
Crowd-Powered Systems

by

Michael Scott Bernstein

S.M., Massachusetts Institute of Technology, 2008
B.S., Stanford University, 2006

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of

Electrical Engineering and Computer Science
May 23, 2012

Certified by. .
David R. Karger

Professor
Thesis Supervisor

Certified by. .
Robert C. Miller

Associate Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, EECS Committee on Graduate Students

Crowd-Powered Systems

by

Michael Scott Bernstein

Submitted to the Department of
Electrical Engineering and Computer Science
on May 23, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Crowd-powered systems combine computation with human intelligence, drawn from
large groups of people connecting and coordinating online. These hybrid systems en-
able applications and experiences that neither crowds nor computation could support
alone.

Unfortunately, crowd work is error-prone and slow, making it difficult to incor-
porate crowds as first-order building blocks in software systems. I introduce com-
putational techniques that decompose complex tasks into simpler, verifiable steps to
improve quality, and optimize work to return results in seconds. These techniques
develop crowdsourcing as a platform so that it is reliable and responsive enough to
be used in interactive systems.

This thesis develops these ideas through a series of crowd-powered systems. The
first, Soylent, is a word processor that uses paid micro-contributions to aid writing
tasks such as text shortening and proofreading. Using Soylent is like having access
to an entire editorial staff as you write. The second system, Adrenaline, is a camera
that uses crowds to help amateur photographers capture the exact right moment
for a photo. It finds the best smile and catches subjects in mid-air jumps, all in
realtime. Moving beyond generic knowledge and paid crowds, I introduce techniques
to motivate a social network that has specific expertise, and techniques to data mine
crowd activity traces in support of a large number of uncommon user goals.

These systems point to a future where social and crowd intelligence are central
elements of interaction, software, and computation.

Thesis Supervisor: David R. Karger
Title: Professor

Thesis Supervisor: Robert C. Miller
Title: Associate Professor

2

Acknowledgments

This thesis is dedicated to a crowd of indispensable individuals:

• my wife Adi, who was also thanked in my undergraduate and masters theses,

and who deserves the appreciation even more in this one;

• my parents Neila and Andy and my sister Corinne, who know more about

computers than they admit;

• my advisors David Karger and Rob Miller, always willing to listen to crazy

ideas;

• Terry Winograd, Scott Klemmer, Björn Hartmann, and Jeff Shrager, who got

me into this business in the first place;

• my mentors and role models, Mark Ackerman, Desney Tan, and Ed Chi;

• more colleagues and collaborators than I should have probably enlisted as a

graduate student — Adam Marcus, Andrés Monroy-Hernández, Bongwon Suh,

Drew Harry, Greg Little, Greg Vargas, Eric Horvitz, Hiroshi Ishii, Jaime Teevan,

Jilin Chen, Joel Brandt, Katrina Panovich, Kurt Luther, Lichan Hong, Mary

Czerwinski, Max Van Kleek, mc schraefel, Paul André, Sanjay Kairam, Susan

Dumais, and Xiao Xiao;

• the community and friends in the Haystack and User Interface Design groups

at MIT’s Computer Science and Artificial Intelligence Laboratory;

• and the participants on Amazon Mechanical Turk and other crowdsourcing

platforms, who both make this research possible and keep it interesting.

I was supported by a National Science Foundation Graduate Research Fellowship,

a Microsoft Research PhD Fellowship, a Xerox Fellowship, and some generous advi-

sors. These projects were supported in part by NSF grant IIS-1111044. You all make

graduate school possible — thanks.

3

Contents

1 Introduction 19

1.1 Interactive Systems Powered by Crowds 21

1.1.1 Realtime Crowdsourcing Platform and Modeling 22

1.1.2 Realtime Crowd-Powered Systems 23

1.1.3 Beyond Generic Paid Crowds: Targeted Information Needs . . 24

1.2 Contributions . 26

1.2.1 Design of Crowd-Powered Systems 27

1.2.2 Computational Techniques to Guide Crowds 27

1.2.3 Generalization to Unpaid Crowds and Specific Needs 28

1.3 Thesis Overview . 28

2 Related Work 30

2.1 Crowdsourcing . 30

2.1.1 Definitions and Design Space 31

2.1.2 Voluntary Crowdsourcing . 33

2.1.3 Paid Crowdsourcing . 34

2.2 Crowd-Powered Systems . 37

2.2.1 Soylent . 39

2.2.2 Adrenaline and Realtime Crowd-Powered Systems 40

2.3 Crowds and Algorithms . 41

2.4 Social Network-based Crowds . 42

2.5 Mining Crowd Data . 44

2.6 Conclusion . 44

4

3 Soylent: A Word Processor

with a Crowd Inside 45

3.1 Soylent . 47

3.1.1 Shortn: Text Shortening . 48

3.1.2 Crowdproof: Crowdsourced Copyediting 50

3.1.3 The Human Macro:

Natural Language Crowd Scripting 51

3.2 Techniques for Programming Crowds 53

3.2.1 Challenges in Programming with Crowd Workers 53

3.2.2 The Find-Fix-Verify Pattern 56

3.3 Implementation . 61

3.4 Evaluation . 61

3.4.1 Shortn Evaluation . 62

3.4.2 Crowdproof Evaluation . 66

3.4.3 Human Macro Evaluation . 68

3.4.4 Impact of Price on Wait Time 71

3.5 Discussion . 73

3.6 Conclusion . 73

4 Realtime Crowdsourcing:

Platform and Model 75

4.1 The Retainer Model . 77

4.1.1 Retainer Design and Wait Time 78

4.1.2 Retainer Field Experiments 78

4.2 Queueing Theory Model . 84

4.2.1 Model Formalization . 84

4.2.2 Optimal Retainer Pool Size 90

4.2.3 Worker Abandonment . 92

4.2.4 Limited Retainer Lifetimes . 93

4.3 Application to Common Crowdsourcing Tasks 93

5

4.4 Improvements to Crowdsourcing Platforms 95

4.4.1 Retainer Subscriptions . 95

4.4.2 Global Retainer Pools . 96

4.4.3 Precruitment: Predictive Recruitment 100

4.4.4 Evaluation . 101

4.5 Discussion . 104

5 Realtime Crowdsourcing:

Systems 106

5.1 Adrenaline . 107

5.2 Rapid Refinement: Coordinating Synchronous Crowds for Fast Results 109

5.2.1 Algorithm Design . 110

5.3 Evaluation . 112

5.3.1 Method . 112

5.3.2 Results . 114

5.4 Realtime Crowd-Powered Creativity 117

5.5 Discussion . 119

5.5.1 Realtime Crowd-Powered Systems 120

5.5.2 Rapid Refinement . 120

5.6 Conclusion . 121

6 Beyond Generic Paid Crowds:

Specific Data Needs 123

6.1 Friendsourcing . 124

6.1.1 Collabio: Social Friend-Tagging 125

6.1.2 FeedMe: A Friendsourced Recommender System 141

6.1.3 Systems Powered by Friendsourcing 152

6.1.4 Conclusion: Friendsourcing . 158

6.2 Data Mining . 159

6.2.1 Tail Answers . 159

6.2.2 Identifying Answer Candidates 162

6

6.2.3 Filtering Answer Candidates 163

6.2.4 Extracting the Tail Answer 166

6.2.5 Implementation . 168

6.2.6 Evaluation . 170

6.2.7 Discussion . 176

6.2.8 Data Mining Extensions: AI, Snippets, and More Answer Types 177

6.2.9 Conclusion: Data Mining . 179

6.3 Conclusion: Beyond Generic Crowds 180

7 Discussion:

Framework, Limits, Ethics 182

7.1 Deployable Wizard-of-Oz Prototypes 182

7.2 Design Framework and Tradeoffs . 183

7.2.1 Crowd Design Tradeoffs . 184

7.2.2 User Design Tradeoffs . 187

7.3 Limitations of Crowdsourcing . 189

7.3.1 Limits to Crowd Cognition and Crowd Work 189

7.3.2 Stifling Individual Abilities . 190

7.3.3 Scale . 191

7.3.4 Cost . 192

7.3.5 Privacy . 192

7.3.6 Legal Ownership . 193

7.3.7 Collusion . 194

7.4 Ethics . 194

7.4.1 Wages . 195

7.4.2 Power Imbalance between Workers and Requesters 195

7.4.3 Crowdsourcing for Evil? . 196

7.4.4 Cyber-Taylorism vs. Rethinking the Design Process 197

7.4.5 The Water Cooler for the Crowd:

Encouraging Social Interaction 197

7

7.4.6 Career Advancement . 198

8 Conclusion 199

8.1 Summary of Contributions . 199

8.2 Impact and Recent Developments . 202

8.3 Future Work . 203

8.3.1 Hybrid Crowd–A.I. Systems 203

8.3.2 Crowdsourcing Markets . 204

8.3.3 A Science of Crowdsourcing 205

8.3.4 Autonomous, Self-Correcting Crowds 206

8.3.5 Large-Scale Systems . 206

8.4 Looking Ahead . 207

A Soylent Evaluation Texts 208

A.1 Shortn inputs . 208

A.1.1 Blog . 208

A.1.2 Classic UIST Paper [92] . 209

A.1.3 Draft UIST Paper [194] . 210

A.1.4 Rambling Enron E-mail . 212

A.1.5 Technical Writing [5] . 213

A.2 Crowdproof inputs . 214

A.2.1 Passes Word’s Checker . 214

A.2.2 English as a Second Language 215

A.2.3 Notes from a Talk: NoSQL in the Cloud 215

A.2.4 Bad Wikipedia Page . 215

A.2.5 Draft UIST Paper [194] . 216

8

List of Figures

1-1 Soylent guides crowd workers to support new kinds of interactions in

traditional user interfaces such as the word processor. Here, crowd

workers have suggested multiple shorter rewrites of a paragraph, and

the user adjusts the length of the paragraph via a slider. Red text

indicates locations where rewrites have occurred, in addition to any

cuts. Tick marks represent possible lengths, and the blue background

bounds the possible lengths. 21

1-2 Find-Fix-Verify improves work quality for open-ended tasks such as

text shortening by decomposing open-ended tasks into more directed

steps. 22

1-3 Adrenaline’s realtime crowds operate a camera shutter by choosing the

most photographic moment seconds after it happens. Crowd members’

current votes on the best frame appear as colored triangles below the

timeline. 24

1-4 Rapid refinement repeatedly shrinks the working area for all workers

when it detects that several independent workers are exploring the

same area. 25

9

2-1 Crowd contributions make small improvements to correctly transcribe

messy handwriting. While few individuals could transcribe this text

correctly, the crowd gets it mostly correct (errors underlined): “You

misspelled several words. Please spellcheck your work next time. I also

notice a few grammatical mistakes. Overall your writing style is a bit

too phoney. You do make some good points, but they gotlost amidst

the writing. (signature).” The missed words: flowery, get, verbiage,

and B-. [130]. 31

2-2 Amazon Mechanical Turk presents a list of tasks and payment for each.

The list can be sorted by price, number of tasks, and recency. Workers

accept a task, complete it, and submit it to the requester for review. . 34

2-3 The Sheep Market is an art piece exploring crowd-authored creativity.

This image shows a small subset of the 10,000 sheep drawn by workers

on Mechanical Turk [107]. 37

3-1 Soylent adds a set of commands and a status bar to Microsoft Word.

We envision that these same concepts could be translated to many

similar systems. 48

3-2 Shortn allows users to adjust the length of a paragraph via a slider.

Red text indicates locations where rewrites have occurred, in addi-

tion to any cuts. Tick marks represent possible lengths, and the blue

background bounds the possible lengths. 49

3-3 Crowdproof is a human-augmented proofreader. The drop-down ex-

plains the problem (blue title) and suggests fixes (gold selection). . . 50

3-4 The Human Macro allows users to request arbitrary tasks over their

document. Left: user’s request pane. Right: worker task preview,

which updates as the user edits the request pane. 52

3-5 Find-Fix-Verify identifies patches in need of editing, recruits workers

to fix the patches, and votes to approve work. 57

10

3-6 Find-Fix-Verify proceeds in three stages. Tasks for each stage are

compressed into one page here. The top task is Find, the middle one

is Fix, and the bottom one is Verify. 58

3-7 A group of workers always accepted the Find or Fix task while it was on

the homepage, roughly within two–three minutes of posting. Raising

the price sped up the arrival of the rest of the workforce, but did not

impact these early workers. 72

4-1 When a worker accepts a task with a retainer, the system displays an

explanation of the maximum retainer time as well as a preview of the

task that will eventually appear. 79

4-2 When a task arrives, a Javascript alert() draws the worker’s attention

to the application tab so they can begin. 80

4-3 For retainer times under ten minutes, a majority of workers responded

to the alert within two seconds and three-quarters responded within

three seconds. N=1442. 81

4-4 A small reward for fast response (red) led workers in a ten-minute re-

tainer to respond as quickly as those on a two-minute retainer without

reward (Figure 4-3, red). Other conditions included no alert (blue),

an alert without bonus payment (purple), and a game to keep workers

entertained (green). N=1913. 83

4-5 Graphs that visualize the relationships between retainer pool size, traf-

fic intensity, and (a) cost, (b) probability of a task waiting, and (c) ex-

pected wait time. In the graph of expected wait time, we set λ = 1, so

µ = ρ−1. When ρ > c, there are often not enough workers on retainer

to service all tasks. As a result, wait time goes up, but cost goes down. 88

4-6 By calculating cost and the probability of a task needing to wait for

integer values of c ∈ [1, 15], we can visualize the relationship between

the two values. 89

11

4-7 By assigning a dollar value to missed tasks, we can visualize the rela-

tionship between retainer size and total cost. Assuming traffic intensity

ρ = 1 and retainer wage s = 1, these curves demonstrate the trade-off

between more missed tasks on the left part of the graph and higher

retainer costs on the right. 91

4-8 A task routing scenario where a typical randomized approach would

lead to poor results. t1 would receive relatively few workers. Depending

on the values of µi, each task type could find itself in this starved state. 99

4-9 To test precruitment, workers participated in retainer tasks that chal-

lenged them to play a game of Whack-A-Mole and click on the mole

as soon as it appeared. 102

4-10 The median length of time between the mole image appearing and the

workers moving to click on it was 0.50 seconds. So, a platform can

recall retainer workers early and get crowds in half a second instead of

waiting for the workers to respond to the retainer alert. 103

4-11 The median length of time between the mole image appearing and the

workers clicking on it was 1.12 seconds. 103

5-1 Adrenaline is a camera that uses crowds to find the right moment for a

picture by capturing ten-second movies. It looks for early agreement to

filter the timeline down quickly to a single frame. A photo is typically

ready about one second after the user reviews the movie. 108

5-2 Rapid refinement repeatedly shrinks the working area for all workers

when it detects that several independent workers are exploring the

same area. 111

5-3 Rapid refinement consistently completed quickly. Generate One some-

times located a fast worker, but often did not, so it has a larger timing

variance. 115

12

5-4 Timeline of the median Adrenaline execution. Each bar length repre-

sents the median length of time for that stage. For example, enough

crowd members typically arrived 2.6 seconds after the request was

made, and agreement on the first refinement typically took 4.7 sec-

onds. 116

5-5 Photos from the Adrenaline study. The examples are good, typical,

and bad photos that rapid refinement recommended. The computer

vision and photographer columns demonstrate how other approaches

performed on the same movie. 118

5-6 More good, typical, and poor photos selected by Rapid Refinement. . 118

5-7 Puppeteer allows an artist or designer to generate a group of articulated

figures quickly, and to interact with workers as they work. a) The user

demonstrates control points. b) Workers move control points to match

a request, like “make the person look excited!” c) The user watches

incoming results and interacts with workers. d) The final result in

Photoshop. 119

6-1 The user has guessed several tags for Greg Smith, including band, poker

and stanford. Tags guessed by Greg’s other friends are hidden by dots

until the user guesses them. 126

6-2 The landing page for Collabio. All application activity occurs on three

tabs: Tag!, My Tags, and Leaderboard. The leaderboard is typically

below the instructions, shown in Figure 6-5. 127

6-3 The tag cloud begins completely obscured. The player guesses harvard,

receives 12 points for agreeing with eleven other players and reveals

Harvard as a large tag. Faulkner is next; it does not match existing

tags and is added to the cloud. 128

6-4 The My Tags page allows the user to view their own tag cloud com-

pletely uncovered. Not shown: the top 10 scorers list and a complete

listing of each tag’s authors. 129

13

6-5 Collabio leaderboards feature the friends with the most tags (left) and

the friends who have tagged the most others (right). 130

6-6 The design space of social tagging applications. Collabio’s choices are

highlighted in blue . 132

6-7 A bar chart representation of Table 6.2 indicates that all three classes

of tags were rated above neutral (4) on average as accurate descriptors. 136

6-8 A bar chart representation of Table 6.3, focusing on the Facebook con-

dition. Popular Tags tended to have evidence available on the profile;

Middling Tags and Uncommon Tags were much less likely to. There

was considerable variance in ratings. 139

6-9 The FeedMe plug-in for Google Reader suggests friends, family, and

colleagues who might be interested in seeing the post that you are

reading. This user has selected john@doe.com and mary@email.com

out of the list of 5 recommendations. The “Now” button sends an

e-mail immediately; the “Later” button queues the item in a digest of

multiple messages. 141

6-10 Load indicators reflect the number of items sent today (left) and whether

the receiver has seen the post already (right). 143

6-11 The One-Click Thanks leaderboard gives sharers and recipients a chance

to see how many other people have enjoyed that sharer’s content. . . 144

6-12 FeedMe’s evaluation was a 2x2 design. Recommendation features could

be turned on or off, and the social awareness features could be turned

on or off. 145

6-13 Typically, users shared with small numbers of individuals and ad-

dressed each message to one recipient. 147

6-14 After the initial rush of activity, participants continued to use FeedMe

to send a consistent percentage of posts viewed. 148

6-15 Participants reported a significant preference for the recommendation

interface (p < .05). 150

14

6-16 Collabio QnA is a question and answer system that uses Collabio tags

to find friends and friends-of-friends who can answer your questions. . 153

6-17 A tag cloud comparing users tagged with washington to users tagged

with georgia tech in Collabio Clouds. 155

6-18 Tail Answers are inline direct responses for search results. This Tail

Answer addresses recipe substitutes for molasses. 160

6-19 Tail Answers address less common information needs. These examples

(including errors) were produced by the data mining and crowdsourcing

processes described in the paper. They trigger on related queries, e.g.,

apple calories. 160

6-20 An overview of the three phase Tail Answers creation process, which

involves 1) identifying answer candidates, 2) filtering the candidates

to ones that address “answerable” needs, and 3) extracting the Tail

Answer content. Steps that are implemented via data mining are indi-

cated in blue, and those implemented via crowdsourcing are indicated

in orange. 162

6-21 In this example workers extracted all of the text when an inclusion/exclusion

lists was not used. Orange text is the same answer with inclusion/exclusion

lists. 167

6-22 The Tail Answers crowd extraction algorithm (bottom) can suggest

replacements for result snippets (top). 178

6-23 Code tutorial answers. Within a domain, Tail Answers like these can

specialize their user interface. 180

8-1 As described in Chapter 1, the question of user agency leads to a

design axis. At the ends are completely user-controlled interactions

and completely system-driven interactions. Designs sometimes split

the difference, for example with interactive machine learning [52]. . . 200

15

8-2 Crowd-powered systems add an additional dimension to the design

space: crowds may take on tasks that systems cannot perform reliably

yet. Soylent relies mostly on crowd contributions, but the system takes

initiative in choosing rewrites. There are many under-explored areas

of this design space, especially ones that more closely link the crowd

to system initiative and artificial intelligence. 200

16

List of Tables

3.1 Our evaluation run of Shortn produced revisions between 78%–90% of

the original paragraph length on a single run. The Example Output

column contains example edits from each input. 63

3.2 A report on Crowdproof’s runtime characteristics and example output. 67

3.3 The five tasks in the left column led to a variety of request strategies.

Terse, typo-filled user requests still often led to success. 69

4.1 A tabular representation of Figure 4-3. 81

4.2 A tabular representation of Figure 4-4. 83

4.3 A/B captures quick crowd votes. 94

5.1 Rapid Refinement was the fastest algorithm and had the lowest timing

variance. 115

5.2 Rapid Refinement produced higher-quality photos than Computer Vi-

sion, faster than Generate and Vote, and with less variance than Gen-

erate One. 117

6.1 A breakdown of information type by tag bucket. Affiliation and interest

categories were the most popular among the three categories. 134

6.2 User ratings of how accurate and widely known the tag buckets were,

on 7-point Likert scale (1=very inaccurate / not widely known, 7 =

very accurate / widely known). 135

6.3 Mean ratings applied to tags, from 1 (no evidence to support tag) to

7 (tag appeared verbatim). 138

17

6.4 Confusion matrix of rater bucketing decisions. Raters were accurate at

identifying Popular Tags and Fake Tags, but less so at Middling Tags

and Uncommon Tags. 139

6.5 Pages with high destination probability, queries to them, and their

crowd-voted answer category. All but the bottom row had a ques-

tion query: the lack of a question signals that Pandora would not be

appropriate for an answer. 163

6.6 Hand-labeled writing and correctness ratings. 171

6.7 Examples of common errors in Tail Answers. 171

6.8 Mean Likert scale responses to: “This is a very useful response for the

query.” . 174

6.9 Mean Likert scale responses to: “This page contains everything I need

to know to answer the query without clicking on a link.” 174

6.10 An automated question-answering system proposed Tail Answers and

crowds filtered them. 178

7.1 Design dimensions for creating the crowd. 184

7.2 Design dimensions for the user interaction. 188

18

Chapter 1

Introduction

As far back as Doug Engelbart’s NLS [50] and Ivan Sutherland’s Sketchpad [188],

human-computer interaction has been structured around a tradeoff between user con-

trol and system automation. The user has deep context and understanding of the

task, but limited memory and speed. The system has limited context and under-

standing, but powerful algorithmic resources. As a result, where the system cannot

succeed reliably, the user steps in to guide the process manually.

This tradeoff between the system and the user both defines and limits human-

computer interaction. If the system cannot reliably support a task or goal, and if

the user is unwilling to do it manually, the user may abandon the system. As a

result, most interactive systems only attempt tasks they can safely automate. For

example, consider the word processor — likely one of the most heavily-used and

heavily-designed interactive systems of all time. While it supports secondary tasks

like layout and spelling, the word processor has limited support for the primary task

it was designed for: writing. Issues such as expressiveness, clarity, and cutting text

are beyond the abilities of the system, and thus left entirely to the user.

This thesis proposes that combining computing with the intelligence of crowds —

large groups of people connecting and coordinating online — allows the creation of

hybrid human-computer systems that overcome the limits of the user-system tradeoff.

These crowd-powered systems do not only rely on the cognitive abilities of the user,

but also reach out to the aggregate knowledge, cognition, and perception abilities of

19

many individuals. These crowds may be paid, incentivized through social interac-

tion, or mined from activity traces. This thesis will demonstrate that crowd-powered

systems let us re-envision classic interactive computing systems such as the word

processor and digital camera. I will also describe how computation can help guide

crowds to complete more complex tasks, faster. If successful, this research agenda will

impact areas of computing ranging from hybrid crowd-artificial intelligence systems

[94, 24, 62] and open-world databases [56, 137, 157] to the broader social science and

management disciplines [140].

While large groups are increasingly adept at completing straightforward parallel

tasks [187, 67, 95], they can struggle with complex work. Participants vary in quality,

well-intentioned contributions often introduce errors, and errors are amplified as they

propagate through the crowd. The resulting output is typically poor or incomplete.

Without higher-level coordination, many tasks are beyond the ability of crowds today.

Moreover, crowds that can generate the necessary information might not even exist

yet, or their knowledge might be distributed across the web.

This dissertation develops computational techniques for high-quality, low-latency

crowdsourcing. First, the Find-Fix-Verify design pattern decomposes complex tasks

into simpler, verifiable steps. Second, the retainer model of recruitment returns on-

demand human results in seconds. Third, we introduce a queueing theory model to

optimize the correct crowd size given task requirements. Fourth, we incentivize the

collection of specific information needs that generic crowds cannot support. These

contributions are critical to the creation of crowd-powered systems: they advance

crowdsourcing from a batch platform to one that is interactive and realtime.

The core idea of this thesis is a set of architectural and interaction patterns for

integrating crowdsourced human contributions directly into interactive systems. The

thesis accomplishes this goal by developing a series of interactive prototypes, each of

which advance crowdsourcing further as a platform to support high-quality, fast, or

personally-targeted interactivity.

20

Figure 1-1: Soylent guides crowd workers to support new kinds of interactions in
traditional user interfaces such as the word processor. Here, crowd workers have sug-
gested multiple shorter rewrites of a paragraph, and the user adjusts the length of the
paragraph via a slider. Red text indicates locations where rewrites have occurred, in
addition to any cuts. Tick marks represent possible lengths, and the blue background
bounds the possible lengths.

1.1 Interactive Systems Powered by Crowds

Soylent is a crowd-powered word processor that uses paid micro-contributions to help

with writing tasks. Using Soylent is like having an editorial staff available as you write.

For example, crowds can shorten the user’s writing by finding wordy text and offering

alternatives that the user might not have considered. The user selects from these

alternatives using a slider that specifies the desired text length (Figure 1-1). Soylent

shortens text up to 85% of its original length on average while preserving its meaning.

By using tighter wording rather than wholesale cuts, the system shortens papers by

lines or pages within minutes. Soylent also offers human-powered proofreading and

natural-language macros.

On-demand crowds cost money and can be error-prone; to be worthwhile to the

21

Find
“Identify at least one area that can be shortened
 without changing the meaning of the paragraph.”

Fix
“Edit the highlighted section to shorten its length
 without changing the meaning of the paragraph.”

Soylent, a prototype...

Find overlapping areas Randomize order of suggestions

Verify
“Choose at least one rewrite that has signi�cant
 style errors in it. Choose at least one rewrite that
 signi�cantly changes the meaning of the sentence.”

Soylent is, a prototype...
Soylent is a prototypes...
Soylent is a prototypetest...

Figure 1-2: Find-Fix-Verify improves work quality for open-ended tasks such as text
shortening by decomposing open-ended tasks into more directed steps.

user, the system must control costs and ensure correctness. To solve this problem,

Soylent introduces a crowd programming pattern called Find-Fix-Verify. Find-Fix-

Verify (Figure 1-2) splits complex tasks into simpler, verifiable steps that utilize

independent agreement and voting to produce reliable results. Rather than ask a

single crowd worker to read and edit an entire paragraph, for example, Find-Fix-Verify

recruits one set of workers to find candidate areas for improvement, then collects a set

of candidate improvements, and finally filters out incorrect candidates. This process

prevents errant crowd workers from contributing too much or too little, and from

introducing errors into the document. This technique guides workers through open-

ended editing processes in Soylent. Other researchers have adapted Find-Fix-Verify

for object identification in images [152], map labeling [185], and crowd programming

languages [145].

1.1.1 Realtime Crowdsourcing Platform and Modeling

Soylent opens a design space of systems that draw on crowd contributions, but existing

crowdsourcing platforms are orders of magnitude too slow to provide interactive-speed

responses. Many crowd-powered systems need responses in seconds, not minutes or

hours. Suppose a developer wanted to build a crowd-powered digital camera. Several-

minute response times would be unacceptable, because digital camera users want to

see their photos almost immediately.

In response, we introduce the retainer model for crowdsourced recruitment, which

pays workers a small wage to be on call and respond quickly when asked. This

technique cuts wait times for a crowd down from minutes or hours to a median wait

22

time of just two seconds.

To optimize the tradeoff between recruiting too many workers and having too few

workers to manage the incoming requests, I develop a mathematical model of retainer

recruitment using queueing theory. This model leads to a straightforward maximiza-

tion algorithm for balancing crowd size against loss rate and cost. A platform running

this model can also pursue predictive recruitment by recalling workers in expectation

that work will arrive by the time the worker arrives: this technique returns feedback

from the crowd just 500 milliseconds after a request.

1.1.2 Realtime Crowd-Powered Systems

Realtime crowds give system designers the ability to recruit crowds for interactive

systems within seconds, but work time can still be slow. The next challenge is to guide

these crowds quickly as they work, and to demonstrate how realtime crowdsourcing

opens opportunities for interactive systems.

Adrenaline is a realtime crowd-powered system: a smart camera shutter powered

by crowd intelligence (Figure 1-3). Its goal is to find the right moment to take a

photo. Instead of taking a single shot, Adrenaline captures a short video. Video

capture allows the user to move around the scene, the subject to strike multiple

poses, or action in the scene to unfold unpredictably. Then, Adrenaline identifies the

best moment as a still photo about ten seconds later. Low latency means that users

can preview and share photos they just took, like they would with any other digital

camera.

To deliver realtime results, Adrenaline introduces rapid refinement, the first design

pattern for synchronous crowds. Synchronous crowds are crowds where members ar-

rive and work simultaneously. The retainer model makes it straightforward to recruit

synchronous crowds. The fundamental insight behind rapid refinement is that syn-

chronicity enables an algorithm to recognize crowd agreement early. Rapid refinement

quickly reduces a large search space by focusing workers’ attention on areas where

they are beginning to agree independently (Figure 1-4). Repeatedly narrowing the

search space to an agreement region increases the quality of the result because it en-

23

Figure 1-3: Adrenaline’s realtime crowds operate a camera shutter by choosing the
most photographic moment seconds after it happens. Crowd members’ current votes
on the best frame appear as colored triangles below the timeline.

forces independent agreement between workers. It also allows the interface to provide

incremental, trustable feedback before a final answer is available. Critically, rapid

refinement leads to fast results: faster than approaches that keep workers separate,

and faster on average than even the fastest individual worker.

1.1.3 Beyond Generic Paid Crowds: Targeted Information

Needs

On-demand paid crowds are appropriate for many systems, but a large number of

other systems have information needs that generic crowd members may not know. We

broaden the scope of crowd-powered systems by demonstrating how social networks

and crowd activity traces can support interactive systems where generic paid crowds

would struggle.

Friendsourcing

When only a small number of individuals might know the relevant information, social

computing design can motivate members of that connected, highly-qualified crowd

to contribute. Friendsourcing is the use of motivations and incentives over a user’s

social network to collect information. This technique enables crowd-powered systems

that rely on information that generic crowds cannot or do not know. In particular,

friendsourcing motivates members of a social network to share accurate information

24

Phase 2

Phase 1

Phase 3

Final Photo

Figure 1-4: Rapid refinement repeatedly shrinks the working area for all workers when
it detects that several independent workers are exploring the same area.

about the interests, hobbies, and preferences of people they know. This information

can be used to power a personalized system, for example to aid question-answering

for topics comprehensible only to a few of a user’s friends.

Friendsourcing can either involve creating new kinds of online interactions, or it

can facilitate existing information-rich social interactions. Collabio is an example of

the first class of application, creating new social interactions: it is a social tagging

application that has gathered tens of thousands of tags on individuals in a social

network. The game collects information that friends know about one another, such

as peoples’ personalities, expertise, artistic and musical tastes, topics of importance,

and even quirky habits. FeedMe is an example of the second class of application,

facilitating informational social interactions that are already happening. It helps the

minority of individuals who consume lots of information on the web share that content

with their friends and colleagues, then learns content preferences based on what is

shared with each individual.

25

Mining Crowd Activity Traces

It is not always necessary to motivate or pay crowds to support an interactive system.

In many cases, crowds of users have already left activity traces such as browser logs,

and this crowd data enables systems to support a large number of less popular user

goals. While most system designers focus the design on main user needs, crowd data

lets the system adapt dynamically to a vast number of less common needs.

Specifically, search engines can aggregate crowd knowledge to improve broad ele-

ments of the search user experience. Tail Answers are automatically generated search

engine results that support a large set of less common information needs. Examples

of uncommon information needs include the normal body temperature for a dog, sub-

stitutes for molasses, and the currency in Ireland. Each of these needs may occur

thousands of times per year, but are too far in the tail of query traffic to be worth as-

signing programmers, designers, testers, and product management staff to create and

maintain answers. Tail Answers aggregates the knowledge of thousands of everyday

web users. Search and browsing patterns suggest web pages where people are finding

information to satisfy their original queries, and query logs help identify the specific

need. Paid crowds then assist with the final step, extracting the relevant information

from the page and promoting it as a direct answer in the search results.

1.2 Contributions

The core contribution of this thesis is the combination of crowdsourcing and com-

putation for interactive systems. Computation helps guide crowds to accomplish

tasks that they could not succeed at normally because they struggle with quality

or latency. Reciprocally, crowds help interactive systems support a broad new class

of applications, tasks, and goals. The sections below synthesize these contributions

across multiple systems and applications.

26

1.2.1 Design of Crowd-Powered Systems

This thesis provides evidence that interactive systems can draw on crowd intelligence

to support a wide range of user goals and activities. The systems in this disserta-

tion demonstrate that crowd-powered systems re-open investigation in many areas of

human-computer interaction design. For example, Soylent introduces new interactive

techniques such as direct-manipulation text shortening, augments existing artificial

intelligence systems by supporting copyediting, and supports natural-language com-

mands across text. Adrenaline demonstrates that these concepts work in realtime, for

example that a user might take a short video and see the crowd return with the best

photographic moment seconds later. These designs give rise to other prototypes that

use crowds to generate on-demand designs and vote between alternatives in seconds.

1.2.2 Computational Techniques to Guide Crowds

Crowd-powered systems demonstrate that crowds can participate as first-order ele-

ments of interactive software. However, crowds may produce sub-par, high-latency

results. This thesis introduces techniques to guide crowds toward higher-quality,

faster responses. These techniques are useful across many application contexts, and

begin to build a science of software engineering with crowds.

The Find-Fix-Verify design pattern decomposes open-ended tasks such as text

editing and shortening into iterative stages. These stages are better-scoped for crowd

work, easier to verify, and reduce variance in quality. The pattern is used in Soylent

for both proofreading and text shortening.

To produce realtime crowds, the retainer model introduces a new recruitment

approach. It hires workers in advance and pays them a small extra wage in exchange

for coming back quickly when a task arrives. Empirically, workers return just two

seconds after a request is made. We introduce a model of retainer recruitment using

queueing theory that allows platforms to directly optimize the tradeoff between crowd

size (cost) and expected latency. Retainers currently recruit realtime crowds for

Adrenaline, for quick opinion polls, and for crowd-aided design support in photoshop.

27

Realtime crowds arrive quickly, but they work at a slower pace. So, we introduce

rapid refinement, an algorithm that coordinates realtime crowds as they work. Rapid

refinement observes early signs of agreement in synchronous crowds and dynamically

narrows a continuous search space to focus on promising directions. This approach

produces results that, on average, are faster and more reliable than the fastest crowd

member working alone.

1.2.3 Generalization to Unpaid Crowds and Specific Needs

Unpaid crowds can extend the reach of these ideas to systems that require specific do-

main knowledge. This thesis proposes two approaches to engage with non-paid crowd

intelligence: designing social computing platforms that motivate domain experts to

participate, and mining activity traces from large numbers of users.

Friendsourcing allows systems to target specific populations and create crowds

with domain expertise. The technique gathers information using social networks by

incentivizing friends and colleagues to share useful information about each other.

For example, one friendsourcing application collected over ten thousand tags about

friends in a social network. The information in these tags is both accurate, and not

available anywhere else on the internet.

By mining activity traces from large numbers of users, systems can recognize and

then directly support a large number of less common, long-tail goals. Tail Answers

aggregates browsing and searching behavior from millions of sessions in order to

find informational queries that are relatively common but have no specific interface

designed to respond. It then authors specific, direct results for these queries.

1.3 Thesis Overview

To begin, Chapter 2 provides an introduction to the major research challenges in

crowd computing and places this dissertation in the context of related research.

The core of this thesis introduces crowd-powered systems through paid crowd-

sourcing platforms:

28

• Chapter 3 introduces the Soylent word processor. Soylent demonstrates how

classic interfaces like the word processor can be reinvigorated by including

crowds as core elements of the software, for example enabling interactive text

shortening, proofreading, and natural language macro commands. Crowds’ poor

performance on open-ended tasks like document editing motivates the develop-

ment of the Find-Fix-Verify design pattern, which decomposes open-ended tasks

and leads to higher-quality results.

• Chapter 4 focuses on platform support for realtime crowdsourcing. It presents

the retainer model for recruiting realtime workers, which can recruit crowds

two seconds after a request. It then details a mathematical model of retainers

using queueing theory and an optimization algorithm for managing the tradeoff

performance guarantees vs. crowd size and cost.

• Chapter 5 uses this platform support to create realtime crowd-powered sys-

tems. It introduces Adrenaline, a camera that captures short videos and then

coordinates crowds to select the best photographic moment within ten seconds

later. Adrenaline’s realtime constraints lead to the rapid refinement algorithm,

which guides realtime crowds to work quickly by focusing their efforts on areas

of emerging agreement.

Chapter 6 moves beyond generic paid crowds to explore how designing social

computing platforms and data mining can support systems that paid crowdsourcing

would find very difficult. It introduces friendsourcing: the use of motivations and

incentives over a user’s social network to collect information or produce a desired

outcome. It also demonstrates how interactive systems can tap into the large-scale

activity traces that crowds leave as they browse the web or use social media.

Finally, the concluding chapters reflect on the opportunities and challenges that

this research raises. Chapter 7 puts forth a framework for choosing between different

types of intrinsically and extrinsically motivated crowds for an application, the limits

of crowdsourcing, and ethical considerations. Chapter 8 reviews the contributions of

the dissertation and articulates a vision for the future of crowd computing.

