
PingPong++: Community Customization
in Games and Entertainment

Xiao Xiao1, Michael S. Bernstein2, Lining Yao1, David Lakatos1,
Lauren Gust1, Kojo Acquah1, Hiroshi Ishii1

1 MIT Media Lab
75 Amherst St.

Cambridge, MA 02142
{x_x, ishii}@media.mit.edu

2 MIT CSAIL
32 Vassar St.

Cambridge, MA 02139
msbernst@csail.mit.edu

ABSTRACT
In this paper, we introduce PingPong++, an augmented ping pong
table that applies Do-It-Yourself (DIY) and community
contribution principles to the world of physical sports and play.
PingPong++ includes an API for creating new visualizations,
easily recreateable hardware, an end-user interface for those
without programming experience, and a crowd data API for
replaying and remixing past games. We discuss a range of
contribution domains for PingPong++ and share the design, usage,
feedback, and lessons for each domain. We then reflect on our
process and outline a design space for community-contributed
sports.

Categories and Subject Descriptors
H.5.1 Multimedia Information Systems

General Terms
Design, Documentation

Keywords
Sports Interfaces, Exertion Interfaces Crowd-contribution,
Community Customization, Open-Source, DIY

1. INTRODUCTION
While software games like CounterStrike and Minecraft thrive on
community customization and community-contributed content
[16], sports and games in the physical world are fundamentally
disconnected from “the crowd”. This separation is not surprising:
Shirky argues that crowds succeed when the Internet can lower
the cost of organizing groups [19], but sports activities are highly
local and physically embodied, and these physical elements are
difficult to share online. As a result, sports cannot share the same
community-driven benefits as online games: new arenas and rule
sets, experimentation, remixing and hacking.

In this work, we explore open hardware and software platforms as
a potential solution to this challenge. The core contribution of this

paper is community-contributed sports: translating the concepts of
community customization and community contribution into the
world of physical sports and play. In this paper, we introduce
PingPong++, an augmented ping pong table that embodies these
Do-It-Yourself (DIY) and sharing principles in its design.

PingPong++ reinvents the PingPongPlus project from 1997 [8],
which could track and visualize ball position during play, into a
community platform. It does so through a range of contribution
opportunities:

• Open-source Hardware: PingPong++ is made using
commodity parts and can be copied by taping sensors to the
bottom of a table and aiming a projector at the table surface.
The open-source Arduino platform and vibration sensors are
available cheaply and widely. For those without electronics
expertise, we also make pre-printed circuit boards available.

• Visualization API: any member of the community can use a
straightforward API on top of the popular Processing
platform to build new visualizations that get projected onto
the table. Contributors have created visualizations ranging
from ambient art to training tools.

• Crowd Data API: all games played on PingPong++ tables
are uploaded to a community server, where the data can be
remixed, replayed, or used to answer questions like “Where
on the table are hits most likely to score points?”

• Instant Customization: we have created a walk-up-and-use
kiosk next to the table that allows visitors to author
visualizations on the fly, without any knowledge of
programming.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
ACE '11, November 08 - 11 2011, Lisbon, Portugal
Copyright 2011 ACM 978-1-4503-0827-4/11/11…$10.00.

Figure 1. Children playing with the Koi Pond visualization
in PingPong++. The fish swim away from the disturbance

when the ball hits the table. This visualization was remixed
using the PingPong++ API and an existing Processing sketch

on openprocessing.org [18].

Members of our local community have already begun extending
the platform and contributing new visualizations.

To succeed with PingPong++, we found it necessary to overcome
significant motivational and effort barriers to contribution. Online
communities reach enough people to build a core group of
members even if only a small percentage of visitors actively
participate. However, relatively small physical communities like
office buildings (where PingPong++ is likely to be located) are
less likely to survive with the same participation rate. This
situation encouraged our design to focus on contributions with
low thresholds [15] and high payoff, and to use online tools to
share digital information like visualization code and crowd data
between tables.

