleness is the reverse of Freshness (staleness = 1− freshness), which is commonly used in the
literature (e.g., [25, 65]) and is a direct measure of replica precision. We use staleness so that the
larger value corresponds to greater divergence.
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between the data value stored at the repository and the actual data value. If the

data being replicated were Web documents, for example, ∆(V1, V2) might be based

on Information Retrieval measures such as TF.IDF vector-space similarity [98]. In the

CU-SeeMe video conferencing application [33] mentioned in Section 1.5, refreshes are

prioritized based on the deviation between individual regions of the recorded image

and their counterparts on remote viewer screens. The CU-SeeMe value deviation

function ∆(V1, V2) is based on the sum of the absolute value of the individual pixel

differences, with an additional weight for differences that occur in nearby pixels. In

other applications such as stock market monitoring that have single numerical values,

the simple value deviation function ∆(V1, V2) = |V1 − V2| is often suitable. Once

again, note that our techniques are independent of the exact value deviation function

or divergence metric used.

2.2.2 Weights

In many applications, it is desirable to bias the synchronization policy toward refresh-

ing certain important objects more aggressively than others. Importance values for

objects might be assigned according to various criteria, including but not limited to

data quality, content provider authority (e.g., PageRank [16]), and financial consider-

ations. Our approach is independent of the exact importance criteria, but we assume

a numerical importance function I(O, t) 7→ [0,∞) that may or may not change over

time. In the special case where all objects have equal importance, I(O, t) = 1 for all

objects at all times.

In addition to having differing importance, objects also may differ in the frequency

with which they are accessed by users or applications. The popularity of an object

refers to some measure of the probability of access, possibly weighted by the impor-

tance of the person or application that tends to access the data. The popularity of

an object O at time t is denoted P(O, t) 7→ [0,∞). In many applications it is im-

portant to account for popularity so that scarce resources are used for synchronizing

data that will be accessed frequently, maximizing the likelihood of accessing closely

synchronized data [65].
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From importance and popularity we derive an overall weight W (O, t) 7→ [0,∞)

for refresh assigned to an object O at time t:

W (O, t) = I(O, t) · P(O, t)

There could be other multiplicative factors contributing to W (O, t) besides impor-

tance and popularity, based on other aspects relevant to replica synchronization. For

example, one could incorporate detailed specifications of the objectives of users as in

[22]. As another example, the communication cost incurred while refreshing objects

may not be uniform, due to differing sizes of objects, nonuniform distances between

sources and the central repository, etc. Nonuniform refresh cost can be accounted for

in the weighting scheme, but other issues may arise in the presence of nonuniform cost

that our techniques do not handle directly, as discussed in Chapter 7. In this chapter

we assume uniform synchronization cost for all objects. Also, for now we assume

that sources and the repository agree on and are aware of the weighting scheme to

be used for best-effort synchronization. In Section 2.6, we address the possibility of

conflicting interests among different sources and between sources and the repository.

2.2.3 Priority Scheduling

The objective of best-effort synchronization is to minimize the (weighted) sum of the

time-averaged divergence of each object, under the constraint of limited resources

[25]. For the staleness divergence metric, this objective is equivalent to minimizing

the (possibly weighted) probability of accessing stale data [65]. We begin by studying

a theoretical situation in which all sources and the repository share knowledge about

each others’ state without using network resources, and sources are aware of available

repository-side bandwidth. By first considering this idealized situation, we establish

an “ideal” scheduling policy for best-effort synchronization, on which we can base our

practical techniques.

Let us assume for the moment that each source is aware of the state of objects

at all other sources. We assert that if divergence patterns of objects tend to remain

consistent over reasonable spans of time, objects should be prioritized globally for
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Figure 2.3: Two divergence graphs showing priority.

refreshing according to the following formula:

P (Oi, tnow ) = (tnow − tlast(i)) ·D(Oi, tnow ) ·W (Oi, tnow )−
∫ tnow

tlast(i)

D(Oi, t) ·W (Oi, t) dt

P (Oi, tnow ) is the refresh priority of object Oi at time tnow . It is a function of the

time tlast(i) when Oi was last refreshed, the current time tnow , and the divergence and

weight of Oi during the interval between tlast(i) and tnow . The first term is the weighted

product of the time interval since the last refresh and the current divergence. The

subtracted term is the weighted area under the divergence curve during the interval

since the last refresh. The overall priority function P (Oi, tnow ) captures the area

above the divergence curve between tlast(i) and tnow , properly weighted.

The two graphs in Figure 2.3 depict the refresh priority for two different objects,

with time on the x-axis and divergence on the y-axis. Recall that tlast denotes the

time of last refresh. Object O1 remained relatively unchanged until recently, then

suddenly underwent a significant change. Object O2 underwent significant changes

immediately following the last refresh, but has not changed much since then. In each

of the graphs, the area of the shaded region is the unweighted refresh priority for

that object. Assuming the two objects are assigned same weight, O1 will be assigned

higher priority for refresh at time tnow than O2.

Intuitively, higher priority is assigned when refreshing an object is likely to have

more long-term benefit in terms of divergence reduction. Take object O1 in Figure 2.3,

which diverged slowly after the last refresh. Assuming it is likely to again diverge
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slowly if another refresh is performed, a significant reduction in time-averaged diver-

gence can be achieved by refreshing it immediately rather than leaving it with high

divergence. On the other hand, object O2 diverged quickly after the last refresh, so if

this behavior repeats itself refreshing O2 again is likely to have relatively little long-

term benefit compared with refreshing O1, even though they have the same current

divergence. Mathematical justification and empirical validation of our refresh priority

function are given in Section 2.3. In Section 7.1.1 we discuss some potential positive

and negative implications of extending our priority function to take into account a

longer history window.

Note that in most cases it is reasonable to assume that importance and popularity

weights do not change rapidly relative to the time scale at which refreshes occur,

i.e., W (Oi, t) ≈ W (Oi, tnow ) for all tlast(i) ≤ t ≤ tnow . (In fact, in many intuitive

weighting schemes, the weights are adjusted very infrequently.) Under this reasonable

approximation, we can rewrite the refresh priority function as:

P (Oi, tnow ) ≈
(

(tnow − tlast(i)) ·D(Oi, tnow )−
∫ tnow

tlast(i)

D(Oi, t) dt

)
·W (Oi, tnow )

Assuming for our idealized scenario that sources know how much repository-

side bandwidth is available for refreshes, the ideal synchronization schedule can be

achieved as follows. Each time there is enough repository-side bandwidth to accept

a refresh, the object with the highest refresh priority among all objects at all sources

should be refreshed. If the source containing the highest priority object does not have

enough source-side bandwidth available to perform the refresh, then the object with

the second highest priority overall should be refreshed instead, and so on.

2.2.4 Special-Case Priority Functions

The refresh priority formula in Section 2.2.3 represents a general result (justified in

Section 2.3), and applies to any divergence metric. We now give specialized versions

of the general priority function for important special cases. The derivations of the

special-case priority formulae presented here are provided in Section 2.3.2.
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Consider a scenario where each object Oi is updated according to a Poisson pro-

cess with parameter λi. In this common scenario (which has been shown to apply

to Web pages [25], for example), under the staleness divergence metric specified in

Section 2.2.1, the refresh priority function can be written as:

Ps(Oi, tnow ) =
Ds(Oi, tnow )

λi

·W (Oi, tnow )

The intuition behind this formula is quite simple. First, objects whose replicas are

up-to-date have zero priority, since there is no benefit to repeatedly refreshing the

same value. Among objects that are stale, it is desirable to refresh the least frequently

changing ones (properly weighted), since they are the most likely to remain up-to-

date the longest after being refreshed. In [25], a similar conclusion was reached for

the staleness metric in high-contention scenarios. However, our result differs from

the exact refresh scheduling result presented in [25], which applies to periodic pulling

scenarios, because in our scenario, sources have direct knowledge of update times and

decide whether to refresh immediately after each update.

Under the lag metric (recall Section 2.2.1), when updates follow a Poisson model

the refresh priority function can be written as:

Pl(Oi, tnow ) =
Dl(Oi, tnow ) · (Dl(Oi, tnow ) + 1)

2λi
·W (Oi, tnow )

which is roughly proportional to the square of the number of updates to the source

value not reflected in the remote replica. This square proportionality indicates that it

is especially important to refresh objects that have undergone many changes. More-

over, the priority is inversely proportional to the average change rate λi. This inverse

proportionality assigns higher priority to objects that are not expected to change

rapidly in the future.
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2.3 Justification of Refresh Priority Function

In this section we justify, both mathematically and empirically, why prioritizing ob-

jects for refreshing using the formulae proposed in Section 2.2 is appropriate for

best-effort synchronization. Let us begin by assuming that bandwidth constraints

restrict us to a constant B refreshes/second. (Recall that we assume all objects are

of roughly equal size; in Chapter 7 we provide some discussion of nonuniform object

sizes.) Say that there are a total of n objects O1, O2, · · · , On among all the data

sources. Furthermore, say the divergence of each object Oi is monotonic and depends

purely on the time elapsed since the last refresh: D(Oi, tnow ) = D∗(Oi, tnow − tlast(i)),

where D∗(Oi, t) is any nonnegative function that increases monotonically with t. In

this scenario, the optimal refresh schedule is one in which each object Oi is refreshed

at regular intervals determined by a refresh period Ti.

To determine values for the refresh periods T1, T2, · · · , Tn resulting in the best

refresh schedule, we must solve the following optimization problem: minimize the total

time-averaged divergence D =
∑n

i=1(
1
Ti
· ∫ Ti

0 D∗(Oi, t) dt), subject to the bandwidth

constraint
∑n

i=1
1
Ti

= B. Using the method of Lagrange Multipliers [103], the optimal

solution has the property that there is a single constant T such that for all i:

Φi = T (2.1)

where

Φi = Ti ·D∗(Oi, Ti)−
∫ Ti

0
D∗(Oi, t) dt

T is called the refresh threshold, and it controls the overall refresh rate. It corresponds

to the (unweighted) priority an object must have in order to be refreshed. A small

T value results in more refreshes, i.e., a high refresh rate. A large T value results in

a low refresh rate. The value of T depends on the maximum bandwidth B and how

fast the objects diverge.

Interestingly, it is possible to discover the optimal refresh policy without directly

solving for the refresh periods T1, T2, · · · , Tn if, for all 1 ≤ i ≤ n, Φi monotonically
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increases as Ti increases. Under this monotonicity assumption, the optimal schedule

can be determined online as the current time tnow advances by monitoring what

the value of Ti would be if object Oi were selected for refresh at the current time:

Ti = tnow − tlast(i). In this scheme, every object Oi would have a proposed refresh

period Ti at all times. Given a proposed Ti value for object Oi, Φi can be computed

using the relationship between tnow , tlast(i), and Ti along with the relationship between

D() and D∗(). Note that we are now able to drop the assumption that objects diverge

in the same manner after each refresh. We can rewrite Φi as the refresh priority at

time tnow :

P (Oi, tnow ) = (tnow − tlast(i)) ·D(Oi, tnow )−
∫ tnow

tlast(i)

D(Oi, t) dt (2.2)

Thus, when an object’s refresh priority reaches T , that object should be refreshed.

Under the monotonicity assumption, the refresh priority of each object monotonically

increases with time, so there is exactly one point in time at which the priority equals

T , which is the optimal refresh time. By adding weights, we arrive at our original

priority function in Section 2.2.3. In realistic environments, the update patterns of

objects and amount of available bandwidth are likely to fluctuate over time, so the

best value for the refresh threshold T changes as well. In Section 2.4, we give an

algorithm for finding and dynamically adjusting T in a multiple-source environment

as bandwidth and update patterns fluctuate.

2.3.1 Priority Monotonicity

We showed that if priority is expected to increase monotonically, the best time to

refresh an object Oi occurs as soon as its priority reaches the refresh threshold T .

We now demonstrate that the priority of any object Oi, P (Oi, t), is indeed expected

to increase monotonically with time t. Taking the derivative of P (Oi, t) in Equation

(2.2) with respect to time, we obtain:

∂

∂t
P (Oi, t) = (t− tlast(i)) ·

∂

∂t
D(Oi, t) (2.3)
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From this equation, it is easy to see that the expected value of the change in priority
∂
∂t

P (Oi, t) is nonnegative if the expected change in divergence is nonnegative. The

latter must be true over time because divergence can never become negative, there-

fore it must increase at least as much as it decreases. Therefore, unless some special

knowledge of future update patterns indicates that an object’s source value will con-

verge back toward the replicated value, causing divergence to temporarily decrease,

priority can be expected to increase monotonically over time.

2.3.2 Derivation of Special Cases

Now consider the special cases from Section 2.2.4. Recall that in those special cases

each object Oi is updated according to a Poisson process with parameter λi. Let

ui = ν(Oi, tnow )−ν(R(Oi), tnow ), meaning that there have been ui updates to object Oi

since the last refresh. The expected time elapsed since the last refresh is tnow−tlast(i) =
ui

λi
.

If the lag divergence metric is used, the divergence after ui updates without a

refresh is Dl(Oi, tnow ) = ui. Immediately following the ui-th update, the integral of

divergence since the last refresh,
∫ tnow
tlast(i)

D(Oi, t)dt, is expected to equal 1
λi
·∑ui−1

x=0 x =
ui·(ui−1)

2λi
. Putting it all together, we obtain:

Pl(Oi, tnow ) =
ui

λi

·Dl(Oi, tnow )− ui · (ui − 1)

2λi

=
Dl(Oi, tnow ) · (Dl(Oi, tnow ) + 1)

2λi

Using the staleness divergence metric, immediately following the ui-th update the

integral of divergence since the last refresh is expected to equal ui−1
λi

. This gives:

Ps(Oi, tnow ) =
ui

λi

·Ds(Oi, tnow )− ui − 1

λi

=
Ds(Oi, tnow )

λi

2.3.3 Empirical Validation of Priority Function

As discussed in Section 2.1.3, it may appear surprising that it is not a good scheduling

strategy to simply prioritize objects according to weighted divergence, i.e., P (Oi, t) =

D(Oi, t) · W (Oi, t). To validate our less intuitive priority function empirically, we
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performed some simulations. We simulated a single data source containing n objects,

connected to a repository with bandwidth that supports up to 10 refreshes per second.

Each simulated object Oi was updated with probability λi each second, and upon each

update, the object’s value was either incremented or decremented by 1, with equal

probability (following a random walk pattern).

In our first experiment, we set all weights to 1 and randomly assigned λi values to

objects following a uniform distribution. We varied the number of objects from n = 1

to 1000 and configured the simulator to prioritize objects for refresh under each of the

three divergence metrics: staleness, lag, and value deviation with ∆(V1, V2) = |V1−V2|.
In all runs, the difference in overall time-averaged divergence observed between our

priority function and the simpler alternative was less than 10%.

However, when we introduced some skew into the data parameters, our priority

function proved to be significantly better than the simpler alternative. For example,

we simulated n = 100 objects, a randomly-selected half of which were assigned a

weight of 10 while the other half received a weight of 1. An independently- and

randomly-selected half of the objects were updated with probability 0.01 while the

other half were updated consistently every second. Under the staleness, lag, and

deviation metrics, the simple priority function resulted in a 64%, 74%, and 84%

increase in overall time-averaged divergence, respectively, compared with our priority

function.

2.4 Threshold-Setting Algorithm

In Sections 2.2 and 2.3 we established our approach: prioritize objects and refresh

only those whose priority is above a certain refresh threshold T , where T depends on

the available bandwidth and the divergence rates of the objects. Unfortunately, de-

termining the best value for T would require solving a very large system of equations

in most cases: one weighted instance of Equation (2.1) for each object plus an extra

equation for the bandwidth constraint, assuming the bandwidth bottleneck occurs

at the repository side. If repository-side bandwidth availability is not the only bot-

tleneck, then setting T appropriately also requires considering restrictive source-side
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bandwidth constraints, which further complicates analysis. Moreover, the available

bandwidth and divergence rates may fluctuate widely over time, so most likely there

is no single best threshold value that works well all the time. Even if a central site

(such as the data repository) could gather all the required information and calculate

T , if T changes over time and communication is limited then it may be difficult or

impossible to ensure that all m sources are aware of the current threshold value T ,

especially if the number of sources is very large. In our approach each source Sj

maintains its own local refresh threshold value Tj . Whenever a source Sj has enough

source-side bandwidth to perform a refresh,3 it refreshes the object with the highest

refresh priority if that priority is above the local refresh threshold Tj.

As the best global threshold T changes over time, ideally the individual local

threshold values T1, T2, · · · , Tm are maintained close to T to ensure the best overall

synchronization schedule. We propose an adaptive algorithm in which the repository

and sources work together to adjust the refresh thresholds dynamically, as was illus-

trated in Figure 2.2 and discussed briefly in Section 2.1.3. The desired properties of

such an algorithm are threefold. First, the algorithm should cause the individual local

thresholds to converge on the overall best threshold as conditions change. Second, the

algorithm should incur as little communication overhead as possible so as to reserve

as much bandwidth as possible for actual refreshes. Third and most importantly,

the algorithm must be designed so that it is not possible for a huge excess of refresh

messages to become queued in the network for a long period of time. It is crucial to

avoid network flooding since refresh messages would be stalled leading to increased

repository divergence.

As discussed in Section 2.1.3, the threshold-setting algorithm should avoid relying

on negative feedback from the repository. Otherwise, it would be very difficult to re-

cover from situations where the bandwidth is flooded and both refreshes and feedback

messages are delayed. A more stable strategy is for the repository to send positive

feedback messages when the refresh rate is too slow, asking sources to decrease their

thresholds and thereby increase the overall refresh rate. In the absence of feedback,

3In cases where the source-side bandwidth bottleneck occurs in the communication infrastructure,
surplus network bandwidth can be detected and exploited using, e.g., [113]. In other cases where
local processing or I/O time is the primary concern, standard scheduling techniques can be used.
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sources can assume that the refresh rate is too fast and should reduce the refresh rate

by increasing their thresholds.

In our algorithm, the repository continually monitors repository-side bandwidth

availability.4 If underutilized, the repository uses the excess bandwidth to send pos-

itive feedback messages to as many sources as possible (until the excess bandwidth

is utilized), asking them each to decrease their thresholds by a multiplicative factor

ω. If it is not possible to provide feedback to every source, the sources with the

highest local thresholds are selected to receive feedback. (For the repository to track

the source thresholds, each source can piggyback its current local threshold in refresh

messages.) When a source Sj receives a feedback message from the repository, it

decreases its local threshold Tj by setting Tj :=
Tj

ω
, unless it is already sending at

the full capacity of the source-side bandwidth, in which case it leaves Tj unmodified.5

In lieu of negative feedback, every time source Sj refreshes an object, it increases its

local threshold Tj by a multiplicative factor (θ ·α) by setting Tj := Tj ·(θ ·α). Because

our algorithm is adaptive, any initial values for the Tj ’s can be used and we assume

a warm-up period.

The threshold decrease parameter ω is a constant that controls how aggressively the

repository requests more refreshes. The threshold increase parameter θ is a constant

that controls how quickly sources slow down the refresh rate in the absence of positive

feedback. In Section 2.5.1 we determine good settings for these two parameters. The

factor α is used to accelerate the rate of threshold increase in cases where network

flooding is likely. If the elapsed time ∆tfeedback since the last feedback message was

received at a source is less than the expected feedback period Pfeedback , then α = 1.

However, whenever ∆tfeedback > Pfeedback , α =
∆tfeedback
Pfeedback

. The expected feedback period

Pfeedback is estimated as the ratio of the total number of sources divided by the average

4Network measurement tools such as [66] can be used to monitor available network bandwidth
between the repository and a gateway or backbone. Alternatively, if the repository-side bottleneck is
due to local processing or I/O time as opposed to network congestion, standard scheduling techniques
can be used to manage local resources.

5We want to avoid situations in which sources have large queues of over-threshold objects due to
source-side bandwidth limitations. In such situations, if more source bandwidth suddenly becomes
available, sources may flood the repository with refreshes that far exceed the repository bandwidth
capacity. If, however, the repository does have plenty of bandwidth available, it will soon send
positive feedback messages to the sources, triggering the right amount of additional refreshing.
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repository-side bandwidth. It is not at all critical that the expected feedback period

value be exact—it need only be a rough estimate.

2.5 Experimental Evaluation

We now discuss an experimental evaluation that we performed to determine good set-

tings for the parameters ω and θ, to assess the effectiveness of our algorithm, and to

compare against synchronization schedules determined by the repository alone. We

constructed a discrete event simulator for an environment with one repository and

m sources each containing n objects. In our simulations, the available repository-

side and source-side bandwidth fluctuate over time following a sine wave pattern.

The average repository-side and source-side bandwidths are controlled by simulation

parameters BC and BS, respectively. The maximum rate of bandwidth change is

controlled by simulation parameter ∆mB. When ∆mB = 0, the amount of available

bandwidth remains constant. In our simulations, all messages have the same size, and

each message requires 1 unit of bandwidth. For most of our experiments, we used

synthetic data sets generated following a random walk as described in Section 2.3.3.

Weights vary over time following sine-wave patterns with randomly-assigned ampli-

tudes and periods. We also used one real data set, introduced in Section 2.5.2.

2.5.1 Parameter Settings

To determine the best settings for the threshold increase parameter θ and decrease

parameter ω (Section 2.4), we performed a variety of simulations. We used synthetic

random-walk data generated for a wide variety of configurations having up to 100, 000

objects overall, with fluctuating weights among as many as m = 1000 sources. We also

varied the amount of repository-side and source-side bandwidth available, where both

bandwidth constraints were either held constant (∆mB = 0) or allowed to fluctuate

over time at a variety of rates. We measured average divergence over a period of 5000

seconds, after an initial warm-up period.

Although our algorithm is not overly sensitive to the parameters θ and ω, it is
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important to set them carefully. Setting ω too large may cause refresh messages to

be sent too aggressively, thereby increasing the latency for refreshes and raising the

overall divergence. However, having a small value for ω may lead to underutilization

of bandwidth, which also leads to increased divergence. Setting θ too large causes

sources to back off on refreshes too quickly, resulting in many positive feedback mes-

sages that reduce the bandwidth available for refreshes. On the other hand, setting

θ too low sacrifices adaptiveness.

Overall, under all three divergence metrics, we found that the lowest average

divergence (i.e., best overall repository precision) resulted with threshold increase

factor θ = 1.1 and threshold decrease factor ω = 10. With these settings, whenever

a source refreshes an object, it increases its local threshold by 10% (or more if α > 1

because it detects that the network seems to be flooded). Further, whenever a source

receives positive feedback from the repository and it is not sending at maximum

source-side capacity, it reduces its local threshold to 10% of its value. The difference

in the order of magnitude between θ and ω is due to the fact that increases (due to

refreshes) are much more common than decreases (due to feedback). We did not find

that our algorithm was overly sensitive to the exact parameter settings (e.g., θ = 1.2

and ω = 20 gave similar results).

2.5.2 Algorithm Effectiveness

Having determined good settings for the algorithm parameters, we ran a series of

simulations comparing the divergence resulting from our algorithm with the diver-

gence resulting from the global policy attainable only in the idealized and unrealistic

scenario discussed in Section 2.2. Our comparison was performed using synthetic

random-walk data where each object Oi is randomly assigned a Poisson update rate

parameter λi. We simulated m ∈ {1, 10, 100, 1000} sources, and varied the number of

objects per source: n ∈ {1, 10, 100}, giving up to 100, 000 objects total. Objects were

assigned weights randomly and weights were allowed to fluctuate over time. The aver-

age source-side bandwidth was varied between runs in BS ∈ {10, 100} and the average

repository-side bandwidth was varied in BC ∈ {10, 100, 1000, 10000, 100000}. Finally,
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Figure 2.4: Comparison against the idealized scenario.

the bandwidth change rate was varied between runs in ∆mB ∈ {0, 0.005, 0.05, 0.25}.
We measured the average divergence over a period of 5000 seconds, after an initial

warm-up period.

Figure 2.4 shows the results of our experiments using the value deviation, lag,

and staleness divergence metrics. One data point is plotted for every combination

of the parameters described above. The y-axis shows the ratio of the average diver-

gence resulting from our pragmatic algorithm to the average divergence theoretically

attainable in the idealized scenario. Data points are arranged along the x-axis accord-

ing to the theoretically attainable average divergence. The actual divergence values

along the x-axis reflect the weighting scheme and vary depending on the bandwidth

availability relative to the data update rates, so they are not particularly meaningful.

From Figure 2.4, we can see that as the average theoretically attainable diver-

gence increases (due to low bandwidth and/or many rapidly diverging objects), our

algorithm attains divergence nearly as good as the ideal case. On the other hand,

when divergence is small, the absolute difference between the divergence achieved
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Figure 2.5: Average divergence over wind buoy data.

by our algorithm and that of the idealized case is small. Overall, our algorithm re-

sults in divergence that is close to that theoretically attainable in the idealized case.

Therefore, since divergence represents the inverse of repository precision, this result

suggests that our algorithm will achieve a good precision-performance curve, i.e., one

that is as far as possible from the origin when performance is constrained by band-

width limitations. The remainder of Section 2.5 gives further evidence to support

this claim.

Effectiveness on Real-World Data

To further verify the effectiveness of our algorithm, we performed some experiments

on a real-world data set gathered from weather buoys in January 2000 by the Pacific

Marine Environmental Laboratory [78]. We simulated monitoring wind vectors from

m = 40 buoys spread out in the ocean, which perform measurements every 10 minutes.

Each wind vector is made up of two numeric components, giving n = 2 data values

per data source (buoy). All data values were equally weighted.

Using the value deviation divergence metric with ∆(V1, V2) = |V1 − V2|, we simu-

lated seven days worth of wind data, using the first day as a warm-up period. The

maximum total number of messages transmitted per minute over the satellite link

(repository-side bandwidth) was constrained. In the graphs in Figure 2.5, the (av-

erage) maximum bandwidth is plotted on the x-axis and the resulting average value

deviation per data value is shown on the y-axis. The first graph shows the results
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of experiments in which the maximum bandwidth was fixed as a constant between 1

and 80. In the second graph, available bandwidth fluctuated with time following a

sine wave pattern with a peak relative change rate of ∆mB = 0.25. The wind velocity

values monitored were generally in the range of 0–10, with typical values of around

5, so 0.5 on the y-axis for example indicates roughly 10% divergence. Figure 2.5

shows that the divergence achieved by our threshold-setting algorithm closely follows

the divergence theoretically achievable in the idealized scenario. Figure 2.5 repre-

sents an instance of our envisioned precision-performance tradeoff curve, with both

axes inverted to reflect the nature of our practical measures of repository precision

and communication performance: average replica divergence and bandwidth utiliza-

tion, respectively. Therefore, in this instance our algorithm successfully achieves a

precision-performance curve that is at all points nearly as far from the origin as

theoretically possible.

2.5.3 Comparison Against Repository-Based Scheduling

Finally, to quantify the benefits of source cooperation in synchronization scheduling,

we compared our cooperative approach against a recent fully repository-driven ap-

proach by Cho and Garcia-Molina [25]. In their approach, which we will refer to as

“CGM,” the repository schedules all refreshes and polls sources for values. The refresh

frequency for each object Oi is set independently based on an estimate of its average

update rate λi. The goal is to minimize the staleness metric (without weights) and

the overall bandwidth utilization is controlled by a numeric parameter µ, which was

shown not to be solvable mathematically [25]. The CGM policy was shown to be the

optimal repository-based synchronization scheduling policy, given the correct setting

for µ [25]. In our experiments, we used repeated runs to experimentally determine

the correct setting for their parameter µ.

Our comparison was performed over synthetic random-walk data where each ob-

ject Oi is randomly assigned a Poisson update rate parameter λi. Since the polling

model used in the CGM approach assumes no limitations on source-side bandwidth,

we only placed a limitation on repository-side bandwidth, which we varied between
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Figure 2.6: Comparison against repository-based synchronization policies.

runs. We simulated m ∈ {10, 100, 1000} sources, with n = 10 objects per source (re-

sults for n = 100 objects per source were similar). We varied the bandwidth capacity

between 10% and 90% of the total number of objects (i.e., between 0.1 · m · n and

0.9 ·m · n) between runs. Since the CGM approach assumes a fixed amount of avail-

able bandwidth, this quantity was held constant during each run (i.e., ∆mB = 0).

We measured the average unweighted staleness over a period of 500 seconds, after an

initial warm-up period. (We used a shorter measurement period in this experiment

than in previous ones since the bandwidth doesn’t fluctuate over time.)

Figure 2.6 shows the results of our comparison for m = 10, 100, and 1000 sources.