29

Chapter 2

Related Work

Crowdsourcing is a growing area of research in computer science. Its successes impact

areas across the discipline — for instance, artificial intelligence and machine learning,

database systems, and human-computer interaction — as well as other disciplines

such as management science, economics, and the natural sciences. This chapter lays

out the crowdsourcing literature in computer science and related disciplines. Its goal

is to lay the groundwork for crowd-powered systems and demonstrate the growth in

the area which has followed the systems in this thesis.

2.1 Crowdsourcing

Crowdsourcing is asking a large group of people to help complete a task. It aims to

capitalize on the wisdom of crowds [187]: that, under the right conditions, aggregate

crowds can be smarter than the single most intelligent person in the group. Crowd-

sourced tasks can be as large as translating every page on the internet [73] or as small

as transcribing a single paragraph of handwriting (Figure 2-1, [130]); as complex as

writing a Wikipedia article [104] or as simple as verifying a database entry [201].

The main challenges in any crowdsourcing task are: 1) motivating participation, 2)

designing how participants will interact, 3) identifying high-quality answers, and 4)

combining individual submissions to complete high-level work.

Major research challenges in crowdsourcing are focused on the border between

30

Figure 2-1: Crowd contributions make small improvements to correctly transcribe
messy handwriting. While few individuals could transcribe this text correctly, the
crowd gets it mostly correct (errors underlined): “You misspelled several words.
Please spellcheck your work next time. I also notice a few grammatical mistakes.
Overall your writing style is a bit too phoney. You do make some good points,
but they got lost amidst the writing. (signature).” The missed words: flowery, get,
verbiage, and B-. [130].

computation and human participation. Can algorithms act as management structures

and guide crowds through complex work and large-scale tasks [104, 114, 42, 3]? How

might crowds and artificial intelligence trade off each others’ strengths [94]? What

kinds of volunteer, social, monetary, or game incentives will drive participation [199,

198, 141, 37, 109]? How can systems separate high-quality work from low-quality

work without being sure of the correct answer on most tasks [124, 174, 203]? Finally,

the question that this thesis poses: what are the opportunities and techniques for

building deployable interactive software with crowds inside?

2.1.1 Definitions and Design Space

Jeff Howe introduced the term crowdsourcing to draw comparisons to outsourcing,

or pushing work beyond a company’s walls [85, 86]. Where outsourcing pays a few

external contractors, crowdsourcing makes an open call to the public for help1. Simul-

taneously, the academic literature has given rise to related concepts such as human

computation [199], collective intelligence [132], and social computing [158]. While each

of these concepts has meaningful distinctions from crowdsourcing — human compu-

1Admittedly, paid crowdsourcing platforms such as Amazon Mechanical Turk have since muddled
this distinction.

31

tation sees humans as computational elements [122], social computing concerns itself

with large-scale human phenomena online, and collective intelligence restricts itself

to intelligent behavior — I will use the term crowdsourcing for much of this thesis2.

When I want to stress that computation and algorithms are guiding the crowd, I will

use the term crowd computing.

Law and von Ahn [122], Malone et al. [132], and Quinn and Bederson [161] offer

overviews of the crowdsourcing literature. Quinn frames the design space as decisions

over motivation, quality control, aggregation policy, expertise, computer-human or-

der, and task-request cardinality. Law and von Ahn add that task routing, algorithm,

and task design also play an important role. Malone simplifies the design space into

questions of 1) What?, 2) Why?, 3) How?, and 4) Who? Techniques in this thesis

such as Find-Fix-Verify cross several dimensions: they aim to improve quality control

through algorithmic processes and task design. However, each dimension individually

receives attention in the research literature. For example, quality control processes

and spam detection are common in the literature: some example techniques involve

estimating worker quality jointly with the answer [174], using gold-standard questions

[124], and providing multiple parallel task pathways [68].

In When Computers Were Human [67], David Alan Grier makes the case that

distributed human computation reaches at least as far back as the 18th century. The

British Astronomer Royal began recruiting colleagues to help perform calculations for

nautical charts and traded calculation tables through the mail. This original instan-

tiation of human computation reached its height in the 1930’s with a Works Progress

Administration organization called the Mathematical Tables Project. The project

primarily created large almanacs for the values of mathematical functions, but also

aided in the computation of ballistics tables. The Mathematical Tables Project hired

roughly 450 so-called human computers without significant mathematical expertise,

then simplified and structured the process to get accurate results. Human computers

are actually the source of the term computer that we use today: electronics took over

2Quinn suggests one organizing set of definitions for crowdsourcing, human computation, and
social computing [161].

32

these responsibilities from the original computers.

2.1.2 Voluntary Crowdsourcing

Many popular crowdsourcing platforms depend on volunteerism or other non-monetary

incentives for participation. For example, volunteer crowds have:

• Authored Wikipedia3, the largest encyclopedia in history,

• Helped NASA identify craters on the moon [95],

• Surveyed satellite photos for images of a missing person [81],

• Held their own in chess against a world champion [148],

• Solved open mathematics problems [38],

• Generated large datasets for object recognition [168, 199],

• Collected eyewitness reports during crises and violent government crackdowns

[153], and

• Generated a large database of common-sense information [179].

Each of these successes relied on the individuals’ intrinsic motivation to participate

in the task.

Beginning with Luis von Ahn’s ESP Game [199], games have proven themselves

to be a powerful mechanism to attract crowds. Games with a Purpose [198] require

that the designer turn a task that is useful to computers but typically boring, such as

labeling images [199], rating photos [72], or building 3D models [193], into one that is

completed as the side effect of a game. By designing the game correctly, researchers

can support scientific discovery. For example, FoldIt discovered the structure of

proteins that stumped scientists for fifteen years [37].

3http://www.wikipedia.org

33

http://www.wikipedia.org

Figure 2-2: Amazon Mechanical Turk presents a list of tasks and payment for each.
The list can be sorted by price, number of tasks, and recency. Workers accept a task,
complete it, and submit it to the requester for review.

Other non-monetary incentives are possible as well. Duolingo4 aims to help people

learn — in particular learn a language — and translate the web into many languages

as a side effect. Crowds will complete tasks as part of a web security measures such

as CAPTCHAs [200], or share their expertise in response to rewards tuned to the

local community [80].

2.1.3 Paid Crowdsourcing

While voluntary [179] and game-based participation [198, 37] spawned academic in-

terest in crowdsourcing, paid microwork platforms have helped broaden it. Paid

crowdsourcing markets allow requesters to post tasks and offer monetary incentives.

By solving the motivation question through extrinsic incentives, these platforms al-

low researchers to study how crowds act without needing to design games or tap into

volunteerism.

4http://www.duolingo.com

34

http://www.duolingo.com

Paid crowdsourcing markets typically present a list of tasks and monetary rewards

for each task (Figure 2-3). Workers browse these lists to choose a task. Depending

on the platform, workers will: 1) complete the task immediately and submit it for

review, or 2) bid on the task and wait for the requester to choose them for the work.

Again depending on the platform, requesters may pay everyone who participates,

reject unsatisfactory work, and/or only pay for the best submission.

Perhaps the most well-known paid crowdsourcing platform is Amazon Mechanical

Turk5. Mechanical Turk workers complete over five million tasks each year, typically

in a range of one to ten cents each [89]. Amazon borrowed the name “Mechanical

Turk” from a fake chess automaton built during the 18th century. The machine

appeared to be an extremely skilled chess player, but it was a ruse: a human hid

inside the machine and played the game from within. Likewise, Amazon stylizes the

platform as “artificial artificial intelligence”: appropriate for tasks where AI could

not yet succeed.

Many choices can affect worker behavior, including price, time of day, worker de-

mographics, and training. Higher wages result in work being completed more quickly

but not at higher quality [141]. More specifically, the half-life for tasks ranges between

twelve hours and two days depending on the wage [202]. Like many online phenom-

ena, distributions for worker tasks completed, requester tasks posted, and completion

times follow a roughly lognormal distribution [89]. Workers typically find tasks on

Mechanical Turk by sorting the task listing either by recency (trying to find new

opportunities) or number of tasks available (trying to complete a number of tasks at

once) [32]. Peer or expert review of tasks can improve work quality [48].

Workers on Mechanical Turk are roughly 40% from the United States, 40% from

India, and 20% from elsewhere in the world [167]. Across indices such as gender,

education and income, the workers reflect the overall population distributions for

these countries [167]. So, there are educated individuals on these platforms who work

to supplement or entirely replace their other income streams using Mechanical Turk.

Workers in India are more motivated by monetary incentives than those in the United

5http://www.mturk.com

35

http://www.mturk.com

States [6].

There are paid crowdsourcing systems other than Amazon Mechanical Turk. Pre-

diction markets allow participants to wager on outcomes such as election winners,

then make money if they are correct [133]. A large team of distributed participants

found red balloons that DARPA had located across the country and shared the re-

ward money [189]. Sites such as Freelancer6 and oDesk7 offer a similar platform to

Mechanical Turk, except oriented toward expert work and higher pay. MobileWorks

[149] and mClerk [71] use paid crowdsourcing to help lift workers in developing regions

out of poverty.

Paid crowdsourcing raises questions about labor issues. Ensuring that workers can

make a living wage is one important concern [54]. Bederson and Quinn suggest that

the balance may be tipped too far toward requesters currently, leaving workers with

less ability to raise concerns or appeal decisions [10]. In response, workers develop

forums and applications that allow them to organize and warn each other away from

bad requesters [176, 175]. I will return to this discussion and propose next steps in

Chapter 7.

Uses of Paid Crowdsourcing

Paid crowds have proven quite useful for gathering labeled data, used later to train

machine learning algorithms. For example, crowds can match expert annotation

abilities on natural language processing tasks such as affect and word sense disam-

biguation [181, 28]. Likewise, paid crowds generate large speech corpuses for spoken

language research [28, 142]. Visual domains are also obvious choices: in machine vi-

sion, paid crowds annotate objects and people in images [183], and in graphics, they

help with tasks such as identifying depth layers [62]. Even when not training algo-

rithms, crowds can solve algorithmic problems: for example, groups of individuals

with limited communication abilities can still solve NP-complete problems such as

graph-coloring [97, 134].

6http://www.freelancer.com/
7http://www.odesk.com

36

http://www.freelancer.com/
http://www.odesk.com

Figure 2-3: The Sheep Market is an art piece exploring crowd-authored creativity.
This image shows a small subset of the 10,000 sheep drawn by workers on Mechanical
Turk [107].

While Mechanical Turk is used for many difficult artificial intelligence problems,

it also is a platform to study large-scale human interactions and is a ready subject

pool for behavioral experiments. By structuring tasks so that it is difficult to shirk,

researchers can use Mechanical Turk for user studies [102]. Mason and Suri general-

ized these ideas into a set of recommendations for behavioral research on Mechanical

Turk [140]. With qualification tests, crowds are also appropriate for perception and

visualization experiments [79]. Finally, by posting different versions of an interface

at multiple price points and tracking how quickly the tasks are completed, designers

can quantify the cost (utility) of design decisions [191].

Beyond traditional forced-choice tasks, crowds can also undertake generative, cre-

ative challenges. The Sheep Market was one of the first such pieces, creating a large

tapestry out of individually-drawn sheep [107]. Likewise, Mechanical Turk workers

have written short stories and illustrated them [76]. Genetic algorithms can coordi-

nate the creative process to cross-pollinate ideas as well [206].

2.2 Crowd-Powered Systems

While the systems in this thesis helped establish crowd-powered systems as a research

field, there is a growing literature in the area that informed and builds on this work.

Human computation has been a key tool in interactive systems since the develop-

ment of Wizard of Oz studies in the 1980’s [99]. Wizard of Oz studies are a standard

37

prototyping approach in human-computer interaction. In a Wizard of Oz study, a

human simulates the intelligence that will eventually be programmed into the system.

The point is that designers can gather feedback on whether the system will be useful

before they put in time engineering the system. This dissertation suggests that it

may be possible to transition from an era where Wizard of Oz techniques were used

only as prototyping tools to an era where a “Wizard of Turk” can be permanently

wired into a system.

One of the first computing systems to integrate paid crowds was PEST [170].

PEST used Mechanical Turk to vet advertisement recommendations. CrowdSearch

used crowds to help perform image searches on mobile phones [205], and ChaCha8

used a private crowd to answer users’ questions when mobile. However, these systems

all consist of a single user operation and little or no interaction. This dissertation ex-

tends this work to more creative, complex tasks where the user can make personalized

requests and interact with the returned data by direct manipulation.

VizWiz, another crowd-powered system, allows blind users to ask questions about

their surroundings [21]. The system also introduces quikTurKit, which recruits work-

ers in advance to solve old tasks, then replaces the old tasks with new work when

requests arrive. It also re-posts tasks to keep them near the top of the “most re-

cent” ordering, which is a popular view that workers use to find tasks [32]. This

thesis adopts versions of both these techniques, then introduces new techniques to

gather all crowd members simultaneously, reduce variance in lag times, and reduce

wait times by a factor of ten — without added cost.

In the eighteen months since the introduction of Soylent, the research literature

has articulated a number of additional crowd-powered systems. For example, in the

health domain, crowds can help track calorie intake [152] and help users respond to

stress positively [147]. Robots can call on crowd help when the robot is uncertain

about actions to take [182], or crowds can collaboratively take complete control of

a robot [117]. Task and todo planning is another viable area: Mobi helps users

tackle task planning with global constraints, for example preparing for a vacation

8http://www.chacha.com/

38

http://www.chacha.com/

[207]. Finally, crowds can support authoring and prototyping tools: CrowdSight helps

developers prototype applications that integrate machine vision [165], and CollabMap

helps author maps [185].

The database community has produced systems and techniques that demonstrate

the power of integrating crowd intelligence into data management systems. These

systems can call on the crowd to dynamically create rows or tables [56] — effec-

tively producing an open-world database — and can be queried using SQL-style

languages [138, 157]. This formalization means that it is natural to consider opti-

mization approaches for crowdsourced data, for example sorts and joins [137], filters

[156], counting [136], and finding the item which maximizes some value [70].

2.2.1 Soylent

The crowd-powered systems in this thesis each draw on related system designs and

artificial intelligence algorithms.

Soylent is inspired by writers’ reliance on friends and colleagues to help shape

and polish their writing [47]. But we cannot always rely on colleagues: they do not

want to proofread every sentence we write, cut a few lines from every paragraph in a

ten-page paper, or help us format thirty ACM-style references.

Proofreading is emerging as a common task on Mechanical Turk. Standard Minds9

offers a proofreading service backed by Mechanical Turk that accepts plain text via

a web form and returns edits one day later. By contrast, Soylent is embedded in a

word processor, has much lower latency, and presents the edits in Microsoft Word’s

user interface. Our work also contributes the Find-Fix-Verify pattern to improve the

quality of such proofreading services.

Automatic proofreading has a long history of research [112] and has seen successful

deployment in word processors. However, Microsoft Word’s spell checker frequently

suffers from false positives, particularly with proper nouns and unusual names. Its

grammar checker suffers from the opposite problem: it misses blatant errors10. Hu-

9http://standardminds.com/
10http://faculty.washington.edu/sandeep/check

39

http://standardminds.com/
http://faculty.washington.edu/sandeep/check

man checkers are currently more reliable, and can also offer suggestions on how to

fix the errors they find, which is not always possible for Word — for example, con-

sider the common (but mostly useless) Microsoft Word feedback, “Fragment; consider

revising.”

Soylent’s text shortening component is related to document summarization, which

has also received substantial research attention [135]. Microsoft Word has a summa-

rization feature that uses sentence extraction, which identifies whole sentences to

preserve in a passage and deletes the rest, producing substantial shortening but at a

great cost in content. Shortn’s approach, which can rewrite or cut parts of sentences,

is an example of sentence compression, an area of active recent research [36, 106] that

suffers from a lack of training data [34]. Soylent’s results produce training data to

help push this research area forward.

The Human Macro is related to AI techniques for end-user programming. Several

systems allow users to demonstrate repetitive editing tasks for automatic execution;

examples include Eager, TELS, and Cima [41], LAPIS [143], and SmartEdit [126].

Other work has considered programming syntax similar to natural language [131].

2.2.2 Adrenaline and Realtime Crowd-Powered Systems

Adrenaline shares the goals of the Moment Camera [35] by recording continuously

and choosing the best moment for a photo. The Moment Camera and Adrenaline

complement each other. Computational photography can check whether subjects’

eyes are open and can tune camera settings, but it is only trained on certain classes

of images and it is much harder to train an algorithm to make subjective judgments.

This thesis will suggest that crowds are effective at making the hard semantic decision

of what constitutes a good photo.

Adrenaline relies on synchronous crowds collaborating implicitly. For example,

paid crowds can solve distributed problems like graph coloring [134]. Collaborative

text authoring software enables paid workers to pursue collaborative text translation

[101]. The Shepherd system likewise recognizes that workers overlapping in time

could provide synchronous peer feedback [48]. The retainer model can bring crowds

40

of this kind together relatively quickly, further enabling this kind of work. Many of

these techniques draw on synchronous group collaboration research (e.g., [66, 91]).

2.3 Crowds and Algorithms

Computation and algorithms can coordinate crowds to accomplish tasks by struc-

turing the crowd’s work process. While most crowdsourcing tasks are single calls to

action — for example, gathering labels on an image — algorithms can coordinate

entire workflows. The Improve-and-Vote algorithm asks crowd members to itera-

tively edit the previous worker’s submission and vote on the best improvement [128].

Improve-and-Vote can accomplish tasks such as transcribing incredibly messy hand-

writing (Figure 2-1). This thesis contributes Find-Fix-Verify, a design pattern for

decomposing tasks which are much more open-ended than common crowdsourcing

goals, and Rapid Refinement, an algorithm for guiding crowds through a large search

space quickly. By generalizing Find-Fix-Verify’s decomposition approach, it is possi-

ble to create a MapReduce-style framework that splits sub-tasks and recombines work

[104], as well as guide crowds to author their own workflows by recursively splitting

tasks that are too large [114].

Writing crowd algorithms requires improved toolkits, APIs and languages. TurKit

[129] proposes an iterative programming approach that integrates with common lan-

guages (e.g., mturk.ask("What color shirt are you wearing?"). The program

blocks while the user waits for a response, and saves old worker responses so that the

request returns immediately the next time the program is run or debugged. Dog [3],

Qurk [138, 137], and Deco [157] propose declarative languages similar to SQL and

Pig [154] for data-centric tasks. Formal programming languages for crowds can also

help the programmer understand control errors that the crowd might make [9]: these

languages use techniques such as Find-Fix-Verify as benchmark tasks [145].

Artificial intelligence aims to optimize and guide these workflows. For exam-

ple, TurKontrol models the Improve-and-Vote algorithm using decision theory tools

(POMDPs) and only recruits as many workers as necessary for each iteration and

41

vote stage based on the algorithm’s current level of uncertainty [42, 43]. Shifting

more towards an active learning framework, algorithms can also ask crowds to label

the most uncertain dimensions of the input [24]. Likewise, algorithms can jointly

optimize processes that combine crowd and machine learning contributions [94, 134].

Rather than iterative improvements, genetic algorithms can also structure and cross-

pollinate the information passed between crowd workers in each phase [108, 206].

Each of the algorithms and workflows in this thesis could be further optimized by

applying these techniques.

Finally, it is worth noting that spam and quality control continue to be an issue

on crowdsourcing platforms. The typical goal of research in this space is to jointly

learn the correct answers and worker quality. One approach is to treat this problem

analogously to an Expectation Maximization algorithm: using the worker responses

to guess answers, then the guessed answers to improve weights on worker responses

[45, 44]. Then, by additionally modeling worker bias, the system can recommend

whether it would be useful to ask for an additional worker vote [174, 88]. Alternatively,

the system can observe implicit signals of worker quality — number of keystrokes,

scrolling behavior, time to completion — and train models that predict worker quality

without looking at the response at all [169].

2.4 Social Network-based Crowds

Often, people make requests not to generic crowds but to targeted groups of friends

and colleagues. For example, people often ask their own social networks for informa-

tion or advice in a phenomenon known as social search [51, 155]. This practice draws

on years of research on organizational knowledge-sharing [1]. Systems can support

and facilitate social search by routing questions or making the funcitonality more

readily visible [146, 23, 84]. This thesis introduces friendsourcing, which generalizes

this phenomenon so that social network crowds might solve problems and collect data

beyond question-answering.

Social networks are well-positioned to share accurate and novel information. For

42

example, a combination of external and self-rated responses to personality surveys

produces a more accurate picture than either the external raters or the individual

alone [195], suggesting that the integration of friends’ impressions into profiles may

lead to more accurate portrayals. Furthermore, a large number of members of a social

network do not actively contribute information — 41% of profile fields on Facebook

are missing [115]. Friendsourcing is able to gather information about a large number

of individuals who are less active.

However, studies of contribution in online communities suggest several potential

challenges with social network crowds. One danger is social loafing : users will exhibit

little effort on a collective task when they believe that others will also contribute [96,

121]. Related to social loafing is diffusion of responsibility : when many individuals

share the responsibility for an action that one person must perform, each feels less

cognitive dissonance when he or she shirks [120]. Social loafing and the diffusion of

responsibility together lead to the phenomenon known as the bystander effect. The

bystander effect exists in computer-mediated communication, for example in chat

rooms where a newcomer asks a full chatroom for technical help but nobody steps

forward to answer the question [139].

Previous work has found that individuals are likely to contribute to an online

community when they are reminded of the uniqueness of their contributions, are given

specific, challenging goals, and are helping groups similar to themselves [162, 11, 109].

Thus, in friendsourcing, we challenge individuals’ (potentially obscure) knowledge of

members of their own social group. Both active and loafing users can be motivated

by comparing their activity to the median participation of the community [74], for

example via leaderboards in Collabio and FeedMe. Loafing can also be overcome

via opportunities for reciprocity toward other friends [163], motivating Collabio’s

Facebook notifications upon tagging a friend.

43

2.5 Mining Crowd Data

Several systems power novel interactions by mining the wisdom of crowds. HelpMe-

Out [77] collects debugging traces and applies others’ error solutions to help fix code.

MySong [178] indexes a library of music chords to enable the user to build a chord

progression by singing a melody line. Google Suggest mines query logs to speed and

direct new queries. Sketch2Photo [31] transforms a hand-sketched photo outline an-

notated with descriptive terms and produces a composite photo by searching a large

database of images.

On-demand crowds are useful in that they expand the realm of tasks we can

support beyond those requiring traces or incentives. However, activity traces may

carry more information about unusual needs and goals.

Tail Answers in particular extends work on automatic answers in information

retrieval. Many question-answering systems are designed to address information needs

with short phrases such as using search result n-grams to identify answers [127, 25, 2].

A second approach is open-domain information extraction, for example TextRunner

[8]. These approaches work best when facts are repeated across multiple web pages.

Finally, systems can employ curated knowledge bases such as YAGO [186] and match

on them to answer some queries. However, automated approaches can make mistakes

that are obvious to humans.

2.6 Conclusion

Computing is helping crowds solve problems that were previously out of reach. Si-

multaneously, crowds are aiding computation by gathering training data, evaluating

systems, and providing on-demand cognition. This thesis synthesizes these ideas,

drawing on crowd intelligence to support interactive computing and drawing on com-

puting to help guide crowds.

44

Chapter 3

Soylent: A Word Processor

with a Crowd Inside

This thesis suggests that crowds can reshape the character of interactive systems

to be more natural and powerful. To do this, I will take up the word processor as

a classic interactive system and demonstrate that crowds, guided by computation,

re-open core questions of the design and implementation of such systems.1

Word processors may well be the most heavily-designed, heavily-used interactive

systems ever. They support a deep cognitive activity — writing — and support

complicated manual manipulations. Word processors have traditionally focused on

offloading manual tasks, for example layout [116], spell checking and grammar check-

ing [112].

However, word processors still fall far short of supporting that cognitive process

they were originally designed to facilitate: writing. They do not currently help with

core tasks such as expressivity, word choice, ideas, structure, organization, or refer-

ences. Even the existing support is imperfect: conscientious users still routinely leave

style, grammar and spelling mistakes.

In our everyday life, when we need help with complex cognition and manipulation

tasks, we often turn to other people. We ask friends to answer questions that we

1This chapter has adapted, updated, and rewritten content from a paper at UIST 2010 [18].

45

cannot answer ourselves [51]; masses of volunteer editors flag spam edits on Wikipedia

[110]. Writing is no exception [47]: we commonly recruit friends and colleagues to help

us shape and polish our writing. But we cannot always rely on them: colleagues do

not want to proofread every sentence we write, cut a few lines from every paragraph

in a ten-page paper, or help us format thirty ACM-style references.

Soylent is a word processing interface that utilizes crowd contributions to aid

complex writing tasks ranging from error prevention and paragraph shortening to

automation of tasks such as citation searches and tense changes. Using Soylent is

like having an entire editorial staff available as you write. We hypothesize that crowd

workers with a basic knowledge of written English can support both novice and expert

writers. These workers perform tasks that the writer might not, such as scrupulously

scanning for text to cut or updating a list of addresses to include a zip code. They

can also solve problems that artificial intelligence cannot yet, for example flagging

writing errors that the word processor does not catch.

Soylent aids the writing process by integrating paid crowd workers from Amazon’s

Mechanical Turk platform into Microsoft Word. Soylent is people: its core algorithms

involve calls to Mechanical Turk workers (Turkers). Soylent is comprised of three main

components:

1. Shortn, a text shortening service that cuts selected text down to 85% of its orig-

inal length on average without changing the meaning of the text or introducing

writing errors.

2. Crowdproof, a human-powered spelling and grammar checker that finds prob-

lems Word misses, explains the error, and suggests fixes.

3. The Human Macro, an interface for offloading arbitrary word processing tasks

such as formatting citations or finding appropriate figures.

The main contribution of Soylent is the idea of embedding paid crowd workers in

an interactive user interface to support complex cognition and manipulation tasks on

demand. These crowd workers do tasks that computers cannot reliably do automat-

ically and the user cannot easily script. This chapter contributes the design of one

46

such system, an implementation embedded in Microsoft Word, and a programming

pattern that increases the reliability of paid crowd workers on complex tasks. It then

expands these contributions with feasibility studies of the performance, cost, and

time delay of our three main components and a discussion of the limitations of our

approach with respect to privacy, delay, cost, and domain knowledge.

The fundamental technical contribution of this system is a crowd programming

pattern called Find-Fix-Verify. Mechanical Turk costs money and it can be error-

prone; to be worthwhile to the user, we must control costs and ensure correctness.

Find-Fix-Verify splits complex crowd intelligence tasks into a series of generation

and review stages that utilize independent agreement and voting to produce reliable

results. Rather than ask a single crowd worker to read and edit an entire paragraph,

for example, Find-Fix-Verify recruits one set of workers to find candidate areas for

improvement, another set to suggest improvements to those candidates, and a final

set to filter incorrect candidates. This process prevents errant crowd workers from

contributing too much or too little, or introducing errors into the document.

In the rest of this chapter, we introduce Soylent and its main components: Shortn,

Crowdproof, and The Human Macro. We detail the Find-Fix-Verify pattern that

enables Soylent, then evaluate the feasibility of Find-Fix-Verify and our three com-

ponents.

3.1 Soylent

Soylent is a prototype crowdsourced word processing interface. It is currently built

into Microsoft Word (Figure 3-1), a popular word processor and productivity applica-

tion. It demonstrates that computing systems can reach out to crowds to: 1) create

new kinds of interactive support for text editing, 2) extend artificial intelligence sys-

tems such as style checking, and 3) support natural language commands. These three

goals are embedded in Soylent’s three main features: text shortening, proofreading,

and arbitrary macro tasks.

47

Figure 3-1: Soylent adds a set of commands and a status bar to Microsoft Word. We
envision that these same concepts could be translated to many similar systems.

3.1.1 Shortn: Text Shortening

Shortn aims to demonstrate that crowds can support new kinds of interactions and

interactive systems that were very difficult to create before. Some authors struggle to

remain within length limits on papers and spend the last hours of the writing process

tweaking paragraphs to shave a few lines. This is painful work and a questionable

use of the authors’ time. Other writers write overly wordy prose and need help

editing. Automatic summarization algorithms can identify relevant subsets of text

to cut [135]. However, these techniques are less well-suited to small, local language

tweaks like those in Shortn, and they cannot guarantee that the resulting text flows

well.

Soylent’s Shortn interface allows authors to condense sections of text. The user

selects the area of text that is too long — for example a paragraph or section — then

presses the Shortn button in Word’s Soylent command tab (Figure 3-1). In response,

Soylent launches a series of Mechanical Turk tasks in the background and notifies the

user when the text is ready. The user can then launch the Shortn dialog box (Figure

3-2). On the left is the original paragraph; on the right is the proposed revision.

Shortn provides a single slider to allow the user to continuously adjust the length

48

Figure 3-2: Shortn allows users to adjust the length of a paragraph via a slider.
Red text indicates locations where rewrites have occurred, in addition to any cuts.
Tick marks represent possible lengths, and the blue background bounds the possible
lengths.

49

While GUIs made computers more intuitive and easier to learn,
they didn't let people be able to control computers efficiently.

While GUIs made computers more intuitive and easier to learn,
they didn't allow people to control computers efficiently.

While GUIs made computers more intuitive and easier to learn,
they didn't let people be able to control computers efficiently.

Figure 3-3: Crowdproof is a human-augmented proofreader. The drop-down explains
the problem (blue title) and suggests fixes (gold selection).

of the paragraph. As the user does so, Shortn computes the combination of crowd

trimmings that most closely match the desired length and presents that text to the

user on the right. From the user’s point of view, as she moves the slider to make

the paragraph shorter, sentences are slightly edited, combined and cut completely to

match the length requirement. Areas of text that have been edited or removed are

highlighted in red in the visualization. These areas may differ from one slider position

to the next.

Shortn typically can remove up to 15–30% of a paragraph in a single pass, and up

to 50% with multiple iterations. It preserves meaning when possible by encouraging

workers to focus on wordiness and separately verifying that the rewrite does not

change the user’s intended meaning. Removing whole arguments or sections is left to

the user.

3.1.2 Crowdproof: Crowdsourced Copyediting

Shortn demonstrates that crowds can power new kinds of interactions. We can also in-

volve crowds to augment the artificial intelligence built into applications, for example

proofreading. Crowdproof instantiates this idea.

Soylent provides a human-aided spelling, grammar and style checking interface

called Crowdproof (Figure 3-3). The process finds errors, explains the problem, and

offers one to five alternative rewrites. Crowdproof is essentially a distributed proof-

reader or copyeditor.

50

To use Crowdproof, the user highlights a section of text and presses the proof-

reading button in the Soylent ribbon tab. The task is queued to the Soylent status

pane and the user is free to keep working. Because Crowdproof costs money, it does

not issue requests unless commanded.

When the crowd is finished, Soylent calls out the erroneous sections with a purple

dashed underline. If the user clicks on the error, a drop-down menu explains the

problem and offers a list of alternatives. By clicking on the desired alternative, the

user replaces the incorrect text with an option of his or her choice. If the user hovers

over the Error Descriptions menu item, the popout menu suggests additional second-

opinions of why the error was called out.

3.1.3 The Human Macro:

Natural Language Crowd Scripting

Embedding crowd workers in an interface allows us to reconsider designs for short

end-user programming tasks. Typically, users need to translate their intentions into

algorithmic thinking explicitly via a scripting language or implicitly through learned

activity [41]. But tasks conveyed to humans can be written in a much more natural

way. While natural language command interfaces continue to struggle with uncon-

strained input over a large search space, humans are good at understanding written

instructions.

The Human Macro is Soylent’s natural language command interface. Soylent

users can use it to request arbitrary work quickly in human language. Launching the

Human Macro opens a request form (Figure 3-4). The design challenge here is to

ensure that the user creates tasks that are scoped correctly for a Mechanical Turk

worker. We wish to prevent the user from spending money on a buggy command.

The form dialog is split in two mirrored pieces: a task entry form on the left, and a

preview of what the worker will see on the right. The preview contextualizes the user’s

request, reminding the user that they are writing something akin to a Help Wanted or

Craigslist advertisement. The form suggests that the user provide an example input

51

Figure 3-4: The Human Macro allows users to request arbitrary tasks over their
document. Left: user’s request pane. Right: worker task preview, which updates as
the user edits the request pane.

52

and output, which is an effective way to clarify the task requirements to workers. If

the user selected text before opening the dialog, he has the option to split the task

by each sentence or paragraph, so (for example) the task might be parallelized across

all entries on a list. The user then chooses how many separate workers he would like

to complete the task. The Human Macro helps debug the task by allowing a test run

on one sentence or paragraph.

The user chooses whether the workers’ suggestions should replace the existing text

or just annotate it. If the user chooses to replace, the Human Macro underlines the

text in purple and enables drop-down substitution like the Crowdproof interface. If

the user chooses to annotate, the feedback populates comment bubbles anchored on

the selected text by utilizing Word’s reviewing comments interface.

3.2 Techniques for Programming Crowds

This section characterizes the challenges of leveraging crowd labor for open-ended

document editing tasks. We introduce the Find-Fix-Verify pattern to improve output

quality in the face of uncertain worker quality. As we prepared Soylent and explored

the Mechanical Turk platform, we performed and documented dozens of experiments2.

For this project alone, we have interacted with over 10,000 workers across over 2,500

different tasks. We draw on this experience in the sections to follow.

3.2.1 Challenges in Programming with Crowd Workers

We are primarily concerned with tasks where workers directly edit a user’s data

in an open-ended manner. These tasks include shortening, proofreading, and user-

requested changes such as address formatting. In our experiments, it is evident that

many of the raw results that workers produce on such tasks are unsatisfactory. As a

rule-of-thumb, roughly 30% of the results from open-ended tasks are poor. This “30%

rule” is supported by the experimental section of this paper as well. Clearly, a 30%

2http://groups.csail.mit.edu/uid/deneme/

53

http://groups.csail.mit.edu/uid/deneme/

error rate is unacceptable to the end user. To address the problem, it is important

to understand the nature of unsatisfactory responses.

High Variance of Effort

Workers exhibit high variance in the amount of effort they invest in a task. We might

characterize two useful personas at the ends of the effort spectrum, the Lazy Worker

and the Eager Beaver. The Lazy Worker does as little work as necessary to get paid.

For example, we asked workers to proofread the following error-filled paragraph from

a high school essay site3. Ground-truth errors are colored below, highlighting some

of the low quality elements of the writing:

The theme of loneliness features throughout many scenes in Of

Mice and Men and is often the dominant theme of sections during

this story. This theme occurs during many circumstances but is

not present from start to finish. In my mind for a theme to be

pervasive is must be present during every element of the story.

There are many themes that are present most of the way through

such as sacrifice, friendship and comradeship. But in my opinion

there is only one theme that is present from beginning to end,

this theme is pursuit of dreams.

However, a Lazy Worker inserted only a single character to correct a spelling

mistake. The single change is highlighted below:

The theme of loneliness features throughout many scenes in Of

Mice and Men and is often the dominant theme of sections during

this story. This theme occurs during many circumstances but is

not present from start to finish. In my mind for a theme to be

pervasive is must be present during every element of the story.

There are many themes that are present most of the way through

3http://www.essay.org/school/english/ofmiceandmen.txt

54

http://www.essay.org/school/english/ofmiceandmen.txt

such as sacrifice, friendship and comradeship. But in my opinion

there is only one theme that is present from beginning to end,

this theme is pursuit of dreams.

This worker fixed the spelling of the word comradeship, leaving many obvious

errors in the text. In fact, it is not surprising that the worker chose to make this edit,

since it was the only word in the paragraph that would have been underlined in their

browser because it was misspelled.

A first challenge is thus to discourage workers from exhibiting such behavior. One

approach to stopping Lazy Workers is the addition of clearly verifiable, quantitative

questions (e.g., “How many sections does the Wikipedia article have?”) that will

force the Lazy Worker to complete the requester’s task as a side effect of answering

the verifiable task [102].

Equally problematic as Lazy Workers are Eager Beavers. Eager Beavers go beyond

the task requirements in order to be helpful, but create further work for the user in

the process. For example, when asked to reword a phrase, one Eager Beaver provided

a litany of options:

The theme of loneliness features throughout many scenes in Of

Mice and Men and is often the principal, significant, primary,

preeminent, prevailing, foremost, essential, crucial, vital,

critical theme of sections during this story.

In their zeal, this worker rendered the resulting sentence ungrammatical. Eager

Beavers may also leave extra comments in the document or reformat paragraphs. It

would be problematic to funnel such work back to the user.

Both the Lazy Worker and the Eager Beaver are looking for a way to clearly signal

to the requester that they have completed the work. Without clear guidelines, the

Lazy Worker will choose the path that produces any signal and the Eager Beaver will

produce too many signals.

55

Workers Introduce Errors

Workers attempting complex tasks can accidentally introduce substantial new errors.

For example, when proofreading paragraphs about the novel Of Mice and Men, work-

ers variously changed the title to just Of Mice, replaced existing grammar errors with

new errors of their own, and changed the text to state that Of Mice and Men is a

movie rather than a novel. Such errors are compounded if the output of one worker

is used as input for other workers.

The Result: Low-Quality Work

These issues compound into what we earlier termed the 30% rule: that roughly a

third of the suggestions we get from workers are not high-enough quality to show an

end user. We cannot simply ask workers to help shorten or proofread a paragraph:

we need to guide and coordinate their activities.

These two personas are not particular to Mechanical Turk. Whether we are using

intrinsic or extrinsic motivators — money, love, fame, or others — there is almost

always an uneven distribution of participation. For example, in Wikipedia, there are

many Eager Beaver editors who try hard to make edits, but they introduce errors along

the way and often have their work reverted [110]. Likewise, many Lazy participants

on social networks will respond to content just to look engaged rather than because

of any deep interest in the material [144].