To follow, we review related work, then describe PingPong++ and
its opportunities for community customization. As we share each
customization design, we report on its usage, design feedback we
received, and how it led to the next design. Finally, we reflect on
the design space of community-contributed sports.

2. RELATED WORK
In this section, we review related work in sports and exertion
interfaces, as well as research on open-source and community-
contributed interfaces.

Sports and entertainment systems have begun integrating sensors
and visual feedback. These systems often visualize progress to
onlookers, for example in martial arts [3] and skiing [12]. In
training, sports technologies are divided into those that train pure
technique and those that develop strategy. For technique, Baca et
al. developed GUIs for training ping pong hit accuracy and
serving speed [1]. Interfaces for strategy have focused on video
collection and the semi-automatic analysis of the video [1, 10].
Visualizations built by the PingPong++ team span this space:
ambient visualizations like the Koi Pond reflect game status,
while visualizations based on recorded games offer tactics and
strategy.

Many projects in sports technology aim to enhance the enjoyment
of physical activity [8, 20]. Several projects expanded the social
space of players by enabling sports across distance [13, 14]. There
has been a sharp divide in sports interfaces between the serious
and the recreational. Serious sports interfaces focus on providing
data for experts or those who wish to become experts while
recreational interfaces focus on enjoyment but not improvement.

PingPong++ also draws on related work in DIY (do-it-yourself)
and community contribution. Kuznetsov and Paulos survey
several DIY communities and identify opportunities for
engagement for HCI researchers, including for future projects [9].
Likewise, Ghosh found that contributors to open-source software
are often primarily motivated by learning and developing skills
[7]. Industry has pursued these questions through “open-source
hardware” such as Arduino [6], as well as through community
contribution of game content in games like CounterStrike,
StarCraft and Minecraft [16]. Ducheneaut et al. argue that the
performing for an “audience” in massive multiplayer online role-
playing games (MMORPGs) like World of Warcraft incentivizes
player contribution of game content [5]. Similarly, Bartle
identifies a class of players in MMORPGs who build structures in
the virtual worlds to gain social respect [2].

Our design philosophy follows a Batteries Included philosophy by
including working starter code, pre-built boards, and wizards to
create new visualizations. These approaches have seen success in

electronics construction [11, 21] and in enabling children and
other novices to quickly reach results [17]. The placement of the
original PingPong++ table in a widely trafficked public space
enable contributors to showcase their work to a constant audience
of passersby.

To our knowledge, we are the first to translate the concepts of
DIY to sports interfaces, and likewise to introduce sports
interfaces to the domain of community contribution.

3. DESIGN AND EVALUATION
There are four ways users may contribute to the PingPong++
experience: open-source hardware, a visualization API, an instant-
customization kiosk, and a web endpoint that accesses aggregate
data from the ping pong table. For each design, we will describe
the motivation, design challenges, user-end customization efforts,
reflections from users, and what we have learned through the
process.

PingPong++ followed an iterative design process, and so the
evaluations reported in this paper are not summative, final user
studies. We focus our evaluations on feedback from real
deployments of the system and open PingPong++ workshops.
Controlled evaluations of the designs are important future work.

3.1 Open-Source Hardware
Many sports interfaces require expensive hardware and significant
expertise to build and recreate. Our goal with PingPong++ was to
create a platform that could be easily duplicated by others. We did
so by creating a sensing system that is both robust and easy to
build using off-the-shelf components. PingPongPlus and
PingPong++ use pieozoelectric sensors taped to the underside of
the table to detect vibrations, which are used to track the ping
pong ball position whenever it lands on the table. A nearby
projector can then display feedback to the players by projecting
directly onto the table.

For easy duplication, we redesigned PingPongPlus’s hit position
detection circuitry to interface with the commonly used open-
source Arduino and Processing platforms. The Arduino calculates
timing differences between pairs of sensors, and our Processing
code derives the ball position based on the timing differences. The
estimation training is identical to PingPongPlus [8].