In each graph, the x-axis is bandwidth capacity as a fraction of the total number

of objects m · n. The y-axis shows average divergence (staleness, in this case), and

the five data lines correspond to five different theoretical or practical synchronization

techniques. “Ideal cooperative” is the idealized algorithm discussed throughout this

chapter, “our algorithm” is self-explanatory, and “ideal repository-based” corresponds

to CGM under two theoretical assumptions: that the repository can request refreshes
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without performing any communication to sources, and that the repository is aware

of the exact update rates (λ values) of all of the objects. “CGM1” and “CGM2”

are practical implementations of the CGM techniques. First, since refreshes require

polling, each refresh incurs a round-trip message from the repository to a source.

Second, the repository must estimate the object update rates (λ values) based on

observations taken during prior refreshes. Two methods for estimating an object’s

update rate are suggested in [23]. The first method can be used if the source keeps

track of the time at which the most recent update to each object occurred; this

approach is CGM1. The second method for estimating update rates is used if the

repository can only determine whether an object has been updated since the last

refresh, but not when it was updated; this approach is CGM2.

By comparing the “ideal cooperative” and “ideal repository-based” curves in the

graphs in Figure 2.6, we can see that, at least theoretically, cooperative schedul-

ing enables much lower average divergence and therefore higher repository precision

than a repository-based policy. Furthermore, by comparing the curve for our algo-

rithm against the two pragmatic CGM curves, the attainable benefit of cooperative

scheduling over repository-based techniques is demonstrated, for scenarios in which

sources do cooperate.

2.6 Cooperation in Competitive Environments

So far we have assumed that there is a single priority function and refresh policy

about which all participants (sources and repository) agree. However, in some en-

vironments, sources may differ in their criteria for deciding what content to keep

up-to-date at a repository. Moreover, a repository’s objectives of what to store and

maintain up-to-date may not coincide with the goals of the sources. More concretely,

the repository may request that sources implement a certain priority policy, deter-

mined by a divergence function and weights, but a given source may prefer a different

priority policy derived from its own divergence function and weights. The result is

that there may be two conflicting refresh priorities for each object.
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As an example, consider a Web indexer, whose objective might be to focus re-

sources on maintaining high-importance or high-popularity Web pages up-to-date in

the index. Content providers’ criteria for prioritizing pages for synchronization may

differ from that of the indexer, and each content provider might have different crite-

ria. For example, a retailer might wish to notify the Web indexer whenever a special

offer is added to their Web site, for advertising purposes. In general, if the repository

and a source disagree on the best refresh priority policy, how can a compromise be

made?

Under conflicting priorities, we can partition resources among satisfying source

priorities and satisfying the repository priority. Let Ψ represent the fraction of the

repository-side bandwidth dedicated to satisfying source priorities, so (1−Ψ) is the

fraction dedicated to repository priority. The parameter Ψ might be set by the

repository administrator. In loosely coupled environments, a relatively large Ψ value

can serve as an incentive for data sources to affiliate with the cooperative environment

because they will be given an opportunity to keep content they value up-to-date at

the repository, even if the repository prefers to focus on different content. There

are at least three conceivable ways to divide up the Ψ fraction of the repository-side

bandwidth dedicated to fulfilling the needs of sources:

1. All sources are given an equal share.

2. Sources are given a share proportional to the number of replicated objects from

the source.

3. Sources are given a share proportional to the degree to which the source con-

tributes to satisfying the objectives of the repository.

In options (1) and (2), all participating sources or objects are given equal treat-

ment. In option (3), sources are allocated resources for their own purposes only if

they bring significant value to the repository by offering objects that the repository

wants to maintain highly synchronized. In our Web index example, in option (3)

Web content providers with many documents that the index deems to be of high
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value would be allocated a relatively large amount of synchronization resources to

use as they see fit.

To implement options (1) or (2), the repository can monitor the total available

repository bandwidth and inform sources with each feedback message how much band-

width (in terms of number of refreshes per second) they have been allocated. Then,

sources can refresh objects based on their own priority scheme at the rate specified by

the repository. The remaining repository bandwidth would be dedicated to refreshes

following the repository’s priority, using the threshold-based algorithm proposed in

Section 2.4. To implement option (3), sources would be permitted to, on average,

piggyback Ψ
1−Ψ

objects of their own choosing along with every object refreshed based

on the repository’s priority using the threshold policy.

2.7 Priority Monitoring Techniques

In this section, we discuss some practical considerations in how sources monitor the

refresh priority of their updated objects. Sources need to detect when an object’s

priority exceeds the refresh threshold and refresh it, assuming sufficient source-side

bandwidth. If source-side bandwidth is a limiting factor, sources can maintain a

priority queue so that the highest-priority updated object can be located quickly

whenever spare bandwidth becomes available. We first discuss what sources need to

do to compute the priority of their objects in Section 2.7.1, and then discuss when

sources should measure the priority in Section 2.7.2.

2.7.1 How to Measure Priority

If the lag or staleness metrics are employed and objects are updated according to a

Poisson process, then an object’s priority depends uniquely on update times and not

data. One simple way for the source to track priorities is to monitor when updates

occur. The number of updates to an object since the last refresh determines its

divergence value. The number of updates divided by the time elapsed since the last

refresh gives an estimate for the Poisson parameter λ. Alternatively, the parameter
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λ may be monitored over a longer period of time. From an estimate for λ and the

divergence value, the refresh priority can be computed using the formulae given in

Section 2.2.4. If it is impossible or too invasive to track the exact number of updates,

one of the techniques proposed in [23] can be used to estimate λ. If the value deviation

metric is employed, we need to compare an object’s value with the older replicated

value to measure its divergence, which determines the priority.

2.7.2 When to Measure Priority

Surprisingly, although the refresh priority depends on time, an object’s priority can

only change when an update occurs. Equation (2.3) in Section 2.3.1 shows the deriva-

tive of priority with respect to time. Note that if divergence remains constant, i.e.,
∂
∂t

D(Oi, t) = 0, then the priority also remains constant. Thus, an object’s priority

only changes when its divergence changes, which can only occur as a result of updates

to the source object.

Therefore, to track the exact priority of an object, sources only need to recompute

the priority when an update is made to that object. Since the priority depends on

the integral of the divergence values since the last refresh, the source also needs to

maintain a running total of the past divergence values weighted by the amount of time

the value was active. The data necessary to compute this running total only needs

to be modified each time an update occurs. Detecting updates requires the use of

triggers [47] or a similar mechanism. If triggers are not supported or are deemed too

expensive, object priority can be monitored more loosely using sampling techniques,

discussed next.

Sampling for Priority

By sampling data values periodically, sources can compute divergence estimates. The

current divergence of each object can be measured directly during each sample, and

the sum of divergence values since the last refresh can be estimated based on past

samples. Note that it is not necessary to sample at regular intervals—each sampled

value can be assumed to have been active during the period beginning and ending
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halfway between successive samples. Therefore, sampling can be scheduled whenever

it is convenient for the source.

If the priority of an object Oi is nearing the refresh threshold, it might be appro-

priate to schedule the next sample of Oi based on a prediction of when the priority

is expected to reach the threshold. In cases where divergence increases roughly lin-

early, this prediction can be made based on the rate of divergence ρi, which can be

estimated based on previous samples.

Given an estimate for ρi, the projected divergence at time tfuture ≥ tnow is D(Oi, tnow )+

ρi · (tfuture − tnow ). Between tnow and tfuture , the integral of divergence values is pro-

jected to increase by (tfuture − tnow ) · (D(Oi, tnow ) +
ρi·(tfuture−tnow )

2
). Therefore, after

some algebraic simplification, the projected priority at time tfuture is:

P (Oi, tfuture) = P (Oi, tnow ) +
ρi

2
· (t2future − t2now ) ·W (Oi, tnow )

By solving for tfuture , we can determine the time at which the priority is expected

to reach the refresh threshold T :

tfuture = tlast(i) +

√√√√(tnow − tlast(i))2 +
2 · (T − P (Oi, tnow ))

ρi ·W (Oi, tnow )

If a data source has extra resources available, it may make sense to schedule the next

sample somewhat before that time, in case the divergence rate accelerates. The exact

method used to predict the divergence rate and schedule the next sample, as well as

a good choice for the regular sampling frequency, are all topics for future work.

2.8 Divergence Bounding

Some applications may require guaranteed upper bounds on the divergence of objects

accessed at the repository. For example, it may be important to know with certainty

that a data value is below a strict threshold or critical value. We can easily guarantee

divergence bounds at the repository when the source objects have known maximum

divergence rates. Let Li be an upper bound on the total time required to refresh
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object Oi.
6 Let Ri be the maximum divergence rate of object Oi. The upper bound

on divergence since the last refresh at time tlast(i) is B(Oi, tnow ) = Ri ·((tnow−tlast(i))+

Li). In applications requiring divergence bounds, it may be appropriate to perform

best-effort synchronization with the goal of minimizing the upper bounds, instead of

minimizing actual divergence values. Substituting B(Oi, tnow ) for D(Oi, tnow ) in our

priority function of Section 2.2.3, we obtain the following optimal priority function for

minimizing the sum of the time-averaged divergence bounds, assuming the weights

do not change drastically between refreshes:

P (Oi, tnow ) =
Ri · (tnow − tlast(i))

2

2
·W (Oi, tnow )

The threshold-based algorithm from Section 2.4 for coordinating refreshes from mul-

tiple sources can be used in conjunction with this priority policy.

2.9 Related Work

A wide variety of work in the literature is related to best-effort replica synchronization

to some extent. We covered some of the most relevant work in Section 1.5, and we now

discuss some additional work that is specifically related to the techniques introduced

in this chapter.

Theoretical algorithms for merging objects from multiple sources in priority or-

der have been proposed in the parallel priority queue research area, e.g., [17, 99].

These algorithms were designed for use in parallel computing environments with high

communication throughput, and consequently require tight communication among

participants. By contrast, we focus on widely distributed environments with limited

communication resources. Also, network flow-control techniques such as TCP/IP

have a similar flavor to our refresh coordination algorithm. However, these techniques

alone are not sufficient to address our problem because they typically do not address

application-level semantics such as an overall priority ranking that is independent of

6More generally, Li could represent the end-to-end latency between the time a real-world event
occurs, triggering a change to the source data, and the time an application reading data from the
repository sees the change.
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flow rates and queue sizes.

There has been a great deal of work on scheduling events in real-time systems

(see [93] for a survey). Most of this work focuses on scheduling events that have

strict completion deadlines, and the goal is to minimize the fraction of events that

miss their deadlines. By contrast, we considered an environment in which there are

no deadlines, and the goal is instead to minimize the time-average of a potentially

continuous inconsistency metric.

Recent work on database-backed Web servers [65] describes strategies for order-

ing propagations of complex database updates to remotely cached materialized Web

views in order to achieve closer synchronization. The focus of [65] is not on coping

with bandwidth limitations, and it is assumed that there is adequate bandwidth to

propagate all updates eventually.

2.10 Chapter Summary

In this chapter we proposed, mathematically justified, and empirically verified an

algorithm for best-effort replica synchronization with source cooperation. Source co-

operation in the synchronization process is advantageous for a number of reasons.

First, source cooperation enables better scheduling policies than would otherwise be

possible, resulting in improved synchronization (i.e., better overall repository preci-

sion) compared with repository-centric approaches. Second, sources can be given a

say in the relative priority of their objects for synchronization. Finally, sources can

exercise fine-grained control over the source-side bandwidth used for replica synchro-

nization so that exactly the right amount of bandwidth is available for servicing local

user queries.

We began by introducing a formal objective for best-effort synchronization: mini-

mizing the weighted sum of time-averaged divergence measures between master copies

and replicas, under the assumption that data access at the central repository is en-

tirely through local replicas. The weighting scheme provides a mechanism to tune

the objective function based on potential nonuniformities in access frequencies across

objects. However, it is assumed that temporal access patterns are unpredictable so,
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in our objective function, divergence of each individual object is averaged uniformly

over time.

After establishing our objective function, we defined and justified a priority policy

for refreshing replicated objects with the goal of minimizing our objective function

when bandwidth is limited due to constraints imposed by users, applications, or the

environment. We then proposed an algorithm for implementing the policy, while reg-

ulating the synchronization rate to match the available bandwidth without excessive

communication. Our algorithm adjusts local refresh thresholds adaptively at a large

number of data sources as conditions fluctuate. We presented simulation results on

both synthetic and real-world data sets to demonstrate that our techniques are effec-

tive. We also demonstrated empirically that source cooperation in synchronization

scheduling leads to considerably less replica divergence and thus higher overall reposi-

tory precision compared with the more conventional approach in which the repository

unilaterally schedules refreshes.



Chapter 3

Maximizing Performance when

Precision is Constrained

3.1 Introduction

In this and the next two chapters we focus on the scenario in which communication

resources are not as heavily constrained as in Chapter 2, in which we focused on envi-

ronments that have severely limited network bandwidth. As discussed in Chapter 1,

even when bandwidth availability is not tightly constrained, communication may still

incur a cost. The cost of communication may be manifest, for example, as a perfor-

mance penalty due to increased network congestion or as monetary accountability.

For applications that do not require exact precision for data objects in the repository,

lower communication cost can be achieved by performing approximate replication and

sacrificing some degree of replica precision.

As discussed in Section 2.8, applications can benefit from guarantees on the max-

imum divergence of replicas in the central repository. Divergence bounding was dis-

cussed in Section 2.8 for cases in which maximum data change rates are known.

However, when communication usage is flexible, replica divergence can be bounded

even without exploiting known constraints on data change rates. For an individual

data object O, the divergence D(O, t) can be bounded to remain below any finite,

nonnegative threshold T ≥ 0 by requiring that the source of O refresh the remote

51
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replica R(O) whenever D(O, t) > T . This method applies for any divergence func-

tion D(O, t) and guarantees that at any time t, D(O, t) ≤ T . (Let us assume that all

messages are transmitted instantaneously and all computation is instantaneous, for

now. In Section 3.5 we discuss how we handle realistic, non-negligible latencies.)

Providing guarantees of this form on the maximum divergence of individual repli-

cated data objects is the subject of previous work, including [7, 54, 100, 124]. However,

in many environments users and applications do not access data at the granularity

of individual data objects. Instead, they pose queries over sets of replicated objects.

When data access is at the granularity of queries, it is useful to obtain divergence (or

equivalently precision) guarantees for query answers rather than individual objects.

Furthermore, users may wish to specify a precision requirement along with each query,

in terms of the maximum acceptable divergence between the answer obtained and the

accurate answer that would be obtained by accessing only exact source values.

A bound on the maximum divergence of a query answer can typically be computed

using a deterministic function of the divergence bounds of its inputs. For example,

consider a query requesting the sum of the values of two numeric objects, O1 and O2,

and suppose as a metric of divergence we use the numeric value deviation function

Dv(O) = |V (R(O))−V (O)| proposed in Section 2.2.1. (For simplicity in this chapter

we drop the time parameter t and treat it as implicitly representing the current

time tnow .) Suppose object replicas R(O1) and R(O2) are known to diverge from

their master source copies by no more than 5 and 10 units, respectively, such that

|V (R(O1)) − V (O1)| ≤ 5 and |V (R(O2)) − V (O2)| ≤ 10. Combining these two

inequalities we find that |[V (R(O1)) + V (R(O2))] − [V (O1) + V (O2)]| ≤ 15, i.e.,

the maximum divergence of the answer to the summation query over O1 and O2 is

5 + 10 = 15, independent of the current values of O1 and O2.

For a given query, multiple configurations of the divergence bounds of the inputs

may lead to the same overall divergence bound for the answer to the query. In the

case of summation queries, for example, since maximum divergence is additive, the

same divergence bound of 15 would be achieved if the divergence bounds of O1 and

O2 were, say, 7 and 8, respectively, instead of 5 and 10. This fact holds for other types

of queries as well, and leads to the following observation: Given a workload of queries
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with maximum divergence requirements over replicas at the central repository, there

may be multiple ways to configure the divergence bounds of individual object replicas

while still adhering to the requested divergence bounds for all queries in the workload.

3.1.1 Effect of Divergence Bounds on Performance

The way individual divergence bounds are set has a significant impact on the per-

formance of an approximate replication system in terms of overall communication

cost incurred. For each replicated object, there is an inverse relationship between

the allowable divergence bound and the resulting communication cost: larger diver-

gence bounds tend to lead to lower communication cost incurred for replication, since

replicas are not likely to be refreshed as frequently. The overall communication cost

incurred depends both on the cost of individual refreshes and the rate at which each

object must be refreshed. Thus there is an opportunity for minimizing the over-

all communication cost (maximizing performance) while adhering to the precision

requirements of all queries by adjusting individual divergence bounds.

The optimization problem of maximizing performance subject to per-query con-

straints on precision is the subject of this chapter and the following two. In this chap-

ter we study the problem of maximizing performance in the presence of a workload of

continuously evaluated queries (continuous queries) Then in Chapters 4 and 5 we turn

our attention to handling ad-hoc one-time queries that are evaluated only once over

the current snapshot of the data rather than continuously over time. The additional

challenge with one-time queries is that, when unanticipated, they may come with

precision requirements that are impossible to meet using approximate replicas cur-

rently maintained at the data repository. Chapter 4 discusses how to achieve adequate

precision for unanticipated one-time queries with precision constraints by accessing

a minimum-cost subset of exact source copies. Chapter 5 proposes a technique for

setting and adjusting divergence bounds for approximate replicas not involved in con-

tinuous queries to maximize overall performance for a workload of one-time queries.
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3.1.2 Numeric Data and Aggregation Queries

Throughout Chapters 3–5 we focus on queries that perform aggregation over sets

of numeric values. Examples of aggregation queries are the sum of the objects, the

average, the minimum or maximum, etc. For both query results and individual objects

we use as our divergence metric the value deviation function Dv(O) = |V (R(O)) −
V (O)|. To be able to provide guaranteed precision for query answers, we associate

with each data object O a divergence bound TO, and require that the source of O

refresh its remote replica R(O) whenever it detects that Dv(O) > TO. Assuming

for now that message latency is negligible (we address nonnegligible message latency

later), the repository can guarantee without knowing the current exact value V (O)

that V (R(O))− TO ≤ V (O) ≤ V (R(O)) + TO.

Equivalently, the combination of V (R(O)) and TO defines an interval [V (R(O))−
TO, V (R(O)) + TO] inside which the current exact value V (O) is known to lie, called

the bound for object O. For convenience we label the interval endpoints LO =

V (R(O)) − TO and HO = V (R(O)) + TO, respectively; the bound [LO, HO] serves

as the approximate replica of object O. The source that maintains the master

copy of O keeps a copy of its replicated bound [LO, HO], and whenever the exact

value V (O) moves outside the bound it recenters the bound around V (O) by setting

LO := V (O)−WO

2
and HO := V (O)+ WO

2
and sends the new bound to the data repos-

itory. The bound width WO = HO − LO represents twice the maximum divergence,

and is inversely proportional to the precision of the approximate replica.

Approximate answers to aggregation queries can be computed over approximate

replicas, i.e., bounds defined in the previous paragraph. The conventional answer to

an aggregation query is a single real value. We define a bounded approximate answer

(hereafter bounded answer) to be a pair of real values L and H that define an interval

[L, H ] in which the precise answer is guaranteed to lie. A precision constraint for

a query is a user-specified constant δ ≥ 0 denoting a maximum acceptable interval

width for the answer, i.e., 0 ≤ H − L ≤ δ at all times.

Our approximate replication architecture for achieving precision guarantees for

aggregation queries over numeric data is illustrated in Figure 3.1. Users submit queries

with precision constraints to the data repository, where a query evaluator provides
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Figure 3.1: Our approximate replication architecture for achieving precision guaran-
tees for queries over numeric data.

bounded answers computed from replicated bounds. Sources monitor updates to exact

data values and refresh the replicated bounds as needed to maintain the invariant

that for each object Oi, the exact value Vi is inside the bound [Li, Hi], i.e., Li ≤ Vi ≤
Hi. All insertions of new objects and deletions of existing objects are propagated

immediately to the data repository, which maintains a simple catalog of all objects

in the data set.

3.1.3 Example Application

One important application that relies heavily on aggregation over numeric data is

network monitoring, which we use as a vehicle for illustrating and evaluating the

techniques presented in Chapters 3 through 5. Managing complex computer networks

requires tools that, among other things, report the status of network elements in real

time, for applications such as traffic engineering, reliability, billing, and security, e.g.,
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[31, 112]. Network monitoring applications do not typically require exact precision

[112]. Thus, our approach can be used to reduce monitoring communication overhead

between distributed network elements and a central monitoring station, while still

providing quantitative precision guarantees for the approximate answers reported.

Real-time network monitoring workloads often consist of a set of queries that perform

numeric aggregation across distributed network elements [31, 112]. The data to be

aggregated is most commonly selected or grouped by identifiers such as source-address

and destination-address, or by attributes such as packet type.

3.1.4 Chapter Outline

The remainder of this chapter is structured as follows. Next, in Section 3.2 we describe

some example continuous query workloads that motivate our approach to minimizing

communication in the presence of continuous queries with precision constraints over

approximate replicas, described in Section 3.3. Our approach relies on an adaptive

algorithm for setting and adjusting the precision of individual approximate repli-

cas, which is specified in detail in Section 3.4. Section 3.5 introduces techniques for

coping with nonnegligible communication latencies. We validated our approach by

building a testbed network traffic monitoring system; our implementation is described

in Section 3.6, along with measurements performed to verify the effectiveness of our

techniques. Related work pertaining to the Precision Fixed/Maximize Performance

scenario studied in Chapters 3 through 5 is discussed in Section 3.7. A summary of

this chapter is provided in Section 3.8.

3.2 Example Continuous Query Workloads

Familiarity with basic networking terminology [89] is assumed in this section.

Example 1: Network path latencies are of interest for infrastructure applications

such as manual or automated traffic engineering, e.g., [114], or quality of service

(QoS) monitoring. Path latencies are computed by monitoring the queuing latency

of each router along the path, and summing the current queue latencies together



3.2. EXAMPLE CONTINUOUS QUERY WORKLOADS 57

with known, static transmission latencies. Since the queue latency at each router

generally changes every time a packet enters or leaves the router, a naive approach

could generate monitoring traffic whose volume far exceeds the volume of normal

traffic, a situation that is clearly unacceptable. Fortunately, path latency applications

can generally tolerate approximate answers with bounded absolute numerical error

(such as latency within 5 ms of accuracy), so by using our approach obtrusive exact

monitoring is avoided.

Example 2: Network traffic volumes are of interest to organizations such as internet

service providers (ISP’s), corporations, or universities, for a number of applications

including security, billing, and infrastructure planning. Since it is often inconvenient

or infeasible for individual organizations to configure routers to perform monitoring,

a simple alternative is to instead monitor end hosts within the organization. We list

several traffic monitoring queries that can be performed in this manner, and then

motivate their usefulness. These queries form the basis of performance experiments

on a real network monitoring system we have implemented; see Section 3.6.

Q1 Monitor the volume of remote login (telnet, ssh, ftp, etc.) requests received by

hosts within the organization that originate from external hosts.

Q2 Monitor the volume of incoming traffic received by all hosts within the organi-

zation.

Q3 Monitor the volume of incoming SYN packets received by all hosts within the

organization.

Q4 Monitor the volume of outgoing DNS lookup requests originating from within

the organization.

Q5 Monitor the volume of traffic between hosts within the organization and external

hosts.

Queries Q1 through Q4 are motivated by security considerations. One concern is

illegitimate remote login attempts, which often occur in bursts that can be detected

using query Q1. Another concern is denial-of-service (DoS) attacks. To detect the

early onset of one form of incoming DoS attacks, organizations can monitor the total
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volume of incoming traffic received by all hosts using query Q2. Another form of

DoS attack is characterized by a large volume of incoming “SYN” packets that can

consume local resources on hosts within the organization, which can be monitored us-

ing query Q3. Organizations also may wish to detect suspicious behavior originating

from inside the organization, such as users launching DoS attacks, which may entail

sending an unusually large number of DNS lookup requests detectable using query

Q4. In all of these examples, current results of the continuous query can be compared

against data previously monitored at similar times of day or calendar periods that

represents “typical” behavior, and the detection of atypical or unexpected behavior

can be followed by more detailed and costly investigation of the data. Finally, orga-

nizations can monitor the overall traffic volume in and out of the organization using

query Q5, to help plan infrastructure upgrades or track the cost of network usage

billed by a service provider.

If traffic monitoring is not performed carefully, many of these queries may be

disruptive to the communication infrastructure of the organization [53]. Fortunately,

these applications also do not require exact precision in query answers as long as the

precision is bounded by a prespecified amount. Note that precision requirements may

change over time. For example, during periods of heightened suspicion about DoS

attacks, the organization may wish to obtain higher precision for queries Q2 and Q3

even at the cost of increased communication overhead.

3.3 Maximizing Performance for Continuous

Queries with Precision Constraints

Continuous queries are registered at the central data repository, and query results

are updated whenever a relevant refresh of an approximate replica is received from a

remote source. Each continuous query (CQ) Q has an associated precision constraint

δQ. We assume any number of arbitrary aggregation CQ’s with arbitrary individual

precision constraints. The challenge is to ensure that at all times the bounded answer

to every continuous query Q is of adequate precision, i.e., has width at most δQ, while
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minimizing total communication cost. As a simple example, consider a single CQ

requesting the current average of n data values at different sources, with a precision

constraint δ. We can show arithmetically that the width of the answer bound is the

average of the widths of the n individual bounds. Thus, one obvious way to guarantee

the precision constraint is to maintain a bound of width δ on each of the n objects.

Although this simple policy, which we call uniform allocation, is correct (the answer

bound is guaranteed to satisfy the precision constraint at all times), it is not generally

the best policy. To see why, it is important to understand the effects of replica bound

width.

3.3.1 Effects of Bound Width

As discussed in Section 3.1.1, a bound that is narrow, i.e., H − L is small, enables

continuous queries to maintain more precise answers due to low allowable divergence,

but is likely to incur more frequent refreshes. Conversely, a bound that is wide i.e.,

H −L is large, requires fewer refreshes but causes more imprecision in query answers

due to greater allowable divergence. Uniform allocation can perform poorly for the

following two reasons:

1. If multiple continuous queries are issued on overlapping sets of objects, different

bound widths may be assigned to the same object. While we could simply choose

to use the smallest bound width, the higher refresh cost may be wasted on all

but a few queries.

2. Uniform bound allocation does not account for data values that change at dif-

ferent rates due to different rates and magnitudes of updates. In this case, we

prefer to allocate wider bounds to data values that change rapidly, and narrower

bounds to the rest.

Our performance experiments (Section 3.6) that compare uniform against nonuniform

bound allocation policies provide strong empirical confirmation of these observations.

Reason 2 above indicates that a good nonuniform bound width allocation policy

depends heavily on the data update rates and magnitudes, which are likely to vary
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over time, especially during the long lifespan of continuous queries [76]. In Example

1 from Section 3.2, a router may alternate between periods of rapidly fluctuating

queue sizes (and therefore queue latencies) and steady state behavior, depending on

packet arrival characteristics. Therefore, in addition to nonuniformity, we propose

an adaptive policy, in which bound widths are adjusted continually to match current

conditions.

Determining the best bound width allocation at each point in time without incur-

ring excessive communication overhead is challenging, since it would seem to require

a single site to have continual knowledge of data update rates and magnitudes across

potentially hundreds of distributed sources. Moreover, the problem is complicated

by Reason 1 above: we may have many continuous queries with different precision

constraints involving overlapping sets of data objects. In Example 1 from Section 3.2,

multiple paths whose latencies are monitored will not generally be disjoint, i.e., they

may share routers, and precision constraints may differ due to differences in path

lengths (number of routers) as well as discrepancies in user precision requirements for

different paths.

3.3.2 Adaptive Bound Width Adjustment

We have developed a low-overhead algorithm for setting bound widths adaptively

to reduce communication costs while always guaranteeing to meet the precision con-

straints of an arbitrary set of registered aggregation CQ’s. The basic idea is as follows.

Each object’s source shrinks the bound width periodically, at a predefined rate. As-

suming the bounds begin in a state where all CQ precision constraints are satisfied

(we will guarantee this to be the case), shrinking bounds only improves precision,

so no precision constraint can become violated due to shrinking. The central data

repository maintains a mirrored copy of the periodically shrinking bound width of

each object. Each time the bound width of each object shrinks, the repository re-

allocates the “leftover” width to the objects at the repository it benefits the most,

ensuring all precision constraints will remain satisfied.
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3.3.3 Overall Approach

Our approach to adaptive precision-setting for continuous queries is illustrated in

Figure 3.2, which elaborates Figure 3.1:

• Data sources, on the right, each store master values for one or more objects,

which undergo updates over time. Sources maintain periodically-shrinking

bounds for the objects. Each source forwards updates that fall outside its

bound in a refresh message to the central data repository, shown on the left,

and recenters that bound.