3.2.2 The Find-Fix-Verify Pattern

Crowd-powered systems must control the efforts of both the Eager Beaver and Lazy

Worker and limit introduction of errors. Absent suitable control techniques for open-

ended tasks, the rate of problematic edits is too high to be useful. We feel that the

state of programming crowds is analogous to that of UI technology before the intro-

duction of design patterns like Model-View-Controller, which codified best practices.

In this section, we propose the Find-Fix-Verify pattern as one method of programming

56

Find
“Identify at least one area that can be shortened
 without changing the meaning of the paragraph.”

Fix
“Edit the highlighted section to shorten its length
 without changing the meaning of the paragraph.”

Verify
“Choose at least one rewrite that has significant
 style errors in it. Choose at least one rewrite that
 significantly changes the meaning of the sentence.”

Soylent, a prototype...

shorten(text)

return(patches)
Soylent is, a prototype...
Soylent is a prototypes...
Soylent is a prototypetest...

Find overlapping areas (patches)

Randomize order of suggestions

Soylent is a prototype
crowdsourced word
processing interface. It
focuses on three main
tasks: shortening the
user’s writing,
proofreading [...]

Soylent, a prototype
crowdsourced word
processing interface,
focuses on three
tasks: shortening
the user’s writing,
proofreading [...]

Mechanical TurkMicrosoft Word
C# and Visual Studio Tools for Office Javascript, Java and TurKit

Figure 3-5: Find-Fix-Verify identifies patches in need of editing, recruits workers to
fix the patches, and votes to approve work.

crowds to reliably complete open-ended tasks that directly edit the user’s data4. We

describe the pattern and then explain its use in Soylent across tasks like proofreading

and text shortening.

Find-Fix-Verify Description

The Find-Fix-Verify pattern separates open-ended tasks into three stages where work-

ers can make clear contributions. The workflow is visualized in Figure 3-5, and Fig-

ure 3-6 shows the Mechanical Turk tasks.

Both Shortn and Crowdproof use the Find-Fix-Verify pattern. We will use Shortn

as an illustrative example in this section. To provide the user with near-continuous

4Closed-ended tasks like voting can test against labeled examples for quality control [124]. Open-
ended tasks have many possible correct answers, so gold standard voting is less useful.

57

Figure 3-6: Find-Fix-Verify proceeds in three stages. Tasks for each stage are com-
pressed into one page here. The top task is Find, the middle one is Fix, and the
bottom one is Verify.

58

control of paragraph length, Shortn should produce many alternative rewrites without

changing the meaning of the original text or introduce5 grammatical errors. We begin

by splitting the input region into paragraphs.

The first stage, Find, asks several workers to identify patches of the user’s work

that need more attention. For example, when shortening, the Find stage asks ten

workers for at least one phrase or sentence that needs to be shortened. Any single

worker may produce a noisy result (e.g. Lazy workers might prefer errors near the

beginning of a paragraph). The Find stage aggregates independent opinions to find

the most consistently cited problems: multiple independent agreement is typically a

strong signal that a crowd is correct. Soylent keeps patches where at least 20% of the

workers agree. These are then fed in parallel into the Fix stage.

The Fix stage recruits workers to revise each agreed-upon patch. Each task now

consists of a constrained edit to an area of interest. Workers see the patch highlighted

in the paragraph and are asked to fix the problem (e.g., shorten the text). The worker

can see the entire paragraph but only edit the sentences containing the patch. A

small number (3–5) of workers propose revisions. Even if 30% of work is bad, 3–5

submissions are sufficient to produce viable alternatives. In Shortn, workers also vote

on whether the patch can be cut completely. If so, we introduce the empty string as

a revision.

The Verify stage performs quality control on revisions. We randomize the order

of the unique alternatives generated in the Fix stage and ask 3–5 new workers to

vote on them (Figure 3-5). We either ask workers to vote on the best option (when

the interface needs a default choice, like Crowdproof) or to flag poor suggestions

(when the interface requires as many options as possible, like Shortn). To ensure that

workers cannot vote for their own work, we ban all Fix workers from participating in

the Verify stage for that paragraph. To aid comparison, the Mechanical Turk task

annotates each rewrite using color and strikethroughs to highlight its differences from

5Word’s grammar checker, eight authors and six reviewers on the original Soylent paper did not
catch the error in this sentence. Crowdproof later did, and correctly suggested that “introduce”
should be “introducing”.

59

the original. We use majority voting to remove problematic rewrites and to decide if

the patch can be removed. At the end of the Verify stage, we have a set of candidate

patches and a list of verified rewrites for each patch.

To keep the algorithm responsive, we use a 15-minute timeout at each stage. If

a stage times out, we still wait for at least six workers in Find, three workers in Fix,

and three workers in Verify.

Pattern Discussion

Why should tasks be split into independent Find-Fix-Verify stages? Why not let

workers find an error and fix it, for increased efficiency and economy? Lazy Workers

will always choose the easiest error to fix, so combining Find and Fix will result in

poor coverage. By splitting Find from Fix, we can direct Lazy Workers to propose a

fix to patches that they might otherwise ignore. Additionally, splitting Find and Fix

enables us to merge work completed in parallel. Had each worker edited the entire

paragraph, we would not know which edits were trying to fix the same problem. By

splitting Find and Fix, we can map edits to patches and produce a much richer user

interface—for example, the multiple options in Crowdproof’s replacement dropdown.

The Verify stage reduces noise in the returned result. The high-level idea here

is that we are placing the workers in productive tension with one another: one set

of workers is proposing solutions, and another set is tasked with looking critically at

those suggestions. Anecdotally, workers are better at vetting suggestions than they

are at producing original work. Independent agreement among Verify workers can

help certify an edit as good or bad. Verification trades off time lag with quality: a

user who can tolerate more error but needs less time lag might opt not to verify work

or use fewer verification workers.

Find-Fix-Verify has downsides. One challenge that the Find-Fix-Verify pattern

shares with other Mechanical Turk algorithms is that it can stall when workers are

slow to accept the task. Rather than wait for ten workers to complete the Find task

before moving on to Fix, a timeout parameter can force our algorithm to advance if a

minimum threshold of workers have completed the work. Find-Fix-Verify also makes

60

it difficult for a particularly skilled worker to make large changes: decomposing the

task makes it easier to complete for the average worker, but may be more frustrating

for experts in the crowd.

3.3 Implementation

Soylent consists of a front-end application-level add-in to Microsoft Word and a back-

end service to run Mechanical Turk tasks (Figure 3-5). The Microsoft Word plug-in

is written using Microsoft Visual Studio Tools for Office (VSTO) and the Windows

Presentation Foundation (WPF). Back-end scripts use the TurKit Mechanical Turk

toolkit [129].

Shortn in particular must choose a set of rewrites when given a candidate slider

length. When the user specifies a desired maximum length, Shortn searches for the

longest combination of rewrites subject to the length constraint. A simple imple-

mentation would exhaustively list all combinations and then cache them, but this

approach scales poorly with many patches. If runtime becomes an issue, we can view

the search as a multiple-choice knapsack problem. In a multiple-choice knapsack

problem, the items to be placed into the knapsack come from multiple classes, and

only one item from each class may be chosen. So, for Shortn, each item class is an

area of text with one or more options: each class has one option if it was not selected

as a patch, and more options if the crowd called out the text as a patch and wrote

alternatives. The multiple-choice knapsack problem can be solved with a polynomial

time dynamic programming algorithm.

3.4 Evaluation

Our initial evaluation sought to establish evidence for Soylent’s end-to-end feasibility,

as well as to understand the properties of the Find-Fix-Verify design pattern. Full

input texts for these evaluations are available in the appendix.

61

3.4.1 Shortn Evaluation

We evaluated Shortn quantitatively by running it on example texts. Our goal was

to see how much Shortn could shorten text, as well as its associated cost and time

characteristics. We collected five examples of texts that might be sent to Shortn,

each between one and seven paragraphs long. We chose these inputs to span from

preliminary drafts to finished essays and from easily understood to dense technical

material (Table 3.1).

To simulate a real-world deployment, we ran the algorithms with a timeout enabled

and set to twenty minutes for each stage. We required 6–10 workers to complete the

Find tasks and 3–5 workers to complete the Fix and Verify tasks: if a Find task failed

to recruit even six workers, it might wait indefinitely. To be slightly generous while

matching going rates on Mechanical Turk, we paid $0.08 per Find, $0.05 per Fix, and

$0.04 per Verify.

Each resulting paragraph had many possible variations depending on the number

of shortened alternatives that passed the Verify stage — we chose the shortest possible

version for analysis and compared its length to the original paragraph. We also

measured wait time, the time between posting the task and the worker accepting the

task, and work time, the time between acceptance and submission. In all tasks, it

was possible for the algorithm to stall while waiting for workers, having a large effect

on averages. Therefore, we report medians, which are more robust to outliers.

Results

Shortn produced revisions that were 78%–90% of the original document length. For

reference, a reduction to 85% could slim an 113
4

page ACM paper draft down to

10 pages with no substantial cuts in the content. Table 3.1 summarizes and gives

examples of Shortn’s behavior. Typically, Shortn focused on unnecessarily wordy

phrases like “are going to have to” (Table 3.1, Blog). Workers merged sentences

when patches spanned sentence boundaries (Table 3.1, Classic UIST Paper), and

occasionally cut whole phrases or sentences.

62

Input
Text

Original
Length

Final
Length

Work
Stats

Time per
Paragraph

Example Output

Blog 3 paragraphs,
12 sentences,
272 words

83%
character
length

$4.57,
158
workers

46–57 min Print publishers are in a tizzy over Apple’s
new iPad because they hope to finally be able
to charge for their digital editions. But in
order to get people to pay for their magazine
and newspaper apps, they are going to have to
offer something different that readers cannot
get at the newsstand or on the open Web.

Classic
UIST
Paper
[92]

7 paragraphs,
22 sentences,
478 words

87% $7.45,
264
workers

49–84 min The metaDESK effort is part
of the larger Tangible Bits
project. The Tangible Bits vision paper, which
introduced the metaDESK along withand two
companion platforms, the transBOARD and
ambientROOM.

Draft
UIST
Paper
[194]

5 paragraphs,
23 sentences,
652 words

90% $7.47,
284
workers

52–72 min In this paper we argue that it is possible
and desirable to combine the easy input
affordances of text with the powerful
retrieval and visualization capabilities of
graphical applications. We present WenSo,
a tool thatwhich uses lightweight text input
to capture richly structured information for
later retrieval and navigation in a graphical
environment.

Rambling
Enron
E-mail

6 paragraphs,
24 sentences,
406 words

78% $9.72,
362
workers

44–52 min A previous board member, Steve Burleigh,
created our web site last year and gave me
alot of ideas. For this year, I found a web site
called eTeamZ that hosts web sites for sports
groups. Check out our new page: [. . .]

Technical
Writing
[5]

3 paragraphs,
13 sentences,
291 words

82% $4.84,
188
workers

132–489
min

Figure 3 shows the pseudocode that
implements this design for Lookup. FAWN-
DS extracts two fields from the 160-bit
key: the i low order bits of the key (the
index bits) and the next 15 low order bits
(the key fragment).

Table 3.1: Our evaluation run of Shortn produced revisions between 78%–90% of the
original paragraph length on a single run. The Example Output column contains
example edits from each input.

63

To investigate time characteristics, we separate the notion of wait time from work

time. The vast majority of Shortn’s running time is currently spent waiting, because

it can take minutes or hours for workers to find and accept the task. Here, our current

wait time — summing the median Find, median Fix, and median Verify — was 18.5

minutes (1st Quartile Q1 = 8.3 minutes, 3rd Quartile Q3 = 41.6 minutes). This wait

time can be much longer because tasks can stall waiting for workers, as Table 3.1

shows. However, the next chapter will demonstrate techniques to reduce this wait

time by several orders of magnitude.

Considering only work time and assuming negligible wait time, Shortn produced

cuts within minutes. We again estimate overall work time by examining the median

amount of time a worker spent in each stage of the Find-Fix-Verify process. This

process reveals that the median shortening took 118 seconds of work time, or just

under two minutes, when summed across all three stages (Q1 = 60 seconds, Q3 = 3.6

minutes). Using the recruitment techniques to come in Chapter 4, users may see

shortening tasks approaching a limit of two minutes.

The average paragraph cost $1.41 to shorten under our pay model. This cost split

into $0.55 to identify an average of two patches, then $0.48 to generate alternatives

and $0.38 to filter results for each of those patches. Were we instead to use a $0.01

pay rate for these tasks, the process would cost $0.30 per paragraph. Our experience

is that paying less slows down the later parts of the process, but it does not impact

quality [141] — it would be viable for shortening paragraphs under a loose deadline.

Qualitatively, Shortn was most successful when the input had unnecessary text.

For example, with the Blog input, Shortn was able to remove several words and

phrases without changing the meaning of the sentence. Workers were able to blend

these cuts into the sentence easily. Even the most technical input texts had extrane-

ous phrases, so Shortn was usually able to make at least one small edit of this nature

in each paragraph. As Soylent runs, it can collect a large database of these straight-

forward rewrites, then use them to train a machine learning algorithm to suggest

some shortenings automatically.

Shortn occasionally introduced errors into the paragraph. While workers tended

64

to stay away from cutting material they did not understand, they still occasionally

flagged such patches. As a result, workers sometimes made edits that were grammat-

ically appropriate but stylistically incorrect. For example, it may be inappropriate

to remove the academic signaling phrase “In this paper we argue that. . . ” from an

introduction. Cuts were a second source of error: workers in the Fix stage would vote

that a patch could be removed entirely from the sentence, but were not given the

chance to massage the effect of the cut into the sentence. So, cuts often led to capi-

talization and punctuation problems at sentence boundaries. Modern auto-correction

techniques could catch many of these errors. Parallelism was another source of error:

for example, in Technical Writing (Table 3.1), the two cuts were from two different

patches, and thus handled by separate workers. These workers could not predict that

their cuts would not match, one cutting the parenthetical and the other cutting the

main phrase.

To investigate the extent of these issues, we coded all 126 shortening suggestions

as to whether they led to a grammatical error. Of these suggestions, 37 suggestions

were ungrammatical, again supporting our rule of thumb that 30% of raw worker

edits will be noisy. The Verify step caught 19 of the errors (50% of 37) while also

removing 15 grammatical sentences. Its error rate was thus (18 false negatives + 15

false positives) / 137 = 26.1%, again near 30%. Microsoft Word’s grammar checker

caught 13 of the errors. Combining Word and Shortn caught 24 of the 37 errors.

We experimented with feeding the shortest output from the Blog text back into

the algorithm to see if it could continue shortening. It continued to produce cuts

between 70–80% with each iteration. We ceased after 3 iterations, having shortened

the text to less than 50% length without sacrificing much by way of readability or

major content:

Print publishers are in a tizzy over Apple’s iPad. We’ve seen interactive

graphics, photo slide shows, and embedded videos.

What should a magazine cover look like on the iPad? One way these covers

could change is by using a video loop for the background image. Jesse

65

Rosten, a photographer in California, created the video mockup below of

what a cover of Sunset Magazine might look like on the iPad.

The video shows ocean waves lapping a beach as typographical elements

appear on the page almost like movie credits. This is just a mockup

Rosten came up with on his own and The only way people are going to

pay for these apps is if they create new experiences for readers.

The full-length, original text is in Appendix A.

3.4.2 Crowdproof Evaluation

To evaluate Crowdproof, we obtained a set of five input texts in need of proofreading

(Table 3.2). We manually labeled all spelling, grammatical and style errors in each

of the five inputs, identifying a total of 49 errors. We then ran Crowdproof on the

inputs using a 20-minute stage timeout, with prices $0.06 for Find, $0.08 for Fix, and

$0.04 for Verify. We measured the errors that Crowdproof caught, that Crowdproof

fixed, and that Word caught. We ruled that Crowdproof had caught an error if one

of the identified patches contained the error.

Results

Soylent’s proofreading algorithm caught 33 of the 49 errors (67%). For comparison,

Microsoft Word’s grammar checker found 15 errors (30%). Combined, Word and

Soylent flagged 40 errors (82%). Word and Soylent tended to identify different errors,

rather than both focusing on the easy and obvious mistakes. This result lends more

support to Crowdproof’s approach: it can focus on errors that automatic proofreaders

have not already identified.

Crowdproof was effective at fixing errors that it found. Using the Verify stage to

choose the best textual replacement, Soylent fixed 29 of the 33 errors it flagged (88%).

To investigate the impact of the Verify stage, we labeled each unique correction that

workers suggested as grammatical or not. Fully 28 of 62 suggestions, or 45%, were

66

Input
Text

Content Errors
all/caught/fixed

Workers Time Example Output

Passes
Word’s
Checker

1 paragraph,
4 sentences,
49 words

9 / 9 / 8 $4.76
77 workers

48 min Marketing areis bad for brands big
and small. You Kknow Wwhat I
am Ssaying. It is no wondering that
advertisings are is bad for companyies
in America, Chicago and Germany.
Updating of brand image areis bad for
processes in one company and many
companies.

English as
a Second
Language

1 paragraph,
8 sentences,
166 words

12 / 5 / 4 $4.72
79 workers

42–53
min

However, while GUI made using
computers be more intuitive and easier
to learn, it didn’t let people be able to
control computers efficiently. The
masses only can use the software
developed by software companies,
unless they know how to write
programs.

Notes
from a
Talk

2 paragraphs,
8 sentences,
107 words

14 / 8 / 8 $2.26
38 workers

47 min Blah blah blah—This is an argument
about whether there should be a
standard “nosqlNoSQL storage”
API to protect developers storing
their stuff in proprietary services
in the cloud. Probably unrealistic.
To protect yourself, use an open
software offering, and self-host or go
with hosting solution that uses open
offering.

Wikipedia 1 paragraph,
5 sentences,
63 words

8 / 7 / 6 $2.18
36 workers

54 min Dandu Monara (Flying Peacock,
Wooden Peacock), The Flying
mMachine able to fly. The King
Ravana (Sri Lanka) built it.
Accorinding to hHindu believesfs
in Ramayanaya King Ravana used
“Dandu Monara” for abduct queen
Seetha from Rama. According to
believers, “Dandu Monara” landed at
Werangatota.

UIST
Draft
[194]

1 paragraph,
6 sentences,
135 words

6 / 4 / 3 $3.30
53 workers

96 min Many of these problems vanish if
we turn to a much older recording
technology - - - text. When we
enter text, each (pen or key) stroke
is being used to record the actual
information we care about- - -; none
is wasted on application navigation or
configuration.

Table 3.2: A report on Crowdproof’s runtime characteristics and example output.

67

ungrammatical. The fact that such noisy suggestions produced correct replacements

again suggests that workers are much better at verification than they are at authoring.

Crowdproof’s most common problem was missing a minor error that was in the

same patch as a more egregious error. The four errors that Crowdproof failed to fix

were all contained in patches with at least one other error; Lazy Workers fixed only

the most noticeable problem. A second problem was a lack of domain knowledge:

in the ESL example in Table II, workers did not know what a GUI was, so they

could not know that the author intended “GUIs” instead of “GUI”. There were also

stylistic opinions that the original author might not have agreed with: in the Draft

UIST example in Table II, the author clearly had a penchant for triple dashes that

the workers did not appreciate.

Crowdproof shared many running time characteristics with Shortn. Its median

work time was 2.8 minutes (Q1 = 1.7 minutes, Q3 = 4.7 minutes), so it completes in

very little work time. Similarly to Shortn, its wait time was 18 minutes (Median =

17.6, Q1 = 9.8, Q3 = 30.8). It cost more money to run per paragraph (µ = $3.40,

σ = $2.13) because it identified far more patches per paragraph: we chose paragraphs

in dire need of proofreading.

3.4.3 Human Macro Evaluation

We were interested in understanding whether end users could instruct Mechanical

Turk workers to perform open-ended tasks. Can users communicate their intention

clearly? Can workers execute the amateur-authored tasks correctly?

Method

We generated five feasible Human Macro scenarios (Table 3.3). We recruited two

sets of users: five undergraduate and graduate students in our computer science

department (4 male) and five administrative associates in our department (all female).

We showed each user one of the five prompts, consisting of an example input and

output pair. We purposefully did not describe the task to the participants so that

68

Task Quality Example Request Example Input Example Output
Tense
$0.10
1 paragraph

CS: 100% intention
(20% accuracy),
Admin: 100% (40%),
Author: 100% (60%)

Admin: “Please
change text in
document from past
tense to present tense.”

I gave one final
glance around before
descending from the
barrow. As I did
so, my eye caught
something [. . .]

I give one final
glance around before
descending from the
barrow. As I do so, my
eye catches something
[. . .]

Figure
$0.20
1 paragraph

CS: 75% (75%),
Admin: 75% (75%),
Author: 60% (60%)

CS: “Pick out
keywords from
the paragrah like
Yosemite, rock, half
dome, park. Go to
a site which hsa CC
licensed images [. . .]”

When I first visited
Yosemite State Park
in California, I was a
boy. I was amazed by
how big everything was
[. . .]

http://commons.

wikimedia.org/wiki/

File:03_yosemite_

half_dome.jpg

Opinions
$0.15
1 paragraph

CS: 100% (100%),
Admin: 100% (100%),
Author: 100% (100%)

CS: “Please tell
me how to make
this paragraph
communicate better.
Say what’s wrong, and
what I can improve.
Thanks!”

Take a look at your
computer. Think
about how you
launch programs,
edit documents, and
browse the web. Don’t
you feel a bit lonely?
[. . .]

This paragraph needs
an objective I feel like.
[. . .] After reading I
feel like there should
be about five more
sentences [. . .]

Citation
Gathering
$0.40
3 citations

CS: 75% (75%),
Admin: 100% (100%),
Author: 66% (40%)

Admin: “Hi, please
find the bibtex
references for the
3 papers in brackets.
You can located these
by Google Scholar
searches and clicking
on bibtex.”

Duncan and Watts
[Duncan and watts
HCOMP 09 anchoring]
found that Turkers will
do more work when
you pay more, but
that the quality is no
higher.

@conference

title=Financial

incentives and

[...], author=Mason,

W. and Watts, D.J.,

booktitle=HCOMP 09

List
Processing
$0.05
10 inputs

CS: 82% (82%),
Admin: 98% (96%),
Author: 91% (68%)

Admin: “Please
complete the addresses
below to include all
informtion needed as
in example below.
[. . .]”

Max Marcus, 3416
colfax ave east, 80206

Max Marcus
3416 E Colfax Ave
Denver, CO 80206

Table 3.3: The five tasks in the left column led to a variety of request strategies.
Terse, typo-filled user requests still often led to success.

69

http://commons.wikimedia.org /wiki/File:03_yosemite_half_dome.jpg
http://commons.wikimedia.org /wiki/File:03_yosemite_half_dome.jpg
http://commons.wikimedia.org /wiki/File:03_yosemite_half_dome.jpg
http://commons.wikimedia.org /wiki/File:03_yosemite_half_dome.jpg

we would not influence how they wrote their task descriptions. We then introduced

participants to The Human Macro and described what it would do. We asked them

to write a task description for their prompt using The Human Macro. We then sent

the description to Mechanical Turk and requested that five workers complete each

request. In addition to the ten requests generated by our participants, one author

generated five requests himself to simulate a user who is familiar with Mechanical

Turk.

We coded results using two quality metrics: intention (did the worker understand

the prompt and make a good faith effort?) and accuracy (was the result flawless?). If

the worker completed the task but made a small error, the result was coded as good

intention and poor accuracy.

Results

Users were generally successful at communicating their intention (Table 3.3). The

average command saw an 88% intention success rate (max = 100%, min = 60%).

Typical intention errors occurred when the prompt contained two requirements: for

example, the Figure task asked both for an image and proof that the image is Creative

Commons-licensed. Workers read far enough to understand that they needed to find

a picture, found one, and left. Successful users clearly signaled Creative Commons

status in the title field of their request.

With accuracy, we again see that roughly 30% of work contained an error. (The

average accuracy was 70.8%.) Workers commonly got the task mostly correct, but

failed on some detail. For example, in the Tense task, some workers changed all but

one of the verbs to present tense, and in the List Processing task, sometimes a field

would not be correctly capitalized or an Eager Beaver would add too much extra

information. These kinds of errors would be dangerous to expose to the user, because

the user might likewise not realize that there is a small error in the work.

70

3.4.4 Impact of Price on Wait Time

The most obvious lever that users have is the ability to name a price. For interactive

purposes, it is important to understand how price impacts wait time and work time.

Can the user trade off time for money, getting faster results by paying more? There is

evidence that offering more money means that workers complete more tasks, resulting

in faster completion times for large batch tasks [141, 202]. How does this play out in

a system like Soylent, where recruitment wait time dominates?

Method

To investigate the impact of price on time, we ran Crowdproof many times at different

price points, measuring wait time and work time. We used the same input each time:

the first paragraph from the ESL input. We isolated the Find stage from the Fix

and Verify stages so that the Fix/Verify combo would always begin with the same

patches. So, we ran iterations of two separate algorithms: Find, and Fix+Verify.

We chose price points of $0.01, $0.05, $0.10, and $0.50 to cover a range of prices

on Mechanical Turk. Each price dictated the reward for a Find or a Fix task; Verify

votes were always $0.03. We fixed the price of Verify so that we could isolate the

impact of price on Fix, rather than a combination of Fix+Verify, and get some notion

of how much Mechanical Turk fluctuated.

Results

Investigating wait time, our most striking finding was that a small number of workers

streamed into the task as soon as it was posted, no matter the price. On the Find

task, all price points attracted at least one worker in the first 100 seconds, while the

task was highly visible on the Mechanical Turk task listing when sorted by recency.

All price points likewise attracted three workers in the first ten minutes. After about

15 minutes, the flow of new workers becomes a crawl, looking linear on an exponential

plot. At this point, price began to have an impact. $0.01 and $0.05 behaved similarly,

while $0.10 and $0.50 attracted workers more quickly. We can see this process in

71

10

100

1000

10000

100000

W
ai

t T
im

e
(s

ec
on

ds
)

Payment
$0.01 $0.10 $0.05 $0.50

Figure 3-7: A group of workers always accepted the Find or Fix task while it was on
the homepage, roughly within two–three minutes of posting. Raising the price sped
up the arrival of the rest of the workforce, but did not impact these early workers.

Figure 3-7: the bottom parts of the columns in the scatterplot look similar, but $0.10

and $0.50 pull in the tail of workers that extends beyond 10,000 seconds for $0.01

and $0.05. This result suggests that for interactive applications that require low lag

and a small number of workers, a low price will work. However, to attract a larger

group of workers, we either need to be willing to wait or pay more.

The Fix task showed the same trends, though slightly accelerated because each

worker could complete two Fix tasks at a time. Again, $0.01 and $0.05 performed

similarly while $0.10 and $0.50 were slower.

These results suggest that the system may want to dynamically manage its wait

time to get the most workers and exit before expected wait time begins growing

exponentially. They also suggest that within the first few minutes of a task being

posted to Mechanical Turk, the labor supply is relatively inelastic with respect to

price. The market becomes more elastic at larger time scales.

72

In the next chapter, we will demonstrate ways to reduce this wait time by several

orders of magnitude to create realtime crowds.

3.5 Discussion

While Soylent uses exclusively crowd contributions, it will be important to close the

loop and integrate machine learning solutions. Soylent users are indirectly paying

for a very large training corpus for sentence compression algorithms. This corpus

contains patches that can be shortened, as well as multiple potential rewrites for each

patch. As these algorithms improve, Shortn can propose some cuts automatically

and go to the crowd only for the uncertain or harder patches. Ultimately, this hybrid

crowd-AI system will scale much more successfully than just crowds.

Other issues with Soylent include ethics, privacy, and scale. We will return to

these discussions in Chapter 7.

3.6 Conclusion

The following conclusion was Shortn’ed to 85% length:

This chapter presents Soylent, a word processing interface that uses crowd work-

ers to help with proofreading, document shortening, editing and commenting tasks.

Soylent is an example of a newkind of interactive user interface in which the end user

has direct access to a crowd of workers for assistance with tasks that require human

attention and common sense. Implementing these kinds of interfaces requires new

software programming patterns for interface software, since crowds behave differently

than computer systems. We have introduced one important pattern, Find-Fix-Verify,

which splits complex editing tasks into a series of identification, generation, and verifi-

cation stages that use independent agreement and voting to produce reliable results.

We evaluated Soylent with a range of editing tasks, finding and correcting 82% of

grammar errors when combined with automatic checking, shortening text to approx-

imately 85% of original length per iteration, and executing a variety of human macros

73

successfully.

Future work falls in three categories. First are new crowd-driven features for word

processing, such as readability analysis, smart find-and-replace (so that renaming

“Michael” to “Michelle” also changes “he” to “she”), and figure or citation number

checking. Second are new techniques for optimizing crowd-programmed algorithms

to reduce wait time and cost. Finally, we believe that our research points the way to-

ward integrating on-demand crowd work into other authoring interfaces, particularly

in creative domains like image editing and programming.

74

Chapter 4

Realtime Crowdsourcing:

Platform and Model

Crowd-powered systems such as Soylent demonstrate the potential to create new

kinds of interactive applications, but these applications are limited by the problem of

crowd latency. Crowdsourcing is only a reasonable choice if the user can wait signifi-

cant lengths of time for a response. Existing “nearly realtime” techniques produce a

single, unverified answer to a question in 56 seconds on average [21]. More complex

workflows such as Find-Fix-Verify require roughly twenty minutes of wait and work

time (Section 3.4.1).

Users are not used to waiting, and will abandon interfaces that are slow to react.

Search engine usage decreases linearly as delays grow [173], and Jakob Nielsen argues

that ten seconds is the maximum delay before a user loses focus on the interaction

dialogue [150]. The much longer delays with crowdsourcing make it difficult for crowds

to help with tasks in the moment-to-moment workflow. For example, using crowds to

create a smarter copy-paste command would be difficult: a one minute wait between

copying and pasting is unusable. We need new approaches if we want to realize the

vision of the user pushing a button and seeing a crowd-powered result just seconds

later.1

1This chapter has adapted, updated, and rewritten content from papers at UIST 2011 [16] and
Collective Intelligence 2012 [17].

75

So, our goal is realtime crowdsourcing : completing non-trivial crowdsourced com-

putation within seconds of the user’s request — fast enough to feed back into an

interface before the user loses focus. Realtime crowdsourcing can open up a broad

new class of applications for crowd-powered interfaces.

The core contribution of this chapter is platform support for realtime crowds and

a mathematical model of that platform.

To recruit realtime synchronous crowds, we present the retainer model. It hires

crowd members in advance, then places them on hold for low cost and alerts them

when a task is ready. Our most effective design results in 50% of workers returning

within two seconds and 75% within three seconds. The retainer model’s performance

is striking in that it approaches human limits on the cognitive recognize-act cycle and

motor reaction times [30]. It nearly zeroes out wait times, which in previous work

ranged from twenty seconds [21] to twenty minutes (Chapter 3). Most importantly,

however, it makes on-demand synchronous crowds available as a new resource for

crowdsourcing.

Having introduced the retainer model, I will then turn to a mathematical model

of retainer recruitment. This model allows us, for the first time, to understand how

these approaches would work at large scale and to optimize the tradeoffs between

retainer pool size, cost, and response time.

The mathematical model analyzes retainer recruitment using queueing theory [69]

to understand the retainer model’s performance at scale, in particular the trade-off

between expected wait time and cost. We introduce a simple algorithm for choosing

the optimal size of the retainer pool to minimize total cost to the requester subject to

the requester’s performance requirements: bounded wait time or bounded probability

of missing a request. We then propose several improvements to the retainer model

that reduce expected wait time. First, retainer subscriptions allow workers to sign

up for push notifications for recruitment, which reduces the length of time it takes to

recruit new workers onto retainer. Second, combining retainer pools across requesters

leads to both cost and wait time improvements. Large retainer pools can then be

made more effective by using task routing to connect appropriate workers to the

76

tasks that need them. Third, a precruitment strategy recalls workers from retainer a

few moments before a task is expected to arrive, dramatically lowering response time.

We perform an early empirical evaluation demonstrating that precruitment results in

median response times of just 500 milliseconds.

Our analysis carries several benefits. First, realtime tasks can now directly min-

imize their cost for a given performance requirement. Second, the retainer subscrip-

tions allows workers to register for the tasks they like best and have them delivered,

rather than constantly seeking out new work. Third, we demonstrate empirically that

these techniques can overcome the retainer model’s original limits of “crowds in two

seconds” to deliver the feedback to the user within 500 milliseconds—finally under

the one-second cognitive threshold for an end-user to remain in flow [150].

4.1 The Retainer Model

To power realtime applications like Adrenaline, we need to gather not just one in-

dividual but a small crowd quickly: a synchronous, flash crowd. We would like the

crowd to turn their attention to our task as soon as it is available, for the system to

spend as little money as possible.

Previous work, called quikTurKit, returns a single response roughly sixty seconds

after a request [21]. To do so, it repeatedly lists new tasks on Amazon Mechanical

Turk, regardless of whether a task is ready. If there are no pending tasks, quikTurKit

shows the workers old tasks to keep them busy.

While it was clear from our explorations that workers would respond more quickly

when paid more money (Section 3.4.4), it was not certain that they could respond

fast enough for an interactive system. How should a retainer system be designed to

1) guarantee a fast response time, 2) be cheap enough to scale, and 3) maintain that

response time after a long wait?

In this section, we introduce the retainer model for synchronous crowdsourcing

and empirically derived design guidelines for its use. This approach solves all three

issues by placing workers on retainer — signed up to do work when it is available —

77

for a small fee, then allowing them to pursue other work while they wait. When the

user makes a request, the retainer model alerts the workers. Our designs result in a

majority of workers returning two seconds after request. These workers arrive at the

same time, enabling synchronous crowds.

4.1.1 Retainer Design and Wait Time

Workers agree to be put on retainer by accepting the task. They are given task

instructions and an example, and told that they will be alerted when a task is ready

(Figure 4-1). We scale the task price up by expected wait time, usually 0.5¢ per

expected minute on retainer. Workers accept the price and maximum wait time up

front. For example, with a 5¢ base task price, 0.5¢ per minute retainer, and maximum

wait time of four minutes, the offered price is 5¢+ 4(0.5¢) = 7¢. After workers agree,

they are free to leave the browser tab open and pursue other work.

The worker’s browser polls a work server to see if tasks are available. When a

task is ready, the work server notifies the client, and the client’s browser issues a

Javascript alert() and an audio chime to signal the worker (Figure 4-2). Optionally,

the work server may also offer a small bonus to reward quick responses, for example

3¢ to return within two seconds. Workers dismiss the alert when they arrive, then

begin the task. If no new tasks are ready by the end of the retainer period, the

retainer model gives workers an old task to perform, like quikTurKit [21]. As work

arrives more consistently, however, the chance of wasting a task becomes lower.

4.1.2 Retainer Field Experiments

Can workers react quickly enough to support a realtime application, especially when

they may be distracted with other tasks? This section describes field experiments of

the retainer model that investigate its effectiveness.

Our high-level experimental approach was to vary the retainer time that workers

would wait before seeing a task, and the design of the alert mechanism, then measure

the latency between when the task was ready and when the worker dismissed the alert

78

Figure 4-1: When a worker accepts a task with a retainer, the system displays an
explanation of the maximum retainer time as well as a preview of the task that will
eventually appear.

79

Figure 4-2: When a task arrives, a Javascript alert() draws the worker’s attention
to the application tab so they can begin.

to begin the task. We created a benchmark Mechanical Turk task that instructed

workers to click on all the verbs in a random paragraph from a blog or a book.

Workers were told that the task would be ready within a specific retainer time limit,

then the web page began an invisible countdown that sampled uniformly between

zero seconds and the maximum retainer time. So, for a five-minute retainer time, the

average wait time was 2.5 minutes. When the countdown finished, the page alerted

the worker and showed a task. We prevented workers from accepting more than one

of our tasks at a time.

Study 1: Retainer Time

To test how long we could keep workers primed, we experimentally manipulated

retainer time to vary between 0.5, 1, 2, 5, 10, and 30 minutes. We scaled payment

linearly with retainer time, b2¢ + 1¢(wait time)c: 2¢, 3¢, 4¢, 7¢, 12¢, and 32¢. We

hypothesized that worker response time would increase after 1–2 minutes, as workers

stopped monitoring the page.

To reduce the chance that workers would see multiple price points for the same

task, we posted each set at different hours. We ran the experiment over a period

of six days, in six separate one-hour periods each day, and randomized the order of

conditions. A total of 280 workers completed 1545 tasks. We removed and rejected

80

Figure 4-3: For retainer times under ten minutes, a majority of workers responded
to the alert within two seconds and three-quarters responded within three seconds.
N=1442.

30 sec 1 min 2 min 5 min 10 min 30 min
Median 1.77 s 1.77 s 1.91 s 2.18 s 3.34 s 10.32 s
3rd quartile Q3 2.44 s 2.39 s 3.46 s 3.75 s — —
Completion 86.6% 87.2% 82.9% 75.1% 66.4% 49.4%

Table 4.1: A tabular representation of Figure 4-3.

103 tasks because they disagreed significantly with our ground truth.

Results. For retainer times under ten minutes, 46–61% of workers dismissed the

alert within two seconds and 69–84% of workers dismissed the alert within three

seconds (Figure 4-3, Table 4.1). These curves in Figure 4-3 asymptote to a completion

rate of 83–87%: the rest of the workers never returned to complete the task. Retainer

times of ten minutes or more resulted in much lower completion rates, 49–66%. The

median time between dismissing the alert and completing the first incremental piece

of work (clicking on a verb) was 3.35 seconds across all conditions.

These results suggest that for wait times under ten minutes, we could expect to

produce a crowd in two seconds, and a larger crowd in three seconds. In the next

study, we investigate how to improve response time and completion rates further

through retainer designs.