By relocating the sensors on the table into a triangular pattern, we
also improved position estimation accuracy. While the original
PingPongPlus frequently yielded large errors (between 10 and 20

Figure 2. Hardware configuration: piezoelectric sensors in a
triangular configuration under the table sense ball hits. The
Arduino estimates ball location, then the Processing sketch

visualizes the game state by projecting onto the table surface.

inches), our system reliably detects hits with an error of under 2
inches. In a trial where we tested 36 evenly distributed locations
on the table that were not original training points, the mean error
distance was 1.87 inches (std. dev. = 1.05). We have implemented
an automatic calibration script written in Python with an
instructional interface directing users to drop the ball at set
locations on the table so that the sensors only need to be placed in
approximate locations to duplicate the design.

Although our PingPong++ table runs on a breadboard circuit, we
quickly learned that many sports enthusiasts would not want to
wire a breadboard. To reach those with limited electrical
engineering knowledge, we have designed a working printed
circuit board (PCB) for the circuitry. This prefabricated board
uses common electronics parts and costs under $30 to
manufacture. With the PCB, building a table involves little more
than taping piezo sensors under the table and running our
calibration script.

Evaluation: To evaluate the difficulty of recreating the hardware,
we deployed another instance of PingPong++ elsewhere on the
MIT campus. We asked an undergraduate with almost no
experience in electronics to wire the PingPong++ circuit on a
breadboard, and she was able to build a working circuit in a single
afternoon. Installation of the second PingPong++ took under two
hours. We are currently working with two other undergraduates
who are interested in installing PingPong++ in their own homes
with our working PCBs.

3.2 Visualization API
Existing augmented sports interfaces have largely been single-
purpose, where functionalities are envisioned and implemented by
the creators of the interfaces. End-users may try out the interfaces
and can provide suggestions to the creators, but the creators have
the final word on the design. With the belief that a user of an
augmented sports interface may have more domain expertise in
sports than the creators, we aimed to empower the end-users of
PingPong++ by giving them direct control over visualizations
displayed on the table.

We pursued end-user customizability first by providing a software
library written in Processing. Processing interfaces well with
Arduino for hardware-software combination projects. It is also a
visually-oriented language that is relatively easy to learn for
programming novices: it was originally aimed at artists. Finally,
there is also an existing community of Processing programmers
who actively post example visualizations and code on websites
like openprocessing.org. Many of these visualizations can be

quickly adapted to the ping pong table, which makes it easy for
new contributors to remix and edit existing code into new ping
pong visualizations.

To make visualizations easy to write, we created a Processing
class called BallPositionSensor, which abstracts the math of
the sensors from the user. Visualization authors only need to poll
the current ball location (x, y, sideOfTable) to write
visualizations. We then created a template and several initial
visualizations for PingPong++ that users can reference. All of the
PingPong++ processing visualizations can also be prototyped
away from the ping pong table using mouse clicks to simulate ball
hits.

Evaluation. To evaluate the ease of use of our Processing library,
we recruited 7 volunteers, all MIT undergraduates and graduate
students, to design and implement their own visualizations for
PingPong++. While the general technical expertise at MIT is high,
we emphasize that these volunteers were far from expert
programmers: only two planned to be professional software
engineers, and they were both freshmen. We present three
visualizations programmed by three different volunteers and
discuss the volunteers’ own comments on their experiences. These
visualizations were created over the course of roughly a week in
the participants’ spare time.

• Constellation displays target points on the table that turns
into stars when hit. When all the stars are “discovered”, it
displays the stars as a constellation. This visualization was
created by a mechanical engineering undergraduate with a
small amount of programming experience.

• Blocks transforms ping pong into an arcade-style game
where each player tries to destroy sections of similarly
colored blocks on the opponent’s side to earn points. It was
created by a graduate student with an industrial design
background with almost no programming experience.