• A precision manager inside the data repository maintains a copy of the period-

ically shrinking bound width for each object. It reallocates width as described

earlier and notifies the corresponding sources via growth messages.

• A bound cache inside the data repository receives all bound width changes

(growth and shrinks) from the precision manager, along with all value refreshes

transmitted from the data sources. The bound cache maintains a copy of the

bound for each object.

• A CQ evaluator in the central data repository receives updates to bounds from

the bound cache and provides updated continuous query answer bounds to the

user.

Two aspects of our approach are key to achieving low communication cost. First,

width shrinking is performed simultaneously at both the data repository and the

sources without explicit coordination. Second, the precision manager uses selective

growth to tune the width allocation adaptively. Informally, we minimize the overall

cost to guarantee individual precision constraints over arbitrary overlapping CQ’s

by assigning the widest bounds to the data values that currently are updated most

rapidly and are involved in the fewest queries with the largest precision constraints.

The remainder of this chapter is structured as follows:

• In Section 3.4 we specify the core of our approach: a low-overhead, adaptive al-

gorithm for assigning bound widths to replicated objects to reduce refresh rates.
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To guarantee adequate precision for multiple overlapping CQ’s while minimiz-

ing communication, the precision manager (Figure 3.2) uses an optimization

technique based on systems of linear equations.

• In Section 3.5 we describe mechanisms in the bound cache (Figure 3.2) to handle

replica consistency issues that arise due to nonnegligible message latencies.

• In Section 3.6 we describe our implementation of a real network traffic mon-

itoring system based on Example 2 in Section 3.2. We provide experimental

evidence that our approach significantly reduces overall communication cost

compared to a uniform allocation policy for a workload of multiple continuous

queries with precision constraints.

3.4 Algorithm Description

In this section we provide more details of our approach, then we describe our algorithm

for adjusting bound widths adaptively, i.e., we focus on the precision manager in

Figure 3.2 which is the core of our approach. Recall that our goal is to minimize

communication cost while satisfying the precision constraints of all queries at all

times. We consider continuous queries that operate over any fixed subset of the

remote data values. (We do not consider selection predicates over remote values,

and we assume that all insertions and deletions of new objects into the data set are

propagated immediately to the central data repository.)

Queries can perform any of the five standard relational aggregation functions:

COUNT, MIN, MAX, SUM, and AVG. Of these, COUNT can always be com-

puted exactly in our setting, SUM can be computed from AVG and COUNT, and

MIN and MAX are symmetric. It also turns out, as we show later in Section 3.4.4,

that for the purposes of bound width setting MIN queries can be treated as a col-

lection of AVG queries. Therefore, from this point forward we discuss primarily the

AVG function. Note that queries can request the value of an individual data object

by posing an AVG query over a single object.
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Each registered continuous query Qj specifies a query set Sj of objects and a

precision constraint δj . (Users may later alter the precision constraint δj of any

currently registered continuous query Qj; see Section 3.4.6.) The query set Sj is a

subset of a set of n data objects O1, O2, . . . , On. Each data object Oi has an exact

value V (Oi) stored at a remote source that sends refreshes as needed to the central

data repository. Say there are m registered continuous AVG queries Q1, Q2, . . . , Qm,

with query sets S1,S2, . . . ,Sm, respectively. Then the exact answer to AVG query

Qj is 1
|Sj | ·

∑
1≤i≤n,Oi∈Sj

V (Oi). Our goal is to be able to compute an approximate

answer continuously that is within Qj ’s precision constraint δj , using cached bounds

maintained by the central data repository.

Note that this goal handles sliding window queries [84] as well as queries over

the most recent data values only. For the aggregation functions we consider, if an

aggregate value is continuously computed to meet a certain precision constraint, then

the result of further aggregating over time using any type of window also meets that

same precision constraint. However, our algorithm does not necessarily minimize cost

for sliding window queries, because sliding windows offer some leniency in the way

precision bounds are set: bounds wider than δ are acceptable as long as they are

compensated for by bounds narrower than δ within the same time-averaged window.

Our algorithm would need to be modified to take advantage of this additional leniency

in precision, which is a topic of future work.

Recall our assumption that all messages are transmitted instantaneously and all

computation is instantaneous. (We discuss how to handle non-negligible latencies

by modifying the bound cache in Section 3.5.) When the precision manager sends a

bound growth message for object Oi to its source, or a refresh is transmitted from

the source to the data repository (recall Figure 3.2), we model the cost as a known

numerical constant Ci. In some scenarios the cost to refresh each object may be the

same; in others it may differ due to, e.g., variations in the distance of sources from the

central repository. (Considering the possibility of batching refreshes from the same

source is a topic of future work.) For convenience, the symbols we have introduced

and others we will introduce later in this section are summarized in Table 3.1.

Before presenting our general adaptive algorithm for adjusting bound widths, we
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Symbol Meaning
n number of data objects across all sources
Oi data object (i = 1 . . . n)

V (Oi) exact master (source) value of object Oi

[Li,Hi] bound for object Oi

Wi width of bound for object Oi (Wi = Hi − Li)
Ci update/growth msg. communication cost for Oi

C overall communication cost
λ refresh message latency tolerance
m number of registered continuous queries
Qj registered query (j = 1 . . . m)
Sj set of objects queried by Qj

δj precision constraint of query Qj

T adjustment period (algorithm parameter)
S shrink percentage (algorithm parameter)
Pi refresh period of Oi (last T time units)
Bi burden score of Oi (computed every T time units)
Tj burden target of Qj (computed every T time units)
Di deviation of Oi (determines growth priority)

Table 3.1: CQ precision-setting model and algorithm symbols.

describe two simple cases in which the bound width of certain objects should remain

fixed. First, consider an object O that is involved only in queries that request a bound

on the value of O alone (AVG queries over one value). Then it suffices to fix the

bound width of O to be the smallest of the precision constraints: WO = min(δj) for

queries Qj with Sj = {O}. Second, for objects that are not included in any currently

registered query, the bound width should be fixed at ∞ so that no refreshes for those

objects are transmitted to the central data repository. The remainder of the objects,

namely those that are involved in at least one query over multiple objects, pose our

real challenge.

To guarantee that all precision constraints are met, the following constraint must

hold for each query Qj :

∑
1≤i≤n,Oi∈Sj

Wi ≤ δj · |Sj |
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In other words, the sum of bound widths for each query must not exceed the product

of the precision constraint and the number of objects queried. Initially, the bounds

can be set in any way that meets the precision constraint of every query, e.g., by per-

forming uniform allocation for each query, and for objects assigned multiple bound

widths, taking the minimum. Then, as discussed in Section 3.3.3, our general strat-

egy is to reallocate bound width adaptively among the objects participating in each

query. Reallocation is accomplished with low communication overhead by having

bounds shrink periodically over time and having the data repository’s precision man-

ager periodically select one or more bounds to grow based on current conditions. In

Section 3.4.1 we describe the exact way in which bounds are shrunk in our algo-

rithm, and then in Section 3.4.2 we describe when and how bounds are grown. In

Section 3.4.5 we provide empirical validation that our algorithm converges on good

bounds.

3.4.1 Bound Shrinking

Every object Oi has a corresponding bound width Wi that is maintained simultane-

ously at both the central data repository and at the source. Periodically, every T time

units (seconds, for example), Oi’s bound width is decreased symmetrically at both

the source and the data repository by setting Wi := Wi · (1−S). The constant T is a

global parameter called the adjustment period, and S is a global parameter called the

shrink percentage. The effect is to decrease the bound width by the fraction S every

time unit, causing refreshes to become more frequent over time (i.e., smaller refresh

period). All adjustments to the bound width—decreases as well as increases—occur

at intervals of T time units. Note that refreshes may be sent to the central data

repository at any time but they simply reposition bounds without altering the width.

We will discuss good settings for algorithm parameters T and S in Section 3.6.
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3.4.2 Bound Growing

Every T time units, when all the bound widths shrink automatically as described in

the previous section, the precision manager selects certain bound widths to grow in-

stead, causing refreshes to become less frequent over time (i.e., larger refresh period).

Selecting bounds to increase (and how much) is one of the most intricate parts of our

approach.

The first step is to assign a numerical burden score Bi to each queried object Oi.

Conceptually, the burden score embodies the degree to which an object is contributing

to the overall communication cost due to refreshes. The burden score is computed

as Bi = Ci

Pi·Wi
where recall that Ci is the cost to send a refresh of object Oi, and

Wi is the current bound width. Pi is Oi’s estimated refresh period since the previous

width adjustment action, computed as Pi = T
Ni

where Ni is the number of updates

of Oi received by the data repository in the last T time units. (If Ni = 0 then

Pi = ∞ so Bi = 0.) The burden formula is fairly intuitive since, e.g., a wide bound

or long refresh period reduces Bi. The exact mathematical derivation is given below

in Section 3.4.3.

Once each object’s refresh period and burden score have been computed, the

second step is to assign a value Tj, called the burden target, to each AVG query

Qj. Conceptually, the burden target of a query represents the lowest overall burden

required of the objects in the query in order to meet the precision constraint at all

times. Since understanding the way we compute burden targets is rather involved, we

present our method in full detail below, and summarize the process here. For queries

over objects involved in no other queries, the burden target is set equal to the average

of the burden scores of objects participating in that query. For queries that overlap it

turns out that assigning burden targets requires solving a system of m equations with

T1, T2, . . . , Tm as m unknown quantities. Because solving this system of equations

exactly at run-time is likely to be expensive, we find an approximate solution by

running an iterative linear equation solver until it converges within a small error ε.

(Performance is evaluated below.)

Once a burden target has been assigned to each query, the third step is to compute

for each object Oi its deviation Di:
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Di = max


Bi −

∑
1≤j≤m,Oi∈Sj

Tj , 0




Deviation indicates the degree to which an object is “overburdened” with respect

to the burden targets of the queries that access it. To achieve low overall refresh

rates, it is desirable to equally distribute the burden across all objects involved in a

given query. We justify this claim mathematically in Section 3.4.3, and we verify it

empirically in Sections 3.4.5 and 3.6.

To see how we can even out burden, recall that the burden score of object Oi

is Bi = Ci

Pi·Wi
, so if the bound [Li, Hi] were to increase in size, Bi would decrease.1

Therefore, the burden score of an overburdened object can be reduced by growing its

bound. Growth is allocated to bounds using the following greedy strategy. Queried

objects are considered in decreasing order of deviation, so that the most overbur-

dened objects are considered first. (It is important that ties be resolved randomly to

prevent objects having the same deviation—most notably 0—from repeatedly being

considered in the same order.) When object Oi is considered, the maximum possible

amount by which the bound can be grown without violating the precision constraint

of any query is computed as:

∆Wi = min
1≤j≤m,Oi∈Sj


δj · |Sj| −

∑
1≤k≤n,Ok∈Sj

Wk




If ∆Wi = 0, then no action is taken. For each nonzero growth value, the precision

manager increases the width of the bound for Oi symmetrically by setting Li :=

Li − ∆Wi

2
and Hi := Hi + ∆Wi

2
. After all growth has been allocated the precision

manager sends a message to each source having objects whose bound width was

selected for growth.

In summary, the procedure for determining bound width growth is as follows:

1. Each object is assigned a burden score based on its refresh cost, estimated refresh

1This reasoning relies on Pi not decreasing when Wi increases, a fact that holds intuitively and
is discussed further in Section 3.4.3.
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period, and current bound width.

2. Each query is assigned a burden target by either averaging burden scores or

invoking an iterative linear solver (described).

3. Each object is assigned a deviation value based on the difference between its

burden score and the burden targets of the queries that access it.

4. The objects are considered in order of decreasing deviation, and each object Oi

is assigned the maximum possible bound growth ∆Wi when it is considered.

Complexity and scalability of this approach are discussed shortly.

Burden Target Computation

We now describe how to compute the burden target Tj for each query Qj , given the

burden score Bi of each object Oi (Step 2 above). Recall that conceptually the burden

target for a query represents the lowest overall burden required of the objects in the

query in order to meet the precision constraint at all times. For motivation consider

first the special case involving a single AVG query Qk over every object O1, . . . , On. In

this scenario, the goal for adjusting the burden scores simplifies to that of equalizing

them (as shown mathematically in Section 3.4.3) so that B1 = B2 = · · · = Bn = Tk.

Therefore, given a set of burden scores that may not be equal, a simple way to guess

at an appropriate burden target Tk is to take the average of the current burden scores,

i.e., Tk = 1
|Sk| ·

∑
1≤i≤n,Oi∈Sk

Bi. In this way, objects having higher than average burden

scores will be given high priority for growth to lower their burden scores, and those

having lower than average burden scores will shrink by default, thereby raising their

burden scores. On subsequent iterations, the burden target Tk will be adjusted to

be the new average burden score. This overall process results in convergence of the

burden scores.

We now generalize to the case of multiple queries over different sets of objects.

It is useful to think of the burden score of each object involved in multiple queries

as divided into components corresponding to each query over the object. Let θi,j

represent the portion of object Oi’s burden score corresponding to query Qj so
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that
∑

1≤j≤m,Oi∈Sj
θi,j = Bi. The goal for adjusting burden scores in the presence

of overlapping queries is to have the burden score Bi of each object Oi equal the

sum of the burden targets of the queries over Oi (as shown in Section 3.4.3). This

goal is achieved if for each query Qj over Oi, θi,j = Tj . Therefore, our overall

goal can be restated in terms of θ values as requiring that for every query Qj ,

θ1,j = θ2,j = · · · = θn,j = Tj (the θi,j values for objects Oi /∈ Sj are irrelevant).

Therefore, given a set of θ values, a simple way to guess at an appropriate burden

target Tj for each query Qj is by taking the average of the θ values of objects in-

volved in Qj , i.e., Tj = 1
|Sj | ·

∑
1≤i≤n,Oi∈Sj

θi,j . For each object/query pair Oi/Qj ,

we can express θi,j in terms of Bi, which is known, and the θ values for the other

queries over Oi, which are unknown: θi,j = Bi −
∑

1≤k≤m,k 6=j,Oi∈Sk
θi,k. If we replace

each occurrence of θi,k by Tk for all k 6= j (because we want each θ∗,k to converge

to Tk), we have θi,j = Bi −
∑

1≤k≤m,k 6=j,Oi∈Sk
Tk. Substituting this expression in our

formula for guessing at burden targets based on θ values, we arrive at the following

expression:

Tj =
1

|Sj|
·

∑
1≤i≤n,Oi∈Sj


Bi −

∑
1≤k≤m,k 6=j,Oi∈Sk

Tk




This result is a system of m equations with T1, T2, . . . , Tm as m unknown quantities,

which can be solved using a linear solver package.

Algorithm Complexity and Scalability

Let us consider the complexity of our overall bound growth algorithm, which is exe-

cuted once every T time units. Most of the steps involve a simple computation per

object, and the objects must be sorted once. In the last step, to compute ∆Wi effi-

ciently, the precision manager can continually track the difference (“leftover width”)

between each query’s precision constraint and the current answer’s bound width.

Then for each object we use the precomputed leftover width value for each query over

that object. When queries are over overlapping sets of objects, an iterative linear

solver is required to compute the burden targets, which we expect to dominate the
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Figure 3.3: Scalability of linear system solver.

computation. The solver represents the system of m equations having T1, T2, . . . , Tm

as m unknown quantities as an m by (m+1) matrix, where entries correspond to pairs

of queries. Fortunately, the matrix tends to be quite sparse: whenever the query sets

Sx and Sy of two queries Qx and Qy are disjoint, the corresponding matrix entry is 0.

For this reason, along with the fact that we can tune the number of iterations, bur-

den target computation using an iterative linear system solver should scale well. We

use a publicly-available iterative solver package called LASPack [101], although many

alternatives exist. Convergence was generally achieved in very few iterations, and

the average running time on a modest workstation was only 2.73 milliseconds in our

traffic monitoring implementation using multiple overlapping queries (Section 3.6).

To test the scalability of our algorithm to a larger number of queries and data

objects than we used in our implementation, we generated two sets of synthetic work-

loads consisting of AVG queries over a real-world 200-host network traffic data set

(details on this data set are provided in Section 3.6). We treated each host as a simu-

lated data source with one traffic level object. In one set of workloads, each query is

over a randomly-selected 5% (10) of the data sources. In the second set of workloads,

each query is over 25% (50) of the data sources, resulting in a much higher degree of

overlap among queries. (The degree of overlap determines the density of the linear

equation matrix, which is a major factor in the solver running time.) Varying the

number of queries m, we measured the average running time on a Linux workstation

with a 933 MHz Pentium III processor. We set the error tolerance for the LASPack
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iterative solver small enough that no change in the effectiveness of our overall algo-

rithm could be detected. Figure 3.3 shows the fraction of available processing time

used by the linear solver when it is invoked once every 10 seconds (when time units

are in seconds and T = 10, which turns out to be a good setting as we explain later

in Section 3.6). Allocating bound growth to handle 200 queries over 25% of 200 data

sources requires only around 1% of the CPU time at the data repository.

3.4.3 Mathematical Justification for Bound Growth Strategy

Here we give a mathematical model for the behavior of numerical data objects that

are replicated approximately using bounds, and we use it to justify the bound growth

allocation strategy presented in Section 3.4.2. We model the behavior of approxi-

mately replicated objects as follows. For an object Oi whose exact value V (Oi) varies

with time, we assume that the refresh period Pi is a function of the bound width

Wi = Hi − Li, and signify this relationship by writing Pi(Wi) instead of Pi. Intu-

itively, when a bound is narrow, the actual value is likely to exceed it more often

and therefore the refresh period will be short. Conversely, when a bound is wide we

expect the refresh period to be longer. The precise relationship between Wi and Pi

depends on the behavior of V (Oi).

Since each refresh of object Oi incurs a cost Ci, we can express the communication

cost of the entire system as:

C =
∑

1≤i≤n

Ci

Pi(Wi)

If no continuous queries are registered, then zero cost can be achieved by setting all

bounds to [−∞,∞]. However, each query Qj with precision constraint δj imposes

the following constraint on the bound widths:

∑
1≤i≤n,Oi∈Sj

Wi ≤ δj · |Sj |

(Recall that all basic aggregation queries can be treated as AVG queries.) We are now
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faced with the optimization problem of minimizing the overall cost C while satisfying

the above constraint for each of m queries Q1, Q2, . . . , Qm.

Unless the function Pi(Wi) is inversely proportional to Wi, which is unlikely as

discussed above, we are faced with a nonlinear optimization problem with inequality

constraints. Since such problems are very difficult to solve, we decided to try treat-

ing the inequality constraints as equality constraints to get an idea of the form of

the solution. (We later verified the success of this approach by comparing results

obtained using the algorithm which we derive from it with results obtained by exe-

cuting a nonlinear optimization problem solver that operates over synthetic data; see

Section 3.4.5.) We can apply the method of Lagrange Multipliers [103] to minimize

C under a set of m equality constraints of the form:

∑
1≤i≤n,Oi∈Sj

Wi = δj · |Sj |

The solution [103] has the property that there are a set of m constants λ1, λ2, . . . , λm

such that for all i:

Ci ·
∂

∂Wi

(
1

Pi(Wi)

)
=

∑
1≤j≤m,Oi∈Sj

λj

To evaluate the derivative we make the assumption that the function Pi(Wi) has

roughly the form Pi(Wi) = Zi · (Wi)
p, where each Zi is an arbitrary constant and p

can be any positive real number. For example, this model with p = 2 applies to data

that follows a random walk pattern, as we now derive.

In the random walk model, after t steps of size si, the probability distribution

of the value is a binomial distribution with variance σ2
i = (si)

2 · t [44]. Chebyshev’s

Inequality [44] gives an upper bound on the probability P that the value is beyond any

distance k from the starting point: P ≤ σ2
i

k2 . If we let k = Wi

2
, treat the upper bound

as a rough approximation, and solve for t when P = 1, we obtain t ≈ 1
(2·si)2

· (Wi)
2,

which is roughly the expected refresh period, so Pi(Wi) ≈ 1
(2·si)2

· (Wi)
2. In relation

to our general Pi(Wi) expression, for random walks Zi = 1
(2·si)2

and p = 2.

In general, assuming Pi(Wi) roughly follows the form Pi(Wi) = Zi · (Wi)
p for any
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p > 0, we can evaluate the partial derivative to obtain the following expression:

Ci

Pi ·Wi
= M ·

∑
1≤j≤m,Oi∈Sj

λj

where M is a constant. Finally, let the burden target Tj = M · λj and recall that the

burden score Bi = Ci

Pi·Wi
, giving:

Bi =
Ci

Pi ·Wi
=

∑
1≤j≤m,Oi∈Sj

Tj

According to this formula, we want Pi and Wi to be set such that the burden score

Bi of each object Oi roughly equals the sum of the burden targets of all queries over

Oi. Our algorithm described in Section 3.4 converges to this state by monitoring the

burden scores and increasing Wi, and consequently Pi as well, to decrease Bi when it

becomes significantly higher than the sum of estimated targets.

3.4.4 MIN Queries

We now consider MIN queries, and show that for the purposes of bound width setting

they can be treated as a collection of AVG queries. Consider a MIN query Qj

over query set Sj with precision constraint δj . First, we show that if the bound for

each object Oi ∈ Sj has width at most δj , the precision constraint is always met.

To see this fact, observe that the answer [L, H ] = [min(Li), min(Hi)], and it has

width H − L = min(Hi)−min(Li) ≤ Hk −min(Li), for the upper bound Hk of any

object Ok ∈ Sj . If we choose Ok to be the object with the lowest lower bound, i.e.,

Lk = min(Li), we obtain H − L ≤ Hk − Lk. Thus, if all bounds have width at most

δj , then the answer bound has width H − L ≤ δj .

We now show the converse: if the bound for some Oi ∈ Sj has width greater than

δj , then the precision constraint cannot be guaranteed. To see this fact, consider an

object Oi ∈ Sj whose value is far greater than the minimum value of the queried

objects. It may seem safe to assign a bound [Li, Hi] of width exceeding δj to Oi, as

long as Li is greater than the lowest lower bound, since [Li, Hi] will not contribute to
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the answer bound. However, if the data repository receives an update of one or more

objects, causing Li to suddenly become the lowest lower bound and Hi the lowest

upper bound, then the new answer bound has width greater than δj . Although this

situation could be remedied by requesting a tighter bound for Oi from its source, this

procedure would incur a delay during which Qj ’s answer bound violates its precision

constraint, breaking our requirement of continuous precision for continuous queries.

Therefore, for a MIN query Qj , the bound for each queried object must have width

at most δj at all times, and those widths are guaranteed to uphold the precision

constraint. (In circumstances where occasional precision constraint violations for

short periods of time are tolerable, the technique of [9], which avoids communication

altogether for objects far from the current minimum, can be used instead.)

Based on the above observations, for the purposes of bound width setting, a MIN

query Qj with precision constraint δj over a set of objects Sj is equivalent to a set

of single-object queries over each Oi ∈ Sj with precision constraint δj for each. Since

single-object queries are AVG queries over one object, our bound width adjustment

techniques described above can be applied to MIN queries without modification.

Overall, since SUM can be computed from AVG, and MAX is symmetric to MIN,

the Section 3.4 techniques can be used for any workload consisting of a combination

of SUM, AVG, MIN, and MAX queries.

3.4.5 Validation Against Optimized Strategy

We performed an initial validation of our bound width allocation strategy based

on periodic shrinking and selective growing using a discrete event simulator with

synthetic data. The goal of our simulation experiments is to show that our adaptive

algorithm converges on the best possible bound widths, given a steady-state data set.

For this purpose, we generated data for one object per simulated source following a

random walk pattern, each with a randomly-assigned step size, and compared two

unrealistic algorithms. In the “idealized” version of our algorithm, messages sent

by the data repository to sources instructing them to grow their bounds incur no

communication cost. Instead, only refresh costs were measured, to focus on the bound
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Figure 3.4: Ideal adaptive algorithm vs. optimized static allocation, random walk
data.

width choices only. We compared the overall refresh cost against the refresh cost when

bound widths are set statically using an optimization problem solver, described next.

The nature of random walk data makes it possible to simplify the problem of

setting bound widths statically to a nonlinear optimization problem. Recall from

Section 3.4.3 that the overall cost C =
∑

1≤i≤n
Ci

Pi(Wi)
, where Pi(Wi) is the refresh

period as a function of the bound width of Oi. In Section 3.4.3 we derived an ap-

proximate formula for this function in the random walk case: Pi(Wi) ≈ 1
(2·si)2

· (Wi)
2,

which depends on the step size si. If the step sizes of all the objects are known, then

a good static bound width allocation can be found by solving the following nonlinear

optimization problem: minimize
∑

1≤i≤n
Ci·(2·si)2

(Wi)2
in the presence of m constraints of

the form
∑

1≤i≤n,Oi∈Sj
Wi ≤ δj · |Sj |.

While nonlinear optimization problems with inequality constraints are difficult

to solve exactly, an approximate solution can be obtained with methods that use

iterative refinement. We used a package called FSQP [68], iterating 1000 times with

tight convergence requirements to find static bound width settings as close as possible

to optimal.

Figure 3.4 shows the results of comparing the idealized version of our adaptive

algorithm against the optimized static allocation, using a continuous AVG query

over ten data sources under uniform and nonuniform costs. The x-axis shows the

precision constraint δ, and the y-axis shows the overall cost per time unit. In a

second experiment we used a workload of five AVG queries whose query sets were
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Figure 3.5: Ideal adaptive algorithm vs. optimized static allocation, multiple queries.

chosen randomly from the 10 objects. Figure 3.5 shows the result of this experiment

for both uniform and nonuniform costs. The size of the query sets was assigned

randomly between 2 and 5, and the precision constraint of each query was randomly

assigned a value between 0 and δmax , plotted on the x-axis. These results demonstrate

that our adaptive bound width setting algorithm converges on bounds that are on

par with those selected by an optimizer based on knowledge of the random walk step

sizes.

3.4.6 Handling Precision Constraint Adjustments

Users may at any time choose to alter the precision constraint δj of any currently

running continuous query Qj . If the user increases δj (weaker precision), then addi-

tional bound width is allocated automatically by the bound growth algorithm at the

central precision manager at the end of the current adjustment period. If the user de-

creases δj (stronger precision), bound growth is suppressed, and the automatic bound

shrinking process will reduce the overall answer bound width over time until the re-

quested precision level is reached. If an immediate improvement in answer precision

is required, the central precision manager must proactively send messages to sources

requesting explicitly that bounds be shrunk.
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3.5 Coping with Latency

In a real implementation of our approach we must cope with message and computation

latency. Suppose that each message, including refresh messages and bound growth

messages, has an associated transmission latency as well as a processing delay by

both the sender and receiver. We first note that due to such latencies, bound growth

will be applied at sources after it is applied at the central data repository, and in

the interim period the source copy of the bound is narrower than it could be. This

phenomenon leads to a chance that some unnecessary updates are transmitted to the

data repository, but correctness is not jeopardized. To reduce the delay for growth

messages and lessen the chance of unnecessary refreshes, the data repository can begin

the growth allocation process prior to the end of each adjustment period, and base

the computations on preliminary refresh rate estimates.

Communication and computation latency for refresh messages is of more concern

because, if handled naively, continuous queries may not access consistent data across

all sources, leading to incorrect answers. To ensure continuous query answers based on

consistent data, source timestamp all updates transmitted to the data repository. (We

assume closely synchronized clocks, as in [67, 79].) Similarly, the precision manager

timestamps all bound width updates with an adjustment period boundary. Value

and width updates are converted into bound updates via the bound cache (recall

Figure 3.2). Bound updates also have associated timestamps (we will discuss how

they are assigned shortly), and our CQ evaluator (Figure 3.2) treats bound update

timestamps as logical update times for the purposes of query processing. Correctness

can only be guaranteed if the CQ evaluator receives bound updates monotonically

in timestamp order, in which case it produces a new output value for every unique

timestamp it receives as part of any update. When multiple updates have the same

timestamp, the query evaluator treats them as a single atomic transaction and only

produces a new output value for the last update with the same timestamp.