81

Study 2: Alert Design

While Study 1’s results are already good enough to get a crowd quite quickly, can we

improve on them by changing the reason that workers would pay attention? Can we

incentivize the slow workers to move more quickly?

We investigated design and financial incentives to shift the curve so that more

workers came within the first 2–3 seconds. We used the 12¢ 10-minute retainer

condition from Study 1, which exhibited a low completion rate and a slower arrival

rate. The alert condition functioned as in Study 1, with a Javascript alert and audio

chime. Bonuses can be powerful incentives [141], so we designed a reward condition

that paid workers a 3¢ bonus if they dismissed the alert within two seconds. Two

seconds is short enough to be challenging, but not so short as to be out of reach. To

keep workers’ attention on the page, we created a game condition that let workers

optionally play Tetris during the waiting period. Finally, to isolate the effectiveness of

the Javascript alert, we created a baseline condition that displayed a large Go button

on the page when the timer expired but did not use an audio or Javascript alert. We

hypothesized that the bonus and game conditions might improve response time and

completion rate.

For Study 2, we implemented a between-subjects design by randomly assigning

each worker to a condition for the same verb-selection task. We posted tasks for four

hours per day over four days. Workers completed 1913 tasks — we removed 90 for

poor work quality.

Results. Paying a small reward for quick reactions had a strong positive impact

on response time (Figure 4-4, Table 4.2). In the reward condition, 61% of workers

responded within two seconds vs. 25% in the alert condition, and 74% responded

within three seconds vs. 50% in the alert condition. Roughly speaking, the ten-minute

retainer with reward had similar performance to the two-minute retainer without

reward. In addition, workers in the reward condition completed 2.25 times as many

tasks as those in the alert condition (734 vs. 325), suggesting that the small bonus has

a disproportionately large impact on work volume. Predictably, the baseline condition

82

Figure 4-4: A small reward for fast response (red) led workers in a ten-minute retainer
to respond as quickly as those on a two-minute retainer without reward (Figure 4-
3, red). Other conditions included no alert (blue), an alert without bonus payment
(purple), and a game to keep workers entertained (green). N=1913.

Baseline Alert Game Reward
Median 36.66 s 3.01 s 2.55 s 1.68 s
3rd quartile Q3 — 6.92 s 5.01 s 3.07 s
Completion 64.2% 76.5% 76.7% 85.5%

Table 4.2: A tabular representation of Figure 4-4.

without the alert dialog performed poorly, with roughly 15% returning within two

seconds. The game was not very popular (5.7% of completed tasks cleared a row in

Tetris), but had a small positive impact on reaction times.

Retainer Model Discussion

Our data suggest that the retainer model can summon a crowd two seconds after the

request is made. In exchange for a small fee, the retainer model recalls 50% of its

workers in two seconds and 75% in three seconds. Though reaction times worsen as the

retainer time increases, a small reward for quick response negates the problem. Our

experiment commonly produced 10–15 workers on retainer at once, suggesting that

users could fairly reliably summon a crowd of ten within three seconds. Applications

83

with an early indication that the user will want help (for example, a mouseover on

the feature’s toolbar icon or an “Are You Sure?” dialog) can eliminate even this delay

by alerting workers in advance. Section 4.4.3 will formalize this idea into a technique

called precruitment.

The cost of the retainer model is attractive because it pays workers a small amount

to wait, rather than spending money to repeat old tasks. The next section will

quantify the cost of the retainer model more precisely and relate cost to performance

guarantees.

4.2 Queueing Theory Model

Up to this point, the retainer model has not been optimized for cost or performance,

nor do requesters have any analytic framework to understand the relationship between

retainer pool size, cost, and response time. This section will develop an analytical,

mathematical model of retainer recruitment. In particular, we can adapt queueing

theory [69] to understand its performance at scale. This model leads to a simple algo-

rithm for choosing the optimal size of the retainer pool to minimize total cost to the

requester subject to the requester’s performance requirements: maximum expected

wait time or maximum probability of missing a request.

4.2.1 Model Formalization

In this section, we investigate a mathematical model of retainers. This model allows us

to predict how long realtime tasks will need to wait. Suppose that the task maintains

a set of retainer workers. When a task comes in, a worker leaves the retainer pool to

work on the task and the retainer system recruits another worker to refill the pool.

The goal is to maintain a large enough pool of retainer workers to handle incoming

tasks. In other words, we want to minimize the probability that the retainer pool will

be empty (no retainer workers left), subject to cost constraints. The risk is that a

burst of task arrivals may exhaust the retainer pool before we can recruit replacement

workers.

84

We will model this problem using queueing theory. In queueing theory, a set of

servers are available to handle jobs as they arrive. If all servers are busy handling a

job when a new job arrives, that job enters a queue of waiting tasks and is serviced as

soon as it reaches the front of the queue. In our scenario, tasks are jobs, and retainer

workers are servers.

Here, we will consider a class of algorithms that set an optimal retainer pool size.

Suppose the retainer pool is c workers. As jobs come in and remove workers from

the retainer pool, assume that the system always puts out enough requests for new

workers to bring the pool back to c. That is, if there are c0 workers in the pool, the

system has issued c − c0 outstanding requests. If, when a job arrives, the pool is

empty, the system sets it aside for special processing: it directly recruits a worker,

not for the pool, but for that job. In effect, a user with a diverted job is immediately

alerted that the system is over capacity and the job will be handled out-of-band after

a short delay. This final assumption may not accurately reflect how a running system

would work, but it provides an upper bound on expected wait time and makes it

easier to analyze the probability that a task will be serviced in realtime.

Suppose that tasks arrive as a Poisson process at rate λ, and retainer workers

arrive after they are requested as a Poisson process at rate µ.2 Then, the empty spots

in the retainer pool, each of which will become filled when a worker arrives, can be

thought of as busy machines occupied with a job whose completion time is a Poisson

process with rate µ. In our setup, we also divert jobs that arrive when all machines

are busy.

In other words, this is an M/M/c/c queue where jobs arrive at rate λ and have

processing time µ. A basic M/M/1 queue assumes Poisson arrival and completion

processes, a single server, and a potentially infinite queue. An M/M/c/c queue has c

parallel machines instead of one, and rejects or redirects requests when there are no

servers to immediately handle the incoming request [69]. Imagine a telephone system,

2These assumptions are perhaps overly ideal. Job arrivals on Mechanical Turk are heavy-tailed
[89]. However, much of our analysis is independent of the arrival distribution, and systems can
always substitute empirically observed distributions and solve numerically.

85

for example, that gives a busy signal if all c lines are busy. The meaning of µ has

now changed slightly to indicate worker recruitment time instead of a job completion

time.3

To optimize performance, we need to understand the probability that all workers

are busy, since that is the case where a job has to wait (for expected time 1/µ).

We also need to understand the cost of having a retainer pool of size c. Since the

system pays workers proportional to how long they are on retainer without a job,

the total cost is proportional to the average number of idle machines—these are

the ones representing workers waiting on retainer. Finally, we will integrate worker

abandonment into our model, since not all workers respond to the retainer alert.

Probability of an Empty Pool

The probability that a job must wait can be derived using Erlang’s loss formula [69].

We set ρ, the traffic intensity, to be the ratio of the incoming task rate to the worker

recruitment rate: ρ = λ/µ. In M/M/c/c queueing systems, as we will demonstrate,

ρ < c is necessary for the system to keep up with incoming requests.

The probability of an empty retainer pool (all c “servers” busy) is Erlang’s loss

formula:

π(c) =
ρc/c!∑c
i=0 ρ

i/i!
(4.1)

A remarkable property of Erlang’s loss formula is that this relationship requires no

assumptions about the distributions of job arrival time or worker recruitment time,

in particular whether they are Poisson. It only depends on the means µ and λ.

Expected Waiting Time

For some applications, the probability of a task needing to wait is less important

than the expected wait time for the task. The two quantities are directly related.

3This new µ is slightly counterintuitive: typical queueing systems have to wait for 1/µ seconds
on average for a server to complete a task. This queueing system does not wait at all, and instead
reaches into the crowd to immediately recruit a new worker (server). So, the 1/µ wait time refers
to recruitment speed, not server work time. The mathematical analysis remains the same.

86

The expected wait time is the probability of an empty retainer pool multiplied by the

expected wait time when the pool is empty. When the pool is empty, the requester

recruits a new worker specifically for the task at rate µ, so the expected wait time in

this case is 1
µ
. So, the overall expected wait time is 1

µ
π(c):

1

µ
π(c) =

1

µ

ρc/c!∑c
i=0 ρ

i/i!
(4.2)

This expression gives us a direct relationship between the size of the retainer pool,

the arriving task and worker rates, and the expected wait time.

As a sanity check: when λ → 0 (few arrivals) we have ρ → 0 in which case

π(c) → 0.4 In other words, we are very unlikely to have an empty pool so the

expected wait time also goes to zero. When λ → ∞ (many arrivals) the pool is

almost certainly empty (π(c) → 1), so all tasks must wait, and the expected wait

time is 1/µ. This relationship is visualized in Figure 4-5(c).

Expected Cost

Once we understand expected waiting time, we can analyze the retainer model’s cost

characteristics. The earlier experiments suggested that workers could be maintained

on retainer for $0.30 per hour (1
2
¢ per minute), but this analysis is fairly simplistic. To

understand cost more completely, we need to know the expected number of workers

on retainer.

The probability of having i busy servers in an M/M/c/c queue is a more general

version of Erlang’s loss formula:

π(i) =
ρi/i!∑c
i=0 ρ

i/i!
(4.3)

4Actually, π(c)→ ρc/c!

87

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

P
ay

m
en

t u
ni

ts
 p

er
 u

ni
t t

im
e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ

0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−

10
1e

−
07

1e
−

04
1e

−
01

(b) Probability of waiting

Size of retainer pool

P
ro

ba
bi

lit
y

of
 w

ai
tin

g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ

0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−

10
1e

−
07

1e
−

04
1e

−
01

1e
+

02

(c) Expected wait time

Size of retainer pool

E
xp

ec
te

d
w

ai
t t

im
e

(s
ec

on
ds

)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ

0.1
0.5
1
5
10

Figure 4-5: Graphs that visualize the relationships between retainer pool size, traffic
intensity, and (a) cost, (b) probability of a task waiting, and (c) expected wait time.
In the graph of expected wait time, we set λ = 1, so µ = ρ−1. When ρ > c, there are
often not enough workers on retainer to service all tasks. As a result, wait time goes
up, but cost goes down.

We can derive the closed form expression of the expected number of busy servers:

E[i] =

∑c
i=0 iρ

i/i!∑c
i=0 ρ

i/i!

= ρ

∑c−1
i=0 ρ

i/i!∑c
i=0 ρ

i/i!

= ρ(1− π(c)) (4.4)

In steady state, we need to pay all retainer workers who are not busy. That is,

we expect to have c− ρ(1− π(c)) workers waiting on retainer. If our retainer salary

rate is s (e.g., s = 1
2
¢), we would pay s(c− ρ(1− π(c))) per unit time on average.

Visualizing the Relationships

While these equations give us precise relationships, they may not convey intuitions

about the performance of the platform. Figure 4-5 plots these relationships for several

possible values of ρ. The curves have a knee at c ≈ ρ for getting a good probability of

response. A pool size c > ρ means that an empty pool’s overall rate of recruitment

of workers, cµ, exceeds the arrival rate of tasks. In other words, we begin to catch

88

●

●

●

●

●

●

●

●

●

0 2 4 6 8

1e
−

10
1e

−
04

Cost vs. probability of waiting

Expected payments per unit time

P
ro

ba
bi

lit
y

of
 w

ai
tin

g

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ● ● ● ● ● ●
●

●
●

●
●

●

●●●●●● ● ● ● ● ● ● ● ● ● ● ●
●

●

Traffic intensity ρ

0.1
0.5
1
5
10

Figure 4-6: By calculating cost and the probability of a task needing to wait for
integer values of c ∈ [1, 15], we can visualize the relationship between the two values.

up and rebuild a set of available workers.5 On the other hand, if c < ρ, then even an

empty queue will not recruit workers fast enough to cover all arriving tasks, so it will

stay empty.6

Figure 4-6 visualizes the relationship between the requester’s cost and the prob-

ability of waiting. We derive this parametric curve by choosing values of c, then

finding the cost and probability of waiting given that value. Paying more (i.e., for a

larger pool) always improves the probability that the system can immediately handle

a request. However, for small values of ρ, e.g. ρ ≤ 1, paying 1–1.5¢ per minute brings

the probability of waiting near zero. When tasks arrive quite quickly, 2.5¢ or more is

necessary to achieve similar performance.

5When ρ/c→ 0, the number of free workers goes to c− ρ(1− ρc/c!), or effectively c.
6As ρ→∞, the number of free workers goes to c− ρc/(ρ+ c) = c(1− ρ/(ρ+ c)) which goes to 0.

89

4.2.2 Optimal Retainer Pool Size

A queueing theory model allows us to determine the number of workers to keep on

active retainer. The size of the retainer pool is typically the only value that requesters

can manipulate, and it impacts both cost and expected wait time. Requesters want

to minimize their costs by keeping the retainer pool as small as possible while also

maintaining a low probability that the task cannot be served in realtime. In this

section, we present techniques for choosing the size of the retainer pool.

Our goal is to find an optimal value of c, given 1) the arrival rates λ and µ, and

2) desired performance, in terms of the probability of a miss π(c) or total cost. We

assume that the requester knows λ and µ either through empirical observation or

estimation. We also assume that λ and µ are constant, but it is enough just for them

not to change too quickly.

One approach to finding c is to specify the maximum allowable expected wait time

for a task, or (equivalently) the maximum allowable probability that an incoming task

will not be served in realtime. The intuition for this approach can be seen in Figure 4-

5(b): if ρ = .5, for example, and the requester wants a less than 5% probability of

any given task needing to wait, then c = 3 is the smallest retainer pool that can make

such a guarantee.

Algorithmically, if pmax is the maximum desired probability of a task not being

served in realtime, we want to minimize c subject to π(c) ≤ pmax. To find the solution,

we use a binary search over possible values of c.

A more interesting version of the problem is for the requester to attach a dollar

value to each task that cannot be serviced in realtime. For example, some pizza

delivery companies do not charge the customer for the pizza if they cannot deliver

it within thirty minutes. A miss then costs the company the value of the pizza plus

the deliveryman’s wage spent delivering the late pizza. A requester might similarly

offer the service for free if it is not completed in realtime, or they might decide that

the bad experience of a non-realtime result is worth $1 in lost potential revenue from

that user.

90

●
●

●
●

●
●

● ● ● ●

2 4 6 8 10

1
5

20
10

0
50

0

Total cost of task and retainer

Size of retainer pool

C
om

bi
ne

d
co

st
 o

f r
et

ai
ne

r
an

d
m

is
se

d
ta

sk

●

●
●

●
●

●
● ● ● ●

●

●

●

● ●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

Cost of a missed task

1
10
100
1000

Figure 4-7: By assigning a dollar value to missed tasks, we can visualize the rela-
tionship between retainer size and total cost. Assuming traffic intensity ρ = 1 and
retainer wage s = 1, these curves demonstrate the trade-off between more missed
tasks on the left part of the graph and higher retainer costs on the right.

It now becomes possible to directly minimize the requester’s total cost. Let Ctotal

be the expected total cost to the requester and Ctask be the loss if a task is not

completed in realtime. Then Ctotal is the sum of the expected task cost—zero if

addressed in realtime, or Ctask otherwise—and the wage for the retainer workers

derived from Equation 4.4:

Ctotal = Ctaskπ(c) + s(c− ρ(1− π(c))) (4.5)

We can minimize this total value. Figure 4-7 shows this curve for several possible

values of Ctask when ρ = 1. The minimum value on the y axis for each curve is the

optimal retainer size.

91

4.2.3 Worker Abandonment

Queueing theory models assume that a server will always begin a job once it is as-

signed. However, workers will sometimes leave the computer, close the window, or

otherwise not respond to the retainer alert. Empirically, Section 4.1.2 found that

about 10-20% of workers on active retainer never responded.

Our model can be adapted to capture worker abandonment. Let a be the percent-

age of workers who abandon the task, that is, they do not return after the retainer

alert. A straightforward edit is to add the constant a to the probability that a task

will not be serviced in realtime, so that probability is now a+ π(c). The response to

this would be to increase c to cover the difference and recall 1/a workers for each job

instead of 1. However, this is a conservative approach.

A more cost-effective approach would be to alert another worker if the first worker

does not respond quickly. If the mean worker response time to an alert is R, choose

a scalar α and wait until αR for the worker to respond. If the worker has not

responded by then, the platform immediately alerts another worker and waits another

αR seconds before issuing a third request. There is a constant probability of a worker

responding within time αR, so the expected number of alerts before getting a response

will likewise be a constant.

Unfortunately, queueing theory cannot easily accommodate this kind of approach.

A model including server breakdown is a close match, except that server repair recruits

another worker, which means that task arrivals are correlated and no longer Poisson.

To bound the expected cost within the queueing theory framework, we envision a

more complicated construction, which would be unlikely to be used in a running

system.

In this construction, we maintain several tiered retainer pools and cascade down

the tiers if we are having trouble finding a worker quickly. Specifically, if a worker in

tier i does not respond within time αR, we alert a worker in tier i+ 1. Each request

has a known probability of succeeding in time αR, as reported in Figure 4-3. Task

arrivals to each queue are now Poisson, since a constant fraction of the requests to

92

tier i will pass through to i + 1. For example, we might choose α such that half of

the requests will respond in time. Then, if tier i has task arrival rate λ, tier i + 1

would have arrival rate λ/2. We would see a sequence of geometrically decreasing

pool sizes: for example, a top tier pool of 100 workers, then a second-tier backup of

50, a third-tier backup of 25, and so on. So, the total cost, a geometric sum, will be

a small multiple of the first-tier cost, which we have already analyzed.

4.2.4 Limited Retainer Lifetimes

This model does not currently capture limited retainer lifetimes. In particular, the

current implementation of retainers gives workers a lump sum for a task and a fixed

retainer period. However, the model assumes that it can pay workers indefinitely to

keep them on retainer. To capture fixed retainer timeouts, the system would need to

model the probability that a worker reaches the end of the time period without being

given a task. Each worker who times out incurs a fixed cost (equivalent to one task)

and also leaves an empty spot in the retainer pool that needs to be replaced. The

probability of an unused worker depends most directly on λ and c: more task arrivals

mean workers wait less time, and the existence of more workers raises the time each

worker must wait. In this situation, the platform could optimize the retainer timeout

to balance low expected wait times vs. the additional cost of retainer timeouts.

4.3 Application to Common Crowdsourcing Tasks

Realtime crowds enable systems to execute common crowdsourcing tasks like votes

very quickly. Rather than waiting minutes or hours, the system can now expect wait

times on the order of seconds.

A simple example is A/B, a low-latency crowd voting platform. It can be hard to

escape from our own biases when we try to predict what others will think. Crowds

are certainly good at having opinions, but high latency makes them less useful for

snap decisions.

A/B is our lowest-latency crowd feedback platform. Processes took upwards of

93

Question Winner Loser Time to Five Votes

Which is scarier? 5.8 seconds

Which person looks
more heroic?

8.8 seconds

Which logo looks bet-
ter? [Color Version]

7.7 seconds

Which logo looks bet-
ter? [Serif/Sans-Serif
Version]

6.4 seconds

Table 4.3: A/B captures quick crowd votes.

twenty minutes for a Find-Fix-Verify workflow in Soylent and sixty seconds for a

single vote in previous work [21]. A/B returns five votes in as little as five seconds.

The user asks a question and takes two pictures, then a histogram of crowd feedback

appears moments later. A user might try on two different sweaters, take pictures of

each, and ask which one looks better; an artist might sketch two different versions

of a character and ask which one looks more engaging; a designer might want fast

aesthetic feedback on a sketch.

In our tests with eight workers on retainer, A/B returned five opinions in roughly

94

five seconds (Table 4.3). Chapter 5 will extend these results to more complex systems.

4.4 Improvements to Crowdsourcing Platforms

So far, we have analyzed the retainer model as it could be implemented on top

of existing crowdsourcing platforms. However, by extending the platforms, we can

improve the recruitment performance considerably. This section combines some of the

formalisms from the queueing theory model with platform changes and experiments

to demonstrate the impact of the extensions.

4.4.1 Retainer Subscriptions

Just like the retainer model needs to expect a short wait after it alerts workers to

return to the page, it also needs to wait 1/µ seconds on average to recruit a new worker

into the retainer pool. This recruitment time is a limiting factor of the retainer model.

A small arrival rate means that the retainer pool can take a long time to fill, which

is particularly problematic for large bursts or tasks that need multiple simultaneous

workers.

One way to increase µ is for the platform to put together a panel of retainer

subscribers who can be directly notified when the retainer pool needs to recruit a

replacement. Imagine, for example, sending an instant message to subscribers when

a position opens up in the retainer pool. The insight behind this approach is to change

from a pull model of crowdsourcing, where workers seek out tasks, to a push model,

where tasks offer themselves to workers. Workers could subscribe to a task type, so

that when the platform needs a retainer worker for a task of that type, the platform

could send a dialog notification to one or more subscribed workers and offer them

the opportunity to complete one task in the next few minutes. Workers who accept

are now on retainer, can continue working on other tasks, and will be interrupted

whenever the realtime task arrives.

A push notification is likely to reduce the time it takes to recruit a worker onto

retainer, thereby increasing µ.

95

4.4.2 Global Retainer Pools

In the previous analysis, each requester maintained their own retainer pool. In this

section, we analyze how sharing one global retainer pool across requesters improves

performance. We also investigate how to route tasks to workers in a globally pooled

retainer.

Global Pool Analysis

In this section, we turn to the queueing theory model to understand how combining

retainer pools will impact π(c), the probability of a missed task.

Another way of writing π(c) in Equation 4.1 is π(c) = π(0) · ρc/c!, where π(0) =

(
∑c

i=0 ρ
i/i!)−1 [69]. To make this equation easier to manage, recall Stirling’s approx-

imation that c! ≈
√

2πc(c/e)c. Also note that the sum that defines π(0) is decreasing

geometrically, so we can approximate π(0) ≈ e−ρ, a constant. This approximation

gives us:

π(c) ≈
√

2πc
(
e−ρ(eρ/c)c

)
(4.6)

If we have k different tasks each with traffic intensity ρ and queue size c, the

probability of each empty pool is π(c). Each requester independently suffers, so the

total probability across all requesters is multiplied by a factor of k. So, the probability

of an empty pool existing somewhere among k requesters each with c retainer workers:

k independent π(c) ≈ k
√

2πc
(
e−ρ(eρ/c)c

)
(4.7)

Now suppose we bring all the retainer pools together, creating one “superpool” of

size kc. The task arrival rate λ increases by k but the rate at which we recruit one

worker µ remains unchanged. Thus the traffic intensity increases by a factor of k to

kρ. So, the probability of an empty pool with combined retainers is

k combined π(c) ≈ e−kρ
√

2πkc(eρ/c)kc (4.8)

=
√

2πkc
(
e−ρ(eρ/c)c

)k
(4.9)

96

Ignoring the square root factor, we see the main term being exponentiated by a factor

of k. In other words, the loss rate declines exponentially with the number of retainer

pools we bundle.

We can look at some approximations for these results. We can investigate π(c),

the probability of having all servers busy. Suppose we set c = (1 + ε)ρ, just above

our c ≈ ρ knee in the curves from Figure 4-5. Then, with a single retainer pool, π(c)

is about

e−ρ
√

2πc(eρ/c)c ≈ e−ρ(e/(1 + ε))(1+ε)ρ

= eερ/(1 + ε)(1+ε)ρ

=

(
eε

(1 + ε)1+ε

)ρ
(4.10)

This is the same quantity as shows up in the typical analysis of the upper tail of

the Chernoff bound. There, we generally approximate this quantity as e−ε
2ρ/3, which

is reasonably accurate for any ε < 1. In short, the probability of an empty pool is

roughly e−ε
2ρ/3.

Using this approximation, we can ask how small a retainer pool is necessary to

match the same π(c) ≈ e−ε
2ρ/3 in the globally shared case as we found in the singular

case. As we argued above, moving to the globally shared case multiplies ρ by a factor

of k because the task arrivals are more frequent. Since the exponent we care about

is proportional to ε2ρ/3, we can decrease ε by a factor of
√
k and end up with the

same bound as the singular case. In other words, the fraction ε of “buffer” workers

that we need in our retainer pool is proportional to
√
k, as compared to the factor k

in the singular case. We thus need many fewer extra workers per extra task: much

like standard error decreases by a square root factor as sample size increases, we have

less uncertainty in arrival rates as more requesters join together.

Task Routing

Shared retainer pools introduce speed and cost improvements, but workers will sub-

scribe to multiple realtime task types and can only work on one realtime task at a

97

time. This situation immediately raises the question of how to decide which worker

should be assigned to each retainer pool when a spot opens up. Market forces like

task pricing will help solve this problem, but microtask markets like Mechanical Turk

are clustered on a small number of prices (often 2 − 5¢). Inefficient task routing

could lead to logjams where certain tasks cannot find workers. In this section, we

demonstrate that a straightforward approach like uniform randomization could lead

to extremely slow response times, and we introduce a linear programming solution

that optimizes response times across tasks.

Suppose we have a set of task types T = t1, . . . , tn, and tasks of type tj arrive with

Poisson distribution and rate λj. Not every worker can complete every task: workers

may have only signed up to be on retainer for particular task types, or they may not

have the qualifications for all task types. We split workers into groups w1, . . . , wm

that are uniquely identified by the tasks that group can complete. So, for example,

w1 might represent all the workers who can complete tasks t1, t2, and t3. We say that

W is the set of all worker types W = {w1, . . . , wm}, and that each wi has a Poisson

arrival rate µi.

Given a set of task types T , a set of worker types W , and arrival rates for each,

our goal is to assign workers to tasks to maximize the throughput of the system. To

do so in steady state, we need to decide how many worker arrivals—more precisely,

what portion of the overall arrival rate—from each group should be assigned to each

task. Let us say that the rate at which workers from group wi should be assigned to

tasks of type tj is aij. These assignments must sum to the total arrival rate of the

worker group:
∑m

j=1 aij = µi. For example, in our earlier example of w1, if µ1 = 1,

one possible assignment is a11 = .5, a12 = .25, a13 = .25.

A standard approach would be to assign each worker arrival randomly to one of

the task types that he or she can complete. (That is, aij are equal for any i.) However,

this approach could result in slow completion times. In Figure 4-8, w3 has four times

the arrival rate of w1 or w2. Random assignment would send workers to t3 at rate

1/4 + 1 = 5/4, whereas t1 would receive workers at just 1/2. Depending on which

workers are online, each of the task types could find itself in a similarly starved state.

98

1

1⁄2 1⁄2

1 1

2Worker arrival
rate µi

Task arrival
rate λj

w1 w2 w3

t1 t2 t3

a
23a 21

Figure 4-8: A task routing scenario where a typical randomized approach would lead
to poor results. t1 would receive relatively few workers. Depending on the values of
µi, each task type could find itself in this starved state.

Instead, a centralized system can route workers to equalize traffic intensity across

all tasks. This goal can be described as a linear programming problem, but in fact

can be solved using maximum flow, which is significantly faster than general linear

programming. The following constraints suffice to define a linear programming prob-

lem — they indicate that the incoming worker rate to each task type is at least as

high as the incoming task rate, and that all the worker assignments from a worker

group sum to no more than the arrival rate of that worker group.

∑
i

aij ≥ λj for all j,

∑
j

aij ≤ µi for all i.
(4.11)

These constraints will yield a solution, but that solution may not accomplish the

requesters’ goals. So, we can instead choose to be more specific about the quantity

to maximize. For example, as we have seen above, task wait times are typically a

function of the ratio of arrival rate and service rate (λ/µ), known as traffic intensity

ρ. We can define an analogous ρ here to be the ratio of the incoming task arrivals to

the summed rate of arrivals from all worker groups for that task: ρ = λj/
∑

i aij. We

99

then minimize its worst case across all tasks:

minimize ρ

subject to ρ
∑
i

aij ≥ λj for all j,

∑
j

aij ≤ µi for all i.

(4.12)

Minimizing ρ across all tasks guarantees that all tasks receive workers in similar

proportion to their task arrival rate. So, it would be rarer to see one task flush with

workers while another one waits.

By merging retainer pools, the platform can thus help guarantee fast results for

all tasks.

Scaling

One practical difficulty with this approach is estimating µi as the number of task

types grows. If there are |T | different task types, there are 2|T | different combinations

of task types that a worker can sign up for, and thus |W | = 2|T |. This set is an

extremely large number of arrival rates to try and estimate accurately, and will make

the linear program hard to solve because there will be an exponential number of

constraints.

However, the problem of efficient feature representation is a common one in ma-

chine learning. There are many approaches to this problem. We may find that in

practice only a small number of task type combinations can occur. We can also en-

force this, for example by setting a ceiling on the number of task types a worker can

subscribe to at once. With a limit of two subscriptions, |W | = |T |2 instead of 2|T |.

4.4.3 Precruitment: Predictive Recruitment

So far, we have been limited by the length of time it took a worker to respond to

the retainer alert. However, our model suggests that even this two-second barrier

(Section 4.1) is unnecessary, and that crowds could be recruited effectively instanta-

100

neously.

The insight behind our solution is precruitment : notifying retainer workers before

the task actually arrives. The queueing theory model involves estimating 1/λ, the

expected length of time before the next task will arrive. If 1/λ is about the length of

time it takes to recall a retainer worker, we can recall a retainer worker and expect

to have a task by the time the worker arrives. As we will demonstrate, workers are

also happy to wait at a “Loading...” screen even if the task is not ready immediately.

Workers take 2-3 seconds to arrive (Section 4.1) and will wait for roughly ten

seconds afterwards [150]. The Poisson task arrival process has rate λ, and Poisson

distributions have standard deviation
√
λ. So, the platform can precruit λ + β

√
λ

workers per second for upcoming requests, where β is a slack variable that controls

how many extra standard deviations to precruit for safety. Any workers who do not

have tasks within a predetermined wait time would need to be paid and dismissed.

However, as the platform becomes large and λ grows, the standard deviation will

become proportionally smaller relative to the mean, making it possible to waste very

little money on extra workers.

In fact, the entire precruitment system can be represented as its own M/M/c/c

queueing system. Many of the same techniques introduced earlier can be applied to

help optimize the size of a precruitment pool in relation to the standard retainer pool.

4.4.4 Evaluation

We ran a study on Mechanical Turk as a proof-of-concept for precruitment. In the

study, we followed the protocol of Section 4.1.2 by offering three cents for a one-minute

retainer task: a game of Whack-a-Mole (Figure 4-9). After waiting on retainer for

one minute, workers responded to the retainer alert and were asked to quickly click

on the picture of a mole randomly placed in a 3x3 grid of dirt mounds. However,

after responding to the alert and before the mole appeared, workers needed to wait

for a randomly selected length of time between 0 and 20 seconds while a “Loading...”

indicator displayed.

We measured the length of time between the appearance of the mole and: a) mouse

101

Figure 4-9: To test precruitment, workers participated in retainer tasks that chal-
lenged them to play a game of Whack-A-Mole and click on the mole as soon as it
appeared.

movement in the direction of the mole, and b) the click on the mole. We discarded

a small number of responses where the worker clicked on a dirt mound instead of

the mole or where the browser did not record millisecond-precision timing. After

filtering, our dataset consisted of fifty workers who completed N=373 Whack-a-Mole

tasks. One limitation of our design is that Whack-a-Mole is a relatively enjoyable

task, and workers might not be so attentive for less game-like tasks.

The median length of time between the mole’s appearance and the worker moving

the mouse toward the mole to click on it was 0.50 seconds across all wait times (mean

0.86, std. dev. 1.45, Figure 4-10). The median length of time before clicking on the

mole was 1.12 seconds (mean 1.87, std. dev. 2.23, Figure 4-11). There is a negligible

correlation between wait time and mouse movement delay (R2 = .001), suggesting

that workers react roughly as quickly right after they arrive as they do twenty seconds

later.

We can use the same dataset to compare precruitment to the retainer approach

without precruitment. This comparison is possible because a “Loading...” delay of

zero seconds is the exact same worker experience as the standard retainer model.

We are interested in the lag time between the task arriving and mouse movement to

whack the mole. Here, a new task results in an alert being sent to the worker, so we

start our timer with the alert. Without precruitment, the median time between task

posting and mouse move was 1.36 seconds (mean 1.41, std. dev. 0.30).

102

Time waiting for task (sec)

R
es

po
ns

e
tim

e
 to

 m
ov

e
m

ou
se

 (
se

c)

0

1

2

3

4

5

●

●

●
●

●

●

●

●
●

●

●●

●●

● ● ●●
●

●

●

●
● ● ●●

●

●
● ●●

●

●
●

●

●
● ●

●
●
●

●●
●

●●●●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

● ●

●● ●
●

●

●

●● ●

●

●●
●

●●
●

●
●

●
●

●
● ●

●

●

●●

●

●

● ●

●

●

●
●

●

● ● ●●●

●

●
●

●●
●

●
●

●

●

● ● ● ●●
●

●

●●

●●

●
●

●
●

●

●
●

●●
●

●●

●

●

●●

●
●

●

●

●
● ●

●

●

●

● ●

●

●
●

●
●

●
●

● ●

●

●

●

● ● ●●

●

●
●

●

●●
●● ●● ●

●

●

●●

●
●

●●
●

●
●

●
●

● ●
●

●
● ●

●

●
●

●

●

●

●

●
● ●●

●

●
●

●

●●

●

●
●

●● ●●●
●

●

●

●

●

●
●

● ●● ●
●

●

●

●●
●

● ●●●

●
●●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●● ●●●
●

●

●

●

● ●

●

●
● ●

●

● ●
●●

● ●
● ●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●●

●

●●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●● ●

●

●●● ●

0 5 10 15 20

Figure 4-10: The median length of time between the mole image appearing and the
workers moving to click on it was 0.50 seconds. So, a platform can recall retainer
workers early and get crowds in half a second instead of waiting for the workers to
respond to the retainer alert.

Time waiting for task (sec)

R
es

po
ns

e
tim

e
 to

 m
ol

e
cl

ic
k

(s
ec

)

0

2

4

6

8

10

●

●

● ●●

●

●
●

●● ●●
●● ● ● ●● ● ●

●

●
●

● ●●

●

● ● ●●

●

●
●

●

●
● ●●

●
●

●●
●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●

●● ●●● ●
●●

● ●
●●

● ●● ●

●

●

●●
●● ●

●
●

●
● ●●

●
●

●

●

●

●

●

●

● ● ●●●

●

● ●
●

●●●
●●●

● ● ● ●●
●

●

●● ●●
●●

●

●

●
● ●●● ●●

●

●

●●
●
●●

●

●

● ●

●

●

●
● ●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●●●●
●

● ●
●

●

●
●

●
●

●●
●●● ●●● ●

● ●

●

●

●

●
●● ●

●●
●●

●●

●

● ●

●

●

●
●

●

● ●●●
●●

●
●

●

●

●

●

●

●

● ●
●

●●
● ●●

●
●● ●●

●

●

●●
●●

●

●

●

●
●

●●●●●
●●

●

●

● ●

●

●●●
● ●

●

●

● ●●

●

●

●

●

● ●
●

● ●
●

● ●

●

●
●

●●

●

●

●

● ● ●
●

●

●
●

●●

●

●●

●
● ●● ● ●● ●

●

●

●●

●

●

●
●

●
● ●●

●

●
●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●● ●

●

●

●

● ●

0 5 10 15 20

Figure 4-11: The median length of time between the mole image appearing and the
workers clicking on it was 1.12 seconds.

103

This result suggests that, had we used a standard retainer model with this task, we

would have seen mouse movement typically after 1.36 seconds. Using precruitment,

we get mouse movement in 0.5 seconds. Precruitment finally breaks through the

sub-second cognitive barrier that keeps users in flow [150].

4.5 Discussion

Our model has several limitations. One limitation is that an M/M/c model may be a

better match for certain retainer implementations where the crowd is of limited size

and the system must handle tasks FIFO instead of recruiting an additional crowd

member when the retainer pool is empty. Second, worker recall delays depend on the

length of time the worker has been waiting on retainer (Section 4.1), but our analysis

ignores this fact. Third, our model assumes that it can always recruit new retainer

workers into the pool, but the retainer population is limited in practice. However, we

believe that these observations can be integrated into our optimizations.

One empirical question we have not addressed is the number of workers that

need to be on a crowdsourcing platform to make sure that requesters can maintain

full retainer pools. This number also depends on the percentage of workers who

are willing to sign up for retainer tasks. Since the retainer model pays more than

batch tasks, we anticipate that this percentage will be high. On Mechanical Turk,

our experience is that it is not difficult for a single requester to get twenty or thirty

workers on retainer simultaneously. However, as more requesters use retainers, these

dynamics may shift.

While realtime retainers are the motivating example here, the entire Mechanical

Turk platform can be thought of as a large retainer system where workers are paid

zero retainer wage and the worker recall rate is extremely slow, since workers return

on their own initiative rather than by recall. Precruitment is another kind of re-

tainer model queue where workers are recalled before the task even arrives. All three

queues could be analyzed together as a queueing network in order to more effectively

understand the entire system. However, it is also possible to bound the probability

104

of a slow task response via the probability that any of the retainer pools are empty.

Supported by our results so far, we suggest that queueing theory can be applied for

many other problems in the space of realtime crowdsourcing as well.