• Munchkin Run features randomly moving creatures on each
side of the ping pong table that get captured to the other side
when hit by the ball. It was created by a freshman with a
small amount of programming experience in Java.

Learning how to better program was the motivation for these three
volunteers and for most of the others who wrote visualizations.
Volunteers were also motivated by their interest in PingPong++
and potentially seeing their work featured on a popular installation
in the community. Our volunteers indicated that while our
examples were relatively straightforward to mimic, it took some

Figure 3. Screenshot of the Koi Pond visualization, which we

provide as an example to volunteers wishing to write their own.
Ping pong ball hits cause ripples in the table and

scare the fish away. Based on Processing sketch by Sanchez [18]

Figure 4. Screenshots of Constellation (left), Blocks (center), and
Munchkin Run (right), three visualizations created by nonexpert
programmers who had no experience with the PingPong++ API.

time to learn the basics of Processing itself given no prior
experience. Even the volunteer with prior knowledge of Java (the
language Processing is based on), required a few days to accustom
himself to Processing by working through examples and tutorials.

3.3 Instant Customization Kiosk
Based on the experiences of our volunteers, we realized that
writing a custom visualization for PingPong++ is not accessible
for most users because it requires a level of fluency in
programming and in Processing. We wanted to enable more
people to be able to customize their PingPong++ experience, so
we built an instant customization kiosk for the ping pong table.

Our kiosk sits next to the PingPong++ table and houses both the
projector and a computer with a GUI interface. Using our
interface, users can choose to play an existing visualization or
customize their own. We noticed that many of the visualizations
in our prior study could be abstracted into common templates. For
example, one class of visualizations can be defined by having an
image appear whenever the ball lands on the table. Another class
of visualizations can be defined by moving existing images on the
table toward the hit point. Our eventual goal is to provide the user
with a set of templates that cover a range of interactions with the
table and a library of graphical and audio assets. In the future,
users will be able to build visualizations by choosing a template
and modifying its visual and audio elements such as the
background graphics, sprite images, or the sound that plays during
a ball hit by selecting from the asset library.

For the moment, our kiosk is still a work in progress. As a first
step we have implemented two customizable visualizations that
represent two degrees of customization capability. In our
prototype, we have included a photobooth feature in our kiosk that
allows users to input images from the physical world into
PingPong++ visualizations.

• Card was inspired by a PingPong++ birthday card made by
two graduate students in our group. It allows users to specify
the background image, text, and the image to appear where
the ball strikes the table. Our customized card draws balloons
wherever the ball hits the table. Another card may replace the
balloons with other images or modify the text.

• Game is a customizable version of Munchkin Run. Instead
of the default munchkin graphic, a picture of the user’s face
is taken and used as the face of the munchkins moving
around the table.

Card mode gives users several design choices while Game mode
only requires users to take a picture of their face. We are currently
developing additional templates for PingPong++.

We have not yet conducted any careful usage evaluations of the
kiosk. However, we have already noticed that its physical
presence next to the table has encouraged visitors to interact with
it much more readily than they would visit a web site and install
Processing.

3.4 Crowd-Data API
The techniques discussed so far are relatively simple, and do not
have a very high ceiling [15]. In short, they only react to each
instantaneous ball hit. We wanted to enable the creation of more
advanced visualizations, both recreational and serious. To do so,
we set up a server that aggregates data from all PingPong++ tables
and returns information appropriate for visualizations.

Figure 7. Birthday mode in action (top) and the photobooth of the

kiosk to customize Munchkin Run (bottom).

Figure 5. The instant customization kiosk next to PingPong++.

Figure 6. The kiosk homescreen allows users to choose from

existing modes or create their own.

Our server, called Pong, exposes one primary endpoint for
recording a hit. Each time the table senses a hit, it sends the server
information about where the hit was, when the hit occurred, and
which table the hit was on. The server places this information in a
MySQL database. We modified the BallPositionSensor class
in the Processing code to upload this data automatically. The
server itself is written in Python using Django.