To ensure that the CQ evaluator receives bound updates that represent a con-

sistent state and arrive in timestamp order, the bound cache in the central data

repository is implemented using a combination of two serializing queues (described
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Figure 3.6: Bound cache for consistent and ordered bound updates.

shortly) and a symmetric hash join [115] (or other non-blocking join operator), as

illustrated in Figure 3.6. The join operator combines value updates with width up-

dates to produce bound updates that mirror the bounds maintained by sources, using

object identifier equality as the join condition. Each hash table stores only the most

recent value or width update for each object, based on timestamp, and each join

result is assigned a timestamp equal to the timestamp of the input that generated

the result.

Join inputs must arrive in timestamp order to ensure correct behavior. One way

to guarantee global timestamp ordering across all V and W refresh streams is to

delay processing of each update received on a particular stream until at least one

update with a greater timestamp has been received on each of the other streams

[67]. This approach is impractical in our setting, however, because it can result in

unbounded delays unless additional communication is performed, and delays tend

to be longer when the number of replicated objects is large. Instead, we take an

approach similar to one taken in the field of streaming media to handle unordered

packets with variable latency (see, e.g., [82]), which relies on a reasonable latency

upper bound. In our approach, serializing queues are positioned between the value

and width refresh streams and the join. The effect of each serializing queue is to order

updates by timestamp, and release each update U as soon as the current time tnow

reaches tU + λ, where tU is U ’s timestamp and λ is the latency tolerance: an upper

bound on the latency for any refresh message that holds with high probability and is

determined empirically based on the networking environment. As long as all update

messages obey this latency tolerance and appropriate queue scheduling is used, we can
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be assured that the serializing queues together output to the join a monotonic stream

of refreshes ordered by timestamp. Of course in practice occasional messages may be

delayed by more than λ, resulting in temporary violations of precision guarantees,

an unavoidable effect in any distributed environment with unbounded delays. Larger

values of λ reduce the likelihood that update messages arrive late, but also increase

the delay before results are released to the user. In Section 3.6.3 we show that using

a reasonable choice of λ, late update messages are very rare.

3.5.1 Exploiting Constrained Change Rates

In some applications, certain data objects may have known maximum change rates,

or at least bounds on change rate that hold with very high probability. If each data

object Oi participating in a continuous query Q has maximum change rate Ri, then

an approximate answer to Q that bounds the answer at time tnow − ε (for some local

processing delay ε at the central data repository), rather than time tnow − λ − ε,

can be provided by having the data repository “pad” the bounds to account for

recent changes rather than using serializing queues with a built-in delay as discussed

above. Padding is performed by adding φi = 2 · Ri · λ symmetrically to the width

of each updated bound [Li, Hi] after it is produced by the join. If this technique is

employed, a reduced precision constraint δ′Q ≤ δQ should be used for the purposes

of bound width allocation and adjustment to ensure that padded answer bounds

meet the original precision constraint δQ. The value of δ′Q depends on the amount

of padding and the type of query. For example, for AVG queries, we can set δ′Q =

δQ − 1
|SQ| ·

∑
1≤i≤n,Oi∈SQ

φi.

3.6 Implementation and Experimental Validation

We evaluated the performance of our technique and its practical applicability by build-

ing a real network traffic monitoring system. The system currently runs continuous

queries over 10 hosts in our research group’s network, following Example 2 from Sec-

tion 3.2. In our implementation, a special monitoring program executes on each host.
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It captures network traffic activity using the TCPdump utility and computes packet

rate measurements as needed by the queries in the workload, representing them as

time-varying numerical data objects. We use time units of one second, which matches

the granularity at which our TCPdump monitor is able to capture data. Each host

acts as a data source, and in all cases objects and their updates correspond to a one-

minute moving window over packet rate measurements. We use queries Q1−Q5 from

Example 2 of Section 3.2, so different experiments use different objects. For example,

query Q5 uses one object for each of the 10 sources (hosts) for the overall windowed

traffic volume between that host and external hosts. Each data object is assigned a

bound width to be used for approximate replication. Bounds are cached at a central

monitoring station, which updates the aggregated answers to continuous queries as

bound widths shrink and grow and as data refreshes arrive. The communication cost

(refresh or growth message) for each object is modeled as a uniform unit cost.

The first step in our experimentation was to determine good settings for the

two algorithm parameters T (adjustment period) and S (shrink percentage). We

experimented with a real-world network traffic data set in our simulator, with both

uniform and nonuniform costs, and also with live data in our network monitoring

implementation, and found that the following settings worked well in general: T = 10

time units to achieve low growth message overhead relative to the timescale at which

the data changes, and S = 0.05 (5%) to allow adaptivity while avoiding erratic bound

width adjustments that tend to degrade performance. We also determined that our

algorithm is not highly sensitive to the exact parameter settings. Setting or adjusting

these parameters automatically is a topic of future work.

3.6.1 Single Query

We now present our first experimental results showing the effectiveness of our algo-

rithm. We begin by considering a simple case involving a single continuous AVG

query. We used query Q5 from Example 2 of Section 3.2 applied over the 10 sources.

Q5 monitors the average rate of traffic to and from our organization, which ranged

from about 100 to 800 packets per second.
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Figure 3.7: Adaptive algorithm vs. uniform static bound setting, query Q5 using
network monitoring implementation.
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Figure 3.8: Adaptive algorithm vs. uniform static bound setting, single query over
large-scale network data using simulator.

Since the optimized static bound width allocation described in Section 3.4.5 relies

on knowing the random walk step size, it is not applicable to real-world data so cannot

be used for comparison. Assuming data update patterns are not known in advance,

the only obvious method of static allocation is to set all bound widths uniformly.

Thus, we compare our algorithm against this setting.

Figure 3.7 compares the overall communication cost incurred in our real-world

implementation by our adaptive algorithm compared to uniform static allocation,

measuring cost for 21 hours after an initial warm-up period. The continuous query

monitors the average traffic level with precision constraint δ ranging from 0 to 10

packets per second. Our algorithm offers a mild improvement over uniform bound
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allocation for a single query, bearing in mind that the experiment was over small-

scale network monitoring data available for monitoring on a few hosts within our

organization.

To test our algorithm on large-scale network data with many hosts, we ran a sim-

ulation on publicly available traces of network traffic levels between hosts distributed

over a wide area during a two hour period [87]. For each host, average packet rates

ranged from 0 to about 150 packets per second, and we randomly selected 200 hosts

as our simulated data sources. Figure 3.8 shows the results using our simulator over

this large-scale data set, accounting for all communication costs. With this data

set our algorithm significantly outperforms uniform static allocation for queries that

can tolerate a moderate level of imprecision (small to medium precision constraints).

For queries with very weak precision requirements (large precision constraints), even

naive allocation schemes achieve low cost, and the slight additional overhead of our

algorithm causes it to perform about on par with uniform static allocation.

3.6.2 Multiple Queries

We now describe our experiments with multiple continuous queries having overlap-

ping query sets. We used a workload of the five continuous AVG queries Q1−Q5 from

Example 2 in Section 3.2. 25 − 1 “measurement groups” are defined at each source

based on which subsets of the five query predicates a packet satisfies. Each mea-

surement group is aggregated and acts as a data object replicated (approximately)

at the central monitoring station. (It may seem more natural for sources to further

aggregate data objects into one object per query; we discuss this option shortly.)

Figure 3.9 shows the results of our experiments measuring cost for 23 hours after

an initial warm-up period. The x-axis shows the precision constraints used for queries

Q2 and Q5. The other queries monitored a much lower volume of data (by a factor of

roughly 100) so for each run we set their precision constraints to 1/100th that shown

on the x-axis. As discussed in Section 3.3.1, uniform static bound width allocation

can be performed for multiple overlapping queries if for each data object involved

in more than one query we maintain the narrowest bound assigned. Our algorithm
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Figure 3.9: Adaptive algorithm vs. uniform static bound setting, queries Q1 − Q5

using network monitoring implementation.

significantly outperforms uniform static allocation for queries that can tolerate a

moderate level of imprecision (small to medium precision constraints). For example,

using reasonable precision constraints of δ = 4 for queries Q2 and Q5 and δ = 0.04 for

queries Q1, Q3, and Q4, our algorithm achieves a cost of only 1.6 messages per second,

compared with a cost of 5.4 with uniform static bound width allocation. Furthermore,

as with all previous results reported, the overall cost decreases rapidly as the precision

constraint is relaxed, offering significant reductions in communication cost compared

with performing a refresh on every update (labeled “exact replication”).

Source Aggregation

In the multiple-query workload it may appear advantageous for sources to further

aggregate data objects to form one object per query whose refreshes are sent to the

monitoring station, instead of one per query subset. Interestingly, doing so (a process

we call source aggregation) does not always result in lower overall cost, and whether

it is cheaper to perform source aggregation depends on the data, query workload, and

user-specified precision constraints.

We analyze the effect of source aggregation mathematically, and show that cases

exist where source aggregation is advantageous in terms of minimizing communication

cost, and cases also exist where it is not. Suppose there are three data values V (O0),

V (O1), and V (O2) at a single data source, and two continuous SUM queries Q1 and

Q2 at the data repository. Q1 computes V (O0)+V (O1) with a precision constraint of
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δ1, and Q2 computes V (O0)+V (O2) with precision constraint δ2. If source aggregation

is not applied, then three bounds are maintained by the data repository: [L0, H0],

[L1, H1], and [L2, H2], corresponding to the three source values V (O0), V (O1), and

V (O2). Let width Wi = Hi − Li. The query precision constraints require that

W0 + W1 ≤ δ1 and W0 + W2 ≤ δ2. On the other hand, if source aggregation is

applied, then two bounds are maintained by the data repository: a bound [LQ1, HQ1]

on VQ1 = V (O0) + V (O1) and a bound [LQ2, HQ2] on VQ2 = V (O0) + V (O2), where

WQ1 ≤ δ1 and WQ2 ≤ δ2.

If all refresh costs are equal, then cost is determined by the sum of the refresh

frequencies of all bounds, which can be estimated using our random walk model.

Recall from Section 3.4.3 that the refresh frequency for a bound of width Wi on

the value V (Oi) is Fi ≈ (2·si)2

(Wi)2
, where si is the random walk step size of V (Oi).

Applying the law that variances are additive for sums of independent random variables

[44], we can compute the refresh frequency for the source-aggregated bounds FQ1 ≈
((2·s0)2+(s·s1)2)

(WQ1)2
and FQ2 ≈ ((2·s0)2+(s·s2)2)

(WQ2)2
. Therefore, the overall communication cost if

source aggregation is not applied is Cn = F0 + F1 + F2, and the overall cost if source

aggregation is applied is Cp = FQ1 + FQ2.

Suppose δ1 � δ2, so there is a large disparity in the precision constraints of the two

queries. For this purpose we can treat δ1 as∞, and it is easy to verify mathematically

that for any step sizes and any bound widths that meet the constraints, Cp ≤ Cn so

source aggregation achieves lower overall communication cost. On the other hand,

suppose s0 � s1 and s0 � s2, so value V (O0) involved in both queries changes much

more rapidly than V (O1) and V (O2), which are each only involved in a single query.

If we take the extreme case where s1 = s2 = 0, then if source aggregation is not

performed any reasonable width allocation strategy will assign W1 = 0, W2 = 0, and

W0 = min{δ1, δ2}, and we can derive that Cn ≤ Cp.
Conceptually, if there is a significant disparity between the precision constraints

of overlapping queries, source aggregation achieves lower overall communication cost

for refresh message transmission because queries with large precision constraints can

use separate wide bounds not constrained by other queries with small precision con-

straints. On the other hand, if most updates are to objects involved in multiple
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Figure 3.10: Fraction of refreshes arriving after the maximum latency tolerance λ for
query Q5.

queries, it is preferable in terms of overall communication cost not to apply source

aggregation, to avoid redundantly applying those updates to one object per relevant

query. As an extreme case, consider Example 1 from Section 3.2 in which each source

(router) maintains a single queue latency value accessed by multiple path latency

queries, and all updates at each source apply to objects involved multiple queries.

Source aggregation would have each router maintain one copy of its queue size mea-

surement for each path latency query, each with a bound having a potentially different

width. Updates would fall outside the bounds at different times causing unnecessary

updates to be transmitted to the central data repository.

As future work we plan to design and experiment with an algorithm that monitors

the expected cost of using versus not using source aggregation and switches adaptively

between them. Note that the choice of whether to perform source aggregation can

be made independently for each source and for each independent set of overlapping

queries, and the best overall configuration may be to perform source aggregation

selectively.

3.6.3 Impact of Message Latency

Our last experiment measures refresh message latency. In Figure 3.10 we vary the

maximum latency tolerance λ (recall Section 3.5) and measure the fraction of refreshes

arriving within λ for query Q5 during a 21-hour period. In our implementation
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refreshes are transmitted over a local area network. A value of λ = 0.4 seconds,

which is reasonable since data changes are meaningful on a scale of about 1 second

in our case, ensures that 99.8% of refreshes are received on time. When a moderate

precision constraint for this query of δ = 5 is used, refreshes exceeding the latency

allowance occur only about once every 65.7 minutes. When a refresh does arrive late,

the resulting inconsistency in the output is brief, and based on our measurements

plotted in Figure 3.10 the overall fraction of time the answer is consistent (fidelity in

the terminology of [100]) is at least 99.997%. By adjusting λ, higher fidelity can be

achieved at the expensive of delayed output, or vice-versa. ([82] proposes an algorithm

for adjusting the latency tolerance adaptively in a similar context based on observed

latency distributions.)

3.7 Related Work

We provided an overview of related work in Section 1.5. Here we elaborate on some of

the most closely related work and discuss other work specifically related to Chapters 3

through 5, which deal with bounded value approximations.

There is a large body of work dedicated to systems that improve query perfor-

mance by giving approximate answers. Early work in this area is reported in [83].

Most of these systems use either precomputation (e.g., [90]), sampling (e.g., [50]),

or both (e.g., [42]) to give an answer with statistically estimated bounds, without

scanning all of the input data. By contrast, in our work, all of the data is accessed

(usually indirectly by reading approximate replicas), to provide guaranteed rather

than statistical results.

Data objects whose values are interval bounds can be considered a special case of

constrained values in Constraint Databases [95, 60, 18, 19, 64, 13], or as null variables

with local conditions in Incomplete Information Databases [1]. However, no work in

these areas that we know of considers constrained values as bounded approximations

of exact values stored elsewhere.

In the multi-resolution relational data model [94], data objects undergo various

degrees of lossy compression to reduce the size of their representation. By reading the
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compressed versions of data objects instead of the full versions, the system can quickly

produce approximate answers to queries. By contrast, in our work performance is

improved by reducing the frequency with which data objects read from remote sources,

rather than by reducing the size of the data representation.

Another body of work that deals with imprecision in information systems is In-

formation Quality (IQ) research, e.g., [85]. IQ systems quantify the accuracy of data

at the granularity of an entire data server. Since no bounds are placed on individual

data values, queries have no concrete knowledge about the precision of individual

data values from which to form a bounded answer. Therefore, IQ systems cannot

give a guaranteed bound on the answer to a particular query.

A much more closely related body of research stems from work on quasi copies [7].

With quasi copies, centrally maintained approximations are permitted to deviate from

exact source values by constrained amounts, thereby providing precision guarantees.

Recent work [100] extends the ideas of [7], proposing an architecture in which a

network of repositories cooperate to deliver data with precision guarantees to a large

population of remote users. In an environment with multiple cooperating repositories,

data may be propagated through several nodes before ultimately reaching the end-

user application, so latency can be a significant concern. The work in [100] focuses on

selecting topologies and policies for cooperating repositories to minimize the degree

to which latency causes precision guarantees to be violated. However, the work in [7]

and [100] does not address queries over multiple data values, whose answer precision

is a function of the precision of the input values, so they do not need to deal with the

optimization problems we address for minimizing communication.

Recent work on reactive network monitoring [31] addresses scenarios where users

wish to be notified whenever the sum of a set of values from distributed sources

exceeds a prespecified critical value. In their solution each source notifies a central

processor whenever its value exceeds a certain threshold, which can be either a fixed

constant or a value that increases linearly over time. The local thresholds are set

to guarantee that in the absence of notifications, the central processor knows that

the sum of the source values is less than the critical value. The thresholds in [31],

which are related to the bounds in our algorithm, are set uniformly across all sources.
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Similarly, in [125], which focuses on bounded approximate values under symmetric

replication, error bounds are allocated uniformly across all sites that can perform

updates. In contrast to these approaches, we propose a technique in which bound

widths are allocated nonuniformly and adjusted adaptively based on refresh costs and

data change rates.

Maintaining numeric bounds on aggregated values from multiple sources can be

thought of as ensuring the continual validity of distributed constraints. Most work

on distributed constraint checking, e.g., [14, 46, 56] only considers insertions and

deletions from sets, not updates to data values. We are aware of three proposals in

which sources communicate among themselves to verify numerical consistency con-

straints across sources containing changing values: data-value partitioning [102], the

demarcation protocol [11], and recent work by Yamashita [123]. The approach of these

proposals could in principle be applied to our setting: sources could renegotiate bound

widths in a peer-to-peer manner with the goal of reducing refresh rates. However, in

many scenarios it may be impractical for sources to keep track of the other sources

involved in a continuous query (or many continuous queries) and communicate with

them directly, and even if practical it may be necessary to contact multiple peers

before finding one with adequate “spare” bound width to share. It seems unlikely

that the overhead of inter-source communication is warranted to potentially save a

single refresh message. Furthermore, the algorithms in [11, 102, 123] are not designed

for the purpose of minimizing communication cost, and they do not accommodate

multiple queries with overlapping query sets.

Some work on real-time databases, e.g., [72], focuses on scheduling multiple com-

plex, time-consuming computation tasks that yield imprecise results that improve over

time. In contrast, our work does not focus on how best to schedule computations,

but rather on how to reduce refresh rates for replicas in a distributed environment

while bounding the resulting imprecision.
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3.8 Chapter Summary

In this chapter we specified one of the pieces of our overall approach achieving efficient

communication resource utilization in an environment of centralized query processing

over distributed data sources. We focused on continuous queries with custom precision

constraints, which are used to avoid refreshing replicas each time an update to the

master copy occurs while still guaranteeing sufficient precision of query results at all

times. Users or applications may trade precision for lower communication cost at a

fine granularity by individually adjusting precision constraints of continuous queries.

Imprecision of query results is bounded numerically so applications need not deal

with any uncertainty.

To validate the techniques proposed in this chapter we performed a number of

experiments using simulations and a real network monitoring implementation. Our

experiments demonstrated:

• For a steady-state scenario our algorithm converges on bound widths that per-

form on par with those selected statically using an optimization problem solver

with complete knowledge of data update behavior.

• In the case of a single continuous query, our algorithm significantly outper-

forms uniform bound width allocation in some cases, and in other cases our

algorithm is only somewhat better than uniform allocation. As future work we

plan to characterize those cases for which our algorithm achieves a significant

improvement over uniform static allocation, and those cases for which uniform

allocation suffices.

• In the case of multiple overlapping continuous queries, our algorithm signifi-

cantly outperforms uniform bound width allocation.



Chapter 4

Answering Unexpected One-Time

Queries

4.1 Introduction

Providing guaranteed precision for a workload of continuous queries, as addressed

in Chapter 3, is not sufficient to handle an important class of queries that arises

frequently in practice: one-time, impromptu queries. Users or applications interacting

with the data repository may at any time desire to obtain a one-time result of a certain

query, which includes a precision constraint and may or may not be the same as one

of the continuous queries currently being evaluated. In many cases one-time queries

are issued in response to results observed via currently executing continuous queries,

in order to obtain more detailed information in two ways: (1) one-time queries are

likely to request improved precision over the corresponding continuous queries, and

(2) they may target specific portions of the data being monitored.

For case (1), when an ad-hoc one-time query is issued the data replicas in the

repository may not be of sufficient precision to meet the query’s precision constraint.

To obtain a query answer of adequate precision it may be necessary to access master

copies of a subset of the queried data objects by contacting remote sources, incurring

performance penalties. Case (2) suggests that one-time queries may include selection

predicates over approximately replicated values to narrow the scope of the query. In

91
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this chapter we study the problem of maximizing communication performance in the

presence of unanticipated one-time aggregation queries with precision constraints and

optional selection predicates. To solve this problem we devise efficient algorithms for

minimizing accesses to remote master copies.

4.1.1 Chapter Outline

The remainder of Section 4.1 is devoted to an example scenario that we use to motivate

our approach and refer to throughout this chapter for examples. In Section 4.2 we

discuss the execution of aggregation queries with optional selection predicates over

approximate replicas. We present our specific optimization algorithms for aggregation

queries over sets of objects in Sections 4.3 and 4.4. In Section 4.5 we present some

preliminary results for aggregation queries with joins. Finally we discuss related work

specific to this chapter in Section 4.6 and summarize this chapter briefly in Section 4.7.

4.1.2 Running Example

As a scenario for motivation and examples throughout this chapter, we will again

consider a replication system used for monitoring a computer network. In this exam-

ple, instead of analyzing actual packets as in our previous example (Section 3.1.3),

we assume the system computes measurements and makes them available. Each node

(computer) in the network tracks the average latency, bandwidth, and traffic level for

each incoming network link from another node. Administrators at a central monitor-

ing station analyze the status of the network by collecting data periodically from the

network nodes. For each link Ni → Nj in the network, the monitoring station will

maintain replicas of the latest latency, bandwidth, and traffic level figures obtained

from node Nj. A certain number of continuous queries with precision constraints

may be executing over approximate replicas, with precision levels set and adjusted

as discussed in Chapter 3. However, administrators may also wish to issue ad-hoc,

one-time queries over the replicated data, such as:

Q1 What is the bottleneck (minimum bandwidth link) along a path N1 → N2 →
· · · → Nk?
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Q2 What is the total latency along a path N1 → N2 → · · · → Nk?

Q3 What is the average traffic level in the network?

Q4 What is the minimum traffic level for fast links (i.e., links with high bandwidth

and low latency)?

Q5 How many links have high latency?

Q6 What is the average latency for links with high traffic?

Collecting new data values from each relevant node every time a one-time query

is posed to compute exact answers would take too long and might adversely affect

the system. Requiring that all nodes constantly send their updated values to the

monitors is also expensive and generally unnecessary, as discussed in Section 3.2.

Since administrators do not usually require exact precision for every query, we permit

a numeric precision constraint to be submitted along with each one-time query, just

as with continuous queries, indicating how wide a bound is tolerable in the one-time

answer. For example, suppose the administrator wishes to obtain the latency in some

area in response to a complaint about high latency from a customer. To determine

whether the latency experienced by the customer is occurring within the region of

control of the administrator, the administrator does not need to know the precise

latency, but may wish to obtain an answer to within 5 milliseconds of precision.

The small table in Figure 4.1 shows sample data replicated in the form of numeric

intervals at a central network monitoring station (acting as the data repository),

along with the current exact values at the network nodes (acting as data sources).

The weights may be ignored for now. Each row in Figure 4.1 corresponds to a network

link between the link from node and the link to node. Recall that exact master values

for latency, bandwidth, and traffic for incoming links are measured and stored at

the link to node. In addition, for each link, the monitoring station stores a bound

for latency, bandwidth, and traffic, which serve as approximate replicas of the exact

values. The monitoring station can use these bounds to compute bounded answers

to one-time queries, just as for continuous queries (Chapter 3).

Suppose a bounded answer to a query with aggregation is computed from approx-

imate replicas, but the answer does not satisfy the user’s precision constraint, i.e.,



94 CHAPTER 4. ANSWERING UNEXPECTED ONE-TIME QUERIES

link latency bandwidth traffic refr. weights
from to replica exact replica exact replica exact cost W W ′ W ′′

1 N1 N2 [2, 4] 3 [60, 70] 61 [95, 105] 98 3 2 10 29.5
2 N2 N4 [5, 7] 7 [45, 60] 53 [110, 120] 116 6 2 10 2
3 N3 N4 [12, 16] 13 [55, 70] 62 [95, 110] 105 6 15 41.5
4 N2 N3 [9, 11] 9 [65, 70] 68 [120, 145] 127 8 25 2
5 N4 N5 [8, 11] 11 [40, 55] 50 [90, 110] 95 4 3 20 36.5
6 N5 N6 [4, 6] 5 [45, 60] 45 [90, 105] 103 2 2 15 31.5

Figure 4.1: Sample data for network monitoring example.

the answer bound is too wide. This scenario may occur, for example, when bound

widths are set according to currently running continuous queries with weak preci-

sion requirements. In this case, some data must be accessed from sources to improve

precision. Recall that we assume that there is a known quantitative cost associated

with refreshing data objects from their sources, and this cost may vary for each data

item (e.g., in our example it might be based on the node distance or network path

latency). We show sample refresh costs for our example in Figure 4.1. Our system

uses optimization algorithms that attempt to find the best combination of replicated

bounds and master values to use in answering a query, in order to minimize the cost

of remote refreshes while still guaranteeing the precision constraint.

Next we discuss the execution of aggregation queries with optional selection predi-

cates over approximate replicas, before presenting our specific optimization algorithms

for aggregation queries over sets of objects in Sections 4.3 and 4.4.

4.2 Execution of One-Time Queries

Executing an aggregation query with a precision constraint may involve combining

exact data stored on remote sources with approximate replicas stored in a local repos-

itory. In this section we describe in general how one-time queries are executed, and

we present a cost model to be used by our algorithms that choose remote replicas

to access when answering queries. When a replica at a remote source is accessed by

the repository to improve the precision of a one-time query, the source responds by

sending a refresh message back to the repository. A refresh message for object O
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consists of O’s current exact value V (O) and a new bound [LO, HO] that contains

V (O).

In this chapter we consider selection predicates, and to simplify discussion of

them we assume the relational model until the end of this chapter. Our techniques

of this chapter and the entire dissertation can be implemented with any data model

that supports aggregation of numerical values. We assume that replication may be

performed at the granularity of individual tuples, which can be thought of as the data

objects of the relational model. For now we consider single-table aggregation queries

of the following form. Joins are addressed in Section 4.5.

SELECT AGGREGATE(T.a) WITHIN δ

FROM T

WHERE PREDICATE

AGGREGATE is one of the standard relational aggregation functions: COUNT, MIN,

MAX, SUM, or AVG. PREDICATE is any predicate involving columns of table T and

possibly constants. δ is a nonnegative real constant specifying the precision constraint,

which requires that the bounded answer [L, H ] to the query satisfies 0 ≤ H −L ≤ δ.

If δ is omitted then δ = 0 implicitly. Note that this language for one-time querying

allows slightly more general queries than those studied in the CQ context in Chapter 3.

In particular, selection predicates over approximate replicas are permitted.

4.2.1 Computing Bounded Answers

To compute a bounded answer to a query of this form, our system executes several

steps:

1. Compute an initial bounded answer based on the current replicated bounds and

determine if the precision constraint is met. If not:

2. An algorithm CHOOSE REFRESH examines the repository’s copy of table

T and chooses a subset of T ’s tuples TR to refresh. The source for each tuple

in TR is asked to refresh the repository’s copy of that tuple.
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3. Once the refreshes are complete, recompute the bounded answer based on the

repository’s now partially updated copy of T .

Our CHOOSE REFRESH algorithm ensures that the answer after step 3 is guar-

anteed to satisfy the precision constraint.

4.2.2 Answer Consistency

A simple multiversion concurrency control scheme [15] can be used to ensure that

the answer computed in step 3 is based on a consistent snapshot of all the data.1

First, in step 1, updates to the data repository’s bound cache (Figure 3.6) are halted

momentarily while exact values for all bounds relevant to the query are accessed by

requesting refreshes and the timestamp T of the most recently applied update is read.

A temporary copy of all bounds read by the query is made at the data repository

along with T , which represents the time as of which the one-time query is evaluated.

T is included with all refresh requests in step 2, and sources respond with a refresh

message that includes the exact value as of that time, thereby ensuring that the

answer computed in step 3 will represent a consistent snapshot as of time T . (Recall

from Section 3.5 that we assume that all nodes maintain closely synchronized clocks.)

The new bounds included in the refresh messages are selected based on the most

recent exact source values, and upon receipt at the repository they are placed in the

serializing queues for later insertion into the bound cache as described in Section 3.5.

To enable access to recent historical data for query answer consistency purposes,

sources must maintain a brief version history for each data value. Each time a source

receives an access request with timestamp T it may discard all versions with times-

tamps earlier than T . (If the storage requirements of multiple versions is of concern,

it may be appropriate to use more aggressive policies for determining that old versions

can be discarded safely, although additional communication may be necessary.)