Our analysis suggests that paid crowdsourcing platforms could integrate a globally-

managed retainer into their design. This will not only change the types of crowdsourc-

ing that are common, but will also introduce new elements of worker reputation. We

suggest two new reputation statistics. First, a worker’s median response time char-

acterizes how quickly they respond to the alert and begin working on a retainer task.

Requesters prefer workers with low response times. Second, workers are tagged with a

response rate: the percentage of the time that they successfully respond to a retainer

alert. If a worker does not respond to the alert within a given length of time (e.g.,

five seconds), the system finds another person and the worker is not paid.

Chapter 5 will extend these ideas into realtime crowd-powered systems. In these

systems, minimizing recruitment time will not be enough. The challenges of realtime

results in the face of slow work time will inform a new set of techniques for synchronous

crowds.

105

Chapter 5

Realtime Crowdsourcing:

Systems

The retainer model opens the door to create realtime crowd-powered systems. The

previous chapter demonstrated how realtime crowds could be tasked with traditional

crowdsourcing tasks and complete them in seconds. This chapter opens the design

space of much more complex systems, as well as algorithms to coordinate realtime

crowds.1

The core insight behind complex realtime crowd-powered systems is the use of on-

demand synchronous crowds. In synchronous crowds, all crowd members arrive and

work simultaneously. This simultaneous crowd work enables realtime coordination

and collaboration to complete tasks much faster than parallel, asynchronous workers.

The retainer model is the first approach to guarantee synchronous crowds, and we

make use of them here.

Developers need ways to guide or program synchronous crowds for realtime results.

We introduce rapid refinement, the first algorithm for synchronous crowds. Rapid

refinement focuses on low-latency, reliable work. The fundamental insight behind

rapid refinement is that synchronous (simultaneous) crowd work enables an algorithm

to recognize agreement early. The rapid refinement design pattern quickly reduces

1This chapter has adapted, updated, and rewritten content from a paper at UIST 2011 [16].

106

a large search space by focusing workers’ attention to areas they are beginning to

agree on independently (Figure 5-2). Repeatedly narrowing the search space to an

agreement region encourages quality results because it is built around independent

agreement. It also allows the interface to give the user incremental, trustable feedback

before a final answer is available.

We use the retainer model and rapid refinement to explore new avenues for realtime

crowd-powered interfaces through a system called Adrenaline. Adrenaline is a smart

camera shutter powered by crowd intelligence: it finds the right moment to take a

photo. Instead of taking a single shot, Adrenaline captures a short video — allowing

the photographer to move around the scene, the subject to strike multiple poses, or

action in the scene to unfold unpredictably — then uses rapid refinement to identify

the best moment as a still photo about ten seconds after the shutter closes. Low

latency means that users can preview and share photos they just took, like they

would with any other digital camera.

This chapter introduces 1) the rapid refinement technique for fast crowd search

through a continuous space, and 2) the Adrenaline camera. It then reports on an

evaluation which verifies that rapid refinement leads to fast results: faster than ap-

proaches that keep workers separate, and faster on average than even the fastest

individual worker. Finally, we explore how realtime crowd-powered systems can sup-

port creative applications.

5.1 Adrenaline

“You must know with intuition when to click the camera. That is the

moment the photographer is creative. [. . .] The Moment! Once you miss

it, it is gone forever.” – Henri Cartier-Bresson [12], 1957

Photographers often struggle to capture what Cartier-Bresson called The Decisive

Moment [12]. The instant when the shutter opens, the subject might have broken

into an awkward smile, the angle might be poor, or the decisive moment might have

passed. As a result, photos taken by novices can feel stilted or ‘off’. Experienced

107

10-second video

2.5-second video

0.6-second video

Final photograph

Figure 5-1: Adrenaline is a camera that uses crowds to find the right moment for
a picture by capturing ten-second movies. It looks for early agreement to filter the
timeline down quickly to a single frame. A photo is typically ready about one second
after the user reviews the movie.

photographers learn to compensate by taking many photographs — tens of photos

rather than one — then sorting through them later to find the gem. They try multiple

angles, capture photos over several seconds, or ask subjects to strike different poses.

Adrenaline is a realtime crowd-powered camera that aims to find the most pho-

togenic moment by capturing many alternatives. Rather than taking a single photo,

Adrenaline captures a ten-second movie and recruits a crowd to quickly find the best

photographic moment in the movie (Figure 5-1). Within five seconds after the movie

is captured, the user can see crowd members exploring the timeline (colored triangles

in Figure 5-1). A few seconds later, the user can see that the crowd has narrowed

down to a small fraction of the timeline, then again to a few adjacent frames, and

finally to a final photo in a total of about eleven seconds. This means that a final

photo is ready just moments after the user finishes reviewing the movie they just

108

captured.

Adrenaline’s goal is to mimic the instant-review capabilities of cameras today.

Seeing a photo quickly means that users can take another photo if they want, show it

instantly to friends, or post it to the web. The visceral thrill of novice photography

can be lost when the photo is not available for minutes or days. Many novices never

review the pile of extra photos, so we believe that is extremely important to complete

the image selection process while Adrenaline still has the user’s attention.

Existing crowdsourcing techniques cannot support Adrenaline’s goal of 10–12 sec-

ond latency. Using the retainer model, crowds arrive quickly, but it takes them a

long time actually choose the best frame. We thus introduce the rapid refinement

algorithm, which guides the search process quickly and reliably.

5.2 Rapid Refinement: Coordinating Synchronous

Crowds for Fast Results

Once recruitment times are negligible, slow work time dominates the user experi-

ence. The problem is not just minimizing average response time, but also minimizing

variance. Time variance means that wait time will not be reliable: it will depend

on whether the system happened to recruit a fast worker. That worker may also

produce low quality results. To solve this, human computation algorithms such as

Find-Fix-Verify often wait for several results before proceeding: it is even less likely

that a system would recruit multiple fast workers. We could require workers to finish

within a short time limit, but our experience is that this is stressful to workers and

leads to poor results.

To complete nontrivial crowdsourcing tasks in realtime, we must develop new

algorithms and programming patterns to return quality results quickly and reliably.

Like traditional randomized algorithms, we may be willing to sacrifice correctness

guarantees in exchange for faster runtime.

The insight behind our solution is that low-latency crowds are synchronous crowds :

109

all workers are working simultaneously. Synchronous crowds can interact with, in-

fluence, and communicate with each other and the user. In most on-demand crowd-

sourcing approaches, workers do not overlap in time enough for synchronous designs

to make sense. However, the retainer model makes it practical to assume, for the first

time, that the crowd is all present simultaneously a few moments after request. So,

rather than waiting for all results in order to continue, a realtime algorithm has the

opportunity to influence the process as it takes place.

We take advantage of synchronous crowds by recognizing potential agreement

early on, while workers are still exploring, and then focusing workers’ attention on

the area of agreement. The insight is that the majority of Turkers who are efficient

satisficers [177] can guide the process: these workers decide on the gist of the solution

quickly, but can take time to commit to a final answer. Rapid refinement recognizes

when several workers are likely to agree and commits for them by focusing the task

on that area. Fast workers will still find an answer quickly and contribute to the vote,

whereas slow workers benefit from the focus on a smaller search space. In the next

section, we will describe the rapid refinement algorithm that implements this idea.

5.2.1 Algorithm Design

The rapid refinement algorithm repeatedly narrows down a search region to a fraction

of its existing size when it senses that workers independently agree on the subregion

(Figure 5-2). It is appropriate for human computation tasks where the workers’

quality or utility function is continuous. Other examples in the photography domain

include brightness, contrast, color curves, and zoom level.

Rapid refinement begins with the entire search space available and workers ini-

tialized to a random position. The algorithm takes place in phases where each phase

narrows to a smaller search region. Workers trigger a new phase by independently fo-

cusing on the same area for a period of time. The algorithm depends on three values:

the agreement range r, agreement time t, and agreement amount a. If a fraction a

of the workers stayed within a range less than a fraction r of the current search area

for at least t seconds, rapid refinement declares agreement. It then shrinks the search

110

Phase 2

Phase 1

Phase 3

Final Photo

Figure 5-2: Rapid refinement repeatedly shrinks the working area for all workers when
it detects that several independent workers are exploring the same area.

space to match the agreement range and begins a new phase. Workers are no longer

able to explore the out-of-bounds area, and must try to agree within the new region.

This process repeats until convergence. To approve or reject work, rapid refinement

looks at whether the worker agreed with at least one phase change.

In Adrenaline, the algorithm begins with the entire video timeline. Workers vote

on a good photo using their timeline slider. They cannot see others’ sliders, which

encourages independent agreement [187]. When at least a = 33% of the workers

have been in the same r = 25% of the timeline for at least t = 2 seconds, Adrenaline

declares agreement. These values can be adjusted to trade off delay for false positives.

With these values, Adrenaline converges in 3–4 phases per ten-second input video.

The first phase is the slowest, and agreement accelerates as workers’ attention is

focused on one area.

The rapid refinement algorithm has several benefits aside from speed. First, it

produces preliminary results that can be returned to the user early. Early results

reduce interface latency and allow the user to provide feedback on the process. For

example, a future version of Adrenaline could play the refinement region to the user

as soon as the workers converge on the first phase, and allow the user to adjust it if

111

desired. Second, it combines work and verification into one stage, which saves cost

and time for a separate verification step. Third, workers tailor their votes toward

what someone else might think, which minimizes individual bias [72].

Rapid refinement makes tradeoffs. First, the algorithm may focus too early on a

single part of the search space, especially if the low quality workers are the first to

respond. With four or more workers, it may be possible to fork the crowd into two

simultaneous groups to help avoid this problem. Forking the crowd has the additional

benefit that the algorithm can explore multiple promising paths at the same time.

The system can also watch for thrashing or otherwise confused behavior to detect if it

has selected a poor subset of the video, then back off. Second, it may stifle individual

expression: talented workers might be forced to agree with the majority. A future

system could recognize such workers and give them more weight in the votes.

The algorithm can stall in theory if all workers stay far away from each other,

but a slight modification can guarantee convergence. In particular, systems can start

with a small agreement fraction r and increase it as time passes in each phase. Then,

given at least three workers, the algorithm will always converge. It may also make

sense to dynamically adapt a, r and t based on the phase or on worker behavior.

However, in our experiments, rapid refinement never stalled.

5.3 Evaluation

We have argued that the retainer model and rapid refinement combine in Adrenaline

to produce a realtime crowd-powered interface by controlling variance in wait time

and quality. In this section, we report on an evaluation of Adrenaline that checked

this claim, stress-tested the retainer model and rapid refinement, and investigated

whether end users could use the system to take good photographs.

5.3.1 Method

We recruited 24 participants through e-mail lists in exchange for a $20 gift certificate.

Fourteen were male and ten were female, and the median age was 25. About half had

112

taken a photograph on a cell phone camera or consumer camera in the past month,

and five had taken pictures on a DSLR camera in the past month. The typical

participant was a young, technically competent student who had a moderate interest

in photography as a hobby (median Likert response: 4/7). Participants arrived to

the study in pairs.

We gave each participant a smartphone with Adrenaline installed and introduced

them to the application. We did not allow participants to immediately see the still

photos that Adrenaline produced, so that we could compare rapid refinement to

other (slower) approaches. Participants began by taking a video portrait of their

partner. Then, the pair spent fifteen minutes in a public area capturing videos of

people, actions, or landscapes. Finally, participants chose two videos in addition to

the portrait to submit for the evaluation.

We generated candidate photographs using the following computational, expert,

and crowdsourced approaches:

• Rapid Refinement: we required five workers to be on retainer before labeling

each video.

• Generate-and-Vote: a standard crowdsourcing approach [128] in two stages.

First, five retainer workers independently selected a frame in the video. Then,

keeping the fastest three results returned, we use eight retainer workers to vote

on the best photo of the three.

• Generate-One: using the same dataset as Generate-and-Vote, this condition

simulated stopping the process as soon as the first worker submitted a photo.

• Photographer: a professional photographer labeled the best still frame in each

video.

• Computer Vision: the still frame selection algorithm on YouTube, which uses

recent computer vision research algorithms [93].

We used the quikTurKit technique (Section 2.2, [21]) to repeatedly post tasks

and keep them near the top of the Mechanical Turk task list, then implemented a

113

five-minute retainer and a 2¢ bonus for quick response. We paid 4.5¢ on average for

a rapid refinement or generate task (quikTurKit posts tasks at multiple price points

simultaneously), and 3.5¢ on average for a vote task. Including bonuses and removing

one worker on average who never responded to the retainer, these costs added up to

4(4.5¢) base + 2(2¢) bonus = 22¢ per video for the rapid refinement and generate

tasks. Voting added eight workers: we estimated 7 would appear and 3 would earn

the bonus, for an additional 31¢. So, rapid refinement and Generate-One cost 22¢ per

video, and generate-and-vote cost 53¢ per video. In a live system, it would be feasible

to use fewer workers and pay closer to 10¢ rather than 22¢. On Mechanical Turk, we

posted half of the videos first in the rapid refinement and generate-and-vote conditions

to compensate for order effects. All Mechanical Turk tasks were posted on a weekend

afternoon.

We then contacted all of our participants and asked them to rate each still photo

on a 9-point Likert scale. We instructed participants to ignore aspects of the picture

like contrast and color that could be easily fixed in post-processing.

5.3.2 Results

We used the retainer model to post each video as soon as there were five workers

on retainer, stress-testing the volume of the retainer model. Adrenaline had enough

workers to label a video every 45 seconds (median). Worker arrivals were bursty,

but the median time between retainer arrivals was 6.3 seconds. The median time

between unique worker arrivals was 48.8 seconds. These numbers are dependent on

the current workforce state of Mechanical Turk, and will change as the market grows

or more tasks use retainers.

Timing

Table 5.1 and Figure 5-3 present the results. Rapid refinement returned the fastest

results, with a median total time of 11.6 seconds (µ = 12.6, σ = 4.3). Generate-One,

which used the first available photo, was a few seconds slower. Its median time was

114

Delay
Median Mean

Generate and Vote 41.9 45.3 σ = 14.0

Generate One 13.6 16.3 σ = 9.8

Rapid Refinement 11.6 12.6 σ = 4.3

Table 5.1: Rapid Refinement was the fastest algorithm and had the lowest timing
variance.

Algorithm Histogram of Execution Times N=72 photos

Rapid
Refinement
Generate
One
Generate
and Vote

Figure 5-3: Rapid refinement consistently completed quickly. Generate One some-
times located a fast worker, but often did not, so it has a larger timing variance.

13.6 seconds (µ = 16.3, σ = 9.8). Generate-One’s timing standard deviation was

nearly twice that of rapid refinement. These variances are significantly different from

each other, F(71, 71)=5.17, p < 0.001.

Rapid refinement is faster than Generate-One especially because it accelerates the

final stages of the selection. Single workers in Generate-One tended to identify the

general region quickly, but spent time shuttling between a few frames before making

a final decision. Rapid refinement instead encourages all workers to vote quickly and

not worry too much about the final decision. Rapid refinement creates social loafing

so that workers satisfice. When workers worry less about the final selection, they act

faster and their collective wisdom leads to a good final selection.

The timing data is non-normal, so we square-root transformed it to satisfy normal-

ity assumptions. An ANOVA comparing the delay for the three human computation

algorithms is significant F(2, 213) = 278.11, p < .001, and post-hoc pairwise Tukey

comparisons confirmed that all conditions were significantly different than each other

115

0 sec 1 2 3 4 5 6 7 8 9 10 11 12

1st Arrival 1st Starts Work
Crowd Arrival Crowd Starts Work

Agreement on First Phase Final Photo

Figure 5-4: Timeline of the median Adrenaline execution. Each bar length represents
the median length of time for that stage. For example, enough crowd members
typically arrived 2.6 seconds after the request was made, and agreement on the first
refinement typically took 4.7 seconds.

(all p < .05), confirming that rapid refinement is fastest.

Figure 5-4 outlines the median timing distributions of a rapid refinement process.

One worker typically arrived 2.2 seconds after the video was uploaded, and the second

and third came within 2.6 seconds. At least two workers were moving their sliders

by 5.3 seconds after request. After the crowd began exploring, agreement took 4.7

seconds in the first phase. The median first phase completed a total of 10.05 seconds

after request (µ = 10.65, σ = 3.0). The following phases lasted 0.75 seconds each,

typically. These phases moved more quickly because workers were often already

agreeing on a small area when the first phase completed.

Quality

Experimental results validated our expectation that rapid refinement would sacrifice

some amount of quality in exchange for faster results. However, on average it still

produces high-quality photographs (Figure 5-5, Figure 5-6). Participants’ ratings had

high variance, making it difficult to draw statistical conclusions (Table 5.2). However,

Rapid Refinement produces higher-quality photos than Computer Vision, which sug-

gests that using crowds in a subjective photo quality task is a good match for human

abilities. Due to the large variance, it is difficult to distinguish Rapid Refinement on

average from Generate One and Photographer. As was the case with delay, however,

Generate-One was less reliable and had a higher variance. Surprisingly, Generate-

and-Vote appears to match the Photographer condition. While we believe that a

photographer would take better pictures given the opportunity to operate the cam-

era, it appears that an unskilled crowd may be equally talented at selecting good

116

Quality (9pt Likert)
Computer Vision 4.9 σ = 2.2

Professional Photographer 6.4 σ = 2.3

Rapid Refinement 5.8 σ = 2.2

Generate One 5.9 σ = 2.6

Generate and Vote 6.6 σ = 2.1

Table 5.2: Rapid Refinement produced higher-quality photos than Computer Vision,
faster than Generate and Vote, and with less variance than Generate One.

moments.

5.4 Realtime Crowd-Powered Creativity

In this section, we expand the design space of realtime crowd-powered interfaces

beyond Adrenaline. Realtime crowds can support creative tasks in user interfaces as

well.

Puppeteer (Figure 5-7) works in conjunction with Adobe Photoshop to support

large-scale content generation and synchronous feedback to workers. Artists often

want to create a large number of believably varying objects, like an excited audience

at a concert or flowers in a field. Algorithmic techniques to generate poses may not

be realistic, semantically meaningful, or generalizable to new objects.

Puppeteer users specify control points on an image using Photoshop’s Puppet

Warp tool [87] (Figure 5-7a). Users give a textual description of their goal (e.g.,

“Make the person look like he is dancing”), then workers each pose three figures to

match the goal. As workers progress, the user observes them through a small multiples

interface (Figure 5-7c). Then, because of the realtime nature of the application, the

user can communicate with workers (e.g., “Can you make another one more like your

first?”) These poses can be imported back into Photoshop to arrange the final result

(Figure 5-7d).

As an illustrative example, we simulated a user request to a large number of

Puppeteer workers that they pose a human stick figure so that it looked excited. After

they finished two puppets, we programmatically prompted workers with a request to

117

G
oo

d
Ph

ot
os

Ty
p

ic
al

 P
ho

to
s

Ba
d

Ph
ot

os
Rapid Refinement Computer Vision Photographer

Figure 5-5: Photos from the Adrenaline study. The examples are good, typical, and
bad photos that rapid refinement recommended. The computer vision and photogra-
pher columns demonstrate how other approaches performed on the same movie.

G
oo

d
Ph

ot
os

Ty
p

ic
al

 P
ho

to
s

Ba
d

Ph
ot

os

Figure 5-6: More good, typical, and poor photos selected by Rapid Refinement.

118

photo editor photo editorworker interface

requester interface

a

b

c d

Figure 5-7: Puppeteer allows an artist or designer to generate a group of articulated
figures quickly, and to interact with workers as they work. a) The user demonstrates
control points. b) Workers move control points to match a request, like “make the
person look excited!” c) The user watches incoming results and interacts with workers.
d) The final result in Photoshop.

make the third figure look like it is jumping. Anecdotally, the message was quite

effective — the majority of workers’ third puppets appeared to be jumping whereas

the first and second puppets were rarely doing so.

To understand the latency and total throughput of Puppeteer, we repeated the

“excited” task, but removed the prompt. Figure 5-7d displays some of the resulting

figures. We began the task when there were 8 workers on retainer, received the first

control point movement 2.1 seconds later, and received the first completed figure in

25.0 seconds. The first worker completed the entire task (3 puppets) in 46.1 seconds.

Workers completed 300 puppets in 16 minutes and 35 seconds, or one puppet every

3.3 seconds. Work output rate was relatively constant throughout.

5.5 Discussion

Having engineered the platform and a set of techniques and applications for realtime

crowdsourcing, we can now reflect on open questions and considerations.

119

5.5.1 Realtime Crowd-Powered Systems

Synchronous crowds and rapid refinement open the door to many applications and

techniques. Crowdsourcing has largely been confined to simple, parallel tasks, but

synchronous crowds enable coordination and collaboration on a new set of problems.

Such crowds can edit documents simultaneously (e.g., [101]), work on team tasks,

and distribute large tasks in new ways. Rapid refinement also has applications in

other search tasks. For example, rapid refinement might power a predictive mobile

web browser that uses crowds to search the page for the user’s next action and offer

swipe-to-complete for that action, or redesign Soylent’s Find task as a synchronous,

parallel process.

Larger, non-visual search spaces are another avenue for future work. If it is harder

for workers to skim the items or the search space is very large, agreement will be

sparser. We are interested in separating tasks into overlapping segments to address

this problem. The core interface insight is to stop workers from worrying about

deciding on one right answer and instead quickly call out promising areas.

We envision a future where crowdsourcing markets are designed for quick requests,

supported by the queueing theory model in Chapter 4. Until we have such a large-scale

realtime crowdsourcing platform, scale remains an issue. Our experiments in April

2012 found it relatively straightforward to recruit 30 or more workers on retainer,

but if thousands of requesters began using Adrenaline, it might exhaust the worker

pool. Given sufficient demand, however, more workers would likely enter the market

in exchange for higher wages. Successful realtime services might eventually recruit

their own full-time crowds like ChaCha2.

5.5.2 Rapid Refinement

The Adrenaline evaluation suggests that rapid refinement guides crowds of two to five

people to select a good photo faster than even the fastest member of a similar-size

group. We might expect that workers would conflict, stalemate and disagree with

2http://www.chacha.com

120

http://www.chacha.com

each other. However, bottlenecks were uncommon, especially with more than two

crowd workers. This result suggests that, rather than interfering with each other,

synchronous crowds may hold significant promise for exploring new forms of cooper-

ation and collaboration (e.g., [101]).

Quality may be the most salient issue with rapid refinement: its photos were of

reasonable quality, but it did not match Generate-and-Vote. One common source of

error was too-fast agreement in the later phases. Sometimes the algorithm decided

that workers agreed in the second phase before they had adequate time to explore the

timeline and make a decision. We have prototyped designs to compensate for this:

for example, requiring that workers explore a minimum fraction of the range before

their votes are counted, or requiring a minimum time lapse between phases. These

approaches empower the designer to trade off increased lag in exchange for better

quality.

A second issue is that rapid refinement uses constants that may depend on task,

crowd size and the number of items being explored. For example, constants that

work well for small crowds of 3–5 may act differently when 10–15 crowd members

arrive. A more principled approach would treat workers’ locations as populating a

probability density function over frames. Then, measures of distribution peakedness,

like kurtosis, would likely ease this problem.

The retainer model was more aggressive than necessary. Often workers joined mid-

way through the process, resulting in more workers than needed. Given a sufficiently

busy system, we might re-route latecomers from a retainer into a different task. Al-

ternatively, there may be design patterns that place latecomers into a complementary

role in the computational process, like vetting.

5.6 Conclusion

This chapter introduces techniques for realtime crowdsourcing and its applications in

user interfaces. Where the fastest crowd-powered interfaces used to be limited by a

median response time of nearly a minute [21], we show that it is possible to recruit a

121

crowd within two seconds and complete a complex search in roughly ten seconds. We

presented Adrenaline, a realtime crowd-powered mobile phone camera that captures

several seconds of video, then uses the crowd to quickly find the best still photo in

the set.

Our solution is to introduce on-demand synchronous crowds, where workers arrive

and work simultaneously. With synchronous crowds, algorithms can identify regions

of likely agreement before workers would normally select a final answer. This intu-

ition led to rapid refinement, a design pattern that focuses the search space on areas

of emerging agreement to quickly narrow complex search tasks. The combination of

these two ideas enable reliably fast turnarounds for Adrenaline — ten seconds to a

preview and the final photo a second or two later. This speed is on average faster

than even the fastest individual worker. Finally, we extended the design space of real-

time crowd-powered interfaces with Puppeteer, which embedded crowd contributions

directly in an authoring interface.

122

Chapter 6

Beyond Generic Paid Crowds:

Specific Data Needs

This thesis so far has focused on 1) tasks that most educated people can complete,

such as photo selection and proofreading, and 2) extrinsic motivators such as money.

This chapter broadens our scope considerably. Generic crowds cannot complete all

tasks a system designer might imagine, for example information needs that need

domain expertise. In addition, payment does not necessarily scale easily and it often

makes people less interested in a task they would have otherwise found enjoyable [57].

This chapter extends crowdsourcing techniques to gather data that target less

common pieces of information and do so without extrinsic monetary incentives. First,

in many cases it is possible to design a social computing platform to create a crowd

that will produce the data a system needs, especially when generic paid crowds might

not have the required knowledge or expertise. We introduce the concept of friend-

sourcing to encourage this kind of participation. Second, sometimes crowds have

already left activity traces across the web, and these traces are sufficient. We will

show how large-scale crowd data allows systems to perform mass personalization [192]

and design interactions for a large number of less common user needs.1

1This chapter has adapted, updated, and rewritten content from papers at UIST 2009 [14], ACM
Transactions on Computer-Human Interaction [15], CHI 2010 [13] and CHI 2012 [20]. Full reports
on the evaluations are available in these papers.

123

This chapter begins by introducing friendsourcing as a technique for gathering

information that only members of a small, socially-connected group of individuals will

know. Then, it demonstrates how data mining the activity traces from other crowd

activities can support a large number of long-tail user needs in interaction. Whereas

previous chapters focused on the design of the resulting systems, this chapter focuses

mainly on the challenge of motivating participation and mining crowd data. Some

details of system evaluations have been compressed to tighten the narrative.

6.1 Friendsourcing

It can be difficult to create crowd-powered systems when only a small network of

people is qualified to provide information. In particular, this section investigates

the small-network challenge of collecting accurate information about the interests,

hobbies, and preferences of people from members of a socially connected group of in-

dividuals. This information can be used to personalize users’ computing experiences,

for example to aid question-answering for topics comprehensible only to a few of a

user’s friends. Such valuable information is typically held by members of tightly knit

groups and its collection poses challenges such as motivating a relatively small pool

of people to contribute knowledge. If a crowdsourced system such as Wikipedia only

gets 1.6% of its viewers to edit [82], that statistic still results in tens or hundreds of

editors for a given page — but when the viewership pool is restricted to the scale of

tens or hundreds of individuals as in a social network, a 1.6% hit rate will likely lead

to an incomplete and unverified result.

We bring social application design to bear via an approach we call friendsourc-

ing. Friendsourcing gathers social information in a social context: it is the use of

motivations and incentives over a user’s social network to collect information or pro-

duce a desired outcome. We shall specifically take on the challenge of friendsourcing

for personalization: gathering descriptive information about an individual for use in

enhancing computing services for that person. We adapt elements of Games with A

Purpose [198] and extend their design principles using social controls.

124

We shall explore key concepts with friendsourcing applications in the context of

two systems: Collabio and FeedMe.

One approach to friendsourcing is to create social interactions that carry infor-

mation. Collabio, short for Collaborative Biography, is a game we developed to elicit

descriptive tags for individuals within the Facebook social network. The game (see

Figure 6-1) collects information that friends know about one another, such as peoples’

personalities, expertise, artistic and musical tastes, topics of importance, and even

quirky habits. The goal is to leverage properties of the social network such as com-

petition and social accountability to solve the tag motivation and accuracy problems

within a social framework.

A second approach is to facilitate social interactions that are already happening:

FeedMe (Figure 6-9) friendsources a personalized news feed by encouraging link shar-

ing between friends and colleagues. FeedMe is a plug-in for the RSS reader Google

Reader that supports aggressive content consumers in directed sharing of web con-

tent with those who want to receive more but do not want to drink directly from the

firehose of the web. FeedMe learns recipients’ content preferences based on previously

shared content, and suggests potential recipients inline with RSS posts being viewed.

Recommendations reduce the amount of effort required to share to two clicks: one

click to select a recommended recipient, and one more to send. In parallel, social

awareness helps sharers avoid spamming by making visible information such as num-

ber of shared items. FeedMe introduces a novel design space within mixed-initiative

social systems: the user mediates recommendations not for themselves, but on behalf

of someone they know.

6.1.1 Collabio: Social Friend-Tagging

Collabio is a social tagging game embedded in the Facebook social network. It in-

troduces a reciprocal social interaction that generates large term vectors describing

individuals on the social network. Collabio users have generated tens of thousands of

tags for thousands of individuals on the Facebook social network.

To follow, we describe Collabio’s three top level interface tabs: the tab in which

125

Figure 6-1: The user has guessed several tags for Greg Smith, including band, poker
and stanford. Tags guessed by Greg’s other friends are hidden by dots until the user
guesses them.

126

Figure 6-2: The landing page for Collabio. All application activity occurs on three
tabs: Tag!, My Tags, and Leaderboard. The leaderboard is typically below the in-
structions, shown in Figure 6-5.

users can Tag! their friends, the one in which they can manage My Tags, and the

one in which they can see the Leaderboard. We then discuss propagation through the

social network, the incentive design space, and issues of cheating and abuse.

Tag Friends

The main activity of Collabio is guessing tags that others have used to describe

friends, so the focus of the user’s experience is the tagging page (Figure 6-1). The

user sees the tag cloud that others have created by tagging the selected friend. When

presenting this cloud, Collabio only displays tags that the user has already explicitly

guessed (Figure 6-3). Tags not yet guessed are obscured by replacing each constituent

letter with a solid circle; for example, the tag ACM appears as . Whitespace in

obscured tags is represented by clear circles such as #. Thus, the length and makeup

of the obscured tag provide hints as to the hidden text. As an additional hint, terms

in the tag cloud are alphabetically ordered. The tags in the cloud are scaled so that

the popular tags are larger.

As the user tags a friend, one of two things happens (Figure 6-3). If the tag is

unique and has not previously been placed on their friend, the tag is inserted into the

cloud. If the tag exists, then it is revealed within the cloud. For each guess, users

127

harvard
12 points

harvard

faulkner
1 point - new tag!

faulkner

Figure 6-3: The tag cloud begins completely obscured. The player guesses harvard,
receives 12 points for agreeing with eleven other players and reveals Harvard as a
large tag. Faulkner is next; it does not match existing tags and is added to the cloud.

receive points equal to the total number of people who have applied a tag, including

themselves. If they are the only person to have guessed that tag, then they get 1

point; if there are 11 others, they get 12 points. These points continue to accumulate

as more people apply the tag, so earlier taggers’ scores rise as well. A user can retract

a tag by clicking on a small × by the tag. To expose one’s score to others, and to

stimulate competition, each tagged friend has a “People who know [this friend] best”

pane which lists friends who have earned the largest number of points from tagging

that friend (Figure 6-1).

In the current system, if the user is the first to tag a friend, Collabio seeds the tag

cloud with terms from the friend’s public profile (such as network names, affiliations,

or interests), thus ensuring that the tag cloud is never completely empty. These tags

are attributed to the “Collabio Bot.” We observed early on that users were typically

unwilling to tag others who had not already added the application, so this tag seeding

is helpful in overcoming reluctance to be the first to tag an individual.

Managing Tags

The My Tags interface allows users to inspect and manage tags their friends have

placed on them. The My Tags page contains three sections: a fully uncovered tag

cloud (Figure 6-4), an expanded top scorers list, and a table explaining which friends

used which tags. In order to allow people to maintain control of tags placed on them,

Collabio allows them to easily delete tags from their tag cloud by clicking on a small

× by the tag.

128

Figure 6-4: The My Tags page allows the user to view their own tag cloud completely
uncovered. Not shown: the top 10 scorers list and a complete listing of each tag’s
authors.

Leaderboard

The third Collabio tab is the Leaderboard. While the individual leaderboards on

the Tag! tab encourage users to keep tagging a friend until they are listed as one of

the Top Friends for that person, the global leaderboards encourage users to continue

tagging activity within the application. We present two lists here, one of the friends

that have the most unique tags placed on them, and the other of the individuals in

the user’s social network who have tagged the most other friends (Figure 6-5).

Designing for Viral Spread

Collabio relies on social mechanisms to spread to new users and retain existing ones.

For example, the individual leaderboards are labeled “friends who know [this friend]

best” to conflate closeness of friendship with score in the game, and notifications

purposely do not share all the new tags to entice the user to visit the application.

As with typical Facebook applications, users can explicitly invite others to play.

129

Figure 6-5: Collabio leaderboards feature the friends with the most tags (left) and
the friends who have tagged the most others (right).

More subtly, when a user tags a friend, the application sends a Facebook notification

to the friend, whether or not that friend has previously played Collabio. The notifi-

cation includes the user’s name, the number of new tags, and a glimpse of the tags’

contents2:

Michael Bernstein has tagged you with cyclist and 7 other tags using

Collabio. Tag Michael back, or see what you’ve been tagged with. 2:41pm

A similar version appears on the tagger’s wall feed and on Facebook’s homepage news

feed. Users can also place the occluded version of the tag cloud onto their Facebook

profile page. The profile tag cloud demonstrates to visitors the number of tags the

individual has acquired and serves as a hook for new users to install and play.

2Facebook’s changing APIs mean that applications like Collabio would need to choose a separate
set of techniques for viral spread today. These techniques were successful in 2008–2010, but several
have been deprecated.

130

Dealing with Cheating and Abuse

Many games suffer from cheating, collusion, or other malicious actions. Because

Collabio activity can only occur between people with a mutually-established social

connection, we rely on social pressures to prevent this behavior. Specifically, cheating

in Collabio would involve annoying your friend by dirtying their tag cloud or sending

many notifications, which are undesirable; the tagged individual can also manually

retract points or un-friend the tagger.

There are several ways that users could conspire to increase their score. For exam-

ple, they could ask the person who they are tagging or their friends for the answers.

They could also reverse engineer tags using a search strategy on the alphabetized

cloud. This behavior does not do active harm to the tag cloud, as it simply rein-

forces already-existing tags. However, it does erode our premise that popular tags

were generated by multiple independent sources. Fortunately, this is more work than

just guessing at tags, and it is a poor method for drastically increasing one’s score

relative to everyone else’s since mimicking friends’ guesses simultaneously increases

their scores as well. Another way to artificially increase one’s score might be to tag a

friend with a large number of nonsensical tags for 1 point each: e.g., a, aa, aaa, and

so on. However, this strategy quickly deteriorates because it does not take advantage

of the work others are doing to earn you points and one point becomes worth less

and less as more users tag.

Users could also decide to tag an individual with an undesirable tag as a joke or

punishment. Since a tag is not automatically revealed to other users until they guess

it, the payoff for such a strategy is rather low and non-public, and we did not see much

of this in practice. Furthermore, the tagged individual is likely to disapprove of and

delete inappropriate tags, thereby eliminating ill-gotten points or reward. We have

seen people apply social pressures to friends to discourage such behavior. As regards

misspelled or otherwise inaccurate tags, we rely on users’ self-interest in maintaining

a well-manicured public profile [46].

131

Tag anonymity Anonymous Public to tagged user only Public to all users

Tag visibility Never visible Visible when guessed Always visible

Point mechanism None Reward uncommon

 information

Reward common

information

Bootstrapping

untagged users

None Game mechanism

(e.g., extra points)

Social mechanism

(e.g., pretending another

user has tagged !rst)

Synchronicity Synchronous (e.g., ESP Game) Asynchronous

Tag Deletion Send noti!cation Silent deletion

Tagging Yourself Allowed Not allowed

Figure 6-6: The design space of social tagging applications. Collabio’s choices are
highlighted in blue.

Incentive Design

One of Collabio’s distinguishing characteristics is its incentive system for collecting

tags. We designed Collabio’s incentive system in a highly iterative manner, controlling

and testing dimensions with Wizard of Oz prototypes played as a text-based game

over Google Chat. Figure 6-6 summarizes the space of incentive and game options we

considered, including tag visibility, anonymity, scoring, and bootstrapping new users.

Other applications might choose different tradeoffs in the design space.

Implementation

The Collabio application interface is built as an ASP.NET web application. It com-

municates with a Microsoft SQL Server-backed Windows Communication Foundation

web service for data storage and querying. The application is served as a Facebook

Markup Language (FBML) page using the Facebook API.

132

Field Deployment and Evaluation

We analyzed tag statistics collected between July 2008 and March 2009 (about an

8 month period). In that time, Collabio gathered 29,307 tags (7,780 unique labels)

on 3,831 individuals. These tags were generated by 825 different users out of 1,350

who installed the application according to Facebook. The median user who tagged

at least one friend received 11 unique tags in return, indicating that even minimal

usage of Collabio resulted in a user being relatively well-tagged by friends.

We supplemented this data with a survey methodology aimed at active users,

who we defined as users who had tagged at least three friends, were tagged by at

least three friends, and had at least nine distinct tags. Using Facebook’s notification

service, we invited Collabio’s 112 most active users to fill out a survey about their

experience. Forty-nine users (24 female) responded to the survey. The median age

was 27 (σ = 4.1). The respondents were skewed toward students and researchers with

an interest in user interfaces. We offered a small gratuity for responding.

This section reports a summary of the results that are most relevant to crowd-

powered systems. Related publications have more details [15].

Tie Strength. Users tended to tag friends close to them: their strong ties [65, 61].

Survey results suggest that users would usually tag closer friends, but not exclusively

so. This preference for stronger ties came about because it was easier to invent tags

for them and because it could be awkward to send a Facebook notification to a friend

who you had not spoken to in months. Our logs show that the users who participated

in Collabio tagged 5.8 other friends on average (σ = 13.6) with 6.1 tags each (σ = 7.3).