We then created a set of Python classes to provide access to the
data for programmers. Using these classes (based on Django’s
Object Relational Mapper), programmers can create complex
endpoints and do historical calculations on the ping pong games.
We believe that this high-threshold, high ceiling approach will
open the door to deeply innovative techniques from the most
dedicated contributors.

As examples of how to use aggregate data, we built the following
three visualizations aimed to provide real-time pedagogical
feedback on a user’s ping pong playing:

• Defensive Heatmap: tells plays where on the table they
should prepare to defend. Based on where a player hits the
ball, Defensive Heatmap lights up areas of the table where
the opponent is likely to return the hit. This data is
aggregated from every past game. The visualization updates
the player’s side of the table every time the ball hits the
opponent’s side.

• Offensive Spotlight: When the ball falls on the player’s side
of the table, the offensive spotlight animates a circle to show
where the player should return the hit to have the highest
chance of scoring. The animated circle starts at a large radius
and closes in on the recommended return location, making it
easier to see in the middle of a heated game. Given a ball
location, Offensive Spotlight searches the database to find all
hits that happened immediately after a ball landed in that
location. It then filters the return hits to find ones that ended
a volley—meaning that the player scored a point on the play.
Finally, the interface takes the single most successful return
location and recommends that the user hit there.

• Expert Arrows: the Expert Arrows visualization focuses on
learning from expert players. As the ball falls on the player’s
side of the table, Expert Arrows draws a large white arrow
from the ball location to the point on the table where expert
players tend to return the hit. Expert Arrows uses the same
algorithm as the offensive spotlight; however, it only
considers data from games played between two experts. We
recorded games between the top 15 ranked players in our
lab’s ping pong ladder, out of 55 known individuals. This
expert data consisted of nine full games, or 7,269 hits over a
period of three and a half hours of gameplay.

Data from PingPong++ has also been used by the DoppelLab, a
virtual model of the MIT Media Lab with a virtual ping pong table
that plays a game of pong corresponding to hits from the physical
table [4].

5. DISCUSSION AND DESIGN SPACE
PingPong++ followed a highly iterative design process. In this
section, we reflect on the process and the design space that the
visualization API, open hardware, kiosk, and hit database explore.

Within a closed environment like an office building or common
area, we found easily extensible software to be the first step
toward building a community. The visualizations followed a “do

no harm” principle: at worst, even with buggy visualizations, the
ping pong table would be just as playable. At best, the more
engaging visualizations encouraged players to try their hand at
authoring. Easily remixable starter code proved extremely
important at helping visualization authors get started quickly. In
addition, building on amateur programming platforms like
Processing was important to bootstrapping a community of
authors.

However, a visualization API requires authors to be motivated
enough to go to their desks and write code. Instead, we found that
in-band customization opportunities can engage a much broader
crowd that is interested in tinkering with the visualization
mechanics. Building the visualization API before the kiosk
allowed us to learn common authoring patterns.

To spread the system beyond one prototype, it is important for the
hardware to be easily replicable. Here we take inspiration from
the blossoming DIY communities [6]. Where research projects
typically rely on expensive hardware and advanced degrees in
embedded programming, community replication needs simple
instructions and off-the-shelf parts. We found that the circuit
could be further encapuslated into a printed circuit board, which
reduced the extra labor to mostly wire and tape. However, we
believe that hardware spread is still a large challenge for
community-contributed sports interfaces.

Finally, we believe that it is important to support community
members who want to build complex applications on the platform.
To this end, we automatically capture all games played on the

Figure 8. Defensive Heatmap (left), Offensive Spotlight
(center), and Expert Arrows (right) with the ball hit that

triggered the display. The player for whom the visualization is
intended is at the top.

visualization API, open hardware, kiosk, and hit database
explore.