1In contrast, multiversion concurrency control is not required to ensure consistent answers for
continuous queries because in our approach (Chapter 3) CQ answers are computed entirely from
approximate replicas, and are not formed by combining approximate replicas with remote source
data as in our approach to answering one-time queries.
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The above consistency scheme is appropriate for data captured from real-time

measurements such as sensor signals or network traces, which have associated real-

world timestamps. In contrast, with transactional data such as stock market trades

or auction bids, in which the writes to a database define the real-world outcome,

exact timestamps are not typically of primary importance. For transactional data a

more appropriate consistency criterion is one-copy serializability [15]. In-depth treat-

ment of transactions and serializability for approximately replicated data is beyond

the scope of this dissertation. However, we point out that well-known distributed

concurrency control protocols [15] can be used to enforce one-copy serializability over

bounds replicated between sources and the central repository. Communication is

only necessary when master values exceed their bounds, and it is ensured that each

query’s answer bound reflects the state of the data at a transaction boundary, thereby

avoiding approximate answers derived from transactionally inconsistent data.

4.2.3 Overview

The remainder of this chapter presents the details of steps 1-3 in Section 4.2.1. In

particular, for each type of aggregation query we address the following two problems:

• How to compute a bounded answer based on the current replicated bounds.

This problem corresponds to steps 1 and 3 above.

• How to choose the set of tuples to refresh. This problem corresponds to step 2

above. A CHOOSE REFRESH algorithm is optimal if it finds the cheapest

subset TR of T ’s tuples to refresh (i.e., the subset with the least total cost) that

guarantees the final answer to the query will satisfy the precision constraint for

any exact values of the refreshed tuples within the current bounds.

We are assuming that the cost to refresh a set of tuples is the sum of the costs of

refreshing each member of the set, in order to keep the optimization problem man-

ageable. This simplification ignores possible amortization due to batching multiple

requests to the same source. Also recall that we assume a separate refresh cost may
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be assigned to each tuple, although in practice all tuples from the same source may

incur the same cost.

Note that the entire set TR of tuples to refresh is selected before the refreshes

actually occur, so the precision constraint must be guaranteed for any possible exact

values for the tuples in TR. A different approach is to refresh tuples one at a time (or

one source at a time), computing a bounded answer after each refresh and stopping

when the answer is precise enough. See Chapter 7 (Section 7.1.2) for further discussion

of this alternative.

Sections 4.3 and 4.4 present details based on each specific aggregation function,

considering queries with and without selection predicates, respectively. Section 4.5

briefly discusses joins.

4.3 Aggregation without Selection Predicates

This section specifies how to compute a bounded answer from bounded data values

for each type of aggregation function, and describes algorithms for selecting refresh

sets for each aggregation function. For now, we assume that any selection predicate

in the query involves only columns that contain exact values. Thus, in this section

we assume that the selection predicate has already been applied and the aggregation

is to be computed over the tuples that satisfy the predicate. Queries with selection

predicates involving columns that contain approximate replicas are covered in Section

4.4, and joins involving approximate replicas are discussed in Section 4.5.

Suppose we want to compute an aggregate over column T.a of a replicated table

T . The value of T.a for each tuple ti is stored in the repository as a bound [Li, Hi].

While computing the aggregate, the query processor has the option for each tuple ti

of either reading the replicated bound [Li, Hi] or refreshing ti to obtain the master

value V (Oi). The cost to refresh ti is Ci. The final answer to the aggregate is a bound

[LA, HA].



4.3. AGGREGATION WITHOUT SELECTION PREDICATES 99

4.3.1 Computing MIN with No Selection Predicate

Computing the bounded MIN of T.a is straightforward:

[LA, HA] = [min
ti∈T

(Li), min
ti∈T

(Hi)]
2

The lowest possible value for the minimum (LA) occurs if for all ti ∈ T , V (Oi) = Li,

i.e., each value is at the bottom of its bound. Conversely, the highest possible value

for the minimum (HA) occurs if V (Oi) = Hi for all tuples. Returning to our example

of Section 4.1.2, suppose we want to find the minimum bandwidth link along the

path N1 → N2 → N4 → N5 → N6, i.e., query Q1. Applying the bounded MIN of

bandwidth to tuples T = {1, 2, 5, 6} in Figure 4.1 yields [40, 55].

Choosing an optimal set of tuples to refresh for a MIN query with a precision

constraint is also straightforward, although the algorithm’s justification and proof of

optimality is nontrivial. The CHOOSE REFRESHNO SEL/MIN algorithm chooses

TR to be all tuples ti ∈ T such that Li < mintk∈T (Hk) − δ, where δ is the precision

constraint, independent of refresh cost. That is, TR contains all tuples whose lower

bound is less than the minimum upper bound minus the precision constraint. If B-tree

indexes exist on both the upper and lower bounds, the set TR can be found in time

less than O(|T |) by first using the index on upper bounds to find mintk∈T (Hk), and

then using the index on lower bounds to find tuples that satisfy Li < mintk∈T (Hk)−δ.

Without these two indexes, the running time for CHOOSE REFRESHNO SEL/MIN

is O(|T |).

Consider again our example query Q1, which finds the minimum bandwidth along

path N1 → N2 → N4 → N5 → N6. CHOOSE REFRESHNO SEL/MIN with δ = 10

would choose to refresh tuple 5, since it is the only tuple among {1, 2, 5, 6} whose

low value is less than mintk∈{1,2,5,6}(Hk) − δ = 55− 10 = 45. After refreshing, tuple

5’s bandwidth value turns out to be 50, so the new bounded answer is [45, 50].

2In this and all subsequent formulas, we define min(∅) = +∞ and max(∅) = −∞.
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Proof of Correctness of CHOOSE REFRESHNO SEL/MIN

The CHOOSE REFRESHNO SEL/MIN algorithm chooses TR to be all tuples ti ∈ T

such that Li < mintk∈T (Hk)−δ, where δ is the precision constraint. To show that this

choice for TR is correct and optimal, we show that every tuple in TR must appear in

every solution, and that this solution is sufficient to guarantee the precision constraint.

First, we show that every tuple in TR must appear in every solution. Consider any

ti ∈ TR and suppose we choose to refresh every tuple in T except ti. It is possible that

refreshing all other tuples tj results in V (Oj) = Hj for each one (i.e., each precise

value is at its upper bound). In this case, after refreshing, our new bounded answer

will be [LA, HA] where LA ≤ Li and HA = mintk∈T (Hk). Since Li < mintk∈T (Hk)− δ

by the definition of TR, mintk∈T (Hk) − Li > δ, so HA − LA > δ, and the precision

constraint does not hold. Thus, every tuple in TR must be in any solution to guarantee

that the precision constraint will hold.

Next, we show that TR is sufficient to guarantee the precision constraint. Let

Lp be mintk∈TR
(Lk), where TR = T − TR. Note that for all ti ∈ TR, Li is within

δ of mintk∈T (Hk), so we have mintk∈T (Hk) − Lp ≤ δ. After tuples in TR have been

refreshed and current exact values are available at the repository, mintk∈T (Hk) can

only decrease, so we know HA − Lp ≤ δ. After refreshing the tuples in TR, they will

have a bound width of zero, i.e., Li = Hi = V (Oi). There are thus two cases that can

occur after the tuples ti ∈ TR have been refreshed. First, if any of the values V (Oi)

are less than or equal to Lp, then we can compute an exact minimum. Otherwise, if

all of the values V (Oi) are greater than Lp, then LA = Lp. Since HA − Lp ≤ δ, it

follows that HA − LA ≤ δ.

4.3.2 Computing MAX with No Selection Predicate

The MAX aggregation function is symmetric to MIN. Thus:

[LA, HA] = [max
ti∈T

(Li), max
ti∈T

(Hi)]



4.3. AGGREGATION WITHOUT SELECTION PREDICATES 101

and the CHOOSE REFRESHNO SEL/MAX algorithm chooses TR to be all tuples

ti ∈ T such that Hi > maxtk∈T (Lk) + δ.

4.3.3 Computing SUM with No Selection Predicate

To compute the bounded SUM aggregate, we take the sum of the values at each

extreme:

[LA, HA] = [
∑
ti∈T

Li,
∑
ti∈T

Hi]

The smallest possible sum occurs when all values are as low as possible, and the

largest possible sum occurs when all values are as high as possible. In our running

example, the bounded SUM of latency along the path N1 → N2 → N4 → N5 → N6

(query Q2 using the data from Figure 4.1 is [19, 28].

The problem of selecting an optimal set TR of tuples to refresh for SUM queries

with precision constraints is better attacked as the equivalent problem of selecting

the tuples not to refresh: TR = T − TR. We first observe that HA−LA =
∑

ti∈T Hi−∑
ti∈T Li =

∑
ti∈T (Hi − Li). After refreshing all tuples tj ∈ TR, we have Hj − Lj = 0,

so these values contribute nothing to the bound. Thus, after refresh,
∑

ti∈T (Hi−Li) =∑
ti∈TR

(Hi−Li). These equalities combined with the precision constraint HA−LA ≤ δ

give us the constraint
∑

ti∈TR
(Hi − Li) ≤ δ. The optimization objective is to satisfy

this constraint while minimizing the total cost of the tuples in TR. Observe that

minimizing the total cost of the tuples in TR is equivalent to maximizing the total

cost of the tuples not in TR. Therefore, the optimization problem can be formulated

as choosing TR so as to maximize
∑

ti∈TR
Ci under the constraint

∑
ti∈TR

(Hi−Li) ≤ δ.

It turns out that this problem is isomorphic to the well-known 0/1 Knapsack

Problem [28], which can be stated as follows: We are given a set S of items that each

have weight Wi and profit Pi, along with a knapsack with capacity M (i.e., it can

hold any set of items as long as their total weight is at most M). The goal of the

Knapsack Problem is to choose a subset SK of the items in S to place in the knapsack

that maximizes total profit without exceeding the knapsack’s capacity. In other words,

choose SK so as to maximize
∑

i∈SK
Pi under the constraint

∑
i∈SK

Wi ≤M . To state

the problem of selecting refresh tuples for bounded SUM queries as the 0/1 Knapsack
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Problem, we assign S = T , SK = TR, Pi = Ci, Wi = (Hi − Li), and M = δ.

Unfortunately, the 0/1 Knapsack Problem is known to be NP-Complete [41].

Hence all known approaches to solving the problem optimally, such as dynamic pro-

gramming, have a worst-case exponential running time. Fortunately, an approx-

imation algorithm exists that, in polynomial time, finds a solution having total

profit that is within a fraction ε of optimal for any 0 < ε < 1 [57]. The run-

ning time of the algorithm is O(n · log n) + O((3
ε
)2 · n). We use this algorithm for

CHOOSE REFRESHNO SEL/SUM. Adjusting parameter ε in the algorithm allows

us to trade off the running time of the algorithm against the quality of the solution.

In the special case of uniform costs (Ci = Cj for all tuples ti and tj), all knapsack

objects have the same profit Pi, and the 0/1 Knapsack Problem has a polynomial

algorithm [28]. The optimal answer then can be found by “placing objects in the

knapsack” in order of increasing weight Wi until the knapsack cannot hold any more

objects. That is, we add tuples to TR starting with the smallest Hi−Li bounds until

the next tuple would cause
∑

ti∈TR
(Hi − Li) > δ. If an index exists on the bound

width Hi − Li (see Section 7.1.2), this algorithm can run in sublinear time. Without

an index on bound width, the running time of this algorithm is O(n · log n), where

n = |T |.
Consider again query Q2 that asks for the total latency along path N1 → N2 →

N4 → N5 → N6. Figure 4.1 shows the correspondence between our problem and the

Knapsack Problem by specifying the knapsack “weight” W = H − L for the latency

column of each tuple in {1, 2, 5, 6}. Using the exponential (optimal) knapsack

algorithm to find the total latency along path N1 → N2 → N4 → N5 → N6 with

δ = 5, tuples 2 and 5 are “placed in the knapsack” (whose capacity is 5), leaving TR

= {1, 6}. The bounded SUM of latency after refreshing tuples 1 and 6 is [21, 26].

Performance Experiments

CHOOSE REFRESHNO SEL/SUM uses the approximation algorithm from [57] to

quickly find a cheap set of tuples TR to refresh such that the precision constraint is

guaranteed to hold. We implemented the algorithm and ran experiments using 90

actual stock prices that varied highly in one day. The high and low values for the day
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Figure 4.2: CHOOSE REFRESHNO SEL/SUM time and refresh cost for varying ε.

were used as the bounds [Li, Hi], the closing value was used as the exact value V (Oi),

and the refresh cost Ci for each data object was set to a random number between 1

and 10. Running times were measured on a Sun Ultra-1 Model 140 running SunOS

5.6. In Figure 4.2 we fix the precision constraint δ = 100 and vary ε in the knapsack

approximation in order to plot CHOOSE REFRESH time and total refresh cost of

the selected tuples. Smaller values for ε increase the CHOOSE REFRESH time but

decrease the refresh cost. However, since the CHOOSE REFRESH time increases

quadratically while the refresh cost only decreases by a small fraction, it is not in

general advantageous to set ε below 0.1 (which comes very close to optimal) unless

refreshing is extremely expensive.

In Figure 4.3 we fix the approximation parameter ε = 0.1 and vary δ in order

to plot replica precision (precision constraint δ) versus communication performance

(total refresh cost) for our CHOOSE REFRESHNO SEL/SUM algorithm. This graph,

a concrete instantiation of Figure 1.2 (b), clearly shows the continuous, monotonically

decreasing tradeoff between precision and performance that characterizes approximate

replication systems.
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Figure 4.3: Precision-performance tradeoff for CHOOSE REFRESHNO SEL/SUM.

4.3.4 Computing COUNT with No Selection Predicate

When no selection predicate is present, computing COUNT amounts to computing

the cardinality of the table. Since we currently require all insertions and deletions to

be propagated immediately to the data repository, the cardinality of the replicated

copy of a table is always equal to the cardinality of the master copy, so there is no

need for refreshes.

4.3.5 Computing AVG with No Selection Predicate

When no selection predicate is present, the procedure for computing the AVG ag-

gregate is as follows. First, compute COUNT , which as discussed in Section 4.3.4

is simply the cardinality of the replicated T . Then, compute the bounded SUM as

described in Section 4.3.3 with δ = δ · COUNT to produce [LSUM , HSUM ]. Finally,

let:

[LA, HA] = [
LSUM

COUNT
,

HSUM

COUNT
]

Since the bound width HA−LA = HSUM−LSUM

COUNT
, by computing SUM such that HSUM−

LSUM ≤ δ · COUNT , we are guaranteeing that HA − LA ≤ δ, and the precision

constraint is satisfied. The running time is dominated by the running time of the

CHOOSE REFRESHNO SEL/SUM algorithm, which is given in Section 4.3.3.

Consider query Q3 from Section 4.1.2 to compute the average traffic level in the

entire network, and let precision constraint δ = 10. We first compute COUNT = 6,
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and then compute SUM with δ = δ ·COUNT = 10·6 = 60. The column labeled W ′ in

Figure 4.1 shows the knapsack weight assigned to each tuple based on the replicated

bounds for traffic. Using the optimal Knapsack algorithm, the SUM computation

will cause tuples 5 and 6 to be refreshed, resulting in a bounded SUM of [618, 678].

Dividing by COUNT = 6 gives a bounded AVG of [103, 113].

4.4 Modifications to Incorporate Selection Predi-

cates

When a selection predicate involving approximate replicas is present in the query,

both computing bounded aggregate results and choosing refresh tuples to meet the

precision constraint become more complicated. This section presents modifications to

the algorithms in Section 4.3 to handle single-table aggregation queries with selection

predicates. We begin by introducing techniques common to all aggregation queries

with predicates, regardless of which aggregation function is present.

Consider a selection predicate involving at least one column of T that contains

approximate replicas. The system can partition T into three disjoint sets: T−, T ?,

and T+. T− contains those tuples that cannot possibly satisfy the predicate given

current bounded data. T+ contains tuples that are guaranteed to satisfy the predicate

given current bounded data. All other tuples are in T ?, meaning that there exist some

exact values within the current bounds that will cause the predicate to be satisfied,

and other values that will cause the predicate not to be satisfied. The process of

classifying tuples into T−, T ?, and T+ when the selection predicate involves at least

one column with approximate replicas is detailed next.

For examples in the remainder of this section we refer to Figure 4.4, which shows

the classification for three different predicates over the data from Figure 4.1, both

before and after the exact values are accessed by requesting refreshes.
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(bandwidth > 50) ∧ (latency < 10) latency > 10 traffic > 100
before refresh after refresh before after refresh before after refresh

1 T + T + T− T− T ? T−

2 T ? T + T− T− T + T +

3 T− T− T + T + T ? T +

4 T ? T + T ? T− T + T +

5 T ? T− T ? T + T ? T−

6 T ? T− T− T− T ? T +

Figure 4.4: Classification of tuples into T−, T ?, and T+ for three selection predicates.

4.4.1 Classifying Tuples by a Selection Predicate

Our algorithms for choosing tuples to refresh in the presence of a selection predi-

cate require that we first classify all tuples in T as belonging to one of T−, T+, or

T ?. Let P be the predicate in the user’s query, which we assume is an arbitrary

boolean expression involving binary comparisons. We define two transformations on

predicate P . The Possible transformation yields an expression that finds tuples that

could possibly satisfy the predicate based on bounded values. The Certain trans-

formation yields an expression that finds tuples that are guaranteed to satisfy the

predicate based on bounded values. We can apply Certain(P ) to find tuples in T+,

and (Possible(P ) ∧ ¬Certain(P )) to find tuples in T ?. All other tuples are in T−.

Since Certain(P ) and Possible(P ) are predicates to be evaluated on the tuples of

table T , they must be expressed in terms of constants, attributes whose values are

exact, and endpoints (denoted min and max) of attributes whose values are ranges.

To handle expressions uniformly, we assume that all values are ranges: in the case of

a constant value K (respectively an attribute A whose value is exact), we let Kmin =

Kmax = K (respectively Amin = Amax = A). Figure 4.5 gives a set of translation

rules—primarily equivalences—specifying how boolean expressions are translated into

Certain and Possible. These rules are applied recursively to the query’s selection

predicate P to obtain Certain(P ) and Possible(P ). Note that disjunction for Certain

and conjunction for Possible are implications rather than equivalences. Thus, when

we translate Possible(E1∧E2) into Possible(E1)∧Possible(E2) we may classify a tuple

into T ? when it should really be in T−. Also, when we translate Certain(E1 ∨ E2)

into Certain(E1)∨Certain(E2) we may classify a tuple into T ? when it should really
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expression E Possible(E) Certain(E)

[xmin, xmax] = [ymin, ymax] ⇔ (xmin ≤ ymax) ⇔ xmin = xmax

∧(xmax ≥ ymin) = ymin = ymax

[xmin, xmax] < [ymin, ymax] ⇔ xmin < ymax ⇔ xmax < ymin

[xmin, xmax] ≤ [ymin, ymax] ⇔ xmin ≤ ymax ⇔ xmax ≤ ymin

¬E1 ⇔ ¬Certain(E1) ⇔ ¬Possible(E1)
E1 ∨E2 ⇔ Possible(E1) ⇐ Certain(E1)

∨Possible(E2) ∨Certain(E2)
E1 ∧E2 ⇒ Possible(E1) ⇔ Certain(E1)

∧Possible(E2) ∧Certain(E2)

Figure 4.5: Translation of range comparison expressions.

be in T+. Cases where we misclassify tuples are extremely unusual (because they

involve very special cases of correlation between subexpressions), and note that these

misclassifications affect only the optimality and not the correctness of our algorithms.

We now illustrate how to use the rules in Figure 4.5 to derive expressions for

Certain(P ) and Possible(P ) in terms of range endpoints. For the predicate P =

(bandwidth > 50) ∧ (latency < 10), Certain(P ) becomes (bandwidthmin > 50) ∧
(latencymax < 10), and Possible(P ) becomes (bandwidthmax > 50) ∧ (latencymin <

10). The column labeled “(bandwidth > 50)∧(latency < 10) before refresh” of Figure

4.4 shows the resulting classification of tuples in our example data of Figure 4.1 into

T−, T ?, and T+.

It turns out that this technique is part of a more general mathematical framework

introduced in [71] for evaluating predicates over data objects that have a set of possible

values (in our case, an infinite set of points along the range [Li, Hi]). The following

relationships translate the notation used in this dissertation into the notation from

[71]: T+ = ‖T‖∗, T ? = ‖T‖∗ − ‖T‖∗, T− = ‖T‖∗.
In general, the selection predicate does not influence the evaluation of the aggre-

gate. As we will see in Sections 4.4.2–4.4.6, the only information needed from the

selection predicate is the classification of tuples into T+, T−, and T ?. However, a

slight refinement can be made if the selection predicate is over the same column as

the aggregation.3 In this special case, each tuple ti in T ? has a restriction on actual

3More generally, the refinement applies if the selection predicate always restricts the value of the
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value V (Oi) imposed by the selection predicate, in addition to the bound [Li, Hi].

For example, bound [Li, Hi] = [3, 8] has an additional restriction on V (Oi) under the

predicate < 5, if V (Oi) is to contribute to the result. To take advantage of this addi-

tional restriction, the bounds [Li, Hi] for tuples in T ? can be shrunk before they are

input to the result computation or CHOOSE REFRESH algorithm. For example,

if we are aggregating latency under the predicate latency > 10, we can modify any

lower bounds below 10 to 10 by using [max(Li, 10), Hi] instead of [Li, Hi].

Filters over T that find the tuples in T+ and T ? can always be expressed as simple

predicates over approximate replica interval endpoints, and all of our algorithms for

computing bounded answers and choosing tuples to refresh examine only tuples in T+

and T ?. Therefore, the classification can be expressed as SQL queries and optimized

by the system, possibly incorporating specialized indexes as discussed in Chapter 7

(Section 7.1.2).

4.4.2 Computing MIN with a Selection Predicate

When a selection predicate is present, the bounded MIN answer is:

[LA, HA] = [ min
ti∈T+∪T ?

(Li), min
ti∈T+

(Hi)]

In the “worst case” for LA, all tuples in T ? satisfy the predicate (i.e., they turn out to

be in T+), so the smallest lower bound of any tuple that might satisfy the predicate

forms the lower bound for the answer. In the “worst case” for HA, tuples in T ? do not

satisfy the predicate (i.e., they turn out to be in T−), so the smallest upper bound of

the tuples guaranteed to satisfy the predicate forms the only guaranteed upper bound

for the answer. In our running example, consider query Q4: find the minimum traffic

where (bandwidth > 50) ∧ (latency < 10). The result using the data from Figure 4.1

and classifications from Figure 4.4 is [90, 105].

CHOOSE REFRESHMIN chooses TR to be exactly the tuples ti ∈ T+ ∪T ? such

that Li < mintk∈T+(Hk) − δ. This algorithm is essentially the same as

aggregation column. For example, the predicate T.a < 5 ∧ T.b 6= 2 always restricts the value of
column T.a to be less than 5.
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CHOOSE REFRESHNO SEL/MIN, and is correct and optimal for the same reason

(see Section 4.3.1). The only additional case to consider is that refreshing tuples in

T ? may move them into T−. However, such tuples do not contribute to the actual

MIN, and thus do not affect the bound of the answer [LA, HA]. Hence, the precision

constraint is still guaranteed to hold. As with CHOOSE REFRESHNO SEL/MIN,

the running time for CHOOSE REFRESHMIN can be sublinear if B-tree indexes

are available on both the upper and lower bounds. Otherwise, the worst-case running

time for CHOOSE REFRESHMIN is O(n).

For our query Q4 with precision constraint δ = 10, CHOOSE REFRESHMIN

chooses TR = {5, 6}, since tuples 5 and 6 may pass the selection predicate and their

low values are less than mintk∈T+(Hk)− δ = 105− 10 = 95. After refreshing, tuples 5

and 6 turn out not to pass the selection predicate, so the bounded MIN is [95, 105].

4.4.3 Computing MAX with a Selection Predicate

The MAX aggregation function is symmetric to MIN. Thus:

[LA, HA] = [max
ti∈T+

(Li), max
ti∈T+∪T ?

(Hi)]

and the CHOOSE REFRESHMAX algorithm chooses TR to be all tuples ti ∈ T+∪T ?

such that Hi > maxtk∈T+(Lk) + δ.

4.4.4 Computing SUM with a Selection Predicate

To compute SUM in the presence of a selection predicate:

[LA, HA] = [
∑

ti∈T+

Li +
∑

ti∈T ?∧Li<0

Li,
∑

ti∈T+

Hi +
∑

ti∈T ?∧Hi>0

Hi]

The “worst case” for LA occurs when all and only those tuples in T ? with negative

values for Li satisfy the selection predicate and thus contribute to the result. Similarly,

the “worst case” for HA occurs when only tuples in T ? with positive values for Hi

satisfy the predicate.
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The CHOOSE REFRESHSUM algorithm is similar to

CHOOSE REFRESHNO SEL/SUM, which maps the problem to the 0/1 Knapsack

Problem (Section 4.3.3). The following two modifications are required. First, we ig-

nore all tuples ti ∈ T−. Second, for tuples ti ∈ T ?, we set Wi to one of three possible

values. If Li ≥ 0, let Wi = Hi − 0 = Hi. If Hi ≤ 0, let Wi = 0 − Li = −Li. Oth-

erwise, let Wi = (Hi − Li) as before. The idea is that we want to effectively extend

the bounds for all tuples in T ? to include 0, since it is possible that these tuples are

actually in T− and thus do not contribute to the SUM (i.e., contribute value 0). In

the knapsack formulation, to extend the bounds to 0 we need to adjust the weights

as specified above.

4.4.5 Computing COUNT with a Selection Predicate

The bounded answer to the COUNT aggregation function in the presence of a selec-

tion predicate is:

[LA, HA] = [|T+|, |T+|+ |T ?|]

For example, consider query Q5 from Section 4.1.2 that asks for the number of links

that have latency > 10. Figure 4.4 shows the classification of tuples into T−, T ?, and

T+. Since |T+| = 1 and |T ?| = 2, the bounded COUNT is [1, 3].

The CHOOSE REFRESHCOUNT algorithm is based on the fact that HA −
LA = |T ?|, and that refreshing a tuple in T ? is guaranteed to remove it from T ?.

Given these two facts, the optimal CHOOSE REFRESHCOUNT algorithm is to

let TR be the d|T ?| − δe cheapest tuples in T ?. Using a B-tree index on cost,

this algorithm runs in sublinear time. Otherwise, the worst-case running time for

CHOOSE REFRESHCOUNT requires a sort and is O(n · log n).

Consider again query Q5 and suppose δ = 1. Since |T ?| = 2, CHOOSE

REFRESHCOUNT selects TR = {5}, which is the d|T ?| − δe = d2 − 1e = 1 cheapest

tuple in T ?. After updating this tuple (which turns out to be in T+), the bounded

COUNT is [2, 3].
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4.4.6 Computing AVG with a Selection Predicate

Computing the Bounded Answer

Computing the bounded AVG when a predicate is present is somewhat more com-

plicated than computing the other aggregates. With a predicate, COUNT is an

approximate replica as well as SUM, so it is no longer a simple matter of dividing

the endpoints of the SUM bound by the exact COUNT value (as in Section 4.3.5).

To compute the lower bound on AVG, we start by computing the average of the low

endpoints of the T+ bounds, and then average in the low endpoints of the T ? bounds

one at a time in increasing order until the point at which the average increases. Com-

puting the upper bound on AVG is the reverse. For example, consider query Q6

from Section 4.1.2 that asks for the average latency for links having traffic > 100.

To compute the lower bound, we start by averaging the low endpoints of T+ tuples

2 and 4, and then average in the low endpoints of T ? tuples 1 and then 6 to obtain a

lower bound on average latency of 5. We stop at this point since averaging in further

T ? tuples would increase the lower bound.

Formally, this computation is as follows. First, let SL =
∑

ti∈T+ Li and KL = |T+|,
the sum and cardinality of the low values in T+. Then, let A represent the tuples

ti ∈ T ?, sorted in increasing order by Li. Let a be the first element of A. If La < SL

KL
,

then add La to SL and 1 to KL. Advance a and continue this process until La ≥ SL

KL
.

Similarly, let SH =
∑

ti∈T+ Hi and KH = |T+|. Now, let A represent the tuples ti ∈ T ?,

sorted in decreasing order by Hi. Let a be the first element of A. If Ha > SH

KH
, then

add Ha to SH and 1 to KH . Advance a and continue this process until Ha ≤ SH

KH
.