Reciprocity. Social reciprocity through Facebook notifications played a critical

role in keeping users engaged. When asked about the reasons for tagging, 82% of

survey respondents cited that the friend had tagged them first. In practice, 82% of

Collabio users who joined after being tagged reciprocated by tagging at least one of

the friends who had tagged them.

Tag Characteristics. In Collabio, single words are often enough to convey the

essence of a concept in tag form. Collabio’s mean tag length is 8.3 characters (σ =

133

Tag Bucket Definition Most Popular Information
Popular Tags
(N = 147)

Three most
popular tags
for the user

School, workplace or group affiliation (66.0%)
Interests or expertise (16.3%)

Middling
Tags
(N = 93)

Less popular
than Popular
Tags, but oc-
curring more
than once

School, workplace or group affiliation (27.2%)
Interests or expertise (23.9%)
Hobbies (15.2%)
Location (10.9%)

Uncommon
Tags
(N = 147)

Occurred
only once

Interests or expertise (21.1%)
Miscellaneous (15.6%)
School, workplace or group affiliation (13.6%)
Hobbies (12.9%)

Table 6.1: A breakdown of information type by tag bucket. Affiliation and interest
categories were the most popular among the three categories.

5.2). 5,867 tags (75%) are a single word, and 1,913 tags (25%) contain multiple

words.

Globally, the tags applied to the most individuals in Collabio are descriptors like

kind and smart as well as affiliations such as Stanford. These generically positive

descriptors point to the general good-natured bent of most Collabio tags, and suggest

that we may have succeeded in preventing large-scale trolling.

To learn more about tag content, we asked each survey respondent to rate nine tags

in their tag cloud. These tags were drawn from three buckets (Table 6.1): Popular

Tags, the three tags applied by the most friends; Middling Tags, tags drawn randomly

from the set of tags that occurred at least twice but less often than the Popular Tags;

and Unique Tags, tags drawn randomly from the ones applied by only a single friend.

For users who did not have enough tags to fill the Middling Tags category, we instead

presented a randomly-generated string and removed the resulting data from later

analysis.

For each tag presented, the user provided a rating on a 7-point Likert scale (1 for

disagreement and 7 for agreement) for each of two statements: “This is a good tag for

me,” and “This tag is something I would expect lots of people to know about me.”

In addition, participants classified each tag into the following categories: school,

workplace or group affiliation; professional or academic interest, expertise or title;

134

Popular Tags Middling Tags Uncommon Tags
Accurate µ = 6.42, σ = 0.92 µ = 5.83, σ = 1.39 µ = 5.13, σ = 1.61
Widely Known µ = 6.22, σ = 1.22 µ = 5.21, σ = 1.58 µ = 4.14, σ = 1.77

Table 6.2: User ratings of how accurate and widely known the tag buckets were, on
7-point Likert scale (1=very inaccurate / not widely known, 7 = very accurate /
widely known).

recreational hobby, interest, or expertise; location; personality trait; physical descrip-

tion; name or nickname; another person in the participant’s life; inside joke; don’t

know; or other.

We found that a large percentage of Collabio’s tags are affiliations, interests,

expertise and hobbies; the long tail of tags contributes a wide variety of unusual in-

formation. Table 1 reports that Popular Tags were reported to be mainly affiliations;

Middling Tags and Uncommon Tags were more commonly reported to capture in-

terests, expertise and hobbies. The Uncommon Tags were commonly categorized as

Miscellaneous, including clothing choices, special abilities, and the name of a friend’s

dog.

Tag Accuracy and Popularity

Generally, the more popular the tag, the more accurate it was and the more well-

known the fact. Survey participants rated all three classes of tags as accurate descrip-

tors of themselves, and all but Uncommon Tags as known by many people (Table 6.2,

Figure 6-7). We ran one-way ANOVAs with tag bucket as independent variable and

goodness of tag and expectations that others know the given facts as dependent vari-

ables. We found significant effects of tag bucket on goodness of tag (F2,384 = 34.5,

p < 0.001, η2 = .15) and expectation that others know the given facts (F2,384 = 67.1,

p < 0.001, η2 = .26). Pairwise posthoc comparisons using Bonferroni correction con-

firmed all factor levels were significantly different from each other in terms of accuracy

and anticipated popularity.

We were surprised to find that even the Uncommon Tags were rated as fairly

accurate descriptors, with a mean above neutral on the Likert scale. This result sug-

135

1

2

3

4

5

6

7

Popular Tags Middling Tags Uncommon Tags

M
ea

n
Li

ke
rt

re
sp

on
se

Tag Accuracy

Figure 6-7: A bar chart representation of Table 6.2 indicates that all three classes of
tags were rated above neutral (4) on average as accurate descriptors.

gests that there is little inaccurate information in the Collabio tag database. General

wisdom in this field would claim that accurate data collection requires repeated in-

dependent verification of the same answer, and thus that that one-off answers should

generally be discarded [187, 198]. However, we find that even the one-off answers

in Collabio (the uncommon tags) are fairly accurate. It seems that Collabio’s social

incentives help to avoid serious misuse or off-topic tags.

Collabio Tags Are Novel and Unavailable Elsewhere

Our results suggest that Collabio generates accurate tags that are reasonably ordered

by importance. However, if these tags are available elsewhere, we have not signifi-

cantly advanced the state of the art. Could an algorithm or individual outside the

social network just as easily create these tags by mining information available in

users’ Facebook profiles or the web? Could these methods also reproduce the relative

ordering of tags?

Rating Study Method. We randomly selected twenty survey respondents from the

forty-nine who completed our previous survey. For each survey respondent we utilized

the nine tags they had rated in the survey, as well as three Fake Tags that were false

136

and thus should not appear anywhere associated with the individual. Fake Tags were

chosen from the set of global Collabio tags: one from the top 5% most popular tags,

one that occurred less than the 5% most popular tags but more than once, and one

that occurred only once. Fake tags excluded any tags applied to the individual.

We recruited four native English speakers comfortable with Facebook and web

search, but who had never used Collabio and did not know any Collabio users, to

serve as raters. We gave them a brief demonstration of Collabio. The raters’ task

was to find evidence for each tag on the user’s Facebook profile and on the web. For

each target individual, raters were presented with the twelve tags in random order and

asked to rate each on a 7-point Likert scale according to the following statement: “I

can find strong evidence that the tag applies to this individual.” Raters were trained

to give a score of 7 if the tag appeared verbatim, a score of 1 if there was no evidence

in support of the tag, and a score of 4 if moderate inference was required based on the

available evidence (e.g., the tag was Atlanta but the only relevant evidence was that

the person attended Georgia Tech); the other values on the ordinal scale captured

in-betweens. Raters were trained on example tags and profile sets until satisfactory

agreement on the scoring scale was achieved. We randomized the order that raters

viewed individuals.

We tested whether our human raters, as a reasonable upper bound on machine

inference, could find the tags on the Collabio users’ profiles. Raters rated the set of

tags under two scenarios: first using only the individual’s Facebook profile available

to friends, and second using only web search. In the web search scenario, raters were

disallowed from concatenating the individual’s name and the tag name into a search

query (e.g., “john smith atlanta”), in order to better simulate a tag generation task

with no prior knowledge of the tag. We believe this is a more difficult test for Collabio

to pass than that undertaken by Farrell et al. [53], who performed string equality

tests to see whether tags existed on profiles, because human raters perform semantic

inferences.

We also wanted to investigate whether our raters could determine how popular a

tag had been, as verified by our survey data. For each individual, we asked raters

137

Popular
Tags

Middling
Tags

Uncommon
Tags

Fake Tags

Facebook Evidence µ = 5.54,
σ = 2.36

µ = 4.20,
σ = 2.68

µ = 2.87,
σ = 2.56

µ = 1.56,
σ = 1.76

Web Search Evidence µ = 5.72,
σ = 2.29

µ = 4.17,
σ = 2.81

µ = 3.04,
σ = 2.65

µ = 1.50,
σ = 1.40

Table 6.3: Mean ratings applied to tags, from 1 (no evidence to support tag) to 7
(tag appeared verbatim).

to place each tag into its original bucket: Popular Tags, Middling Tags, Unpopular

Tags, and Fake Tags. They were told that three tags came from each bucket.

Rating Study Results. Raters evaluated tag evidence on Facebook and the web for

a total of 480 tags across the twenty individuals. Cronbach’s alpha was calculated to

measure agreement across the raters, producing an overall agreement score of .82.

Experts found more supporting evidence for the more popular tag buckets, both

on Facebook and the web (Table 6.3, Figure 6-8). A two-factor ANOVA comparing

the effect of tag bucket (Popular vs. Middling vs. Uncommon vs. Fake) and evidence

type (Facebook vs. Web) on rating found a main effect of tag bucket (F3,1915 = 270.0,

p < 0.001, η2 = .30), and pairwise Bonferroni posthoc comparisons (all significant

p < 0.001) suggested that the more popular a tag was, the higher rating it received

and so the easier it was to find evidence for. Thus, the more popular the tag was,

the more likely it occurred in a publicly visible area. We found no main effect of

Evidence type, and inspection suggests that the scores between Facebook and the

web are nearly identical.

In the bucket identification task, raters were the most reliable at identifying the

extreme buckets: Popular Tags and Fake Tags (Table IV). Raters had the poorest

performance on Middling Tags and Uncommon Tags, correctly recognizing only about

40% of each. Thus, beyond the most common tags, it is difficult for non-friends to

reconstruct tag rankings.

Overall, raters found evidence supporting Popular Tags, but moderate inference

was required for Middling Tags and very little evidence was available for Uncommon

Tags. Our original survey respondents indicated that even Uncommon Tags were gen-

138

1

2

3

4

5

6

7

Popular Tags Middling Tags Uncommon Tags Fake Tags

M
ea

n
Li

ke
rt

ra
tin

g

Tag Evidence on Facebook

Figure 6-8: A bar chart representation of Table 6.3, focusing on the Facebook condi-
tion. Popular Tags tended to have evidence available on the profile; Middling Tags
and Uncommon Tags were much less likely to. There was considerable variance in
ratings.

True Buckets
Popular Middling Uncommon Fake

Rater Prediction

Popular 151 61 24 7
Middling 63 94 50 30
Uncommon 15 51 103 73
Fake 11 34 63 130

Table 6.4: Confusion matrix of rater bucketing decisions. Raters were accurate at
identifying Popular Tags and Fake Tags, but less so at Middling Tags and Uncommon
Tags.

139

erally accurate, so we may conclude that Collabio is collecting accurate information

with Middling and Uncommon Tags that would otherwise be difficult or impossible to

acquire. Of the three categories, Popular Tags are fewest in number in the Collabio

tag database, so most of the information Collabio collects is unique and thus com-

plements existing public sources with typical online scraping techniques. Raters had

considerable difficulty distinguishing Middling from Uncommon tags, and Uncommon

from Fake Tags, so beyond the most obvious information it may also be difficult for

a human, and certainly a machine, to recreate Collabio’s tag ordering even coarsely.

Study Discussion

Tying together the survey and the rating exercise we see that Popular Tags, which

largely captured group affiliations, could in principle be generated by mining available

information such as Facebook or the web, even though we know of no current system

that can do this reliably. Middling Tags and Uncommon Tags, which users view

as good descriptors of themselves, are difficult for others outside the social network

to verify and by extension to generate. Thus, Collabio generates tags that are not

available to typical web mining methods and these tags cannot reliably be judged

accurate by individuals outside the social network.

Even unverified, unpopular information is typically accurate in Collabio. This

result suggests that guaranteeing accuracy may not be a major design concern for

friendsourced systems. This benefit may have been carried over from crowdsourcing:

only 1-2% of Wikipedia edits are dedicated to reverting vandalism [105].

Friendsourced applications may be most useful, then, in producing a wide variety

of non-generic information about its users. While the system may reward its users

for producing popular information, the large majority of tags in our database are

not popular. This large majority is the class of information that exhibits the most

potential: it is both accurate and unavailable elsewhere. The Dogear Game makes

clever use of this situation as well by focusing on incorrect answers as sources of

information about the misattributed individuals [49].

140

Figure 6-9: The FeedMe plug-in for Google Reader suggests friends, family, and
colleagues who might be interested in seeing the post that you are reading. This user
has selected john@doe.com and mary@email.com out of the list of 5 recommendations.
The “Now” button sends an e-mail immediately; the “Later” button queues the item
in a digest of multiple messages.

6.1.2 FeedMe: A Friendsourced Recommender System

Collabio gathers friendsourced information by creating a new kind of social interac-

tion. By contrast, FeedMe aims to facilitate and ride on an existing social interaction

for friendsourced data.

FeedMe takes advantage of the non-uniform (often lognormal) participation dis-

tribution on social systems. It hypothesizes that we might be able to incentivize a

small number of very active users to participate on behalf of the less active users, to

everyone’s benefit. In other work, we have shown that the minority of active con-

tent consumers on the web is also the most interested in routing that information to

particular contacts in their network [13].

FeedMe is a plug-in for Google Reader that suggests contacts who might be inter-

ested in seeing the content currently being viewed (Figure 6-9), and provides social

awareness and feedback mechanisms to ease spamming concerns. To follow, we de-

scribe FeedMe’s two major components: sharing recommendations, and social aware-

ness and feedback.

Recommendation Interface

FeedMe injects a recommendation interface under the title of every post viewed in

Google Reader (Figure 6-9). The recommendation interface suggests individuals with

possible interest in the post being viewed. The recommendations make sharing a

141

two-click process: click to confirm the recipient, then click the “Now” button to send

an e-mail. Users can optionally add a comment that will be prepended to the e-mail.

If multiple receivers are selected, the e-mail goes to all of them; the user also has the

option to send separate e-mails rather than cc’ing each recipient.

If interested, the user can display more recommended recipients by clicking “more”

to reveal another row of recommendations. If the desired contact has not been recom-

mended or if the user has not shared with the contact before, the user can enter the

contact’s e-mail address in an autocompleting textbox. This box is populated with

the user’s Google contacts. When the user first uses FeedMe, no recommendations

are available and the user must bootstrap using autocomplete. As the user shares,

the system recommends past recipients for new posts.

The recipients do not need to be FeedMe users, use an RSS reader, or invest effort

in profile authoring. This imbalance is desirable because the majority of recipients

do not use an RSS reader, and thus would never use FeedMe. However, many sharers

live within an RSS ecosystem. So to train our recommender, we utilize the efforts of

the (relatively fewer) FeedMe users: FeedMe models a recipient’s interest by tracking

the posts shared with that recipient.

Social Awareness Information and Social Feedback

FeedMe’s social features are intended to display useful information about the receiver

to the sharer, give the sharer more control over how the link is sent, and give the

receiver a lightweight feedback mechanism.

Load Indicators. To help the user gauge the likelihood of being perceived as

spammy, FeedMe provides social awareness information with its recommendations

(Figure 6-10). A primary concern is whether the recipient has seen the item already,

so FeedMe displays “Seen it already” if the recipient has received the link from another

FeedMe user or if the recipient is a FeedMe user and viewed the item in Google

Reader. This alert depends on the information that FeedMe can observe, such as

FeedMe shares and Google Reader viewership. The interface also helps the sharer

gauge how overwhelmed the recipient is by counting FeedMe e-mails from FeedMe

142

Figure 6-10: Load indicators reflect the number of items sent today (left) and whether
the receiver has seen the post already (right).

since midnight. For example, if the recipient has received 2 FeedMe e-mails from one

user and 3 from another, the interface displays “5 FeedMes today.”

Digest E-mails. If sharers are worried about sending too many e-mails, they can

opt to click “Later” instead of “Now” when sending the e-mail (Figure 6-9). “Later”

queues the message into a digest e-mail that is sent out to recipients twice a week

when there are pending shared items. A sharer can queue as many items as desired,

knowing that only one e-mail will be sent.

One-Click Thanks. Replying to e-mails enables conversation, but recipients may

want to express appreciation for the shared post without writing a detailed response.

To facilitate this, FeedMe provides a lightweight thanking mechanism to let the sharer

know when a recipient appreciates the content. If Dan Olsen were to share a post,

a link with the action text “Send Dan Olsen a One-Click Thanks!” is added to the

e-mail below the post title. When a recipient clicks the link, he or she is taken to a

confirmation page with a thanks leaderboard (Figure 6-11). The leaderboard counts

the number of times each of the sharer’s recipients has thanked the sharer, inspired

by social games like Collabio. Simultaneously, the sharer is notified of the thanks by

e-mail.

Implementation

We implemented the user interface for FeedMe as a Greasemonkey script. Grease-

monkey is a plug-in for the Firefox web browser that facilitates the modification of

a web site’s code and interface. DOM listeners determine when the user has shifted

their attention to a new post. For each post, FeedMe sends an AJAX request for

recommendations. The server is implemented using the Django framework and stores

data in a MySQL database.

143

Figure 6-11: The One-Click Thanks leaderboard gives sharers and recipients a chance
to see how many other people have enjoyed that sharer’s content.

FeedMe constructs a recommendation profile for each user who has received a

shared post. To do this, it builds a bag of words model for each recipient composed

of words that have appeared in posts previously recommended to them. The algorithm

concatenates post title, feed title and content of every post sent to the recipient, then

tokenizes the result, performs word stemming, and removes common stop words.

Words are weighted by term frequency-inverse document frequency (TF-IDF) [172],

so that popular words in posts sent to the recipient are more salient.

The recommendation algorithm uses the standard Rocchio approach, computing

cosine distances to each friend of the sharer to the post and ranking the friends’

distances [164]. The server creates a TF-IDF word vector for the post, then compares

that vector to the vector representing each recipient the sharer has shared with in the

past.

Evaluation

To evaluate FeedMe’s impact on sharing habits, we performed a two-week field exper-

iment. We recruited 60 participants via blogs and e-mail lists who were regular users

144

Re
co

m
m

en
d

D
on

’t
Re

co
m

m
en

d

Social Features On Social Features Off

Send a One-
Click Thanks!

Send a One-
Click Thanks!

Figure 6-12: FeedMe’s evaluation was a 2x2 design. Recommendation features could
be turned on or off, and the social awareness features could be turned on or off.

of Google Reader and Firefox. We paid participants $30 for two weeks of Google

Reader use with FeedMe installed.

Median participant age range was 26-30, and 46 were male. Many participants

were students; others included consultants, designers, an editor, an entrepreneur, a

music teacher, a theater technician and a patent agent. Participants also shared

30-day usage statistics that Google Reader makes available before they began using

FeedMe. The median participant read 1,598 posts from 52 feeds in the month preced-

ing the study, shared 0 posts from Google Reader using the built-in e-mail interface

(though many sent more, max. 224) and publicly shared 5 posts.

Field Experiment Design. FeedMe takes two approaches to facilitate sharing:

recommending potential recipients and social awareness and feedback. We designed a

study to understand whether these features are useful and how they impact sharing,

in a 2 (recommendations) x 2 (social) design (Figure 6-12). All factors were fully

balanced and randomized.

Recommendations were either fully enabled or not shown — in either condition,

the user could also use an autocomplete textbox to manually add an e-mail address.

This factor was within-subjects: participants tried each interface for a week, half

receiving recommendations only in the first week, and half receiving them only in the

second week. We did not add a second control group with random recommendations:

we wished to focus on the social impact of sharing rather than the specific algorithm,

145

and piloting had shown the Rocchio algorithm good enough for eliciting this feedback.

Social features were either fully enabled or fully disabled for the length of the

study. Disabling the social features removed information about number of messages

received today, whether the recipient had seen or received the link already, the ability

to digest e-mails for later, and the ability of recipients to send One-Click Thanks.

The social factor was between-subjects, so participants remained in their group for

the entire study. We chose to make social features a between-subjects variable to

simplify the user experience: four (2x2) configurations would be more difficult for

participants to remember and compare.

Halfway through the study and again at the end of the study, we asked participants

to complete a survey about their experience. The survey asked Likert scale and free

response questions about that week’s interface, including ease of sharing and concern

about spamminess.

Results. Both sharers and receivers found real benefit in FeedMe. Receivers

reported that 80% of shared posts were novel content, and that they were glad to

receive the posts. Fully 31% of shared posts had at least one One-Click Thanks.

Sharers also enjoyed the tool: 18 participants continued to use the tool a week after

the study ended. Participants told us that recommendations made sharing easier and

were significantly in favor of it compared to the control interface. Load indicators

put sharers at ease and digests freed some users to send many more posts than other

study participants.

Of the 60 users who were initially enrolled in the study, 58 used FeedMe until the

end of the two weeks and responded to all of our survey questions. These participants

shared a total of 713 items using FeedMe, 0.84% of the 84,667 posts viewed while

FeedMe was enabled in Google Reader. The median number of viewed posts during

the period, normalized out to 30 days, was 1,639 — roughly in line with reading

trends prior to the study (median 1,598). Figure 6-13 shows three histograms of

usage statistics: unique recipients, shared posts, and recipients per post. There is

a right skew to all three distributions: 81% of our users shared with 10 or fewer

recipients, most participants shared 20 or fewer posts, and most posts were shared

146

0
0

5

10

15

0

5

10
15

0
100
200
300

400
500

5 10 15 20 25 30

Histogram: unique recipients per sharer

Histogram: shared posts per sharer

Histogram: recipients per shared post

Total number of unique recipients

Number of shared posts

Number of recipients

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

0

1 2 3 4 5 6

10 20 30 40 50

Figure 6-13: Typically, users shared with small numbers of individuals and addressed
each message to one recipient.

with a single recipient.

It is tempting to argue that 20 shared posts in two weeks is a low figure, and that

participants tried and then discarded FeedMe. Sharers were, however, consistently

using the tool. The first two days saw higher activity levels, after which sharers

shared a relatively constant number of posts per viewed article through the two

weeks (Figure 6-14). We required participants to have the tool installed, but we did

not require them to share — the uniformity of sharing across the study suggests that

users did not lose interest. As further evidence, two days after the end of the study,

25 of the 60 participants were still using FeedMe to share posts; a week after the end

of the study, 18 participants were still using FeedMe. This evidence is indirect, but

we consider the voluntary continued usage to be implicit positive feedback.

147

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

8/
18

8/
19

8/
20

8/
21

8/
22

8/
23

8/
24

8/
25

8/
26

8/
27

8/
28

8/
29

8/
30

8/
31

9/
1

%
 o

f P
os

ts
 S

ha
re

d
FeedMe Activity Over Time

Figure 6-14: After the initial rush of activity, participants continued to use FeedMe
to send a consistent percentage of posts viewed.

However, given the relatively small number of shared posts, we proceeded with

our summative evaluation largely via qualitative assessments, augmented with usage

statistics.

All versions of FeedMe had a large effect on the amount of sharing occurring

within the Google Reader interface. A paired t-test comparing the number of posts

that sharers e-mailed using Google Reader in the 30 days before the trial (µ = 2.7,

σ = .86) to the number of posts that sharers e-mailed using FeedMe (extrapolated

from 14 days to 30; µ = 26.5, σ = 20.9) is highly significant: t(57) = 8.447, p < .001.

This data is of course not convincing by itself due to the Hawthorne effect, but it

suggests that we successfully transitioned information seekers to sharers.

To begin to understand FeedMe’s impact, we need to investigate those most im-

pacted by the software. Arguably, this group is not the sharers, but the larger number

of receivers who had an unexpected windfall of web links.

Receiver Feedback. Receivers’ impressions of FeedMe are an important primary

benchmark of success. We emailed everyone who had received at least one FeedMe

shared post with a short survey, offering entry in a $30 raffle in compensation. The

survey randomly selected up to five posts that the recipient had received via FeedMe.

For each post, we asked 1) whether the recipient had seen the link somewhere other

148

than the FeedMe e-mail, and 2) how glad the receiver was to have received that post,

on a 7-point Likert scale.

We received responses for 166 shared posts on behalf of 64 receivers. We found

that receivers were generally glad to have received the information: the mean Likert

response was 5.1 (σ = 1.6). Receivers also indicated that the vast majority (80.4%)

of posts were only encountered through FeedMe. Since the posts were generally

enjoyable, it is clear that FeedMe then directly benefited the recipients, who saw

more than they would have otherwise.

We conclude that recipients did not feel spammed by FeedMe, were pleased by

the shared posts, and were more up-to-date thanks to the novel posts shared by their

friends.

Recommendation Interface. Participants viewed the recommendations as a

useful means of lowering the effort barrier to sharing. When asked about their favorite

part of FeedMe, participants often mentioned the recommendations. One participant

appreciated the “keyboard-free, convenient emailing of articles to friends I share with

all the time (and have therefore built up a record of in FeedMe).” The recommenda-

tions appeared to achieve FeedMe’s design goal of accelerated sharing. “I can rapidly

click names of people I regularly contact,” a participant shared; another reported his

favorite feature to be “the speed with which you can share content (without any new

tabs or pages).” Participants who preferred the no-recommendation interface did so

for reasons of clutter and waste of vertical pixels in Google Reader. FeedMe’s rec-

ommendations were also occasionally off-target, especially with individuals e-mailed

only once.

We asked users to express a preference for either the version of FeedMe that

contained recommendations or the one that did not. Using a practice described by

Hearst [78], we named the interfaces “Aspen” and “Sierra” for comparison purposes.

Two researchers coded the freeform responses as favoring recommendations, favoring

no recommendations, or undecided (Figure 6-15). The codings agreed at a .938 level

as measured by Cohen’s kappa, indicating almost perfect correspondence. A third

party arbitrated disagreements. A chi-square test indicates a clear preference for the

149

Recommendations

No Recommendations

Undecided

0 10 20 30 40

Post-study User Interface Preference

Number of Respondents

Figure 6-15: Participants reported a significant preference for the recommendation
interface (p < .05).

recommendation interface (χ2(1, 58) = 4.92, p < .05), with nearly twice as many

participants preferring recommendations to no recommendations (34 to 18).

Social Awareness and Feedback. Demand for the social features was high:

participants who spent the two weeks without social features (re-)invented them in

feedback surveys. Nine of the 30 users with social features mentioned digests, activity

statistics, or One-Click Thanks as being their favorite feature in FeedMe. “I could

worry less about annoying [my friends],” one participant described. When asked

what feature of FeedMe would make them feel more comfortable sharing more, 14

of 28 users without social awareness and feedback indicated that knowledge of how

overloaded recipient are would help them feel more comfortable sharing, whereas only

3 of the 30 users with social features made such a claim. The difference between these

two groups is significant, as verified by a Chi-Square test with Yates’s correction

(χ2(1, 58) = 9.34, p < .01). Thus, we believe that the social features went far to

address awareness concerns.

Receivers and sharers both appreciated the One-Click Thanks feature. Of 349

shared posts sent in the social-enabled condition, 108 (30.9%) received at least one

thanks. An informal sampling of four Facebook feeds revealed that a similar percent-

age (˜30%) of posts receive at least one Like — an equal engagement from a much

larger audience. One recipient who contacted the researchers expressed that One-

Click Thanks made it simple to express gratitude for messages which they previously

150

felt pressure to provide an in-depth response to and would typically not respond to

at all. The thanks leaderboard did not stimulate competition, but it had the benefit

of making user activity visible, thus providing social proof of FeedMe usage.

The Seen It Already indicator was not triggered often because our sharers had

largely distinct sets of friends. The feature’s usefulness would presumably be improved

as entire social circles adopt FeedMe. One participant reported: “I feel like the saw it

already’ feature could be a sleeper hit for me, it doesn’t seem special at first but could

be really spectacular to know who has seen or shared an item already.” Feedback

suggested that it would be particularly useful when sharing with other feed reader

users.

Opportunities for Improvement. The clearest concern with FeedMe is related

to the choice of e-mail for delivering messages. Some users considered email to be

sacred and professional. One shared: “I’m pretty conservative about invading people’s

email space . . . I worry that they will take real’ email from me less seriously” if they

also receive lighter, comedic content such as cartoons. The perceived problem is

that e-mail is a push medium: recipients are forced to look at the links along with

more important information. “Email is a more direct way to communicate,” one

participant explained, “and I feel that articles that are I read are more like ‘ambient’

information.” For this reason, some power users preferred media they could firehose,

such as the public sharing option on Google Reader. Only 5 out of 38 respondents to

our original survey indicated that this kind of rate-limiting was their most pressing

concern, but it was clearly a theme of the FeedMe feedback. We can think of two

explanations: 1) active information seekers are more sensitive to e-mail crowding than

average Internet users; 2) FeedMe addressed other concerns successfully enough to

make rate-limiting the most pressing remaining concern.

Limitations of the Study

In order to participate in our study, participants had to be Google Reader users with

the latest version of Firefox and the ability to install Greasemonkey. Participants

who fit this profile are likely to be power users, biasing the kind of users on whom

151

we base our conclusions. Such users often had established norms for sharing with

friends, such as mailing lists or IRC channels, and were potentially more sensitive to

increasing e-mail traffic to recipients. These biases might have resulted in less sharing

in situations where the general population of users might not be so sensitive or have

outlets other than email on which to share interesting content.

6.1.3 Systems Powered by Friendsourcing

Friendsourcing is a useful tool for collecting explicit information about preferences and

interests that may be difficult to obtain otherwise. Application developers seek out

such information when they require user-specific data, for example in recommendation

tasks, personalized search, and social network profiles. A strength of this approach is

that it can personalized models without the recipients’ participation. With FeedMe,

for example, we can rely on active RSS readers to install the tool and build the

models, because it aids sharing, but the recipients need not do anything in order to

benefit.

However, friendsourcing opens another avenue as well: applications which require

social data; that is, applications which trade in information known to or relevant

to only a small group. Yahoo Answers cannot easily help with questions about the

history of your small a cappella group or the way your friend delivered his marriage

proposal; building applications on data such as the Collabio tags makes this possible.

We have created three illustrative prototypes utilizing the Collabio database: a

tag cloud aggregator for tag visualization and exploration, an expert-finding ques-

tion answering system, and a personalized RSS feed. We attempt two goals with

this work: to demonstrate that friendsourced information can reproduce interactions

built on asocial sources such as mining of user workstations, and that in some cases

friendsourced data can provide new opportunities for interaction.

152

Figure 6-16: Collabio QnA is a question and answer system that uses Collabio tags
to find friends and friends-of-friends who can answer your questions.

Question Routing

Friendsourcing gives us knowledge of many more individuals in a social network than

we would typically have: the active users have described their inactive friends. Typ-

ically, question and answer (QnA) systems such as Yahoo Answers3 rely on a large

community of answerers actively seeking out questions. Expert-finding algorithms

can broaden the effectiveness of these tools by actively routing questions to users

likely to know the answer. QnA systems with expert-finding components include An-

swer Garden [1] and Aardvark4; Farrell et al [53] suggested that tags could be used

for people-ranking.

We embedded this friendsourced QnA system (Figure 6-16) in Facebook. Users

ask questions, and the system searches over the collected Collabio tags (or FeedMe

term vectors) to identify friends and friends-of-friends who are most likely to be able

to answer the question. The user can then choose which friends to send the question

to, and Collabio QnA provides a comment board for the answer thread.

Collabio QnA’s expert-finding algorithm utilizes the Lucene search engine5. Each

user’s Collabio tag cloud (or FeedMe term vector) is translated into a document in

3http://answers.yahoo.com
4http://en.wikipedia.org/wiki/Aardvark_(search_engine)
5http://lucene.apache.org

153

http://answers.yahoo.com
http://en.wikipedia.org/wiki/Aardvark_(search_engine)
http://lucene.apache.org

the search engine with terms weighted by number of friends who applied the tag. The

user’s question is then fed as a query to the search engine, and the ranked results are

restricted to the user’s friends and friends-of-friends. Lucene’s default scoring function

prefers short documents — in this context, users with fewer tags — so we utilize a

length-independent scoring function to give all tag clouds equal scores regardless of

size.

Collabio tags and the social network context provide the opportunity for our QnA

system to route questions more highly relevant within the user’s social network, such

as When is the next HCI group meeting?, or Who might be interested in starting an

IM football team at Google? These kinds of questions are difficult to answer using

global QnA sites such as Yahoo Answers.

Network Tag Visualization

Collabio has learned thousands of tag clouds for users, so another straightforward

step is to create tools to help make sense of the tag space. Collabio Clouds allows

users to compare themselves and other users of the system.

Collabio Clouds (Figure 6-17) aggregate tag clouds based on user queries. The

user can query his or her own tag cloud as well as the aggregated tag cloud of friends,

Collabio users, users tagged with specific Collabio tags (like tennis or Adobe), or users

in Facebook networks or groups. Collabio Clouds allows users to explore questions

such as: What do the tag clouds of members of the Penn State network look like?

What other tags show up on individuals tagged with machine learning? Which tags

are most popular amongst all my friends?

Collabio Clouds uses a comparison tag cloud technique developed by ManyEyes

[196] to allow users to compare two groups. Thus, a user can compare his or her

friends to all Collabio users, compare Michigan students to Michigan State students,

compare people tagged with football to people tagged with baseball, or compare Stan-

ford members of the ACM SIGCHI group to Carnegie Mellon members of the ACM

SIGCHI group.

Tag clouds are aggregated by number of members of the group who have a tag, so

154

Figure 6-17: A tag cloud comparing users tagged with washington to users tagged
with georgia tech in Collabio Clouds.

larger tags are more common in the population. To improve privacy, only tags that

are applied to more than one individual are shown in the aggregate tag cloud.

Recommender Systems

FeedMe builds models of its recipients, but Collabio tags allow us to match content to

users who have had too few items shared with them. RSS (Really Simple Syndication)

is a popular format allowing aggregation of web content, enabling users to subscribe

to the feeds of web pages of interest. However, these feeds vary in relevance and can

be overwhelming in number, making it difficult to identify the most relevant posts to

read.

Collabio RSS is a personalized RSS feed of web content, powered by a user’s

Collabio tags. Collabio RSS builds on research in personalized web filtering (e.g.,

[27, 22]). It is unique from most content-based filtering algorithms in that its model

is not implicitly learned from user behavior; the tag knowledge base enables a simple

155

information retrieval approach to filtering and enhances scrutability of its results

[197].

To produce the news feed, Collabio RSS indexes the title and text content of each

feed item as a document in Lucene. When a user requests a personalized feed, it

retrieves that user’s Collabio tag cloud and performs a document-as-query search on

the feed corpus: the weighted tag cloud is concatenated as an OR’ed search query

and weighted by tag popularity. Tag weights are log-transformed to prevent the most

popular tags from overwhelming the results. We filter the corpus using a sliding time

window of the past day and a half to keep the feed’s content fresh.

We crawled 2610 popular RSS feeds recommended as bundles by Google Reader,

indexing 68,069 items posted over 36 hours. As an example, ten randomly-selected

posts vary greatly in topic:

1. 2010 Pontiac Solstice GXP Coupe Test Drive: 28 MPG and Turbo Power, but Prac-

ticality Not So Much

2. The X-Files: Season 7: Disc 4

3. 26 Carriers Commit To Deploying LTE; Some Backers Look For Way To Make Voice

Calls

4. 5 Reasons Why the PTR Sucks

5. 30 More Free Blog Icons, Website Icons, Symbol Icons

6. 2009 is the year of the comic book in Brussels

7. Superman Cartoons

8. 84th Precinct Crime Blotter

9. 1D-navigation using a scalar Kalman filter

10. 13 Tasteless Costumes Ever

However, Collabio RSS feed identifies items of much greater interest to one of

the authors, containing items relevant to HCI, graduate school, and nerd culture in

Boston:

156

1. Weekly Mashable Social Media & Web Event Guide

2. Job Offer: PhD Position in Information Visualization, Vxj University, Sweden, and

TU Kaiserslautern, Germany

3. 6 Y Combinator Startups I Would Have Invested In Back Then

4. Mind Meld: Non-Genre Books for Genre Readers [sci-fi books]

5. Job: Postdoc in Visual Perception, Delft University

6. The Information School Phenomenon

7. Speaking of (and in) 2009 [speaking schedule of HCI figure]

8. Tonight: Video Game Orchestra at Berklee

9. Brain-Computer Interfaces: An international assessment of research and development

trends

10. Exploring Siftables: the blocks that play back [HCI research at author’s university]

The Collabio RSS feed has high relevance because Collabio collects so many tags

related to professional and recreational interests. Affiliation-oriented tags, also popu-

lar, are responsible for returning news relevant to places and organizations the author

has been associated with in the past.

Lessons Learned

This trio of systems powered by friendsourcing have given us insight into techniques

and challenges associated with mining friendsourced information like Collabio tags or

FeedMe term vectors. Information retrieval techniques such as tf-idf are important

means for normalizing out common tags such as kind, beautiful, and nice. Tag sparsity

issues may have been expected, but we found that Collabio users typically tried

several different versions of a single idea when tagging (e.g., computer science, CS,

comp sci), so in practice this was not a major issue. In addition, the stemming that

search engines apply to the tags often hashes together different conjugations of a tag.

157

If sparsity becomes an issue for applications, collaborative filtering (people tagged

with one tag were often tagged with another) could implicitly add likely tags.

We cannot distinguish the semantics of any given tag, so we do not know if a

tag is appropriate for a given personalization purpose. In the future we intend to

try targeting tagging activities more carefully in order to generate tags relevant to

a particular application. For example, once a week we might encourage only tags

related to college, or to favorite movies. We believe human users are best situated

to make these hard semantic decisions, and we would like to leverage this fact. In

addition, new tagging tasks might help keep the application fresh.

We believe that Collabio tags will complement existing data mining approaches

to personalization. Collabio largely sidesteps the privacy and deployment issues that

burden the data mining of private sources such as e-mail or web history. Furthermore,

the generated information is guaranteed to be semantically meaningful to the user,

whereas automated techniques often result in information that textually distinguishes

a user but does not carry much meaning.