Within a closed environment like an office building or common
area, we found easily extensible software to be the first step
toward building a community. The visualizations followed a “do
no harm” principle: at worst, even with buggy visualizations, the
ping pong table would be just as playable. At best, the more
engaging visualizations encouraged players to try their hand at
authoring. Easily remixable starter code proved extremely
important at helping visualization authors get started quickly. In
addition, building on amateur programming platforms like
Processing was important to bootstrapping a community of
authors.

However, a visualization API requires authors to be motivated
enough to go to their desks and write code. Instead, we found
that in-band customization opportunities can engage a much
broader crowd that is interested in tinkering with the
visualization mechanics. Building the visualization API before
the kiosk allowed us to learn common authoring patterns.

To spread the system beyond one prototype, it is important for
the hardware to be replicable. Here we look to the blossoming
DIY and Instructables communities. Where research projects
typically rely on expensive hardware and advanced degrees in
embedded programming, community replication needs simple
instructions and off-the-shelf parts. We found that the circuit
could be further encapuslated into a printed circuit board, which
reduced the extra labor to mostly wire and tape. However, we
believe that hardware spread is still a large challenge for
community-contributed sports interfaces.

Finally, we believe that it is important to support community
members who want to build complex applications on the
platform. To this end, we automatically capture all games played
on the table. This database endpoint has opened a broad range of
other applications, like one off websites (e.g., “Is Anyone Using
The Ping Pong Table Now? .com”), distributed play where
players can see the activity on other tables in realtime, game
replay, changing the spectator experience, and even the ability to
keep score or change the rules of the game.

We believe that these elements -- customizable visualizations,
re-creatable hardware, and open data -- are core to any
community-contributed sports interface. While our system was
built at MIT, most of the contributions described in this paper
were not authored by technical people. We view this as a
success. However, it will be important to do a longer-term study
of the system’s success outside of our immediate environment.

4. CONCLUSION AND FUTURE WORK
In this paper, we have introduced PingPong++, and with it,
community-contributed sports and games. Where crowds have
been successful at mobilizing for large tasks like Wikipedia and
Ushahidi, it has been difficult to draw these benefits into the

Figure 9. Screenshot of ping pong table simulation powered by

PingPong++ data within DoppelLab [4]

table. This database endpoint has opened a broad range of other
applications, like one off websites (e.g., a webpage
“IsThePingPongTableBusy.media.mit.edu” which displays “YES”
if the table has recorded a hit in the last 15 seconds), distributed
play where players can see the activity on other tables in realtime,
game replay, changing the spectator experience, and even the
ability to keep score or change the rules of the game.

We believe that these elements – customizable visualizations, re-
creatable hardware, and open data – are core to any community-
contributed sports interface. While our system was built at MIT,
most of the contributions described in this paper were not
authored by technical people. We view this as a success.
However, it will be important to do a longer-term study of the
system’s success outside of our immediate environment.

6. FUTURE WORK AND CONCLUSION
In this paper, we have introduced PingPong++, and with it,
community-contributed sports and games. Where crowds have
been successful at mobilizing for large tasks like Wikipedia and
Ushahidi, it has been difficult to draw these benefits into the
physical realm. We believe that this is possible using sports and
games as a vector: communities play, experience the enhanced
sports interface, and are motivated to personalize and improve the
experience.

A yearlong deployment of the table, open hardware, visualization
API, crowd data API, and more recently the kiosk have taught us
much about the dynamics of community-contributed sports like
PingPong++. Ping pong is an enjoyable way to learn to program,
and a public showing of the resulting visualization is a high-
payoff result from participating. It is important to support a range
of motivations, from ten-seconds-to-experiment to overnight-
hacking-session.
We believe that the most critical future work lies in wide
deployment of the platform. We envision tens or hundreds of such
tables, all networked together across the world. We are already
beginning to publish the PingPong++ instructions online, but
success will also depend on technical support and evangelism. We
hope to see a day soon where community members will help each
other set up new installations.