Finally, let:

[LA, HA] = [
SL

KL
,
SH

KH
]

For example, consider query Q6 from Section 4.1.2 that asks for the average latency

for links having traffic > 100. First, we classify tuples into T−, T ?, and T+ as shown

in Figure 4.4. Since T+ = {2, 4}, initially SL = 14 and KL = 2. A is [1, 6, 5,

3], which are the tuples in T ? sorted in increasing order by Li. First, we let a =

1, and since La = 2 < SL

KL
= 14

2
= 7, we set SL = SL + La = 14 + 2 = 16 and

KL = KL + 1 = 2 + 1 = 3. Then, we let a = 6, and since La = 4 < SL

KL
= 16

3
= 5.3,
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we set SL = SL + La = 16 + 4 = 20 and KL = KL + 1 = 3 + 1 = 4. Next, we let a

= 5, and note that La = 8 ≥ SL

KL
= 20

4
= 5, so we stop with SL = 20 and KL = 4.

The computation of SH and KH proceeds similarly to yield SH = 34 and KH = 3.

These results give a bounded AVG of [ SL

KL
, SH

KH
] = [20

4
, 34

3
] = [5, 11.3]. This algorithm

for computing a tight bound for AVG has a running time of O(n · log n).

A looser bound for AVG can be computed in linear time by first computing

SUM as [LSUM , HSUM ] and COUNT as [LCOUNT , HCOUNT ] using the algorithms

from Sections 4.4.4 and 4.4.5, then setting:

[LA, HA] = [min(
LSUM

HCOUNT
,

LSUM

LCOUNT
), max(

HSUM

LCOUNT
,

HSUM

HCOUNT
)]

In our example, [LSUM , HSUM ] = [14, 55] and [LCOUNT , HCOUNT ] = [2, 6]. Thus, the

linear algorithm yields [2.3, 27.5]. Notice that this bound is indeed looser than the

[5, 11.3] bound achieved by the O(n · log n) algorithm above.

Choosing Tuples to Refresh

CHOOSE REFRESHAVG is our most complicated scenario. We first give a very

brief description and example, and then provide the full details.

Our CHOOSE REFRESHAVG algorithm uses the fact that a loose bound on

AVG can be achieved as a function of the bounds for SUM and COUNT, as in the

linear algorithm described above. We choose refresh tuples that provide bounds for

SUM and COUNT such that the bound for AVG as a function of the bounds for

SUM and COUNT meets the precision constraint. This interaction is accomplished

by using a modified version of the CHOOSE REFRESHSUM algorithm that under-

stands how the choice of refresh tuples for SUM affects the bound for COUNT. This

algorithm sets a precision constraint for SUM that takes into account the changing

bound for COUNT to guarantee that the overall precision constraint on AVG is met.

CHOOSE REFRESHAVG preserves the Knapsack Problem structure. Therefore,

choosing refresh tuples for AVG can be accomplished by solving the 0/1 Knapsack

Problem, and it has the same complexity as CHOOSE REFRESHNO SEL/SUM (see

Section 4.3.3).
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In our example query Q6 above, if we set δ = 2 then CHOOSE REFRESHAVG

chooses a knapsack capacity of M = 4 and assigns a weight to each tuple as shown

in the column labeled W ′′ in Figure 4.1. The knapsack optimally “contains” tuples

2 and 4. After refreshing the other tuples TR = {1, 3, 5, 6}, the bounded AVG is [8,

9].

We now provide the full details of CHOOSE REFRESHAVG, which will guar-

antee that the precision constraint HA − LA ≤ δ is satisfied with:

[LA, HA] = [min(
LSUM

HCOUNT

,
LSUM

LCOUNT

), max(
HSUM

LCOUNT

,
HSUM

HCOUNT

)]

Although it would be desirable to find a CHOOSE REFRESH algorithm that guar-

antees the precision constraint is satisfied for the exact bound [LA, HA] = [ SL

KL
, SH

KH
]

described above, we have not yet succeeded in finding such an algorithm.

CHOOSE REFRESHAVG chooses a set of tuples TR such that after refreshing

the tuples in TR and computing [LSUM , HSUM ] and [LCOUNT , HCOUNT ], ∆AVG =

HAVG − LAVG = max( HSUM

LCOUNT
, HSUM

HCOUNT
) − min( LSUM

HCOUNT
, LSUM

LCOUNT
) ≤ δ. To make it pos-

sible to choose bounds for SUM and COUNT that will guarantee ∆AVG ≤ δ, we

must formulate ∆AVG as a function of ∆SUM = HSUM − LSUM and ∆COUNT =

HCOUNT − LCOUNT . Based on this function, CHOOSE REFRESHAVG chooses an

“approximately optimal” set of tuples TR to refresh that gives values for ∆SUM and

∆COUNT such that the precision constraint ∆AVG ≤ δ is guaranteed to be met.

The relationship between [LSUM , HSUM ], [LCOUNT , HCOUNT ], and ∆AVG is:

∆AVG ≤ RHS =
∆SUM + (max(HSUM ,−LSUM ,HSUM−LSUM )

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

To show this inequality, we consider three cases. In case 1, if LSUM ≥ 0, ∆AVG ≤
HSUM

LCOUNT
− LSUM

HCOUNT
, which gives:

∆AVG ≤ RHS 1 =
∆SUM + ( HSUM

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT
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In case 2, if HSUM ≤ 0, ∆AVG ≤ HSUM

HCOUNT
− LSUM

LCOUNT
, which gives:

∆AVG ≤ RHS 2 =
∆SUM + ( −LSUM

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

Otherwise, in case 3 (LSUM < 0 and HSUM > 0), ∆AVG ≤ HSUM

LCOUNT
− LSUM

LCOUNT
, which

gives:

∆AVG ≤ RHS 3 =
∆SUM + (HSUM−LSUM

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

All three cases are equivalent to RHS =
∆SUM+(

max(HSUM ,−LSUM ,HSUM−LSUM )

LCOUNT
)·∆COUNT

∆COUNT+LCOUNT
.

In case 1, RHS 1 = RHS since LSUM ≥ 0 implies max(HSUM ,−LSUM , HSUM −
LSUM ) = HSUM . Similarly, in case 2, RHS 2 = RHS since HSUM ≤ 0 implies

max(HSUM ,−LSUM , HSUM − LSUM ) = −LSUM . In case 3, RHS 3 = RHS since

the SUM bound straddles 0, which implies max(HSUM ,−LSUM , HSUM − LSUM ) =

HSUM − LSUM .

Since our goal is to express ∆AVG as a function of ∆SUM and ∆COUNT , we

must eliminate all other values from the relationship:

∆AVG ≤
∆SUM + (max(HSUM ,−LSUM ,HSUM−LSUM )

LCOUNT
) ·∆COUNT

∆COUNT + LCOUNT

To do this elimination, we substitute conservative estimates for the values LSUM ,

HSUM , and LCOUNT . Conservative estimates for these values are obtained by com-

puting SUM and COUNT over the current replicated bounds as [L′
SUM , H ′

SUM ] and

[L′
COUNT , H ′

COUNT ]. Since, when the refreshes are performed, these bounds can shrink

but not grow, L′
SUM ≤ LSUM , H ′

SUM ≥ HSUM , and L′
COUNT ≤ LCOUNT . Therefore,

by examining the inequality relating [LSUM , HSUM ], [LCOUNT , HCOUNT ], and ∆AVG ,

it can be seen that substituting L′
SUM for LSUM , H ′

SUM for HSUM , and L′
COUNT for

LCOUNT makes the right-hand side strictly larger, so it is still an upper bound on

∆AVG . This substitution results in:
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∆AVG ≤ F(∆SUM , ∆COUNT ) =

∆SUM + (
max(H′

SUM ,−L′SUM ,H′
SUM−L′SUM )

L′COUNT
) ·∆COUNT

∆COUNT + L′
COUNT

Now that we finally have F(∆SUM , ∆COUNT ), an upper bound for ∆AVG as

a function of ∆SUM and ∆COUNT (since L′
SUM , H ′

SUM , and L′
COUNT are computed

once and used as constants), we can substitute this function for ∆AVG in the pre-

cision constraint. Recall that the precision constraint requires that ∆AVG ≤ δ.

Substituting F(∆SUM , ∆COUNT ) for ∆AVG gives F(∆SUM , ∆COUNT ) ≤ δ.

At this point, we have formulated the precision constraint in terms of only ∆SUM

and ∆COUNT . Rewriting the precision constraint in terms of ∆SUM gives:

∆SUM ≤ L′
COUNT · δ − (

max(H ′
SUM ,−L′

SUM , H ′
SUM − L′

SUM )

L′
COUNT

− δ) ·∆COUNT

This formulation of the precision constraint can be used in place of the original

constraint ∆AVG ≤ δ. Therefore, the CHOOSE REFRESHAVG algorithm is free

to choose any values for ∆SUM and ∆COUNT that satisfy the reformulated precision

constraint. We have thus reduced the task of choosing refresh tuples for AVG to the

task of choosing refresh tuples for SUM under this reformulated constraint.

Normally, to choose refresh tuples for SUM, we have the constraint ∆SUM ≤
δSUM . In this case, we instead have the constraint

∆SUM ≤ L′
COUNT · δ − (

max(H′
SUM ,−L′SUM ,H′

SUM−L′SUM )

L′
COUNT

− δ) ·∆COUNT , so we let δSUM

be the following function of ∆COUNT :

δSUM (∆COUNT ) = L′
COUNT ·δ−(

max(H ′
SUM ,−L′

SUM , H ′
SUM − L′

SUM )

L′
COUNT

−δ)·∆COUNT

To see how to choose refresh tuples for SUM when δSUM is a function of ∆COUNT ,

first recall that the CHOOSE REFRESHSUM algorithm chooses refresh tuples for

SUM by mapping it to the 0/1 Knapsack Problem, where the knapsack capacity

M = δSUM . Therefore, for the CHOOSE REFRESHAVG algorithm, we need to

make the knapsack capacity a function of ∆COUNT . On the surface, it looks as
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though this modification is not possible since there is no way to make the knapsack

capacity a function instead of a constant. Fortunately, making the knapsack capacity

a function of ∆COUNT is possible to fake. First, recall that ∆COUNT is equal to

the number of tuples in T ? that do not get refreshed to obtain their exact values

(and thus remain in T ? after the refreshes are performed). Also, recall that the set

of items placed in the knapsack corresponds to TR: the set of tuples that will not

be refreshed. It follows that ∆COUNT is equal to the number of T ? tuples in the

knapsack. Therefore, when the knapsack is empty, ∆COUNT = 0 and thus the

initial knapsack capacity M = δSUM (0) = L′
COUNT · δ. Furthermore, every time a

T ? tuple is added to the knapsack, ∆COUNT increases by 1. Since the function

δSUM (∆COUNT ) is a line with (negative) slope:

m = −(
max(H ′

SUM ,−L′
SUM , H ′

SUM − L′
SUM )

L′
COUNT

− δ)

the capacity of the knapsack decreases by the amount −m every time a T ? tuple is

added to the knapsack. Observe that decreasing the knapsack capacity when an item

is added is equivalent to increasing the weight of the item. Therefore, to simulate

shrinking the knapsack by −m every time ∆COUNT increases by 1, all we have to

do is add the quantity −m to the weight of each tuple in T ?.

To summarize, the CHOOSE REFRESHAVG algorithm is exactly the same as

the CHOOSE REFRESHSUM algorithm (which maps to the 0/1 Knapsack Prob-

lem) with the following modifications: M = L′
COUNT · δ, and for all tuples ti ∈ T ?,

Wi = Wi + (
max(H′

SUM ,−L′SUM ,H′
SUM−L′SUM )

L′COUNT
− δ). The values L′

SUM , H ′
SUM , and L′

COUNT

are found by computing SUM and COUNT over the current replicated bounds as

[L′
SUM , H ′

SUM ] and [L′
COUNT , H ′

COUNT ]. The running time of CHOOSE REFRESHAVG

is dominated by the running time of CHOOSE REFRESHSUM, which is given in

Section 4.4.4.

Consider query Q6 that asks for the average latency for links having traffic > 100,

with δ = 2. First, we classify tuples into T−, T ?, and T+, as shown in Figure

4.4. Then, we compute [L′
SUM , H ′

SUM ] = [14, 55] and [L′
COUNT , H ′

COUNT ] = [2, 6].

We use these values to assign a weight to each tuple by computing the weight
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used in the CHOOSE REFRESHSUM algorithm, and for tuples in T ?, adding
max(H′

SUM ,−L′SUM ,H′
SUM−L′SUM )

L′COUNT
−δ = 55

2
−2 = 25.5. The column labeled W ′′ in Figure 4.1

shows these weights. Using the Knapsack Problem with M = L′
COUNT · δ = 2 · 2 = 4,

the knapsack optimally “contains” tuples 2 and 4. After refreshing the other tuples

TR = {1, 3, 5, 6}, the bounded AVG is [8, 9].

4.5 Aggregation Queries with Joins

Computing the bounded answer to an aggregation query with a join expression (i.e.,

with multiple tables in the FROM clause) is no different from doing so with a selection

predicate: in most SQL queries, a join is expressed using a selection predicate that

compares columns of more than one table. Our method for determining membership

of tuples in T+, T ?, and T− applies to join predicates as well as selection predicates.

As before, the classification can be expressed as SQL queries and optimized by the

system to use standard join techniques, possibly incorporating specialized indexes as

discussed in Section 7.1.2.

On the other hand, choosing tuples to refresh is significantly more difficult in the

presence of joins. First, since there are several “base” tuples contributing to each

“aggregation” (joined) tuple, we can choose to refresh any subset of the base tuples.

Each subset might shrink the answer bound by a different amount, depending how

it affects the T+, T ?, T− classification combined with its effect on the aggregation

column. Second, since each base tuple can potentially contribute to multiple aggre-

gation tuples, refreshing a base tuple for one aggregation tuple can also affect other

aggregation tuples. These interactions make the problem quite complex. We have

considered various heuristic algorithms that choose tuples to refresh for join queries.

As future work we plan to study the exact complexity of the problem, and we hope to

find an approximation algorithm with a tunable ε parameter, as in the approximation

algorithm for CHOOSE REFRESHSUM.
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4.6 Related Work

We provided an overview of related work in Section 1.5 and discussed work specifi-

cally related to approximate replicas in Section 3.7. This chapter focused on one-time

aggregation queries with selection predicates, which brings up a small amount of ad-

ditional related work. Both [58] and [96] consider aggregation queries with selections.

The APPROXIMATE approach [58] produces bounded answers when time does not

permit the selection predicate to be evaluated on all tuples. However, APPROXI-

MATE does not deal with queries over bounded data. The work in [96] deals with

queries over fuzzy sets. While approximate replicas can be considered as infinite fuzzy

sets, this representation is not practical. Furthermore, the approach in [96] does not

consider fuzzy sets as approximations of exact values available for a cost.

4.7 Chapter Summary

In this chapter we studied the problem of minimizing communication cost (i.e., max-

imizing performance) in the presence of unanticipated one-time aggregation queries

with precision constraints and optional selection predicates. We devised efficient algo-

rithms for minimizing accesses to remote master copies that handle the five standard

relational aggregation functions with optional selection predicates.



Chapter 5

Managing Precision in the

Presence of One-Time Queries

5.1 Introduction

In the previous chapter we studied the problem of minimizing the communication cost

incurred to answer ad-hoc, one-time queries with precision constraints by accessing

a minimum-cost subset of source copies. Clearly, a significant factor determining the

cost to evaluate one-time queries with precision constraints is the precision of data

replicas maintained in the central repository. If more precise replicas are maintained

at the repository, then one-time queries tend to access fewer exact source values,

incurring lower communication cost to answer queries. However, as we have seen in

Chapter 3, maintaining more precise replicas requires more frequent refreshes to keep

up with changes in the exact source value, leading to higher communication cost for

regular refreshes. It is not obvious how best to balance these two opposing effects.

When one-time queries are infrequent, and the workload is dominated by con-

tinuous queries, the precision of replicas accessed by one or more continuous queries

can be set using the techniques of Chapter 3, and replication of other data objects is

unnecessary since they can be fetched on demand when one-time queries are issued.

However, in situations where one-time queries are frequent, it may be appropriate

to replicate data objects not involved in any continuous queries to lower the cost to

119
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answer one-time queries over them. In this chapter we study the problem of decid-

ing what precision levels to use for approximate replicas of objects not involved in

continuous queries but subject to intermittent accesses by one-time queries.

5.1.1 Chapter Outline

The remainder of the chapter is structured as follows. First we describe the effect of

replica precision on overall communication cost incurred to answer one-time queries in

terms of both source accesses and regular refreshes, and motivate the need to set pre-

cision adaptively in the presence of one-time queries. Then in Section 5.2 we describe

our adaptive precision-setting algorithm. We justify our algorithm mathematically

in Section 5.3. In Section 5.4 we describe our simulation environment and test data

sets, then present our performance results. We first justify empirically our claim

from Section 5.3 that our algorithm converges to optimal performance, by consider-

ing steady-state synthetic data. We then switch to real-world data, finding the best

parameter settings to maximize the performance of our algorithm under dynamically

changing conditions. Lastly we demonstrate that our algorithm performs as well as

previous algorithms in the special case of exact replication, and outperforms exact

replication algorithms when exact precision is not required. Related work specific

to this chapter is discussed in Section 5.5, and a chapter summary is provided in

Section 5.6.

5.1.2 Precision of Approximate Replicas

Recall that the central data repository maintains a numeric bound [Li, Hi] on each

approximately replicated data object Oi. Replica precision is quantified as the inverse

of the width of the bound (i.e., precision = 1
Hi−Li

). At one extreme, a zero-width

bound contains only the exact value and thus has infinite precision. In the other

extreme, a bound of infinite width gives no information about the exact value and

thus has zero precision. We assume that bounds remain constant until a refresh

occurs. Although bounds that vary as a function of time are more general, we have

found empirically that they are not particularly helpful, as discussed in Section 5.4.5.
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Whenever the precision of a replicated bound is not adequate for a query running

at the data repository, i.e., the bound is too wide, the query initiates a refresh by

requesting the exact value from the source, as discussed in Chapter 4. The source

responds with the current exact value as well as a new bound [L′
i, H

′
i] to be used

by subsequent queries. The cost incurred during a query-initiated refresh will be

denoted Cqr. A value-initiated refresh incurs cost Cvr, and occurs whenever the exact

value V (Oi) at a data source exceeds its bound [Li, Hi] in the central repository. (In

previous chapters we dealt either uniquely with value-initiated refreshes (Chapter 3)

or query-initiated refreshes (Chapter 4) and in each case assumed a single per-object

refresh cost of Ci. In this chapter we consider the two types of refreshes together,

while treating each object independently, so we frame our discussion and analysis in

terms of Cvr and Cqr for a single object.) Notice that value-initiated refreshes are

never required for bounds of infinite width (Hi−Li =∞). Conversely, when a bound

has zero width (Hi − Li = 0), then a value-initiated refresh occurs every time V (Oi)

changes.

5.1.3 Adjusting Bound Widths

Both types of refreshes (value- and query-initiated) provide an opportunity for the

source to adjust the bound being replicated. For now let us assume that whenever

the source provides a new bound to the repository, the bound is centered around

the current exact value. (Uncentered bounds are considered in Section 5.4.5, and

like time-varying bounds they usually turn out not to be helpful.) Therefore, an

approximation for a value V (Oi) is uniquely determined by the bound width Wi =

Hi−Li. The objective in selecting a good bound width is to avoid the need for future

refreshes, since we want to minimize communication cost. To avoid value-initiated

refreshes, the bound should be wide enough to make it unlikely that modifications to

the exact value will exceed the bound. On the other hand, to avoid query-initiated

refreshes, the bound should be as narrow as possible. Since decreasing the chance

of one type of refresh increases the chance of the other, it is not obvious how best

to choose a bound width that minimizes the total probability that a refresh will be
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required.

Both of the factors that affect the choice of bound width—the variation of data

values (which causes value-initiated refreshes) and the precision requirements of user

queries (which cause query-initiated refreshes)—are difficult to predict, so we propose

an adaptive algorithm that adjusts the width W as conditions change. We will present

a parameterized algorithm for adjusting the precision of replicated approximations

adaptively to achieve the best performance for one-time queries as data values, pre-

cision requirements, and/or overall one-query workload vary. The specific problem

we address considers bound approximations to numeric values, but our ideas can be

extended to other kinds of data and approximations, as discussed briefly in Chapter 7.

Our algorithm adjusts the precision of each approximate replica independently,

and it strictly generalizes previous adaptive replication algorithms for exact copies

(e.g., [119]): we can set parameters to require that all approximations be exact, in

which case our algorithm dynamically chooses whether or not to replicate each data

value. We have implemented our algorithm and performed tests over synthetic and

real-world data. We report a number of experimental results, which show the effec-

tiveness of our algorithm at maximizing performance, and also show that in the special

case of exact replication our algorithm performs as well as previous algorithms. In

cases where it is acceptable for queries to produce answers with bounded imprecision,

our algorithm easily outperforms previous algorithms for exact replication.

5.2 Precision-Setting Algorithm

Our overall strategy for setting bound widths adaptively in the presence of a workload

of one-time queries is as follows. First start with some value for W . Each time a

value-initiated refresh occurs (a signal that the bound was too narrow), increase W

when sending the new bound. Conversely, each time a query-initiated refresh occurs

(a signal that the bound was too wide), decrease W . This strategy, illustrated in

Figure 5.1, finds a middle ground between very wide bounds that the value never

exceeds yet are exceedingly imprecise, and very narrow bounds that are precise but

need to be refreshed constantly as the value fluctuates.
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Figure 5.1: Adaptive precision-setting algorithm for one-time queries.

We now define our algorithm precisely. The algorithm relies on five parameters

as follows. The first two are functions of the particular distributed replication envi-

ronment, while the remaining three can be set to tune the algorithm.

(1) the value-initiated refresh cost Cvr

(2) the query-initiated refresh cost Cqr

(3) the adaptivity parameter α ≥ 0

(4) the lower threshold τ0 ≥ 0

(5) the upper threshold τ∞ ≥ 0

These parameters and others we will introduce later are summarized in Table 5.1.

Let us define a cost factor ρ as ρ = 2 · Cvr

Cqr
. The cost factor is based on the ratio of the

two refresh costs and is used to determine how often to grow and shrink the bound

width W as refreshes occur. The mathematical justification for multiplying the ratio

by 2 is given in Section 5.3.

Our algorithm sets the new width W ′ for a refreshed bound based on the old

width W during each value- or query-initiated refresh as follows. Recall that α ≥ 0

is the adaptivity parameter.
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Symbol Meaning Note
Cvr cost of a value-initiated refresh used to determine cost factor ρ

Cqr cost of a query-initiated refresh used to determine cost factor ρ

ρ cost factor defined as 2 · Cvr
Cqr

determines width adjustment probability
C overall cost (per time step) metric our algorithm minimizes
W bound width set adaptively by our algorithm
W ∗ width that minimizes C our algorithm converges to W = W ∗

α adaptivity parameter how much to adjust width
τ0 lower threshold widths below τ0 are set to 0
τ∞ upper threshold widths above τ∞ are set to ∞
Pvr probability of value-init. refresh increases with precision
Pqr probability of query-init. refresh decreases with precision
δ precision constraint of a query parameter to experiments

δavg avg. precision constraint of queries parameter to experiments
∆δ variation of precision constraints parameter to experiments
δmin minimum precision constraint derived from δavg and ∆δ

δmax maximum precision constraint derived from δavg and ∆δ

n number of data sources parameter to experiments
κ repository size (in # of objects) parameter to experiments
Tq time period between queries parameter to experiments
s random walk step size used for analysis

Table 5.1: One-time query precision-setting model and algorithm symbols.

• value-initiated refresh:

with probability min{ρ, 1}, set W ′ ←W · (1 + α)

• query-initiated refresh:

with probability min{1
ρ
, 1}, set W ′ ← W

(1+α)

In Section 5.3 we will justify mathematically why these are the optimal probability

settings for width adjustment. Intuitively, the idea is to continually adapt the bound

width to balance the likelihood of the two types of refreshes. However, if two value-

initiated refreshes are more expensive than one query-initiated refresh, i.e., ρ > 1, a

larger width is preferred, so the width is not decreased on every query-initiated refresh.

Conversely, if one query-initiated refresh is more expensive than two value-initiated

refreshes, i.e., ρ < 1, a smaller width is preferred, so the width is not increased on

every value-initiated refresh. Whenever the width is adjusted, the magnitude of the
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adjustment is controlled by the adaptivity parameter α.

Now let us consider the lower and upper thresholds, τ0 and τ∞. When our al-

gorithm computes a bound width W < τ0, we instead set W = 0, and when we

compute a W ≥ τ∞, we instead set W = ∞. The purpose of these thresholds is to

accommodate boundary cases where either exact replication (W = 0) or no replica-

tion (W = ∞) is appropriate, since without this mechanism the width would never

actually reach these extreme values. The source still retains the original width, and

uses it when setting the next width W ′. As part of our performance study we describe

how to set these parameters and others.

5.3 Justification of Algorithm

In this section we justify our algorithm mathematically. Let Pvr and Pqr represent the

probability that a value- or query-initiated refresh (respectively) will occur at each

time step. Then the expected overall cost per time step C = Cvr · Pvr + Cqr · Pqr,

where Cvr and Cqr are the costs of value- and query-initiated refreshes (respectively)

as introduced in Section 5.2.

For a given replicated approximation with width W , the probability of each type

of refresh can be written as Pvr = K1

W 2 and Pqr = K2 ·W , where K1 and K2 are model

parameters that depend on the nature of the data and updates, the frequency of

queries, and the distribution of query precision requirements. Next, in Section 5.3.1,

we justify these equations in detail for the case of bound approximations. However,

the important—and intuitive—point is that, for all kinds of data and approximations,

the value-initiated refresh probability increases with precision (i.e., with a smaller W ),

while the query-initiated refresh probability decreases with precision.

5.3.1 Estimating the Probability of Refresh for One-Time

Queries

To determine the probability of each type of refresh, let us consider a simplified model.

First, we model the changing data value as a random walk in one dimension. In the
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random walk model the value either increases or decreases by a constant amount s

at each time step. A value-initiated refresh occurs when the value moves out of the

replicated bound. Queries access the data every Tq time steps. We assume each query

accesses only one data value and is accompanied by a precision constraint δ sampled

from a uniform distribution between 0 and δmax. A query-initiated refresh occurs

when the replicated bound’s width is larger than a query’s precision constraint δ.

Although this model is simplified, it is useful for deriving formulas and demonstrating

the principles behind our algorithm. As we show empirically in Section 5.4, our

algorithm works well for real-world data under a variety of query workloads and

precision constraints.

Using our model, we now derive expressions for the value- and query-initiated

refresh probabilities at each time step, Pvr and Pqr respectively. These probabilities

depend on the nature of the data and updates, the frequency of queries, and the

distribution of precision constraints. The probability of a query-initiated refresh at

a given time step equals the probability Pq that a query is issued, multiplied by

the probability Pδ<W that the precision of the replicated bound does not meet the

precision constraint of the query. Clearly, the probability Pq that a query occurs

at each time step is Pq = 1
Tq

. Recall that in our model, precision constraints are

uniformly distributed between 0 and δmax. Thus, as long as 0 ≤ W ≤ δmax, Pδ<W =
W

δmax
. Putting it all together, we have Pqr = Pq · Pδ<W = W

Tq ·δmax
. Therefore, the

probability of a query-initiated refresh is proportional to the bound width: Pqr ∝W .

Determining a formula for the value-initiated refresh probability requires an anal-

ysis of the behavior of a random walk. In the random walk model, after t steps of size

s, the probability distribution of the value is a binomial distribution with variance

s2 · t [44]. Chebyshev’s Inequality [44] gives an upper bound on the probability P

that the value is beyond any distance k from the starting point: P ≤ t · ( s
k
)2. If we

let k = W
2

, and treat the upper bound as a rough approximation, we have the prob-

ability Pvr that the value has exceeded its bound after t time steps: Pvr ≈ t · (2·s
W

)2.

Therefore, the probability of a value-initiated refresh is proportional to the reciprocal

of the square of the bound width: Pvr ∝ 1
W 2 .
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5.3.2 Minimizing Overall Refresh Cost

Now that we know how Pvr and Pqr depend on W , we can rewrite our cost per time

step C in terms of W : C(W ) = Cvr · K1

W 2 + Cqr ·K2 ·W . Our goal then is to find the

value for W that minimizes this expression, which is achieved by finding the root of

the derivative. Using this approach, the optimal value for W is W ∗ = (2· Cvr

Cqr
·K1

K2
)( 1

3
) =

(ρ· K1

K2
)( 1

3
), where ρ = 2· Cvr

Cqr
is the cost factor we defined in Section 5.2. Unfortunately,

setting the bound width W based on this formula for W ∗ is difficult unless update

behaviors and query/update workloads are stable and known in advance, since model

parameters K1 and K2 depend on these factors. One approach is to monitor these

factors at run-time to set K1 and K2 appropriately, which is similar to the approach

taken by Divergence Caching [54]. However, we will see that our approach achieves

the same optimal bound width W ∗ without the monitoring complexity or overhead.