6.1.4 Conclusion: Friendsourcing

We have investigated the design space of friendsourced social applications: designs

that collect information or execute tasks in a social context by mobilizing a user’s

friends and colleagues. Friendsouring enables support for previously difficult tasks

such as personalization, upkeep of public information about inactive users, and rec-

ommendation. To explore this design space, we developed Collabio and FeedMe, two

social network applications that extract information about peoples’ interests and pref-

erences by encouraging friends to explicitly or implicitly share that information. The

resulting data can power visualization and personalization applications, especially

those requiring social knowledge.

158

6.2 Data Mining

Crowds have already left activity traces across much of the web, for example when

they browse or use social media. Rather than designing new crowd interactions,

designers might instead use this existing data. This section demonstrates that large-

scale crowd data allows systems to perform mass personalization [192] and design

interactions for a large number of less common user needs. Today, interaction design

focuses on identifying a small core set of tasks or goals that the system should support

[166]. We suggest that systems can also automatically notice usage patterns in the

crowd of users and dynamically adapt to support them.

6.2.1 Tail Answers

Specifically, this section demonstrates how search engines can aggregate user knowl-

edge to improve not just result rankings, but the entire search user experience. We

introduce Tail Answers, automatically generated search engine results that support a

large set of less common information needs. These information needs include the nor-

mal body temperature for a dog (Figure 6-18), substitutes for molasses, the currency

in Ireland, and many more (Figure 6-19). Each of these needs may occur thousands

of times per year, but are too far in the tail of query traffic to be worth assigning pro-

grammers, designers, testers, and product management staff to create and maintain

answers.

To push answer content down into the long tail (without an exponentially-sized

editorial staff), our insight is to aggregate the knowledge of thousands of everyday web

users. We turn to web users in each of the three major steps of creating Tail Answers:

1) We identify answer candidates using aggregate search and browsing patterns; 2)

We filter those answer candidates to ones which represent directly answerable needs,

using search logs and paid crowdsourcing; 3) We extract the answer content from the

web, using paid crowds to copy and paste content from the page, then author and

edit the final answer text. The entire process can be effectively automated.

Search engine answers and result snippets can have a powerful influence on the

159

molasses substitutes

Figure 6-18: Tail Answers are inline direct responses for search results. This Tail
Answer addresses recipe substitutes for molasses.

Figure 6-19: Tail Answers address less common information needs. These examples
(including errors) were produced by the data mining and crowdsourcing processes
described in the paper. They trigger on related queries, e.g., apple calories.

160

web search user experience. Nearly half of the abandoned queries in a Google sample

displayed a snippet that might have made any additional clicks unnecessary [125].

One quarter of all queries may already be addressed directly in the result page,

especially for needs like spell checking, query monitoring, and learning about a term

[184]. Successful answers will thus cannibalize clicks from the rest of the search

results, and searchers will repeat queries to trigger an answer once they learn of it

[33]. Even when no answer exists, searchers often use queries for repeated navigation,

for example searching for STOC 2012 whenever they want to find the STOC papers

deadline [190]. Search result snippets can also sometimes address information needs

directly [40]; the snippet for a page, for example, may contain the answer in the text.

Here, we describe how we create Tail Answers to extend search engine answers

to tens of thousands of new information needs. Tail Answers are special results

inserted inline in the search interface, as shown in Figure 6-18. The Tail Answer

contains edited text from a webpage where other searchers found the solution to the

same information need. Above the answer text is a concise title to aid skimming, and

below it is a link to the source web page for attribution and further exploration. Each

Tail Answer is targeted at one particular information need, although it may trigger

for many different queries. When a user issues a query that matches a triggering

query for a Tail Answer, that answer appears at the top of the search results.

Although answers for popular queries are currently manually programmed, Tail

Answers have an automated process to identify information needs that are appropriate

for an answer and to author a direct result that addresses the need. In this work, we

represent an information need as a set of queries with a similar intent. For example,

the queries dog temperature, dog fever, and average temp dog thermometer represent

the information need in Figure 6-18. In addition, we assume that Tail Answers

can be associated with a web page that contains the answer (e.g., the page http:

//www.natural-dog-health-remedies.com/dog-temperature.html).

To create a Tail Answer, then, our system needs to:

1. Identify pages that are answer candidates,

161

http://www.natural-dog-health-remedies.com/dog-temperature.html
http://www.natural-dog-health-remedies.com/dog-temperature.html

Search Trails Answer Type

Extract TitleVote Proofread Vote Tail Answer

Destination Probability Question QueriesAnswer Candidates
75m trails, 13m URLs 3 voters

3 info extractors 5 voters
Vote
3 voters3 improvements 3 title authors 3 voters

140,000 URLs with high dest. prob. 19,000 URLs w/ questionsTrails w/ clickthroughs to same URL

Average Dog Temp. CHI 2012CHI 2012Dog Temp

Average Dog Temp.
101.5 °F

Identify Candidates Filter Candidates

Extract Answer Content

101.5 deg °

query what ...URLURL P(ends trail | in trail) click
Short sentence
List
Summary

... ...query1 queryn URL URLURL URL

Figure 6-20: An overview of the three phase Tail Answers creation process, which
involves 1) identifying answer candidates, 2) filtering the candidates to ones that
address “answerable” needs, and 3) extracting the Tail Answer content. Steps that
are implemented via data mining are indicated in blue, and those implemented via
crowdsourcing are indicated in orange.

2. Filter candidates that answers cannot address, and

3. Extract the Tail Answer content.

To accomplish these goals, we extract knowledge about answers from the activities

of thousands of web users. To identify information needs, we use large-scale log

analysis of web browsing patterns. To filter the needs, we augment log analysis with

paid crowdsourcing. To extract answer content, we use paid crowdsourcing. Figure 6-

20 represents this process visually. We now describe each step in detail, highlighting

the technical challenges we solved to improve answer quality.

6.2.2 Identifying Answer Candidates

We begin by identifying information needs, which we call answer candidates. An

answer candidate is a set of queries associated with a URL from a search result

page (Table 6.5). A key idea is to identify browsing patterns that suggest searchers

are finding a compact solution to an information need. We use query log analysis

to populate our set of answer candidates. To do so, for each search session in our

browser logs, we extract a search trail [204]: a browsing path beginning with a search

query and terminating with a session timeout of thirty minutes. We then group all

search trails on the first clicked URL from the result page. For each URL in our

dataset, we now have a set of queries that led to the URL and a set of trails that

162

Page Title Sample Queries Type
How to Force Quit on Mac
http://www.ehow.com/how_5178032_

force-quit-mac.html

force quit mac
force quit on macs
how to force quit mac

Short

Area Code 410
http://www.areacodehelp.com/where/area_

code_410.shtml

what area code is 410
410 area code
area code 410 location

Short

How to bake a potato
http://www.howtobakeapotato.com

baked ptato
how long do you cook pota-
toes in the oven
best way to bake a potato

List

Rummy 500 rules
http://www.rummy.com/rummy500.html

rules of gin rummy 500
rummy 500
how to play rummy 500

Summary

Pandora Radio
http://www.pandora.com

radio
pandora
pandora radio log in

—

Table 6.5: Pages with high destination probability, queries to them, and their crowd-
voted answer category. All but the bottom row had a question query: the lack of a
question signals that Pandora would not be appropriate for an answer.

describe what users did after clicking through to the URL.

6.2.3 Filtering Answer Candidates

From these answer candidates, we must identify those that are intended for fact-

finding [98] and will produce good answers. Some answer candidates have information

needs that are too complex to answer; others have underspecified queries where the

information need may not be clear. We developed three filters to find promising

answer candidates. These filters look for particular types of 1) navigation behavior,

2) query behavior, and 3) information needs.

Filtering by Navigation Behavior: Destination Probability

Our first filter uses the search trails to identify web pages where people quickly end

their search sessions. We assume that after a query, people typically end up at web

pages containing information that addresses their need. If users stop browsing after

they reach a page, that page likely solves the need. If users continue browsing or

163

http://www.ehow.com/how_5178032_force-quit-mac.html
http://www.ehow.com/how_5178032_force-quit-mac.html
http://www.areacodehelp.com/where/area_code_410.shtml
http://www.areacodehelp.com/where/area_code_410.shtml
http://www.howtobakeapotato.com
http://www.rummy.com/rummy500.html
http://www.pandora.com

searching, on the other hand, the page may not succinctly satisfy their need. For

example, queries such as new york times are often navigational [26]: searchers click

on www.nytimes.com in the results, then often keep browsing and click on a link

to read an article. Other information needs, like buying a new car, are complex

and persist across multiple sessions [84], so searchers will typically keep browsing

and returning to the search page. But, for web pages like the CHI call for papers,

searchers will issue a query (e.g., chi 2012 deadline), click through to the page, find

what they are looking for, and end their search session.

We formalize the idea of trail-ending web pages with a measurement we call des-

tination probability. The destination probability for a web page is the observed prob-

ability that a searcher will end their session at that web page after clicking through

to the page from the search results. In our search trails, the step immediately after

a query is a click on a result web page. If a high percentage of trails end after that

click (i.e., if their trail length is two), the destination probability will be high. If most

trails instead include actions that return to the result page or browse to other URLs,

the destination probability will be low. In other words, the destination probability

for a URL is the observed probability that a click to the URL from the search result

page is the last action in the search trail.

Web pages with high destination probability are strong candidates for Tail An-

swers. We filter out any answer candidates that have destination probability of less

than 0.3 or fewer than three search trails in our dataset. The 30% cutoff was tuned

empirically to balance the number of possible answers (false negatives) with the num-

ber of pages with unanswerable content (false positives). Table 6.5 lists five web pages

with high destination probabilities. For example, one contains instructions for how

to bake a potato.

Filtering by Query Behavior: Question Words

Destination probability identifies pages where searchers appear to be finding imme-

diate answers for their information needs. However, it can be very hard to infer the

fact-finding intent from queries that are only two or three words long. For example,

164

www.nytimes.com

an answer for the query dissolvable stitches would be valuable if the searcher wanted

to learn how long the stitches take to dissolve, but would not if they want to learn

the stitches’ history.

To avoid this problem, we make use of the minority of searchers who write queries

using question words. Question-word queries are useful because they tend to be

expressed in natural language, are longer than typical queries, and are more explicit

(e.g., how long do dissolvable stitches last). These properties make the information

need relatively easy to understand. Use of question words also tends to indicate fact-

finding intent. We assume that question-word queries often overlap significantly with

the unspecified information needs from the other queries, for example that where is

732 area code and 732 area code have similar needs. When this is not the case, we

rely on paid crowd members later to disambiguate the most common information

need from the set of all queries.

We filter the answer candidates to remove any that had fewer than 1% of their

clicks from question queries. The question words we currently look for are: how, what,

when and who. The bottom row of Table 6.5 demonstrates the kind of error that can

occur without a question word filter.

Filtering by Information Need: Answer Type

While question words are useful for identifying answer candidates, neither they nor

other types of behavioral log data can help the system understand whether a concise

answer could address the information need. Knowing the expected length of the

answer is important because crowd workers often extract too much text in order to

guarantee that they captured the correct information and thus will be paid. However,

overly verbose answers are not useful to searchers. Knowing what kind of answer to

expect, for example a short phrase, can help the system perform automatic quality

control using length.

To solve these problems, we use paid crowdsourcing via Crowdflower to categorize

answer candidates into types. Crowdflower is built on top of Amazon Mechanical

Turk and uses hidden quality-control questions known as gold standard questions to

165

filter out poor-quality workers [124]. By prototyping many answers, we developed the

following three categories as useful for workers to identify:

• Short answers with very little text. For example: “The optimal fish frying

temperature is 350F.”

• List answers, which typically contain a small set of directions. For example:

“To change your password over Remote Desktop: 1) Click on Start > Windows

Security. 2) Click the Change Password button. [. . .]”.

• Summary or long list answers, which synthesize large amounts of content.

For example, pages requiring deep reading such as “Impact of Budget Cuts on

Teachers” and “Centralized vs. Decentralized Organizations”.

Workers were asked to read all of the queries that led to the web page, as well as

the page itself, and then vote on the best matching category. The third column in

Table 6.5 labels each example with its voted answer type.

Although short answers and list answers can be extracted from the web page and

edited into an answer, summary answers require more synthesis. For this reason, we

leave the generation of summary answers to future work. We use the data about

whether an answer is a short answer or a list answer to give workers more specific

instructions as they extract answer content and to enforce a maximum number of

characters workers can extract from a page.

6.2.4 Extracting the Tail Answer

At this point, we have a set of answer candidates that can be addressed succinctly and

factually by the search engine, but each candidate is only represented by a web page

and a set of queries. To create an actual answer, we need to extract the information

from the web page related to the unifying need, edit it for readability, and write a

short answer title. Because automatic extraction algorithms are not yet reliable, we

use paid crowdsourcing via Crowdflower.

166

Spooning is a type of cuddling. When you spoon, you lay on your side

with your back to your partner’s chest and the partner behind wraps

his or her arms around you and fits around you like a puzzle. The

name likely came because of the way two spoons rest on each other,

filling all the nooks. The "little spoon" is considered the person

in front, the "big spoon" is considered the person in back. Another

explanation I have read for the origin of the expression: In days

of old, when a proper young man visited a proper young lady, he was

supposed to do something to keep his hands occupied and away from her

body. An acceptible activity was sit and carve a wooden spoon while

conversing. Of a similar vintage, when the couple threw another log

in the fireplace late in the evening, the neighbors would see a burst

of sparks from the chimney, and know that someone was "sparking."

Figure 6-21: In this example workers extracted all of the text when an inclu-
sion/exclusion lists was not used. Orange text is the same answer with inclu-
sion/exclusion lists.

The algorithm we developed to guide the crowd to create Tail Answers is as

follows. Workers: 1) extract (i.e., copy and paste) as little text as possible from the

web page using the associated queries as a guide, 2) proofread and edit the extracted

information into an answer, and 3) title the answer descriptively. This information is

compiled into a visually distinct search result and presented to searchers who issue the

queries associated with the intent, or similar queries. Figure 6-20 contains a graphical

representation of these steps.

Worker quality control is a major challenge for the generation of the Tail Answer

title and text. Lazy Turkers (Chapter 3) will copy/paste introductory text from

each page instead of the answer, and even well-intentioned, pre-qualified workers will

extract entire paragraphs or large sections of the page to be sure that it contains the

right answer. As a result, early prototype versions of Tail Answers were much too

long and of poor quality (Figure 6-21).

One popular quality control technique is to generate a set of potential responses

and ask workers to vote on which is the best. For example, we asked three different

workers to copy and paste text from the web page and then had five other workers

vote to select the best extraction. However, if there are no short extractions, the

answer will be long; worse, workers tend to vote for long extractions.

167

So, it is necessary to add another layer of quality control to help guarantee that

the extractions are short and targeted. We adapt the gold standard technique, which

requires workers to demonstrate competence by agreeing with the answers to pre-

authored example questions for each job [124]. Crowdflower uses gold standard testing

by silently inserting gold standard questions into the worker’s stream, and only keeps

work from people who answer at least 70% of the gold standard questions correctly.

Most gold standard tasks involve workers exactly matching the requester’s input. For

example, for voting we can enforce that workers agree with the authors’ selection of

which option is the best.

Unfortunately, requiring exact agreement fails for open-ended tasks like extraction.

There are often several valid extractions for a page, and it can be just as important

to specify which text workers should not include. To address this issue, we introduce

inclusion/exclusion lists for gold standard testing for text generation. To use an

inclusion/exclusion list for page extraction, the requester identifies sections of the

page that must be in the extraction, as well as sections of the page that must not

be in the extraction, in order for the work to be accepted. By doing so, we are able

to tightly scope the areas of the page that are off-limits, as well as information that

must be included in the answer for it to be correct. Figure 6-21 is an example of

how training workers using inclusion/exclusion gold leads to shorter, more targeted

answers.

We implement this technique using negative look-ahead in regular expressions.

We also use inclusion/exclusion gold in the title generation step, making sure that

workers submit relevant phrases or words and that they do not copy and paste queries

verbatim. Inclusion/exclusion gold standards could be useful for other open-ended

crowdsourcing tasks like proofreading, replacing expensive approaches such as Find-

Fix-Verify as well as qualifier tasks, which cut down on the worker pool significantly.

6.2.5 Implementation

To generate a set of Tail Answers, we began with a one-week sample of browsing

behavior from opt-in users of a widely-distributed browser toolbar starting March 22,

168

2011. We filtered the sample to users in the US who use English when searching. The

resulting search trails represent over 2 billion browse events from over 75 million search

trails for over 15 million users. We filter pages with too little data by removing ones

that have been clicked fewer than three times. Filtering via destination probability

and question words resulted in 19,167 answer candidates, including those in the top

four rows of Table 6.5.

The query and web page occurrences that make up the answer candidates are

distributed similar to power laws, so there are a few pages with many queries and a

large number of pages with our minimum of three queries. Answer candidates had

a median of three queries (µ = 5.2, σ = 7.4), 37% of the unique queries contained

question words, and the median query had only been issued once in the dataset

(µ = 7.37, σ = 35.0). If each answer candidate were to receive the same number of

queries every week for a year as it did during our sample week, the median answer

would trigger 364 times per year (µ = 1992, σ = 6318).

We sampled 350 answer candidates from this set for which to create Tail Answers.

We combined several different sampling methods in order to get broad coverage:

100 needs were chosen randomly from the dataset in order to represent the tail more

heavily, and 250 were chosen by weighted query popularity to represent query volume.

The number of workers in each stage is a tradeoff between cost and quality. Based

on previous experience (e.g., Chapter 3), we recruited three to five workers for ex-

traction and voting. Three workers voted on whether each of the 350 information

needs should be addressed by a short answer, a list answer, or a summary answer,

for 4.2¢ per need. Of the 350 needs, 146 (42%) were short phrase answers, 127 (36%)

were short list answers, and 77 (22%) were summary answers. We focus here just on

the short phrase answers, although the process is identical for short list answers and

the results are similar. Three workers created extractions for each need (7¢), and five

workers voted on the best extraction (10¢). Ten of the 146 answers were voted out

by workers for having no good extractions. Of the remainder, three workers proof-

read the extraction (9¢), and three workers voted on the best alternative (6¢). Three

workers authored potential titles (4.2¢), and three workers voted on the best title and

169

filtered the answer if none were appropriate (4.2¢).

At the end of the process, 120 of the 146 short answer candidates became finalized

Tail Answers. A number of examples are shown in Figure 2. The cost per answer was

44.6¢ plus a small extra fee for Crowdflower and the expense of the partial results

for answers that got voted out. If we were to build Tail Answers for each of the

roughly 20,000 candidates in our dataset, it would cost roughly $9,000. This cost can

be lowered by combining extraction and title authoring into one task.

6.2.6 Evaluation

In this section, we aim to better understand Tail Answers. Using manual judgments,

we show they are high quality and relevant. We then present a controlled user study

that shows that Tail Answers significantly improved users’ ratings of search result

quality and their ability to solve needs without clicking. To remove a source of

variation in these evaluations, we focus on the short answers only.

Answer Quality

We first ask whether Tail Answers are high quality. This question has several dimen-

sions: correctness, writing quality, query accuracy, and whether major search engines

already have an answer to address the need. We hand-labeled each of the answers

with whether the title or the content had writing errors, whether the answer was

correct, whether a major search engine already had such an answer, and whether the

answer addressed each query in its training set. Two authors labeled each answer;

any disagreements were settled by a third rater.

We found that most Tail Answers had high-quality writing in their title and their

content (Table 6.6). Of the titles with writing errors, workers had suggested a correct

version 50% of the time, but it had been voted down. Likewise, 30% of the contents

with an error had a correct version available, but the workers did not vote for it.

Correctness was more variable: some common errors are displayed in Table 6.7.

Over two thirds of the Tail Answers were judged fully correct (Table 6.6). A common

170

High Quality Minor Error Major Error
Title Writing 83.3% 14.2% 2.5%
Content Writing 82.5% 14.2% 3.3%
Title Writing 68.3% 18.3% 13.3%

Table 6.6: Hand-labeled writing and correctness ratings.

Low-Quality Tail Answer Problem
Resume Writing
A Curriculum Vitae, commonly referred to as CV, is a
longer (two or more pages), more detailed synopsis. It
includes a summary of your educational and academic
backgrounds as well as teaching and research experience,
publications, presentations, awards, honors, affiliations
and other details.

Title does not match
the answer

Cary Grant
Cary Grant was born on January 18, 1904.

Title does not match
the answer

What Reallyahppens.com
Most recent WRH radio show from Rense Radio.

Dynamic page has no
useful text to extract

Double Irish Tax
The Double Irish method is very common at the mo-
ment, particularly with companies with intellectual
property.

Extracted text is too
general

Table 6.7: Examples of common errors in Tail Answers.

minor error (18.3%) occurred when the title did not match the answer: workers who

wrote the answer title sometimes paid attention to the original queries rather than

the content of the answer. This could be addressed through improved interfaces for

the workers and more rigorous quality control in voting. (About 45% of the incorrect

answers had a correct version extracted that was not the winner of the popular vote.)

Other problems occurred for dead links (i.e., the data could not be extracted) and

for dynamic pages (e.g., a “What’s My IP?” application and YouTube videos), where

workers were unable to signal that the page had no useful information. Two changes

would help Tail Answers’ accuracy: 1) identifying when dynamic content would make

an answer impossible to build, and 2) better quality control to make sure titles are

on-topic in the voting stage, since they are written after the answer content.

Fourteen percent of the Tail Answers we generated already had answers available

on Bing, a major search engine. Unit conversions (e.g., mL in a tablespoon) were the

171

most common, followed by weather, definitions, and dates. These answers could be

filtered in a deployed system, or could be used to replace manually generated answers,

which are expensive and time consuming to maintain.

We investigated how closely the answers matched the apparent intent of the

queries that represented the intent. (Many queries, like chi 2012, may not express

the searcher’s full intent.) In 58% of the unique queries, it was clear that the Tail

Answers addressed the query’s intent. About 7% of queries were more general than

the answer (e.g., the query was az municipal court and the answer gave the phone

number to the court), so it is difficult to know whether the answer would have sat-

isfied the information need. Likewise, 23% of queries were generally related to the

answer, and the judgment would depend on the exact intent (e.g., a query for B.C.E.

was associated with an answer for C.E., the Common Era). About 12% of the unique

queries were not good matches: about 9% of the queries expressed a more specific

need than the answer had (e.g., the query was fredericksburg VRE [Virginia Rail-

way Express] but the answer focused on the entire VRE), and about 3% of queries

were unrelated to the answer. Often, pages such as the one describing C.E. covered

multiple information needs, but workers had to choose just one need for the answer.

Clustering these queries into overlapping keyword sets and building separate answers

for each would help.

User Evaluation

We also wanted to understand whether Tail Answers positively or negatively impact

users’ impressions of the search engine result page. In particular, we wanted to know

whether Tail Answers improved users’ subjective impressions of search results, and

whether Tail Answers could compensate for poorer search rankings.

Method. We recruited 361 people (99 female, 262 male) at Microsoft to partici-

pate in our study. Most were in their 30s (30%) or 40s (42%), and used search engines

hourly (58%) or daily (41%). About 30% held nontechnical jobs. Participants could

complete the study from their own computers, and we raffled off $25 gift certificates

in return. Participants did not know the purpose of the experiment.

172

We created a custom version of the Bing search engine that inserted Tail Answers

at the top of the search results whenever the user issued a matching query. We

gathered a sample of thirty Tail Answers from the 120 we created. Participants were

shown five queries, each taken from a randomly chosen Tail Answer, and chose one

they found interesting. Participants were required to invent reasons they would issue

each query, which is less realistic than showing the Tail Answer when someone has

the real information need. However, by giving participants a choice of queries, we

hoped they would focus on more personally meaningful tasks. After choosing a query,

participants were shown the result page and asked for their level of agreement on a

seven point Likert scale with two statements about the search results: 1) “This is a

very useful response for the query,” and 2) “This page contains everything I need to

know to answer the query without clicking on a link.”

Our experiment used a two-by-two research design. Each query was randomly

assigned either to the Answer condition, which displayed a Tail Answer, or to a

No Answer condition, with no answer. It was also randomly assigned either to the

Good Ranking condition, where the search engine displayed results ranked 1 through

10, or a Bad Ranking condition, which displayed results ranked 101 through 110.

In the Bad Ranking condition, the search results were typically much poorer. All

conditions appeared to return top-ten results, and we hid ads and other answers.

Participants would see each of the conditions randomly as they rated new queries,

and were required to rate at least ten queries to be entered in the lottery. At the

conclusion of the study, participants filled out a final survey.

We hypothesized that Tail Answers would improve the user experience of the

search engine. However, we were also interested in how users would react when Tail

Answers fired on inappropriate queries or had incorrect results.

Results. Participants rated 3,963 result pages. Mean ratings are reported in

Table 6.8 and Table 6.9. To analyze the results, we used a linear mixed effects model,

which is a generalization of ANOVA. We modeled participant, and query (nested in

answer), as random effects. Ranking and answer were fixed effects. We also included

an interaction term for ranking*answer. This model allowed us to control for variation

173

Tail Answer No Tail Answer
Good Ranking 5.81 5.54
Bad Ranking 5.12 3.73

Table 6.8: Mean Likert scale responses to: “This is a very useful response for the
query.”

Tail Answer No Tail Answer
Good Ranking 5.06 4.10
Bad Ranking 4.54 2.66

Table 6.9: Mean Likert scale responses to: “This page contains everything I need to
know to answer the query without clicking on a link.”

by answer, query, and user in our analysis. Finally, because participants were more

likely to choose certain queries in our dataset, we weighted the observations so that

each answer was represented equally in the data. Weighting observations is a common

technique when the sample distribution does not match the population; removing the

weighting produces very similar results, but we felt that weighting would be the most

accurate way to represent all answers equally. We ran the model twice, once for the

first Likert scale (1) overall subjective opinion of the result page, and once with the

second Likert scale (2) ability to solve the information need without clicking a link.

Tail Answers and result ranking both had significant effects on overall rated result

usefulness (Table 6.6). In the statistics to come, we note that weighting the sample

leads to non-integer degrees of freedom. Tail Answer appearance, F (1, 4307.8) =

292.0, p < .001, had an estimated effect of 0.34 points on result usefulness. Good

ranking, F (1, 4306.0) = 570.6, p < .001, had an estimated effect of 0.68 points on

result usefulness. Result ranking, which is central to search engines, had an effect

size just twice the effect size of Tail Answers: 0.34 vs. 0.68. The interaction was

significant, F (1, 4309.95) = 106.5, with an estimated effect size of 1.03 points. The

large interaction effect indicates that answers are particularly helpful when search

results are poor.

Tail Answers were also useful at solving information needs without needing to

click through to a result (Table 6.9). The addition of Tail Answers to the search

results, F (1, 4293.0) = 631.4, p < 0.001, had an estimated positive effect of 1.01

174

points on users’ rating. Good ranking, F (1, 4291.4) = 270.3, p < 0.001, had a

smaller effect of 0.50 points on users’ ratings, and the interaction term remained

large: F (1, 4295.8) = 60.49, p < 0.001, effect size of 0.91 points. The study design

removed other answers from the search results in order to control for variation. It is

possible that our effect sizes would be smaller if other answers were included.

Overall, the inclusion of Tail Answers had a positive effect on users’ search experi-

ence as reflected in their ratings. The impact of Tail Answers was nearly half as much

as result ranking, where search engines focus much of their effort. That positive effect

was more than doubled when participants were asked whether they needed to click

through to a URL. Answers were able to fully compensate for poorer search results,

suggesting that a single answer can be as important as good search engine ranking.

Survey Feedback. Participants filled out the survey at the completion of the

experiment and provided feedback on the writing, correctness, and usefulness of Tail

Answers. Participants found Tail Answers useful (µ = 5.8/7, σ = 1.4), especially for

directed, fact-oriented queries. For many of these queries, Tail Answers addressed the

information need directly in the search results. A common theme in the responses was,

“it told me exactly the right answer to my question.” Participants were enthusiastic

that a search engine could answer such unstructured queries. Most participants did

not suspect that the Tail Answers were being human-edited.

While participants generally thought the answers were accurate (µ = 5.3, σ = 1.4)

and well-written (µ = 5.4, σ = 1.4), relevance was a challenge. The crowd tended to

create Tail Answers based on the most visible or understandable need in the query

logs. When there were multiple information needs on a single URL, the answer would

not cover all queries. For example, the only query with clear intent about the Phoenix

Municipal Court asked about the court’s phone number, so the answer was built

around the phone number. However, that answer did not completely address more

general queries like phoenix municipal court. In other cases, participants pointed out

that the Tail Answer covered the high-level concept but did not have enough detail to

fully satisfy their information need. In the future, we believe that it will be important

to better target queries either by using the crowd to filter the set of trigger queries,

175

or by A/B testing and measuring click cannibalization [33].

Some participants trusted Tail Answers implicitly, and others wanted more in-

formation about sources. Because Tail Answers look like they are endorsed by the

search engine, we are particularly sensitive to accuracy and trust.

Generally, participants felt that Tail Answers were concise and well-written. We

view this as a success, because extractions in earlier iterations on Tail Answers were

much too long. The crowd-authored text had direct readability benefits: one partici-

pant remarked that Tail Answers avoided the ellipses and sentence fragments common

in search result snippets. Participants occasionally requested richer structure, such

as tables and images.

6.2.7 Discussion

We have shown that search engines can cheaply and easily answer many of searchers’

fact-finding queries directly. We presented evidence that Tail Answers can improve

the user experience, often roughly as significantly as search result quality. Although

search engines have used large-scale log data and paid judges to improve search result

ranking, our findings suggest that there are new ways human effort can be applied to

re-envision the search user experience.

Challenges

Because Tail Answers are presented in a way that appears authoritative, they can

potentially spread incorrect or misleading information without oversight. Even simple

errors like triggering a Tail Answer on the wrong query can undermine people’s trust

in the search engine; our evaluation suggested that trimming the query trigger list is

an important step for making Tail Answers deployable.

Tail Answers may be particularly tempting targets for search engine spam be-

cause of the authority they carry. With Tail Answers, a few members of the crowd

would have significant direct control over search results by including advertisements

or misinformation. However, a small group of trusted individuals could check for

176

these problems and send answers back if there are problems.

Like result snippets, Tail Answers extract information from web pages and present

that content to searchers. Unlike snippets, however, the intent behind the extraction

is to fully address the searcher’s information need, rather than to direct the searcher

to the page. In this way, Tail Answers cannibalize page views. But without the

underlying web content, the answers would not exist. To incentivize content providers,

one option may be for the search engine to redirect a portion of the query’s advertising

revenue to pages that provide valuable content. Search engines will continue walking

the line between attributing sources and highlighting the most useful information

from that source.

6.2.8 Data Mining Extensions: AI, Snippets, and More An-

swer Types

We believe that the insight gained through Tail Answers can deeply extend the vo-

cabulary of search interfaces. We have prototyped several extensions and share some

early results in this section.

Artificial Intelligence-Driven Information Extraction

To extract content from web pages and turn that content into an answer, we used

paid crowdsourcing. As technologies advance, this balance may shift: automatic

systems may assume more or all of the responsibility. Our experiments with automatic

systems such as AskMSR [25] and TextRunner [8] suggest that they produce too

many poor guesses to be useful. However, a hybrid approach that uses the crowd to

vet the answers provided by machine intelligence could be cheap and accurate. To

explore this, we connected the AskMSR question-answering system to our dataset

of Tail Answer queries, and asked it to generate candidate answers for the question

queries. We then used the crowd to vote whether each answer was correct. Table 6.10

demonstrates early results, for example returning “brown sugar” as a substitute for

molasses while filtering out highly-rated false positives like “baking”. This vote was

177

Question Query
Algorithmic Result

Accepted Rejected
What is a substitute for molasses? brown sugar, honey baking, recipes
What is the cost of mailing letters in the US? 44¢ to 39¢ 12, 37¢, mail
Where is area code 559? State of California Selma CA, Clovis
How much nicotine is in a light cigarette? Low density, 6mg milligrams, 14mg

Table 6.10: An automated question-answering system proposed Tail Answers and
crowds filtered them.

Boston Wallpaper Removal Service Reviews
Service Area: Entire Area Except Attleboro-taunton,
Boxford-gloucester, Cohasset & Worcester Counties
www.angieslist.com/companylist/boston/wallpaper.htm

There are members who sign up and share experiences with
each other so that the user can choose the service company
that's right for their job the first time around.

Figure 6-22: The Tail Answers crowd extraction algorithm (bottom) can suggest
replacements for result snippets (top).

much cheaper than paying for extraction and proofreading.

Smart Snippets for Popular Queries

In addition to standalone answers, the crowd can help with snippets, the short page

summaries that appear underneath the page title in search results. Instead of tail

needs, popular queries are a good match for snippet improvement because they are

seen by a large number of searchers. In particular, we focus on popular queries that

have high click entropy (i.e., people click on many different results for the query).

Queries like wallpaper have high click entropy because they have multiple meanings

(e.g., computer desktop art versus home wall decoration), and searchers may not have

enough information scent [160] in the snippets to make good choices. We can use the

extraction routine from Tail Answers to find snippets for these sites. Figure 6-22

demonstrates the resulting improvements to a high-visibility search snippet for the

query wallpaper.

178

New Classes of Answers

We have thus far explored short and list-style answers, but there are many more

possible answer types that could be developed with our approach. For example, an-

swers could be created to help users achieve high-level goals like creating a website

or planning a vacation to Yosemite [123, 207]. They could also summarize web con-

tent, automatically create answers for spiking queries or news stories, or even connect

searchers with other users who might be able to help solve their information need

[84]. To create more sophisticated answers, we expect to transition from generic

crowd workers in Mechanical Turk to more expert workers like those found on oDesk.

We could also give other searchers the ability to edit the answer, much like Wikipedia.

The amount of effort and cost could be applied differentially, based on potential gain,

with more invested in more popular or high impact information needs.

Because Tail Answers are general-purpose, it is impossible to provide custom user

interfaces. However, if we focus on a particular set of information needs, we can build

special user interfaces and data extraction requirements. Figure 6-23 shows example

answers we have built for translating commands between programming languages,

for example understanding how to translate PHPs array join syntax into Python.

We began with a list of programming primitives in Python, then asked workers to

volunteer the mapping into PHP. With this mapping, the Tail Answers can return

results for functions in either language, as well as translate between the languages,

with a specially designed interface.

Destination probability can also help identify new kinds of answers. For example,

pages with telephone area codes tended to have high destination probability. Armed

with this information, search engines might start building answers specifically for area

code queries.

6.2.9 Conclusion: Data Mining

By mining past crowd activities rather than creating a new crowd for each system,

system designers can develop interactive systems that draw on less controlled but

179

php string concat

php arr join in python

python slicing in php

Figure 6-23: Code tutorial answers. Within a domain, Tail Answers like these can
specialize their user interface.

more naturalistic behaviors. For example, Tail Answers can provide succinct inline

search results for less frequent and extremely varied information needs. To build Tail

Answers, we draw on the aggregate knowledge of thousands of web users. We mine

large-scale query logs for pages that tend to end search sessions, select candidates

where searchers have used information key terms like question words, and use paid

crowds to remove candidates that cannot be answered succinctly. Finally, crowds

extract the information from the web page, edit it, and title it. Our evaluation of Tail

Answers demonstrates that they can significantly improve the search user experience

and searchers’ ability to find the information they are looking for without navigating

to an external web page.

6.3 Conclusion: Beyond Generic Crowds

This chapter demonstrates that crowd-powered systems can look beyond generic,

on-demand paid crowds. Specific crowds have specific motivational levers that the

designer can engage, such as social interaction with friendsourcing. Data mining can

also provide access to naturalistic user behavior in a wide variety of scenarios that

designers and developers would not have foreseen. These techniques collectively have

broad applications to the design of interactive systems. They allow users to draw on

thousands of professional authors’ styles to improve their own writing; to galvanize

gigabytes of open-source code to auto-complete not just the line of Python they are

180

writing now, but the entire design pattern they are trying to apply; to mine social

network status update feeds to personalize search; to accelerate navigation through

a popular but poorly-designed web site.

181

Chapter 7

Discussion:

Framework, Limits, Ethics

This thesis lays out a vision and implementation strategies for interactive designs

that move beyond the user-system divide by reaching out to crowds. These crowds

can be paid, incentivized through social systems, or mined from data. Having laid

out this vision, we now have the opportunity to reflect on the future of this research

and of the field.

Four topics are particularly relevant: a future of deployable wizard-of-oz proto-

types, a design framework for crowd computing and different kinds of crowds, the

limitations of this approach, and the creation of an ethical framework to guide crowd

computing.

7.1 Deployable Wizard-of-Oz Prototypes

Wizard of Oz prototyping has long been a technique in user interface design and

artificial intelligence [99]. In Wizard of Oz experiments, the developer or experimenter

simulates parts of the computer program that are not implemented yet. This allows

the designer to gather feedback on a system before putting in days or months of

development time to build it. For example, Kelley completely simulated a natural

language input interface in order to gather training data to author its grammar [99].

182

However, Wizard of Oz systems were always just prototypes: the wizard would need

to be removed from the system for eventual deployment.

Our work suggests that it may be possible to transition from an era where Wizard

of Oz techniques were used only as prototyping tools to an era where a “Wizard of

Turk” can be permanently wired into a system. This change allows us to deploy useful

applications today and use them to change lives for the better. Then, the system

can use the crowd’s results for training data and gradually transition to automated

methods.