7. ACKNOWLEDGEMENTS
We are grateful to Nan-Wei Gong, Mark Feldmeyer, and Joseph
Paradiso for their help with the hardware redesign. Thanks to
Ricardo Sanchez for allowing us to adapt his Koi Pond code for
our visualization. Thanks to the Tangible Media Group for their
continual support.

8. REFERENCES
[1] Baca, A. 2008. Feedback Systems. In: Computers in Sport,

P. Dabnichki and A. Baca, Eds. WIT Press, Boston, MA, 44-
67.

[2] Bartle, Richard. 2003. Designing Virtual Worlds.
Indianapolis: New Riders.

[3] Chi, E. H., Song, J., and Corbin, G. 2004. "Killer App" of
wearable computing: wireless force sensing body protectors
for martial arts. In Proc. UIST ‘04.

[4] Dublon, G., Pardue, L., Mayton, B., et al. 2011. DoppelLab.
Ars Electronica.

[5] Ducheneaut, N., N. Yee, et al. 2006. “Alone Together?"
Exploring the Social Dynamics of Massively Multiplayer
Online Games. In Proc. CHI ’06.

[6] Fried, L. and Torrone, P. Open Source Hardware.
http://www.adafruit.com/blog/2009/03/28/open-source-
hardware-overview-slides/. Accessed June 07 2011.

[7] Ghosh, R. A. 2002. Free/Libre and Open Source Software:
Survey and Study, Part IV: Survey of Developers.
International Institute of Infonomics University of
Maastricht, Netherlands.

[8] Ishii, H., Wisneski, C., Orbanes, J., Chun, B., and Paradiso,
J. 1999. PingPongPlus: design of an athletictangible interface
for computer-supported cooperative play. In Proceedings of
CHI '99. ACM, New York, NY, 394-401.

[9] Kuznetsov, S., and Paulos, E. 2010. Rise of the expert
amateur: DIY projects, communities, and cultures. In Proc.
NordiCHI '10

[10] Lames, M. 2008. Coaching and Computer Science. In:
Computers in Sport, P. Dabnichki and A. Baca, Eds. WIT
Press, Boston, MA, 100-119.

[11] Mellis, D., Gordon, D., and Buechley L. 2011. Fab FM: the
design, making, and modification of an open-source
electronic product. In Proc. TEI '11.

[12] Michahelles, F. and Schiele, B. 2005. Sensing and
monitoring professional skiers. IEEE Pervasive Computing
4, 3 40-46.

[13] Mueller, F. 2008. Long-Distance Sports. In: Computers in
Sport, P. Dabnichki and A. Baca, Eds. WIT Press, Boston,
MA, 70-95.

[14] Mueller, F. and Gibbs, M. R. 2007. Building a table tennis
game for three players. In Proc. ACE ‘07.

[15] Myers, B., Hudson, S.E., and Pausch, R. 2000. Past, present,
and future of user interface software tools. ACM Trans.
Comput.-Hum. Interact. 7, 1 (March 2000), 3-28.

[16] Postigo, H. 2007. Of Mods and Modders: Chasing down the
value of fan-based digital game modifications. Games and
Culture 2(4), pp. 300-313.

[17] Resnick, M. 1993. Behavior construction kits. Commun.
ACM 36, 7 (July 1993), 64-71.

[18] Sanchez, R. 2010. Koi Fish Pond Processing Sketch.
http://www.openprocessing.org/visuals/?visualID=28285.

[19] Shirky, C. 2009. Here Comes Everybody. Penguin Books.
[20] Wijnalda, G., Pauws, S., Vignoli, F., and Stuckenschmidt, H.

2005. A Personalized Music System for Motivation in Sport
Performance. IEEE Pervasive Computing 4, 3 (Jul. 2005),
26-32.

[21] Wu, K. and Gross, M. 2010. TOPAOKO: interactive
construction kit. In Extended Abstracts CHI ‘10.