Our approach is motivated by the observation that ρ · Pvr = Pqr when W =

W ∗ = (ρ · K1

K2
)( 1

3
). Let us first consider the special case where ρ = 1. (We will

discuss other values for ρ momentarily.) In this special case, the optimal value for W

occurs exactly when the two types of refreshes are equally likely. Our algorithm takes

advantage of this observation by dynamically adjusting the bound width W so as to

equate the likelihood of each type of refresh, thereby discovering the optimal width

W ∗. Our algorithm adjusts the width W based solely on observing refreshes as they

occur, without the need for storing history or for direct measurements of updates,

queries, or precision requirements. Furthermore, as conditions change over time, our

algorithm adapts to always move W toward the optimal width W ∗. The adaptivity

parameter α ≥ 0, introduced in Section 5.2, controls how quickly the algorithm is

able to adapt to changing conditions.

The graph in Figure 5.2 illustrates the principle behind our algorithm. Still con-

sidering ρ = 1, it plots the overall cost per time C and refresh probabilities Pvr and

Pqr as functions of the bound width W . The model parameters K1 and K2 are fixed

as K1 = 1 and K2 = 1
200

. (These values were set based roughly on a query period of 10

seconds and an average precision constraint of 10. Changing these values only shifts

the graph.) Notice that the width W ∗ that minimizes the overall cost C corresponds

exactly to the point where the curves for Pvr and Pqr cross. Therefore, by equalizing
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Figure 5.2: Cost and refresh probabilities when ρ = 1 as functions of bound width.

the chance that refreshes will be either value- or query-initiated, the optimal width

W ∗ is discovered.

Now consider the general case where ρ can have any value. Our algorithm still

discovers the optimal width W ∗. Recall that the optimal width occurs when ρ ·Pvr =

Pqr. Our algorithm achieves this condition by not always adjusting the bound width

on every refresh. In cases where ρ < 1, it is desirable for value-initiated refreshes

to be more likely than query-initiated refreshes. Thus, the width is decreased on

every query-initiated refresh but only increased with probability ρ on value-initiated

refreshes. Conversely, in cases where ρ > 1, the width is increased on every value-

initiated refresh but only decreased with probability 1
ρ

on query-initiated refreshes.

5.3.3 Verification of Convergence to Optimal Width

To verify that our algorithm converges on the optimal width for any value of ρ, we

analyze the way our algorithm adjusts the bound width over time. First, observe

that over the course of ∆t time units, assuming constant per-unit-time query- and

value-initiated refresh probabilities Pvr and Pqr, our algorithm will update the bound

width from a starting value of W to a new value of W ′ as follows:

W ′ = W · (1 + α)∆t·(Pvr·min{ρ,1}−Pqr ·min{1/ρ,1})
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Equivalently, we write:

∆W

∆t
= W · (J

∆t − 1)

∆t

where ∆W = W ′ −W and J = (1 + α)Pvr·min{ρ,1}−Pqr ·min{1/ρ,1}.

For the purpose of studying the convergence properties of our algorithm, let us for

the moment consider refreshes and width adjustments as continuous processes rather

than discrete events, as they really are. Taking the limit of the ratio ∆W
∆t

as ∆t→ 0,

we find:

∂W

∂t
= W · ln J

Substituting our formulae for the value- and query-initiated refresh probabilities as

functions of the current bound width W , Pvr = K1

W 2 and Pqr = K2 ·W , we arrive at

the following expression showing how our algorithm adjusts bound width over time

in a continuous scenario:

∂W

∂t
= ln(1 + α) ·

(
K1

W
·min{ρ, 1} −K2 ·W 2 ·min{1/ρ, 1}

)

According to this model, whenever the current width W is greater than the optimal

width W ∗ (i.e., W > W ∗ = (ρ · K1

K2
)( 1

3
)), ∂W

∂t
< 0 for any value of ρ, so our algorithm

tends to decrease the width toward the optimal one. Conversely, whenever W < W ∗,
∂W
∂t

< 0 so our algorithm tends to increase the width toward the optimal one. Finally,

when the optimal width W ∗ is achieved, ∂W
∂t

= 0 and our algorithm does not alter

the width, as desired. Of course, since in our actual algorithm W cannot be updated

continually and instead is adjusted in discrete jumps, the end result may only converge

near the optimal point, which in any case we do not expect to be a fixed target. Our

experimental results, reported next, confirm that our algorithm performs well on real

data.
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5.4 Performance Study

In this section we present the results of a performance study of our algorithms, and

of related algorithms, using synthetic data as well as real-world data taken from a

network monitoring application. We first describe our simulation environment in

Section 5.4.1. In Section 5.4.2 we present results demonstrating empirically that our

algorithm does achieve optimal performance in the steady state, as motivated math-

ematically in Section 5.3. We introduce our real-world data set in Section 5.4.3, and

in Section 5.4.4 we present results indicating how best to set the tunable parameters

of our algorithm. In Section 5.4.5 we discuss some variations of our algorithm that

proved to be unsuccessful in most cases. Finally, in Section 5.4.6 we show that our

algorithm precisely matches the performance of adaptive exact replication when exact

precision is required, and outperforms exact replication when exact precision is not

required.

5.4.1 Simulator Description

To study our adaptive algorithm empirically, we built a discrete event simulator of an

environment with n data sources and one central repository. Each source holds one

exact numeric value, and the repository can hold up to κ ≤ n bound approximations

to exact source values. In our synthetic experiments, exact values are updated every

time unit (which we set to be one second) with a specified update distribution. In

our real-world experiments, the timing and values of updates are generated from the

network performance data we are using. For both types of experiments, a query is

executed at the repository every Tq seconds. We will describe how queries and query

precision requirements are generated momentarily, but it is important to note that

our algorithm is not specialized to any particular type of query. The only assumption

made by our algorithm is that for each approximate value, the probability of a query-

initiated refresh is proportional to the width of the approximation.

The queries we generate attempt to balance generality and practicality and cor-

respond to the bounded aggregation queries of Chapter 4. Each query asks for either

the SUM or MAX of a set of approximate values in the repository, where the query
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result is itself a bound approximation. Each query is accompanied by a precision

constraint δ ≥ 0 specifying the maximum acceptable width of the result. Precision

constraints are generated based on parameters δavg (average precision constraint) and

∆δ (precision constraint variation): they are sampled from a uniform distribution

between δmin = δavg · (1 − ∆δ) and δmax = δavg · (1 + ∆δ). Using the algorithms

presented in Chapter 4, from the query type, precision constraint, and approximate

data, a (possibly empty) subset of the approximations are selected for query-initiated

refresh, after which the desired precision for the query result is guaranteed. Again, it

is important to note that our algorithm is not aware of or tuned to these query types

or this method of expressing precision requirements—they are used solely to generate

a realistic and interesting query load.

5.4.2 Optimality of Algorithm

Our first experiment was a simple one to verify the correctness of our basic model

and the optimality of our algorithm on steady-state data. We used synthetic data

consisting of only one source data item, whose value performs a random walk in

one dimension: every second, the value either increases or decreases by an amount

sampled uniformly from [0.5, 1.5]. We simulated a workload having query period

Tq = 2 seconds, average precision constraint δavg = 20, and precision constraint

variation ∆δ = 1, in an environment with ρ = 1. The query type (SUM or MAX) is

irrelevant since we have only one data item.

Our goal was to establish the correctness of our model for the refresh probabilities

Pvr and Pqr, i.e., to show that as the data undergoes a random walk Pvr and Pqr are

proportional to 1
W 2 and W respectively, and for ρ = 1, equalizing Pvr and Pqr maxi-

mizes performance. Thus, we fixed bound width W for each run (i.e., we turned off

the part of our algorithm that adjusts widths dynamically), but varied W across runs.

We measured the average periods with which value- and query-initiated refreshes oc-

curred, taking their reciprocals to obtain Pvr and Pqr, respectively. Measurements

taken during an initial warm-up period were discarded, as in all subsequent reported

experiments.
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Figure 5.3: Measured cost and refresh probabilities when ρ = 1 as functions of bound
width.

The results are shown in Figure 5.3, which bears a striking resemblance to Figure

5.2. The measured values for Pvr and Pqr are indeed proportional to 1
W 2 and W ,

respectively, and the measured overall cost per time C for different values of W also

is shown in Figure 5.3. From this graph we verify empirically that, in the ρ = 1 case,

the minimum overall cost does indeed occur when the two refresh probabilities are

equal.

We then ran the same experiment letting our algorithm adjust bound widths. The

algorithm converged to W = 3.11, resulting in performance within 1% of the optimal

W ∗ shown in Figure 5.3. We further evaluated the optimality of our algorithm with all

combinations of Tq ∈ {1, 2}, δavg ∈ {10, 20}, and ρ ∈ {1, 4}. In all of these scenarios,

our algorithm converged to a width resulting in performance within 5% of optimal.

5.4.3 Our Algorithm in a Dynamic Environment

To test our adaptive algorithm under real-world dynamic conditions, we used publicly

available traces of network traffic levels between hosts distributed over a wide area
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during a two hour period [87]. For each host, the data values we use represent a one

minute moving window average of network traffic every second, and we picked the

50 most heavily trafficked hosts as our simulated data sources. Traffic levels at these

hosts ranged from 0 to 5.2 · 106 bytes per second. The simulated repository keeps an

approximation of the traffic level for at most κ of the n = 50 sources, where κ is a

parameter of the algorithm that is set to κ = 50 unless otherwise stated. Queries are

executed at the repository every Tq seconds, computing either the MAX or SUM of

traffic over 10 randomly selected sources. In all of our experiments, measurements of

the overall cost per unit time C were taken after an initial warm-up period.

In our experiments, we consider refresh costs Cvr and Cqr that are intended to

model network behavior under common consistency models and concurrency control

schemes, although our algorithm handles arbitrary cost values. Usually, performing

a remote read requires one request message and one response message, so Cqr = 2.

If two-phase locking is used for transactional consistency of replicated bounds as

mentioned in Section 4.2.2, then Cvr = 4 since two round-trips are required and

thus ρ = 2 · 4
2

= 4. Otherwise, if updates are simply sent to the repository, e.g., in

a multiversion or loosely consistent concurrency control scheme, then Cvr = 1 and

ρ = 2 · 1
2

= 1. Thus, most of our experiments consider the ρ ∈ {1, 4} cases.

Figures 5.4 and 5.5 depict the exact value at one of the data sources for a short

segment of a run, along with the replicated bound approximation as the value and

bound change over time. For illustrative purposes we selected a portion of the run

where a host became active after a period of inactivity. These figures illustrate the

bound widths selected by our adaptive algorithm with parameters α = 1, τ0 = 0, and

τ∞ = ∞, when SUM queries are executed every second (i.e., Tq = 1) and ρ = 1.

Figure 5.4 uses average precision constraint δavg = 50K, while Figure 5.5 uses average

precision constraint δavg = 500K.1 When the average precision constraint is small,

as in Figure 5.4, narrow bounds are favored. (To satisfy the precision constraints of

SUM queries, the width of each of the 10 individual bounds being summed should

be on the order of δavg

10
= 50K

10
= 5K.) When the average precision constraint is large,

as in Figure 5.5, wide bounds (on the order of δavg

10
= 500K

10
= 50K) are favored.

1In the remainder of this section we abuse the abbreviation K for ×103.
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Figure 5.4: Source value and replicated bound over time for small precision con-
straints.
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Figure 5.5: Source value and replicated bound over time for large precision con-
straints.

5.4.4 Setting Parameters

Next, we describe our experiments whose goal was to determine good values for the

adaptivity parameter α and the lower and upper thresholds τ0 and τ∞. First, fixing

τ0 = 0 and τ∞ =∞ (meaning we never reset bound widths based on thresholds), we

studied the effect of the adaptivity parameter α on performance. Figure 5.6 shows

the results. We used SUM queries and varied α, considering several different settings

for Tq, δmin, δmax, and ρ. In this and subsequent experiments, the y-axis cost C is

the average for the entire run. All combinations of Tq ∈ {0.5, 1, 6}, (δmin, δmax) ∈
{(50K, 150K), (0, 100K)}, and ρ ∈ {1, 4} are shown. From these experiments and
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Figure 5.6: Effect of varying the adaptivity parameter α.

similar experiments using MAX queries, we determined that a good overall setting

for α is 1. Recall from Section 5.2 that using α = 1, the width W is doubled on

value-initiated refreshes and halved on query-initiated refreshes.

We now address setting the lower threshold τ0. Recall that the purpose of the

lower threshold τ0 is to force the bound width of an approximation to 0 when it

becomes very small. A nonzero τ0 parameter is necessary for queries that ask for

exact answers, i.e., have δ = 0: with τ0 = 0, exact values would not be replicated, so

such queries would always require source refreshes. It turns out that the performance

under a workload with δavg = 0 is not very sensitive to the value of τ0, as long as τ0 > 0.

However, setting τ0 too large can adversely affect queries with small, nonzero precision

constraints, since nonzero bounds of width below τ0 are not permitted. Therefore,

to accommodate queries with a variety of precision constraints, τ0 should be set
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Figure 5.7: Performance of settings for τ∞, query period Tq = 0.5.

to a small positive constant ε less than the smallest meaningful nonzero precision

constraint. For our network data, differences in precision of ε = 1K are not very

significant, so we set τ0 = ε = 1K. This setting for τ0 has only a small impact on

queries even with moderately large precision constraints. For example, for precision

constraints between δmin = 5K and δmax = 15K, the performance degradation is less

than 1% (for Tq = 1, τ∞ =∞, and ρ = 1).

Having determined good values for α and τ0, we now consider the upper threshold

τ∞. Setting τ∞ to a small value improves performance for high-precision workloads

since it eliminates replication of approximations that are not useful to queries. How-

ever, a small τ∞ degrades the performance of low-precision workloads, i.e., those

having large precision constraints. To illustrate this tradeoff, in Figures 5.7, 5.8,

and 5.9 we plot performance as a function of the average precision constraint δavg .

Each graph corresponds to a different query period Tq and shows the performance us-

ing three different settings of τ∞, holding all other parameters fixed: ρ = 1, ∆δ = 0.5,

τ0 = 1K, and α = 1. Workloads having δavg = 0 perform best when τ∞ = τ0, which

guarantees that all bounds are treated as having either no width (W = 0) or infinite

width (W =∞). That is, either the exact value is replicated or effectively no value is

replicated at all. Since queries with δ = 0 require exact precision, replicated bounds

that are not exact are of no use. Note that whenever we set τ∞ = τ0, performance is

independent of δavg as illustrated by the horizontal lines in Figures 5.7, 5.8, and 5.9.
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Figure 5.8: Performance of settings for τ∞, query period Tq = 1.
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Figure 5.9: Performance of settings for τ∞, query period Tq = 2.

For workloads having a range of different precision constraints, the upper threshold

τ∞ should be set to ∞.

Although these guidelines for setting the upper threshold τ∞ apply to most types

of queries including our SUM queries, there are exceptions. For example, values

can be eliminated as candidates for the exact maximum based on bounds of finite,

nonzero width (see Section 4.3.1). Therefore, for MAX queries, approximate values

can be useful to replicate even when exact precision is required in all query answers.

We have verified experimentally that for MAX queries, setting τ∞ = ∞ gives the

best performance for all values of δavg , including δavg = 0.

In summary, with parameter settings α = 1, τ0 = ε, and τ∞ = ∞, our algorithm
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adaptively selects bounds that give the best possible performance under dynamically

varying conditions. When ∆δ = 0, each query has the same precision constraint, so

it is easier for the algorithm to discover the best precision for replicated bounds. On

the other hand, if ∆δ is large, each query has a different precision constraint, making

it harder to find bound widths that work well across multiple queries. Fortunately, it

turns out that the degradation in performance due to a wide distribution of precision

constraints is small. We verified that the performance of our algorithm is not very

sensitive to the precision constraint distribution for several different average precision

constraints, while holding the other parameters fixed: Tq = 1, τ0 = 1K, τ∞ =∞, and

ρ = 1. When δavg = 100K, the difference in performance between a workload with

∆δ = 0 and ∆δ = 1 is only 1.9%. When δavg = 10K, the difference is 5.5%. When

δavg = 5K, the difference is less than 1%.

5.4.5 Unsuccessful Variations

We experimented with a number of variations to our algorithm that seemed intuitive

but proved unsuccessful in practice: using uncentered bounds, using bounds that vary

as functions of time, and adjusting bounds based on the refresh history. We report

briefly on our experience with each variation.

A bound is uncentered if, at refresh time, the bound does not bound the exact

value symmetrically. Thus, two width values are maintained instead of one: an upper

width and a lower width. The source independently adjusts the upper and lower

widths as follows. Each time a value-initiated refresh occurs due to the value exceed-

ing the upper bound, then with probability min{ρ, 1} the upper width is increased.

Conversely, when the value drops below the lower bound, with the same probability

the lower width is widened. Whenever a query-initiated refresh occurs, with probabil-

ity min{1
ρ
, 1} both widths are decreased. In our experiments with both our synthetic

random walk data and our real-world network monitoring data, the uncentered strat-

egy performed worse than the centered strategy. However, in the case of synthetic

biased random walk data, where values were much more likely to go up than down,

using uncentered bounds improved performance slightly over using centered bounds.
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A second unsuccessful variation is to use approximations that become more ap-

proximate over time. In Chapters 3 through Chap 5 our approximations are bounds

[L, H ] whose endpoints are constant with respect to time. A more general approach

is to make both L and H functions of time t. We ran experiments that showed that

using bounds whose width increases with time proportionately to t
1
2 or t

1
3 resulted

in worse performance than using constant bounds, both for the network monitoring

data and unbiased synthetic random walk data. For biased random walk data (as de-

scribed in the previous paragraph), the best bound functions turned out to be those

having both endpoints increase linearly with time: L(t) = k · t and H(t) = k · t, where

the constant k > 0 is adjusted to match the average rate at which the data value

increases. But, for general scenarios where the data does not predictably increase

or decrease, constant bounds are preferred. Furthermore, constant bounds are much

easier to index [63] than bounds that are functions of time. Finally, time-varying

bounds can be tricky to implement, especially when an upper bound decreases or a

lower bound increases with time, since an approximation can become invalid based

on time alone.

A third variation we tried is to have the algorithm consider the past r refreshes

when deciding how to adjust the bound. In this variation, the width is increased if

the majority of the r most recent refreshes were value-initiated. Otherwise, the width

is decreased. We also experimented with various techniques to weight recent refreshes

within r more heavily. However, none of these schemes outperformed the algorithm

presented here, which effectively sets r = 1 making it the most adaptive and simplest

to implement.

5.4.6 Subsumption of Exact Replication

In this section we compare our algorithm against a state-of-the-art adaptive algorithm

for deciding whether to maintain exact replicas, which we derive from the replication

algorithm in [119]. In this algorithm, the number of requested reads r and writes

w to each data value are counted. The replication strategy for every data value is

reevaluated every x reads and/or writes to the value, i.e., whenever r + w ≥ x. At
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Figure 5.10: Comparison against exact replication, ρ = 1 and κ = 50.
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Figure 5.11: Comparison against exact replication, ρ = 4 and κ = 50.

reevaluation, the projected cost of not replicating, i.e., the cost of performing r remote

reads Cnc = r · Cqr is computed. Similarly, the projected cost of replicating, i.e., the

cost of performing w remote writes, Cc = w ·Cvr is computed. The value is replicated

if and only if Cc < Cnc. If the repository has limited space, values having the lowest

cost difference Cnc − Cc are evicted and the source is notified of the eviction. Under

dynamic conditions, it has been shown that this adaptive exact replication strategy

continually approaches the optimal strategy [119].

Figures 5.10, 5.11, 5.12, and 5.13 compare our algorithm against the exact repli-

cation algorithm of [119] for SUM queries executed every Tq ∈ {0.5, 1, 2, 5} seconds.
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Figure 5.12: Comparison against exact replication, ρ = 1 and κ = 20.
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Figure 5.13: Comparison against exact replication, ρ = 4 and κ = 20.

For each run, we first determined the best setting for parameter x in the exact replica-

tion algorithm. Thus we changed the value of x, which varied from 3 to 45, between

runs, whereas all of our own parameters remained fixed: α = 1, τ0 = 1K, and

τ∞ ∈ {1K,∞}. Figures 5.10 and 5.11 show the results for a repository large enough

to store all approximate values (κ = 50), with cost factor ρ = 1 and ρ = 4, respec-

tively. Figures 5.12 and 5.13 show the results for a small repository of size κ = 20,

again with ρ = 1 and ρ = 4 respectively.

The performance of our algorithm with τ∞ = τ0 almost precisely matches the ex-

act replication algorithm under all workloads, repository sizes, and cost configurations

tested. If we set τ∞ =∞, our algorithm offers a significant performance improvement
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for workloads not requiring exact precision, at the expense of a slight performance

degradation for exact-precision workloads in the case of SUM queries, as shown in

Figures 5.10 and 5.11. When MAX queries are used, our algorithm performs substan-

tially better than exact replication because values can be eliminated as candidates for

the exact maximum based on replicated bounds, as discussed in Section 5.4.4. When

the repository size is limited, as in Figures 5.12 and 5.13, queries do not benefit much

from nonzero precision constraints because inexact bounds tend to be evicted from

the repository.

5.5 Related Work

The previous work most similar to that presented in this chapter is Divergence

Caching [54], which also considers the problem of setting the precision of approx-

imate values in a replication environment. In their setting, precision is based on

number of updates to source values and not on the values themselves—the precision

of a replicated approximation is inversely proportional to the number of updates since

the last replica refresh. The Divergence Caching algorithm proposed in [54] works

well in their environment, but does not generalize easily to the kinds of approxima-

tions we consider, which are based on the magnitude of source updates instead of

their frequency.

No other work that we know of addresses precision setting of replicated approxi-

mate values while subsuming exact replication techniques. Work on Moving Objects

Databases [118] considers setting precision of replicated approximations, but queries

are not permitted to request exact values from sources so remote read costs are not

taken into account. Conversely, in Soft Caching [61], updates to the exact source

value are not considered, so value-initiated refreshes are not considered when setting

precision.
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5.6 Chapter Summary

In this chapter we presented a parameterized algorithm for adjusting the precision

of approximate replicas not involved in continuous queries. Our algorithm adjusts

precision levels adaptively to achieve the best performance for a workload of one-time

queries as data values, precision requirements, or workload vary. As in the previous

chapter we considered interval approximations to numeric values but our ideas can be

extended to other kinds of data and approximations. Our algorithm strictly general-

izes previous adaptive replication algorithms for exact copies: we can set parameters

to require that all approximations be exact, in which case our algorithm dynamically

chooses whether or not to replicate each data value.

We implemented our algorithm and tested it on synthetic and real-world data.

A number of experimental results were reported, showing the effectiveness of our

algorithm at maximizing performance, and also showing that in the special case of

exact replication our algorithm performs as well as previous algorithms. In cases

where bounded imprecision is acceptable, our algorithm easily outperforms previous

algorithms for exact replication.
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Chapter 6

Visual User Interfaces for

Approximate Replication Systems

6.1 Introduction

In this chapter we shift our focus to user interface issues related to approximate

replication. In particular, we study issues that arise with the use of our techniques in

conjunction with automated data visualization, a common method of end-user data

analysis in which a display consisting of charts, graphs, etc. is produced to depict

the data in graphical form, e.g., [6, 12, 30, 73, 104, 122]. Data visualization is used

to support data analysis in a wide variety of domains including science, engineering,

business, and others. However, people in all fields tend to be wary of relying heavily

on visualization because of the potential for graphical depictions to mislead users and

encourage improper interpretation [55].

The presence of uncertainty in data being visualized is one potential cause of

misleading depictions. Most work on visualization to date has assumed that the

underlying data entries are either exact values, or statistical expected values derived

from a distribution of possible values. However, the very different form of uncertainty

that arises from accessing or querying approximately replicated values has largely been

left unaddressed. When a numeric bound is used as an approximate replica of a data

object, as discussed in Chapters 3–5, although it is known for certain that the value lies
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somewhere inside the bound interval, it is not known where. Furthermore there may

be no known probability distribution of possible values within the interval. We refer

to this form of uncertainty as bounded uncertainty, and differentiate it from statistical

uncertainty, which is typically (although not always) characterized by a potentially

infinite distribution of possible values with a single peak indicating the most likely

estimate.1 Bounded uncertainty also occurs, for example, when a replica of a numeric

data object is refreshed periodically, and there is a known and finite maximum rate of

change for the master value. Another scenario in which bounded uncertainty arises is

the compression of numeric time-series data using piecewise constant approximations

with error guarantees, as in [20, 69].

Pang et al. [86] argue that uncertainty should be presented along with data in vi-

sualization applications, and we develop this approach for bounded uncertainty. After

discussing traditional techniques for showing statistical uncertainty such as drawing

error bars, [86] proposes an extensive suite of techniques for conveying uncertainty

in 3D geometry visualization applications. Many of these techniques can be adapted

to data visualization scenarios that involve abstract charts and graphs. However,

techniques for conveying statistical uncertainty tend to be misleading when used for

bounded uncertainty for two reasons. First, users have been trained to interpret them

as probabilistic bounds on an unbounded distribution of possible values. In contrast,

bounded uncertainty is characterized by nonprobabilistic endpoints. Second, since

error bars and related techniques for conveying statistical uncertainty are typically

used in conjunction with an estimated exact value, the existence of a single most

likely value is strongly implied. There is typically no most likely value in the case of

bounded uncertainty.

We believe that visualizations should clearly differentiate between the two forms

of uncertainty, making it obvious whether the uncertainty is statistical or bounded,

in addition to conveying the degree of uncertainty. To convey statistical uncertainty,

it is appropriate to display the most likely value along with error bars or other glyphs

as in [86]. To convey bounded uncertainty, as in our replication environments that

1A report by the US Department of Commerce National Institute of Standards and Technology
(NIST) [105] identifies statistical and bounded uncertainty as two predominant forms in which
uncertainty in data tends to occur.
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provide guaranteed bounds for numeric query answers, we advocate a systematic

technique based on widening the boundaries and positions of graphical elements and

rendering the uncertain region in fuzzy ink, or using a lighter gradation of shading.

In this chapter we show how to apply this technique, which we call ambiguation, to

common displays of abstract charts and graphs. Interestingly, it is not always possible

to show the exact degree of uncertainty, and in some cases it can only be displayed

approximately. We specify an algorithm that approximates the degree of uncertainty

to make it displayable while minimizing the overall loss in accuracy.

We also consider new issues raised when visualization is performed online, over

the results of continuous queries evaluated on approximate replicas. In this scenario,

data and uncertainty levels can change dynamically, and it is easy for users to falsely

interpret sudden changes in the uncertainty bounds as changes in the underlying

data. We discuss masking sudden jumps in uncertainty when they do not correspond

to significant data changes, to avoid inappropriately drawing the user’s attention.

Finally we consider the central feature of our approximate replication techniques

in Chapters 3–5, which is that applications can control the degree of uncertainty.

While it can be beneficial to pass on this control over uncertainty levels to end-users,

naive interfaces may not effectively expose the tradeoff involved. As a result, users

may unknowingly abuse this power. We propose ways to offer users control over

uncertainty levels that encourage judicious use of the control mechanism.

6.1.1 Chapter Outline

The remainder of this chapter is structured as follows. In Section 6.2 we describe

our systematic approach to conveying the presence, form, and degree of uncertainty

in data. Then, we address misleading sudden jumps in Section 6.3. In Section 6.4

we discuss user-controlled uncertainty tuning for interactive visualization over con-

tinuous query results in approximate replication environments. Finally, we provide a

discussion of related work in Section 6.5 and a summary of this chapter in Section 6.6.
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6.2 Representing Uncertain Data Visually

In most abstract charts and graphs, data values are graphically encoded either in

the positions of graphical elements, as in a scatterplot, or in the extent (size) of

elements along one or more dimensions, as in a bar chart. When the underlying data

is uncertain, we believe it is appropriate to clearly indicate not only the presence

and degree but also the form of uncertainty. As described in Section 6.1, statistical

and bounded uncertainty encode two dramatically different distributions of potential

values, so we advocate two alternative methods for conveying uncertainty in the

positions or extents of graphical representations of data: error bars for statistical

uncertainty and ambiguation for bounded uncertainty. We begin by describing these

general techniques and then show how they can be applied to some common types of

charts and graphs.

6.2.1 Error Bars

Error bars and their variants (quantile plots, etc.) have been well studied as a suitable

means to convey statistical uncertainty [26, 107, 108]. Typically, a normal distribution

is assumed. For each uncertain data value to be represented visually, the idea is to use

the normal display technique to render the expected value in place of the unknown

exact value. Error bars are then added to indicate uncertainty in the position or

boundary location in proportion to the size of an associated confidence interval. Some

standard uses of error bars are illustrated in the upper left quadrant of Figure 6.1

(we explain the rest of the figure below in Section 6.2.4). When uncertainty occurs

in bounded rather than statistical form, it is important to avoid the use of error

bars since the accepted interpretation implies a potentially unbounded distribution

extending beyond the error bars. Even worse, rendering an exact estimate using the

normal display technique strongly implies the existence of a most likely value, but in

bounded uncertainty no most likely value can be assumed.
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Figure 6.1: Error bars and ambiguation applied to some common chart types.

6.2.2 Ambiguation

To convey the presence and degree of bounded uncertainty, we propose the use of

a new technique we call ambiguation. The main idea behind ambiguation when

uncertain data is encoded in the extent of a graphical element is to widen the boundary

to suggest a range of possible boundary locations and therefore a range of possible

extents. The ambiguous region between possible boundaries can be drawn as graphical

fuzz using light shading or dithering, giving an effect that resembles ink smearing. A

straightforward application of this technique is illustrated in the ambiguated bar chart

in the upper right quadrant of Figure 6.1. To indicate positional uncertainty, rather

than drawing a crisp representation of the graphical element at a particular position,

the representation is elongated in one or more directions and drawn using fuzz. A

simple application of this technique is illustrated in the ambiguated scatterplot in the

upper right quadrant of Figure 6.1.
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Other variations of boundary or position ambiguation may be possible, but the

necessary feature is that no particular estimate or most likely value should be indi-

cated. Rather, the entire range of possible values for the boundary or position of the

graphical element should be presented with equal weight. This key characteristic is

in contrast with error bars and other approaches such as fuzzygrams and gradient

range symbols [48] that emphasize a known probability distribution over data values.

6.2.3 Discussion

The complementary use of error bars and ambiguation makes the presence, degree,

and form of uncertainty clear. First, these techniques make it easy to identify the

specific data values that are uncertain by suggesting imprecision in the graphical prop-

erty (position or boundary location) in which the values are encoded. For bounded

uncertainty, the position or boundary is made ambiguous using fuzzy ink, and for

statistical uncertainty, error bars are added to visually suggest the possibility of a

shift in position or boundary location. Second, these techniques allow the degree

of uncertainty to be read in a straightforward manner using the same scale used to

interpret the data itself. Finally, the use of two visually distinct techniques makes it

clear which of the two forms of uncertainty is present, and each technique conveys

the properties of the form of uncertainty it represents.

Ambiguation and error bars work well when data is encoded as the position or

extent of graphical elements. Coping with displays that use other graphical attributes

such as color and texture to encode data is left as a topic for future work. In the

absence of analogous techniques for other graphical attributes, when uncertainty is

present it is desirable to only use charts and graphs that encode data using position

and extent alone so the presence, degree, and form of uncertainty can be clearly and

unambiguously depicted.

6.2.4 Application to Common Chart Types

Figure 6.1 illustrates how error bars and ambiguation can be applied to some common

chart types. While these techniques are general and can be applied to a broad range
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of displays that use position and extent to encode data, we focus on abstract charts

and graphs, which can be classified into two categories: absolute displays and 100%

displays. In absolute displays, each data value is given a graphical representation

whose extent or position is plotted on an absolute scale. Examples of absolute dis-

plays include simple bar charts (which encode data in the upper boundaries of bars),

scatterplots (which encode data in the positions of points), and line graphs (which

encode data in the positions of points and lines). It is generally straightforward to

add error bars or apply ambiguation to boundaries and positions in absolute displays

such as those displayed in the top half of Figure 6.1.2

In 100% displays, the scale ranges from 0% to 100%, and n values V1, V2, . . . , Vn

are plotted on this relative scale. Each value Vi is plotted as a graphical element

whose size is proportional to the fraction Vi∑
1≤j≤n

Vj
of the total over all n values.

Examples of 100% displays include stacked bar charts and pie charts. Indicating

uncertainty in 100% displays is more challenging than doing so in absolute displays.

In 100% displays, the graphical elements usually contact each other directly, so the

boundary between two elements indicates the difference between them in terms of

relative contribution to the total. To inform the user of statistical uncertainty in the

locations of these boundaries, error bars can be drawn adjacent to the boundaries.

Alternatively, for pie charts the wedges can be separated, leaving space for error bars

extending directly from the boundaries between wedges. The lower left quadrant

of Figure 6.1 illustrates these techniques. Bounded uncertainty can be indicated by

inserting an ambiguous region of fuzzy ink between each pair of elements whose shared

boundary is uncertain, as illustrated in the lower right quadrant of Figure 6.1. In the

example pie chart, the fractional contribution to the total from the lower-left wedge

may be as high as 50%, due to the indicated range of possible locations for both

boundaries shared with neighboring wedges. It turns out that determining the sizes

to use for the fuzzy and solid regions in an ambiguated 100% display is not trivial

2Displays such as stacked bar charts that are not normalized to sum to 100% are problematic when
used in conjunction with these uncertainty indicators because the interpretation can be ambiguous.
For example, in an absolute stacked bar chart, an error bar or a fuzzy region appearing at the top
of the stack can be interpreted either as uncertainty in the topmost element or as uncertainty in the
overall height of the stack (the sum over all elements).
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because each region of fuzz shares a border with two solid data regions. We address

this challenge next.

Ambiguation in 100% Displays

Here we consider how to draw an ambiguated pie chart (the formulation for a stacked

bar chart is similar). Suppose the data for the pie chart consists of an ordered

list of n objects O0, O1, . . . , On−1 whose values are known to lie inside the intervals

[L0, H0], [L1, H1], . . . , [Ln−1, Hn−1], respectively. As a first step, the absolute uncer-

tainty intervals need to be converted into relative ones that indicate the smallest and

largest possible fraction of the chart covered by each data object:

Lr
i =

2π · Li∑n−1
j=0 Hj −Hi + Li

Hr
i =

2π ·Hi∑n−1
j=0 Lj − Li + Hi

The smallest possible fraction Lr
i occurs when the value of Oi is as low as possible,

i.e., equal to Li, and the values of all other objects Oj 6= Oi are as high as possible,

i.e., equal to Hj. The rationale for Hr
i is symmetric.

Ideally, an allocation of fuzzy and solid ink that conveys the uncertainty exactly

could be found, so that each data object Oi has a corresponding solid pie wedge of

arc length Lr
i (in radians) and two adjacent fuzzy wedges of total arc length Hr

i −Lr
i .

For example, suppose we wish to draw a pie chart for two data objects, each with

values in the interval [1, 2], and thus relative contributions of between 1
3

and 2
3

each.

A simple chart with two solid wedges of arc length 2π
3

each plus a fuzzy wedge also of

arc length 2π
3

achieves the ideal of conveying exactly the uncertainty intervals present

in the data.

Unfortunately, due to the nature of 100% displays, this ideal is not always achiev-

able. In some cases it is not possible to convey the exact uncertainty intervals. For

example, suppose we wish to draw a pie chart for three data objects with identical

intervals of [1, 2], or relative contributions of between 1
5

and 1
2

each. To indicate the

smallest possible relative contribution of each data object, we need three solid wedges

of arc length 2π
5

each. The three gaps between the wedges will be filled with fuzz.

We denote the arc lengths of the three fuzzy regions as F0, F1, and F2. No matter
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how we arrange the solid wedges, the combined arc length of the fuzzy regions is

F0 + F1 + F2 = 2π − 3 · 2π
5

= 4π
5

. To convey that the maximum possible relative

contribution of each data object is 1
2
, we need to arrange the three solid wedges, with

fuzz in between, such that each solid wedge taken together with the two adjacent

fuzzy regions spans a total arc length of π (half circle). Therefore, we require that

F0 + 2π
5

+ F1 = F1 + 2π
5

+ F2 = F2 + 2π
5

+ F0 = π. We have defined a system of

four equations with three unknowns (F0, F1, and F2) that is overconstrained and

has no solution. Therefore, an arrangement of solid wedges that conveys the exact

uncertainty intervals that occur in the data does not exist in this case.

The only way to draw an ambiguated pie chart in such cases is to approximate

the level of uncertainty that occurs in the data, which is undesirable but necessary.

In general, consider the task of creating a pie chart with ambiguation for a data set

consisting of n objects O0, O1, . . . , On−1. Let Si ≥ 0 be the new arc length of the solid

portion of the display for Oi, and let Fi ≥ 0 be the arc length of the fuzzy region

between the solid region for the two objects Oi and O(i+1) mod n. An optimization

problem arises with the goal of minimizing the total amount of fuzz without giving

false information, i.e., without drawing a chart indicating uncertainty intervals that

do not contain the actual uncertainty intervals intrinsic in the data: Minimize
∑n−1

i=0 Fi

such that
∑n−1

i=0 Si+
∑n−1

i=0 Fi = 2π and for all i: Si ≤ Lr
i and F(i−1) mod n+Si+Fi ≥ Hr

i .

The objective function minimizes the total amount of fuzz, which in turn mini-

mizes the overall loss in accuracy due to the use of approximation. The first constraint

requires that all of the solid and fuzzy wedges placed together create a full circle. The

second constraint ensures that, for each object, the arc length of the solid region is no

larger than the minimum relative contribution Lr
i of the object’s value to the total.

The third constraint ensures that, for each object, the combined arc length of the

solid region taken together with the two adjacent fuzzy regions is no smaller than the

maximum relative contribution Hr
i of the object’s value to the total. The second and

third constraints together ensure that the uncertainty intervals implied by the chart

contain the actual uncertainty intervals they approximate.

We have implemented an ambiguated pie chart renderer that invokes a publicly

available linear program solver to solve this optimization problem and determine the
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best possible pie chart layout to minimize the loss in accuracy due to displaying

approximate uncertainty intervals. It runs in under 10 milliseconds on a modest

workstation for data sets of 25 objects, which is large for a 100% chart. It is therefore

suitable for execution as a part of an interactive rendering cycle. In certain extreme

cases where a data set exhibits a great deal of uncertainty, the linear program has

no solution, and it is impossible to generate an ambiguated 100% chart, even by

approximating the uncertainty intervals. This problem can sometimes be resolved by

reordering the wedges, but this method may cause a disconcerting effect in dynamic

displays of changing data. Instead, we advocate using a special icon when no pie chart

can be drawn to indicate extreme uncertainty. The user can react by requesting a

decrease in uncertainty to make the chart displayable, using the interface proposed

below in Section 6.4.

6.3 Avoiding Misleading Sudden Jumps

When the graphical display is refreshed due to a change in the underlying data,

sudden jumps in the displayed data will tend to draw the user’s attention. This char-

acteristic is usually appropriate when the jump corresponds to a drastic change in

the data. However, consider the case where the source of uncertainty is an approx-

imate replication system, as discussed in Chapters 3–5. In approximate replication,

systems considerations, rather than semantic events, trigger the source to refresh the

replicated interval, so sudden jumps in the graphical display of data and uncertainty

level may not correspond to significant changes in the underlying data. Moreover, the

absence of jumps may not rule out changes. Therefore, in visualization applications

that access approximate data via approximate replication protocols, it is desirable

to mask sudden jumps in the data or uncertainty level that would inappropriately

draw the user’s attention. Sudden jumps can be masked by smoothly animating the

transitions between old and new data and uncertainty values at a slow enough rate

to not be overly distracting.



6.4. CONTROLLING THE DEGREE OF UNCERTAINTY 155

6.4 Controlling the Degree of Uncertainty

In environments where the data being visualized is obtained from an approximate

replication system, there is an opportunity to exert control over the uncertainty lev-

els at a per-object or per-query granularity. In the Precision Fixed/Maximize Perfor-

mance scenario covered in Chapters 3–5, a decrease in the uncertainty of some data

objects or query results is offset by an increase in communication resource utilization.

End-users may not be aware of this tradeoff, and consequently they may unknowingly

abuse the power to control the uncertainty level by requesting unnecessarily precise

representations and incurring excessive cost behind the scenes. Therefore, it may be

desirable for the visualization system to mediate control over the uncertainty levels.

One way to perform this mediation is for the visualization system to maintain

default uncertainty levels3 that are either uniform, lower for graphical elements near

the center of the screen, or lower for elements that have remained on the screen for a

long time. In some situations in which bounded uncertainty is displayed, it may also

be appropriate to require that uncertain regions do not overlap in the dimension(s)

of interest, making the relative order of data values always discernible. At any point,

the user can override the default uncertainty levels by clicking on an area of interest,

causing that area to “come into focus” via a decrease in uncertainty. Then, the

visualization system should gradually return the uncertainty levels to their default

state.

When network bandwidth is plentiful, there is no limit to how much the overall

uncertainty can be reduced. However, lower uncertainty may incur a higher commu-

nication cost. It may be important to convey the cost to the user via a network traffic

status indicator, for example, so that the increase in traffic resulting from requesting

lower uncertainty levels is indicated visually. Noticing the increase in traffic, the user

could click on the network indicator to reduce traffic again by affecting a mild increase

3Users of approximate replication systems might wish to modify the default uncertainty level of
a particular data object by specifying the lower and upper endpoints of the uncertainty interval,
causing the display of that object to remain static until the data value moves beyond one of the
endpoints. This feature can serve to alert users when a data value exceeds a critical threshold.
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in uncertainty across the board. If the network traffic indicator does not provide ade-

quate incentive for the user to be sparing when lowering uncertainty levels, it may be

appropriate to have uncertainty levels continually increase by default. This property

would force the user to click periodically to maintain data in sharp focus, requiring

effort commensurate with the amount of work required of the network infrastruc-

ture, thereby implicitly communicating the cost to the user. Furthermore, if the user

abandons the visualization for, say, a coffee break, without closing the application,

the display would eventually become entirely out of focus, incurring no network costs

while the visualization is not in use.

6.5 Related Work

In certain visualization scenarios, data may be unavailable for display or even pur-

posefully omitted for a variety of possible reasons, giving rise to uncertainty. The

importance of visually informing the user of the absence of data has been identified

[121] and techniques for doing so have been proposed in, e.g., Clouds [8, 49] and

Restorer [109]. We focused on a different type of uncertainty where all the data is

present but precise values are not known.

Numerous ways to convey the degree of uncertainty in data using overlayed anno-

tations and glyphs have been proposed, as in, e.g., [86]. Another approach is to make

the positions of grid lines used for positional reference ambiguous [21]. Uncertainty

can also be indicated by adjusting the color, hue, transparency, etc. of graphical fea-

tures as in, e.g., [29, 74, 111]. Some techniques for conveying uncertainty by widening

the boundaries of graphical elements have also been proposed. For example, in [116],

the degree of uncertainty in the angle of rotation of vectors is encoded in the width

of the vector arrows. Also, [86] proposes varying the thickness of three-dimensional

surfaces to indicate the degree of uncertainty.

To our knowledge, however, none have focused on accurately and unambiguously

conveying not only the presence and degree but also the form of uncertainty in data,

as we did in this chapter. We also believe that this work is the first to establish

systematic methods for conveying bounded uncertainty by widening the boundaries
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and positions of graphical elements in abstract charts and graphs. The approach in

[39] for displaying cluster densities gives a visual appearance similar to our ambiguated

line charts (discussed later) but serves a different purpose.

Our work also addressed control over uncertainty levels. Interfaces for controlling

uncertainty levels were proposed in [49], but that work does not address ways to make

the user cognizant of tradeoffs between decreased uncertainty and increased resource

utilization.

6.6 Chapter Summary

Visualization is a powerful way to facilitate data analysis, but it is crucial that visu-

alization systems explicitly convey the presence, nature, and degree of uncertainty to

users. Otherwise, there is a danger that data will be falsely interpreted, potentially

leading to inaccurate conclusions.

In this chapter we argued that error bars or similar techniques designed to convey

the presence and degree of statistical uncertainty should not be used when visualizing

data that exhibits bounded uncertainty, which has different properties. We described

a technique for conveying bounded uncertainty in visualizations and showed how it

can be applied systematically to common displays of abstract charts and graphs.

Interestingly, it is not always possible to show the exact degree of uncertainty, and

in some cases it can only be displayed approximately. We specified an algorithm

that approximates the degree of uncertainty to make it displayable while minimizing

the overall loss in accuracy. In addition, we proposed interfaces that offer control of

uncertainty levels to end-users of approximate replication systems while encouraging

judicious use of the precision-performance tradeoff.
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Chapter 7

Summary and Future Work

This dissertation studied the problem of making efficient use of communication re-

sources in approximate replication environments. We framed our analysis in terms

of a two-dimensional space with axes denoting system performance (a measure of

resource utilization) and replica precision (a measure of the degree of replica synchro-

nization), and observed that there is a fundamental and unavoidable tradeoff between

precision and performance. Although this tradeoff seems uncircumventable, we noted

that a push-based approach to replica synchronization offers the opportunity for the

best precision-performance curves, i.e., the best precision for a certain performance

level and, conversely, the best performance for a certain precision level. These initial

observations led us to propose and study two complementary methods for working

with the precision-performance tradeoff to achieve efficient resource utilization for

replica synchronization:

1. Push-based approximate replication with the goal of maximizing replica preci-

sion in the presence of constraints on system performance.

2. Push-based approximate replication with the goal of maximizing system per-

formance in the presence of constraints on replica precision.

159
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We began by proposing a push-based approximate replication technique for the

Performance Fixed/Maximize Precision scenario in Chapter 2. To cope with con-

straints placed on communication performance by users, applications, or the envi-

ronment, sources prioritize refreshes of replicas maintained at the central repository

based on precision considerations, and only send refreshes whose priority exceeds a

certain threshold. A distributed algorithm adjusts the refresh priority threshold at

each source adaptively to attempt to achieve the highest possible overall replica pre-

cision while adhering to constraints on communication performance. We showed that

our push-based technique, which relies heavily on source cooperation, achieves sig-

nificantly better precision than the best known pull-based algorithm, supporting our

hypothesis of the superiority of push-based replication over pull-based approaches in

terms of achieving better precision with the same performance.

Next, in Chapters 3–5 we studied the inverse scenario of Precision Fixed/Maximize

Performance, which is of interest when network resources are not severely limited but

communication incurs some cost. In our approach, users submit queries over the

replicated data at the repository together with custom precision requirements, and

answers of sufficient precision are produced while incurring minimal communication

cost. In Chapter 3 we focused on continuous queries with precision requirements,

and proposed an algorithm for continuously adjusting the precision of individual

approximate replicas adaptively so as to converge to the minimum cost configuration.

We also reported experimental results from a real-world network traffic monitoring

system based on continuous queries over approximate replicas.

We then turned our attention to unanticipated one-time queries with precision

requirements. Due to the ad-hoc nature of one-time queries, the data replicas in the

repository may not be of sufficient precision to meet the query’s precision requirement.

In Chapter 4 we introduced algorithms that access a minimum-cost subset of master

data objects from their remote sources to guarantee adequate query result precision.

In Chapter 5 we studied the important problem of deciding what precision levels to

use for replicas not involved in continuous queries but subject to intermittent accesses

by one-time queries. This problem generalizes the previously studied problem of

deciding whether to perform exact replication of individual data objects. We proposed
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an adaptive algorithm for setting replica precision with the goal of maximizing overall

communication performance given a workload of one-time queries. In an empirical

study we compared our algorithm with a prior algorithm that addresses the less

general exact replication problem, and we showed that our algorithm subsumes it in

performance.

Finally, in Chapter 6 we proposed techniques for adapting some standard data

visualization methods to handle the types of approximate values produced by our

replication techniques, with the goal of not misleading users regarding data precision.

We also discussed the possibility that end-users be permitted to specify and adjust

precision requirements for continuous queries over approximate replicas directly in

the visualization interface, and proposed some potential means of motivating users

to request only as much precision as they need so as not to incur excessive cost.

The global contribution of this dissertation is to steer research on replication of

volatile data toward principled techniques for combined management of communica-

tion resources and data precision. The volume of automatically-generated data from

sensors and other electronic measurement devices is increasing at a dramatic rate.

This trend, coupled with the tendency toward distributed computing architectures,

drives the need for efficient techniques for remote monitoring and querying of dis-

tributed and rapidly-changing data. Meanwhile, in many emerging applications that

monitor and query volatile data, exact precision is not required. Instead, in many

scenarios approximate replication is sufficient, and is much less costly to achieve than

exact replication.

This dissertation has examined the approximate replication problem formally and

from a number of different angles, and has also provided extensive experimental val-

idation of the techniques developed. Our hope is that the applicability of this work

spans a broad spectrum of real-world scenarios. To further test the usefulness and

benefits of our techniques, we plan to expand our prototype network monitoring im-

plementation to include a more extensive suite of traffic monitoring and querying

facilities, with an emphasis on flexibility and ad-hoc querying. To realize our goal of

developing a very general framework for resource-efficient network traffic monitoring,

we will need to expand our work on approximate replication in a number of ways.
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A general list of some of the directions in which we envision expanding our work is

provided below.

7.1 Future Work

• Automatically choosing between our complementary approaches. The

choice of which of the complementary approaches of Performance Fixed/Maximize

Precision and Precision Fixed/Maximize Performance is more appropriate in a

given scenario depends on characteristics of the environment and application.

An interesting topic for future work is to consider policies for automatically

choosing or switching between the two approaches, possibly at a per-source

granularity.

• Expanding our techniques to handle delta encoding. If data objects are

large, we may want refresh messages to encode the difference (delta) between

the current source copy and the out-of-date replica, rather than sending the

entire object. Incorporating such a technique, e.g., as used in [70, 81], into our

approach would require some significant modifications because the refresh cost

may increase with the number of updates to the master source copy.

• Considering batching multiple refreshes together. In some environments

it may be appropriate to amortize network bandwidth by packaging several data

objects into the same message for refreshing. Doing so will cause some refreshes

to be delayed artificially while the source waits for other refreshes to accumu-

late. It would be interesting to explore the tradeoff between packaging multiple

refresh messages together to save bandwidth versus the increased divergence or

necessary increase in the latency tolerance λ (Chapter 3) resulting from delaying

refreshes.

7.1.1 Performance Fixed/Maximize Precision

We now discuss some avenues for future work that pertain specifically to the Perfor-

mance Fixed/Maximize Precision aspect of this dissertation studied in Chapter 2.
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• Studying applications with mutual consistency requirements. In some

applications we may need to maintain mutual consistency requirements among

objects being replicated [110], which would constrain the order in which re-

freshes could be performed.

• Considering priority functions based on an extended history window.

In our best-effort synchronization approach described in Chapter 2, the refresh

priority of an object is based solely on the updates that have occurred since

the last refresh. Although our experiments indicate that this approach works

quite well, it might be interesting to consider priority functions based on a

longer history period, to trade adaptiveness and reduced state for possibly more

reliable predictions of future behavior.

• Studying priority-based refresh scheduling in the presence of nonuni-

form refresh costs. We can extend our techniques to environments where

the cost to refresh objects is not uniform, possibly because they have different

sizes. Accounting for nonuniform cost in the priority function is a simple mat-

ter of extending the weight to include a factor inversely proportional to cost.

However, then the highest priority object could have high cost and potentially

require more resources than are currently available, while a lower priority object

could be refreshed. It is not obvious how best to manage bandwidth usage in a

dynamic environment when objects have nonuniform cost.

7.1.2 Precision Fixed/Maximize Performance

We divide the future directions for the Precision Fixed/Maximize Performance com-

ponent of this dissertation (Chapters 3, 4, and 5) into three categories: additional

functionality, choosing tuples to refresh for one-time queries, and improving perfor-

mance.

Additional Functionality

• Expanding the class of aggregation queries we consider. We have de-

vised algorithms for other aggregation functions, such as MEDIAN (for which
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preliminary results are reported in [38]) and TOP-k (continuous TOP-k queries

are studied in [9]). In addition, we would like to extend our results to handle

grouping on bounded values, enabling GROUP-BY and COUNT UNIQUE

queries. Nested aggregation functions such as MAX(AVG) have been studied

in [62].

• Looking beyond aggregation queries. We believe that our ideas can be ex-

panded to encompass other types of relational and non-relational queries having

different precision constraints. In our running example (Section 4.1.2), suppose

we wish to find the lowest latency path in the network from node Ni to node Nj .

A precision constraint might require that the value corresponding to the answer

returned by the system (i.e., the latency of the selected path) is within some

distance from the value of the precise best answer. Initial complexity results for

this problem [37] indicate that there is little hope of finding an optimal solution,

so approaches based on heuristics are probably necessary.

• Studying adaptive precision-setting techniques for non-numeric data.

Our overall approach setting the precision of approximate replicas in the pres-

ence of one-time queries can be applied with a broad variety of data types.

Tuning the details of our approach for nonnumeric data types such as Web

pages may be a worthwhile undertaking.

• Allowing users to express relative instead of absolute precision con-

straints. A relative precision constraint might be expressed as a constant P ≥ 0

that denotes an absolute precision constraint of δ = 2 ·A ·P , where A is the ac-

tual answer. For continuous queries, we can meet a relative precision constraint

by continually adjusting δ (see Section 3.4.6) to match the current upper answer

bound H . Relative precision constraints in the context of one-time queries over

bounded values have been studied in [62].

• Considering applying our ideas to multi-level replication systems,

where each data object resides on one source and there is a hierar-

chy of data repositories. Refreshes would then occur between a repository

and the repositories or sources one level below, with a possible cascading effect.
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Initial work in this area includes [20] and [100].

• Studying precision setting in symmetric replication systems. It may

be interesting to investigate adaptive precision setting in symmetric (peer-to-

peer) replication architectures, building on work on approximate replication in

such environments, e.g., [125].

Choosing Objects to Refresh for One-Time Queries

• Adapting our CHOOSE REFRESH algorithms to take refresh batch-

ing into account. If multiple query-initiated refreshes are sent to the same

source, the overall cost may be less than the sum of the individual costs. We

would like to adapt our CHOOSE REFRESH algorithms to take into account

such cases where refreshing one tuple reduces the cost of refreshing other tu-

ples. In fact, the same adaptation may help us develop CHOOSE REFRESH

algorithms for queries involving join and group-by expressions. In both of these

cases, refreshing a tuple for one purpose (one group or joined tuple) may reduce

the subsequent cost for another purpose (group or joined tuple).

• Considering iterative CHOOSE REFRESH algorithms. Rather than

choosing a set of tuples in advance that guarantees adequate precision regard-

less of actual exact values, we could refresh tuples iteratively until the precision

constraint is met. Iterative CHOOSE REFRESH algorithms have been stud-

ied in [38] and [62]. It may be interesting to investigate in which contexts an

iterative method is preferable to the batch method presented in Chapter 4.

Also, we could use an iterative method to give bounded aggregation queries an

“online” behavior [49], where the user is presented with a bounded answer that

gradually refines to become more precise over time. In this scenario, the goal is

to shrink the answer bound as quickly as possible.

Improving Performance

• Delaying the propagation of insertions and deletions to the central

repository. We plan to investigate ways in which discrepancies in the number
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of tuples can be bounded, and the computation of the bounded answer to a

query can take into account these bounded discrepancies. Sources will then no

longer be forced to send a refresh every time an object is inserted or deleted.

• Considering ways to amortize refresh costs by refresh piggybacking

and pre-refreshing. When a (value- or query-initiated) refresh occurs, the

source may wish to “piggyback” extra refreshes along with the one requested

or required. These extra refreshes would consist of values that are likely to

need refreshing in the near future, e.g., if the precise value is very close to

the edge of its bound. The amount of refresh piggybacking to perform would

depend on the benefit of doing so versus the added overhead. Additionally, it

might be beneficial to perform pre-refreshing, by sending unnecessary refreshes

when system load or communication cost is low that may be useful in future

processing.

• Investigating storage, indexing, and query processing issues over in-

terval approximations. We plan to study ways in which replicated data

objects stored as pairs of bound functions might be compressed. Without com-

pression, each source must keep track of the bound functions for each remotely

replicated data object. Compression issues can be addressed without affect-

ing the techniques presented in this dissertation: our CHOOSE REFRESH

algorithms are independent of which bound functions are used or how they

are represented, and we have not focused on query processing issues. Efficient

indexing schemes for interval data have been proposed in, e.g., [63].
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