Aardvark1 used this pattern [60]. As a social search start-up, it needed to route

questions to individuals who were qualified to answer. So, the employees began

by routing questions manually. Manual routing supported a growing user base and

produced training data. Then, when the algorithm was sufficiently trained and tested,

the developers began using it.

There are cases when a deployable Wizard of Oz system might not work. If many

people find the system useful, there might not be enough crowd members to satisfy

demand. There are also tasks where crowds might not perform well enough to be

usable: arguably, domains like music search from an audio sample might fall into

this category. Finally, even realtime crowds might not be as fast as an algorithm

eventually would be, so it would be difficult to use crowds to prototype systems that

require sub-second answers.

If this effort is successful, there may be many crowd-powered systems deployed in

the coming years. These systems will need a design framework — the next section

begins to construct this framework.

7.2 Design Framework and Tradeoffs

Crowd-powered systems combine two user interfaces: the interface shown to the

crowd, and the interface shown to the end user. The design space of crowd-powered

interfaces must consider both user groups.

1http://en.wikipedia.org/wiki/Aardvark_(search_engine)

183

http://en.wikipedia.org/wiki/Aardvark_(search_engine)

Crowd
Motivation What incentive does the system use to encourage participa-

tion? Is the crowd intrinsically or extrinsically motivated to
participate? If intrinsic, are the motivations social, fun, fame,
glory?

Quality Control How does the system automatically detect and filter out poor
crowd contributions?

Crowd Size How many people are in the crowd? How many need to par-
ticipate?

Participation
Distribution

What is the desired distribution of contributions? Can a few
participants contribute most of the content, or does partici-
pation need to be more evenly distributed?

Temporality Is the crowd expected to react in realtime?
Collaboration Can the crowd collaborate on the work, or is the work dis-

tributed and individual?
Expertise Does the task require crowd members to have a specific ex-

pertise, like knowledge of a particular subject? Or, can most
Internet users complete the tasks?

Table 7.1: Design dimensions for creating the crowd.

7.2.1 Crowd Design Tradeoffs

Table 7.1 describes the decisions that a system designer makes when considering the

kind of crowd to use.

Motivation is one of the most important decision points. Labor economics and

social psychology divide motivations into intrinsic and extrinsic classes. Intrinsic

motivations are ones which derive from enjoyment in the task or its results, and they

typically follow from giving people a sense of autonomy or mastery in the task. Ex-

trinsic motivations are based on outcomes that people participate in order to reach:

money, fame, or a grade. Social psychology has demonstrated that extrinsic motiva-

tions like money actually undermine the intrinsic motivations to participate [57]. This

literature suggests that paid workers will (on average) work less hard than workers

who are motivated by fun or inherent interest.

As a result, it becomes important to target the motivation to the goal. The

simplest situation is if crowds are already participating in the activity that the system

requires — web search, in the case of Tail Answers. The next step up in the hierarchy

is to create a new kind of activity which crowds would be intrinsically motivated to

184

do. For example, friendsourcing is a new avenue to express a desire to communicate

with friends or demonstrate deep knowledge of their interests. NASA ClickWorkers

[95] and the Search for Jim Gray [81] allowed participants to work towards a goal of

importance. Games with a Purpose [198] and FoldIt [37] translate typically boring

tasks into a frame that taps into the latent desire for fun and play. If interest or fun

is not enough, then quantifiable extrinsic motivators like points, badges, or fame can

keep the top users continuing to participate. Games with a Purpose use several of

these motivators, as do question and answer sites like StackOverflow2 (reputation)

and crowd-contributed knowledge bases like Wikipedia (number of edits, barnstars

[111]). Only in the case where none of these would be possible, for example editing a

college student’s paper, should extrinsic motivators like money be used. Once money

is introduced into the equation, social psychology dictates that all other motivators

matter much less.

An intrinsically motivated community and organic growth can be difficult to

achieve. Creating a community of intrinsically motivated users from scratch is dif-

ficult, and many communities never reach critical mass. In this case, it may make

sense to carefully adapt the motivational structure of a community over time.

Quality control refers to the system’s ability to automatically identify the best

crowd contributions. Does it use other crowd members to vet, as in Find-Fix-Verify’s

Verify step? Does it look for independent agreement and risk a regression to the

mean, like Rapid Refinement, Iterate-and-Vote [128], or von Ahn’s input-agreement

games [198]? Is the task framed in such a way that there is an objective answer and

workers can be tested against ground truth?

The crowd systems presented in this thesis rely mostly on independent agreement

and peer vetting. One strength with this approach is that, anecdotally, crowds are

better at evaluating contributions than they are at producing those contributions. For

example, in a separate experiment where we asked crowds to rewrite news headlines

in the style of Dr. Seuss3, only a few suggestions were good. However, the crowd

2http://www.stackoverflow.com
3http://groups.csail.mit.edu/uid/deneme/?p=638

185

http://www.stackoverflow.com
http://groups.csail.mit.edu/uid/deneme/?p=638

was able to identify those high-quality suggestions. However, these approaches direct

systems toward responses that everyone can agree on, which can push out unusual

but creative responses. This is the same reason crowd-voting sites such as Reddit

are full of generic content (e.g., LOLcats): almost everyone finds cats cute, and

more interesting but niche-directed content cannot gather enough votes. Moving

forward, it will be important to identify and empower high-quality members of the

crowd to make these judgments. Some algorithms already weight responses based on

past worker agreement with gold standard data [124, 174], and others are explicitly

promoting good workers into management positions [149].

Crowd size has two elements: how many people can participate in the crowd,

and how big an active crowd is necessary? Adrenaline has a large source crowd, since

anybody with basic aesthetic photography skills can participate. However, it only

needs 3–5 members of that crowd at any given time. Friendsourcing applications like

Collabio are in the opposite situation: only a very small crowd of people is qualified

to participate — the person’s social network — and a nontrivial percentage of them

need to participate for the system to succeed.

Participation distribution refers to the balance of contributions from members

of the crowd. Many natural social computing phenomena are distributed log-normally,

so a small number of participants contribute most of the content. Systems can be

designed to expect this uneven distribution, or to require a more uniform distribu-

tion. For example, traditional web surveys require every respondent to answer every

question, while WikiSurveys [171] capture many pairwise votes from dedicated users

and use those votes to estimate the preferences for the less active users.

Wherever possible, systems should take advantage of the natural log-normal dis-

tribution of participation. For example, on Mechanical Turk, the typical experience is

that a small number of workers do many of the tasks. Likewise, requester activity and

task completion times naturally follow a log-normal distribution [89, 202]. Requiring

a more uniform distribution, for example asking for one thousand respondents for a

task, slows down completion time considerably. It is also possible to design directly

for this imbalance: for example, friendsourcing incentivizes the small number of very

186

active members of the social network to participate on behalf of the less active ones.

Temporality describes how quickly the crowd needs to be recruited and finish its

work. Can the task be processed as a batch process and take minutes, hours, days?

Or does it need to be completed in realtime?

Decisions about temporarily have a large impact on the crowd size. Smaller crowds

are a better match for offline tasks. Chapter 4 describes how a platform could create

retainer subscriptions, global retainer pools and global task routing to manage a large

realtime crowd, but this still may not approach the size of a slower crowd.

Collaboration has been largely left out of the conversation in crowdsourcing:

collaborative systems are more difficult to design and build, and the wisdom of the

crowds typically assumes independent judgments [187]. However, letting workers

communicate and collaborate can lead to impressive results in collaborative transla-

tion [101], and workers produce higher-quality results when they are provided with

peer feedback [48]. Should the workers remain completely isolated, or can they work

together?

The challenges with collaboration are preventing collusion and social loafing. A

preliminary experiment with the retainer model tried embedding a chat room to keep

workers interested. However, workers quickly began sharing tricks and information

that the requester did not want shared. Social loafing dictates that if a crowd member

believes others are participating, they will put out less effort than if they were working

alone [119]. However, in many circumstances, direct collaboration may be the best

way to get multiple viewpoints heard and evaluated.

Expertise requirements impact the kind of crowd that should be recruited. Many

current crowdsourcing tasks can be done by generic, homogenous crowds. However,

friendsourcing articulated one space where specialized knowledge is important, and

there are many others. The more expertise required, the smaller the potential crowd.

7.2.2 User Design Tradeoffs

Table 7.2 describes the decisions that a system designer now must make with respect

to the user. It is critical to these systems that a user remains in control of the

187

User
Blocking Is feedback immediate, or must the user wait for work to

complete before the crowd-powered interaction is available?
Initiative Does the user explicitly request help, or is the crowd actively

monitoring for opportunities to step in?
Feedback Can users tell the crowd whether the work was acceptable?

Can the crowd communicate with the users?
Expertise Does the user have more or less domain expertise than the

crowd?

Table 7.2: Design dimensions for the user interaction.

interaction, yet there are many brands of control.

Blocking is parallel to the question of delay: is the user waiting on the crowd-

powered results, or can the user continue working while they wait? For example, in

Soylent, the user continues to write while the crowd works. In Adrenaline, the user

wants to see the picture before they share it or take another one, so the operation is

blocking.

Initiative determines whether the user issues commands to the crowd or the

crowd takes action automatically as determined by the system. Crowdproof com-

mands are currently issued by the user, but designers could choose to have crowd

members continuously monitoring the document and make autonomous recommen-

dations for when to launch Find-Fix-Verify.

Feedback, or visibility of system status, is an important part of any interactive

system [151]. The system may show the user the aggregated output, or it might be

specific about which crowd workers contribute each element. Likewise, the user may

want to communicate task refinements or critiques to the crowd as crowd members

work. In Chapter 5, Puppeteer messaged workers as they worked and asked them to

adapt their work.

Expertise aims to understand the knowledge imbalance between user and crowd.

The user will typically have more context than the crowd. The crowd may have more

or less expertise than the user. For example, in Aardvark [84], the question asker

knows less about the topic than the crowd who eventually receives the question. In

Soylent, however, the user typically has more domain knowledge than the crowd.

188

7.3 Limitations of Crowdsourcing

To complement systems and user interface research, we also must understand tradeoffs

and fundamental limits of crowdsourcing. What are crowds poor at? What can’t be

solved via crowdsourcing? This section offers some reflections on the limitations of

crowd computing.

7.3.1 Limits to Crowd Cognition and Crowd Work

Not every task is a good match for crowdsourcing. Asking crowds for help with the

wrong task leads to poor results or no participation. What are the properties of tasks

that crowds can complete successfully, and what are the properties of tasks that are

out of scope? This section focuses especially on the model of crowdsourcing that

parallelizes across a large number of microtasks.

A first limit is what we might call a startup-contribution ratio. Consider a ratio:

the time that it takes a crowd member to understand and consume any input to

complete a task, versus how much time it takes to execute the task the task is under-

stood4. For example, consider the task of asking workers to read an entire Wikipedia

article before rating its quality [102]. It takes workers a long time to read the article,

but very little time to answer the question once the article has been read.

If this startup-contribution ratio is too large, then crowd members cannot quickly

get enough context or information to help the requester, and this leads to larger

incentives to shirk or cheat. This is roughly comparable to the notion of a streaming

algorithm, where the algorithm (worker) has very little working memory available to

process the input. For example, crowd members often shirked and didn’t read entire

articles before trying to submit a task that asked them to do so [102].

A second limit is global consistency or global knowledge. Soylent focuses on very

local text edits: it cannot tell an author to cut an entire section or an entire paragraph.

While Soylent can guarantee that every word has been read by a crowd worker, no

member of the crowd may have enough global knowledge to recommend high-level

4This concept developed in conversation with Tim Roughgarden.

189

action. It is possible to satisfy global constraints through local crowd actions: for

example with graph coloring [97] and itinerary planning [207]. However, does a crowd

that satisfies global constraints actually have global knowledge? For example, if crowd

members read sliding windows on a whole document to generate a summary, does the

crowd really have a global knowledge of the document even if no single member does?

A third limit is that, so far, microtask crowds are less well-matched to creative

or creation tasks than they are to evaluation tasks. Microtask crowds — especially

extrinsically motivated crowds — have become used to tasks with objective outcomes,

and tasks which involve quick judgments. Motivational crowding out effects mean

that workers are less motivated to work hard on brainstorming or creative tasks, and

the current population on Mechanical Turk means that the most creative individuals

are probably not even on the platform. Expertise and creativity remain open areas

for future work. Yu and Nickerson have structured creative tasks through genetic

algorithms to achieve better results [206].

7.3.2 Stifling Individual Abilities

Crowdsourcing is typically framed around input-agreement tasks [198], and this fram-

ing systematically biases against individual abilities. If a professional editor were in

Soylent’s crowd, or if a professional photographer were in Adrenaline’s crowd, they

would have no ability to sway the system toward an optimal outcome. In fact, the

structure of design patterns like Find-Fix-Verify actually restricts individual crowd

members from making large or unorthodox changes. Unfortunately, while this prac-

tice prevents Eager and Lazy workers from adding errors, it also prevents experts

from making beneficial large edits.

More broadly, crowdsourcing techniques tend to bias toward selecting acceptable

responses while filtering high-quality and low-quality outliers. Crowdsourcing pat-

terns like Find-Fix-Verify and Rapid Refinement dampen individual responses. For

example, Find-Fix-Verify tightly constrains the region where a worker can edit text

— whereas a high-quality edit might involve restructuring larger sections of the para-

graph. In the future, it will be important to create techniques that recognize high-

190

quality outliers and privilege those workers. Another approach might be to give crowd

members the ability to throw an exception and send the input for special processing.

To find a few unusually high-quality solutions, most crowdsourcing sites gather

a very large number of submissions. Even if most submissions are low-quality, a

small number will be several standard deviations above the mean. For example,

competitions such as 99designs5 and the Netflix Prize6 succeed when they attract

many participants. However, future research can focus on better ways to organize

crowds to develop creative solutions.

7.3.3 Scale

This thesis has focused on many parallels that computation shares with crowds, but

this comparison breaks down when we consider scale. Crowd computing does not

scale as well as silicon. If millions of people suddenly wanted to use Soylent, it might

outstrip the capacity of Mechanical Turk.

One reaction to the scale challenge is to draw on optimization algorithms. Sta-

tistical techniques have seen early success at minimizing the cost of crowdsourcing

workflows [42, 94, 174].

A second response is to recall that, for many applications, the crowd’s work can

be used to train machine learning systems. As the machine learning results improve,

crowds can begin to focus on vetting the algorithm’s results, which is often cheaper

than doing the work manually. Then, crowds could be reserved for only highly un-

certain inputs. Hybrid AI-crowd systems could scale much better than completely

crowd-driven systems.

A third reaction is to remember that the notion of “the crowd” will always be a

shifting target. If the crowdsourcing research agenda is successful, it will encourage

many more individuals to become contractors as part of the crowd. These individuals

will bring expertise and better reputations, which will decrease the need for multiple

crowd workers performing each task in parallel. Sites like Mechanical Turk are mar-

5http://www.99designs.com
6http://www.netflixprize.com/

191

http://www.99designs.com
http://www.netflixprize.com/

kets, and increasing wages will also bring more workers into the fold. Systems like

Soylent could also shift to a peer exchange model. Users could then edit each others’

text to build up credit that they could use in a time of need.

Finally, the scale question becomes less pressing when we consider how powerful

crowds are even at their current small scale. A small market like Mechanical Turk

has an impressive throughput with perhaps no more than hundreds or thousands of

participants online. If crowdsourcing succeeds at helping hundreds of thousands of

people — both entry-level and expert — to join these platforms as core parts of their

careers, these workers could collaborate on impressively large tasks.

7.3.4 Cost

Cost is related to scale. One might argue that systems like Soylent are too expensive

to be practical. However, in fact all current document processing tasks also incur

significant cost (in terms of computing infrastructure, time, software and salaries); the

only difference is that Soylent precisely quantifies the price of each small unit of work.

While payment-per-edit may restrict deployment to commercial contexts, it remains

an open question whether the gains in productivity for the author are justified by the

expense. Furthermore, systems can use crowd outputs to train automatic systems to

handle many of the basic edits more automatically.

7.3.5 Privacy

For a task to be crowdsourced, it is shown to a large number of possibly anonymous

contributors. This poses clear privacy challenges: crowd members could steal private

material and keep it for themselves.

One important first step is to create trusted crowds. For example, these crowd

members might sign non-disclosure agreements prior to working for a requester who

has privacy concerns. That requester might even build up a private crowd for the

purpose. Crowdsourcing platforms could also build up auditing infrastructure to log

which crowd members saw a piece of private data.

192

These questions also suggest new research directions in privacy-preserving crowd-

sourcing. For example, there may be a formalism we might call homomorphic crowd-

sourcing. In homomorphic crowdsourcing, the goal would be to transform the input

so that it is obscured to the crowd worker, but the crowd worker could still perform

useful work. Then, platform would need to be able to translate the work back so that

it impacts the original input. For example, it may be possible to automatically trans-

form an input image so that the worker cannot see anything private about the image,

but they can still (for example) help check face recognition by looking at similarly

perturbed other images. The next step in this research would be to define a class of

problems where homomorphic crowdsourcing might be possible.

7.3.6 Legal Ownership

Systems such as Soylent also raise questions over legal ownership of the resulting

text, which is part-user and part-crowd generated. Do the workers who participate in

Find-Fix-Verify gain any legal rights to the document? Today, the answer is no: the

Mechanical Turk worker contract explicitly states that it is work-for-hire, so results

belong to the requester. Likewise with historical precedent: traditional copyeditors

do not own their edits to an article.

If crowds generally do not have legal ownership today, what about tomorrow?

Communities such as 4chan and Wikipedia typically take group ownership on their

output [19, 55], and crowdsourced product design firms such as Quirky7 pass on profits

to the participants who suggested and developed each design. However, for large

companies to feel comfortable using crowds, they need to have intellectual property

guarantees similar to employee agreements. These legal norms and codes are likely

not yet at the point where everyday employers and employees feel comfortable with

crowd work. However, to the extent that the research community can help guide the

process, we have the opportunity to make sure neither side is exploited.

7http://www.quirky.com/

193

http://www.quirky.com/

7.3.7 Collusion

In addition to privacy concerns, crowd members could collude or sabotage the re-

quester’s work. For example, rogue crowd members sabotaged UC San Diego’s entry

in the DARPA Shredder Challenge by deliberately introducing errors [159]. Likewise,

with Tail Answers, crowd members have the opportunity to directly influence what

thousands of web searchers see.

In collusion, several workers agree in advance on the correct answer in order to

evade input-agreement filters. Collusion is difficult to prevent, because it is difficult to

differentiate between honest independent agreement and several workers collaborating

to trick the system. However, it may be possible to automatically transform each

worker’s input by a known random amount, preventing workers from agreeing on a

predefined value in advance [136]. In addition, if the system can control worker-task

pairings, randomization can lower the probability that colluding workers wind up on

the same task. Games with a Purpose typically take the randomization approach

[198].

7.4 Ethics

It is important that the research community ask how crowdsourcing can be a social

good, rather than a tool that reinforces inequality. As Stuart Card wrote, “We should

be careful to design a world we actually want to live in” [64].

The research literature has begun to come to consensus about the important

ethical issues in crowdsourcing. However, problem definitions will not solve the issues,

so I will focus on how we might design platforms to drive crowdsourcing toward a

positive outcome. Market forces alone will lead crowdsourcing toward lower wages

and low-expertise tasks — researchers have the opportunity to adjust this direction

and set the agenda.

194

7.4.1 Wages

Many workers on Mechanical Turk do not make U.S. minimum wage. The estimated

hourly wage on Mechanical Turk in 2010 was $4.80 [89]. Since Mechanical Turk is

piecework, there is no guaranteed hourly wage and workers may earn more or less than

this amount. Tasks do generate an estimated hourly wage [10], but these numbers

are unreliable [169] and requesters may reject the work.

For the platform to be sustainable, workers need to be able to expect a desired

living wage. The key change here may be platform guarantees of an expected wage: a

guarantee of what a worker will make on average if they put forth a good-faith effort.

Traditional consultants do not make money every hour, but they likewise can estimate

their estimated earnings across a week or a month. Chapter 4 proposed global task

routing as a solution to realtime requester needs; it may also be a solution to worker

wage needs. In particular, workers should be able to specify a desired wage. Then,

depending on the worker’s qualifications and task availability, the system can route

tasks to that worker in order to guarantee that desired wage in expectation. Some

platforms are already pursuing a similar idea: oDesk8, for example, allows workers to

specify a desired wage.

7.4.2 Power Imbalance between Workers and Requesters

Requesters have a large amount of power in the paid crowdsourcing relationship

[175, 176, 10, 54]. In Mechanical Turk, requesters can wait days or weeks to pay, and

can reject work without reason. Moreover, workers have reputations that can rise

and fall, but requesters have no reputations recorded by the platform. Other markets

such as oDesk are much more reciprocal. However, it is clear that a small number of

requesters can take advantage of many distributed workers.

Projects such as Turkopticon [175] draw workers together to share information

about requesters. A formal grievance process might better support workers who are

not being paid [10]. However, ultimately, it is in the platform’s best interest to act

8http://www.odesk.com

195

http://www.odesk.com

against poor requesters.

Mechanical Turk has reasons to be biased toward requesters over. For example,

requesters are the only ones who are adding money into the system, they are far fewer

in number, they have stronger identity requirements and Amazon can monitor them.

However, a more healthy balance of power may be positive in the long term.

7.4.3 Crowdsourcing for Evil?

Jonathan Zittrain, a legal scholar at Harvard, has suggested that crowdsourcing could

be used for nefarious purposes [29]. As a fictional example, workers may execute a

task that appears to be matching faces in photos. However, unbeknownst to them,

the government of Iran has listed this task. Iran is using it to identify protesters in

photos, then jail them. As a result, crowdsourcing might implicate a large number of

unsuspecting workers in goals they might not want to support.

Extrinsic motivations such as money may also provide a cover for ethically am-

biguous actions. Today, search engine optimization and content generation tasks (e.g.,

comments, blog spam) are popular on paid crowdsourcing sites such as Freelancer9

[100]. This is not surprising: people may lie or take otherwise unscrupulous actions

if it benefits them monetarily and they think the other party will not be hurt much

[63]. They may feel some amount of ethical dissonance, then seek to reduce it through

moral cleansing or comparing their actions to others [7]. Framing things through cal-

culation and money may even suppress negative affective reactions to harmful actions

[180, 208].

Our opportunity here is to develop norms and legal codes that keep the inter-

esting and innovative tasks but punish the normatively bad ones. One step in this

direction would be to enable collective action and enforce requester transparency in

crowdsourcing markets.

9http://www.freelancer.com/

196

http://www.freelancer.com/

7.4.4 Cyber-Taylorism vs. Rethinking the Design Process

Crowdsourcing is a renewal for scientific management. Taylorism had positive im-

pacts on optimizing workflows, but it was also seen associated with the dehumanizing

elements of factory work and the industrial revolution. Similarly, naive crowdsourcing

might treat people as a new kind of API call. This leads both to low-quality systems,

as well as unhappy participants.

Involving the user in computing systems led to the development of the human-

centered design process. This process makes strong assumptions about the centrality

of the user’s experience, tasks and goals. Likewise, we need to evolve our design

process for crowdsourcing systems to involve the crowds workers’ perspective. A

theoretical framework such as value-sensitive design may be a good place to start

[58].

7.4.5 The Water Cooler for the Crowd:

Encouraging Social Interaction

Arguably, doing crowd work today is an isolating experience. Tasks are completed

without requiring any communication with the requester or with other workers. While

there are forums for workers to share opportunities and frustrations10, the crowd has

no “water cooler”.

Encouraging social interaction and collaboration will be an important goal for this

work. Peer review on Mechanical Turk increases work quality [48], and collaborative

efforts have led to impressive results in poetry translation [101]. However, workplace

social interactions have important positive effects on satisfaction, happiness and pro-

ductivity as well [39, 83]. Social exchange has not yet been designed in as a core

element crowdsourcing marketplaces.

10http://www.turkernation.com/

197

http://www.turkernation.com/

7.4.6 Career Advancement

Current crowdsourcing platforms tend to focus on generic, non-expert tasks. For

example, the ESP Game and Soylent recruit anyone with a basic knowledge of English.

These platforms typically do not provide a trajectory for workers to express or develop

expertise. This situation results in two challenges: 1) platforms without expert tasks

remain at low wages, and 2) platforms without paths to expertise cannot help new

workers develop expert skills.

Ideally, the platform should encourage workers to develop skills like programming,

visual design, and writing. As work flows from the workers to the requesters, so should

expertise flow from the requesters to the workers. One path, as oDesk11 has tried,

are competence tests. A worker could get certified as an intermediate-level Python

programmer and thus qualify for new tasks. Better, the platform could provide

educational support for a new worker to start as a basic Python scripter and work

their way up to become an expert-level programmer. Tasks at different expertise

levels could help scaffold the worker along the way.

Crowdsourcing also raises the possibility for new kinds of mini-careers as well. If

a requester suddenly needs a crowd of audio mixing experts for the Autotune tool,

the platform might deploy incentive schemes so workers recruit other workers [189],

then train them up for an afternoon.

11http://www.odesk.com

198

http://www.odesk.com

Chapter 8

Conclusion

This dissertation introduced crowd-powered systems : interactive computing systems

that combine machine intelligence with crowd intelligence. This hybrid intelligence

enables systems that neither machines nor crowds could support alone: machines

may not be able to automate the task yet, and crowds struggle with coordination

and quality. The result is mutually beneficial, with computation supporting crowds

as they work and crowds guiding the computation.

To conclude, this chapter will review the main contributions of the thesis and

consider important avenues for future work.

8.1 Summary of Contributions

The thesis has presented design and implementation patterns for crowd-powered sys-

tems that return high-quality results, respond in realtime, depend on personalized

knowledge, and mine aggregate crowd behavior. These systems open a design space

of deployable applications that draw on collective intelligence and articulate a clear

role that computation can play in the wisdom of crowds. They demonstrate how the

design of interactive systems can move beyond the traditional tradeoff in user con-

trol and system automation (Chapter 1, Figure 8-1) to create hybrid human-computer

systems that reach out to the aggregate knowledge, cognition, and perception abilities

of many individuals (Figure 8-2).

199

User System

Microsoft
Word

Interactive
Machine Learning Google

Figure 8-1: As described in Chapter 1, the question of user agency leads to a de-
sign axis. At the ends are completely user-controlled interactions and completely
system-driven interactions. Designs sometimes split the difference, for example with
interactive machine learning [52].

Cr
ow

d Fr
ie

nd
so

ur
ci

ng

User

System

M
icrosoft

W
ord

Interactive

M
achine Learning

Google

Soylent
+

Adrenaline

Tail Answers

Google
AutoSuggest

Figure 8-2: Crowd-powered systems add an additional dimension to the design space:
crowds may take on tasks that systems cannot perform reliably yet. Soylent relies
mostly on crowd contributions, but the system takes initiative in choosing rewrites.
There are many under-explored areas of this design space, especially ones that more
closely link the crowd to system initiative and artificial intelligence.

200

Soylent (Chapter 3) opened the design space of crowd-powered systems by demon-

strating how crowds could help re-envision canonical interactive applications such as

the word processor. It articulated novel interactions like text shortening, support for

existing A.I. systems like copyediting and proofreading, and natural language input

for macro commands. However, crowd members’ wide variation in effort leads to lazy

and overeager behavior, resulting in poor-quality results. The Find-Fix-Verify design

pattern decomposes open-ended problems like text ending into iterative stages that

direct workers more carefully and returns higher results. Evaluations tested Soylent

across a range of editing tasks: the system found and corrected 82% of grammar er-

rors when combined with automatic checking, shortened text to approximately 85%

of its original character length, and executed a variety of human macros successfully.

Interactive systems typically must respond to user input within seconds. There-

fore, to create realtime crowd-powered interfaces, we need to dramatically lower crowd

latency. The retainer model (Chapter 4) pays workers a small wage to wait and re-

spond quickly when asked. Experiments indicate that the retainer model can recruit

crowds in two seconds. We then develop a mathematical model of retainer recruit-

ment using queueing theory, which allows requesters to optimize the tradeoff between

the probability of a missed task and their cost.

The retainer model opens the door to system designs that depend on realtime

crowds. Adrenaline (Chapter 5) is a crowd-powered camera where workers quickly

filter a short video down to the best single moment for a photo. Unfortunately, even

with fast recruitment, work time is slow and photo selection takes longer than users

are willing to wait. Rapid refinement observes early signs of agreement in synchronous

crowds and dynamically narrows the search space to focus on promising directions.

This approach produces results that, on average, are of more reliable quality and

arrive faster than the fastest crowd member working alone.

Soylent and Adrenaline demonstrate the power of generic crowd intelligence, but

many applications require knowledge that generic crowds might not know. First,

friendsourcing (Chapter 6) collects accurate information available only to a small,

socially-connected group of individuals. Social friend tagging (Collabio) and news-

201

sharing (FeedMe) applications produce accurate information about individuals and

augment data that could have been found on Facebook or the Web. This social

data supports personalized applications such as question-routing and recommender

systems. Second, by aggregating crowd data, systems ease their dependence on live

crowds and enable support for a large number of less common user goals. Tail Answers

aggregate activity traces from web searchers to directly respond to a large number

of long-tail information needs. This approach significantly improves users’ subjective

ratings of search quality and their ability to solve needs without clicking through to

a result.

Broadly, this thesis makes contributions in the areas of design, crowd computing,

and social computing:

1. Design. Crowd-powered systems enable a new class of applications that give

end users direct access to high-level commands and natural interaction.

2. Crowd computing. To complete open-ended tasks like text shortening or

proofreading, decomposition design patterns like Find-Fix-Verify will guide work-

ers toward high-quality results. To enable realtime crowdsourcing, a combina-

tion of retainer recruitment and synchronous crowd algorithms produce crowds

in seconds and results soon after.

3. Social computing. Crowd computing structures the interactions between

participants on the web to help them accomplish complex tasks. Designing new

social interactions like friendsourcing can create crowds to collect information

that existing crowds might not know.

8.2 Impact and Recent Developments

While Soylent was one of the first crowd-powered systems, the broader research com-

munity has articulated many more systems in the 18 months since the work was

published.

202

These systems draw crowds into many new domains. Some push on prosocial goals:

PlateMate crowdsources calorie counts using photographs of meals [152], while VizWiz

helps blind users ask questions about their environments [21]. Others rethink standard

information-centered activities such as task planning [207], search [23], translation [4],

and authoring maps [185]. Database researchers have articulated the power of using

crowds to relax closed-world assumptions in databases [56, 137, 157]. Crowds are

also tied into existing fields by extending the reach of robotics [182, 117], design

[206], machine vision [165, 205] and graphics [62].

Find-Fix-Verify has been directly adapted by researchers for tasks like image seg-

mentation [152], map labeling [185], and formal crowd programming languages [145].

8.3 Future Work

Crowd computing is a nascent field. It has attracted interest across subdisciplines

of computer science as well as social science. It has established its own conferences1

and made major inroads at traditional computer science venues such as CHI, UIST,

CSCW, SIGMOD, VLDB, and AAAI.

It is time to begin defining long-term goals for crowd computing. This section

articulates several such millennium goals for crowdsourcing and crowd-powered sys-

tems.

8.3.1 Hybrid Crowd–A.I. Systems

The systems presented in this thesis do not deeply integrate with artificial intelligence.

However, machine learning and artificial intelligence complement crowdsourcing nat-

urally.

One view is to create systems that dynamically trade off crowd and machine

intelligence. Such as system would rely heavily on crowd data early, to train the

machine learning algorithm, then phase out the crowd as the algorithm improves.

1AAAI HCOMP (Human Computation) and Collective Intelligence

203

Eventually the crowd could be used only to vet highly uncertain inputs. Similarly,

crowd members could be cast as stump learners in an ensemble learner, where a

meta-algorithm learns when to trust crowd members and when to trust the machine

learning algorithm.

Rather than train existing machine learning algorithms with crowd data, it might

be possible to design machine learning algorithms directly for crowds. Humans have

biases when they label data, but this bias can be modeled and compensated for. In

a semi-supervised setup, the algorithm may want to balance between expensive, slow

human labels and uncertain labels the algorithm assigns. These algorithms should

aim to more precisely model the tradeoffs between machine intelligence and crowd

intelligence.

8.3.2 Crowdsourcing Markets

While Amazon Mechanical Turk is a useful prototyping platform, its current incar-

nation has serious limitations. Researchers have the opportunity to define what that

platform should look like.

It will be critical to move toward more expert work. For example, platforms

that could assemble flash crowds of experts to pipeline large tasks — companies and

organizations that assemble, work together for an afternoon, then disperse. Starting

with a sketch for a user interface, such a platform could find a designer to create

a mock-up, pass the mock-up to a usability professional for testing, loop until the

design meets usability goals a few hours later, and finally recruit a programmer to

implement the interface. Put another way: what would it take to crowdsource a

presentation, or an entire software program, or a symphony?

Collaborations with economics, policy and legal scholars need to define norms

and incentives for honest work and payments. Right now, Mechanical Turk is a

market for lemons [90]: workers cannot trust requesters to pay, so they do poor work,

and requesters cannot trust workers, so they need to hire multiple workers per task

and pay less. Computer science and economics researchers have developed auction

designs, prediction markets, and other mechanisms for honest reporting. In order to

204

build complex systems, the basic market mechanisms need to be reliable.

To put crowdsourcing in the hands of many more end users, the authoring and

request toolkits need to become much more mature. While end users commonly or-

ganize human teams around them to complete tasks, crowdsourcing tools do not yet

let them do this with crowds. Many paradigms exist: TurKit presents an interative

programming interface to Mechanical Turk [129], CrowdWeaver offers a dataflow visu-

alization of pipelined workflows [103], and Turkomatic has a single request box similar

to Google [114]. These tools need to give end-users the ability to direct a workflow,

monitor and debug it. Furthermore, end users need to produce usable interfaces for

crowd members without gaining expertise in the user-centered design process.

8.3.3 A Science of Crowdsourcing

There has been explosive growth in crowdsourcing over the past two years, but we need

to pair discovery with principles. Specifically, we need to develop design patterns and

best practices for crowd computing. We also lack methods to analyze and compare

the complexity of crowd computing algorithms.

First, crowdsourcing needs a core literature in design patterns (e.g., [59]). Pat-

terns like Find-Fix-Verify, Iterate-and-Vote [128], and Price-Divide-Solve [114] all

help enable crowd-powered systems; next, we must generalize, look critically at these

patterns, and understand their strengths as well as their weaknesses.

Second, a formal framework would allow us to compare approaches along axes

such as cost, crowd size, latency, quality and worker stress. How can we formalize

the ways in which one crowd algorithm is better than another? Runtime analysis

similar to Big O notation is a good starting point, because runtime typically directly

impacts costs and latency [113, 156]. However, it is not enough to only consider

runtime: issues like mental workload (measurable via NASA TLX [75]), work quality,

and the startup-contribute ratio from Chapter 7 all could to be modeled.

Third, where formal analysis might not succeed, the field should settle on bench-

marks: public datasets and tasks to optimize. Tasks like handwriting transcription

[128], text shortening and image labeling [199] are clear candidates. By centering in

205

on hard problems, the field can move from a problem-setting enterprise to a problem-

solving enterprise and seek measurable progress.

8.3.4 Autonomous, Self-Correcting Crowds

The crowd-powered systems in this thesis are all ultimately under the control of a

single user. This is a useful constraint, because the user can specify the goals of the

system and adjust course as needed.

However, it will be important to pursue a goal of self-organizing, self-correcting

crowds. Such crowds should be able to start from a high-level goal such as “write

an encyclopedia article” and then organize the workflow decomposition and team

structure to accomplish the task [104, 114]. Moreover, these crowds will need to

recognize when they are in a local optimum or have strayed from the original goal,

then create a plan to achieve it.

Crowd memory will be critical to these long-running systems. A crowdsourced

personal assistant needs to act as if it remembers every past interaction with the

user, even though the individuals who originally experienced that interaction are no

longer present. Likewise, as long-running processes continue, crowds need to hand off

local knowledge to new members [118].

8.3.5 Large-Scale Systems

The crowd-powered systems in this thesis support very focused, local goals such as

text shortening. What if Soylent wanted to shorten an entire paper, or if Adrenaline

wanted to sort through an entire vacation’s worth of photos? These applications would

require much larger-scale systems, where design patterns like Find-Fix-Verify become

primitives. These goals would push on a set of challenges with scale, reliability, and

propagated error in crowd computing systems.

206

8.4 Looking Ahead

The fundamental idea of this thesis is to tightly bind crowd intelligence to interaction,

to software, and to computation. As a result, the user interface for the crowd partic-

ipants becomes a core part of software design. Rather than isolate and separate the

user interface from system implementation, this thesis involves human contributions

as first-class elements of software. The resulting systems are more expressive and

powerful than traditional interactive software, and the resulting crowds succeed at

tasks that traditional crowds do not. We believe that this tight integration of user,

crowd, and system will be a powerful model for interactive computing systems.

207

Appendix A

Soylent Evaluation Texts

This section contains the full input texts from the Soylent evaluations.

A.1 Shortn inputs

These texts were provided as inputs to the Shortn evaluation in Section 3.4.1.

A.1.1 Blog

Print publishers are in a tizzy over Apple’s new iPad because they hope to finally be

able to charge for their digital editions. But in order to get people to pay for their

magazine and newspaper apps, they are going to have to offer something different

that readers cannot get at the newsstand or on the open Web. We’ve already seen

plenty of prototypes from magazine publishers which include interactive graphics,

photo slide shows, and embedded videos.

But what should a magazine cover look like on the iPad? After all, the cover is still

the gateway to the magazine. Theoretically, it will still be the first page people see,

giving them hints of what’s inside and enticing them to dive into the issue. One way

these covers could change is that instead of simply repurposing the static photographs

from the print edition, the background image itself could be some sort of video loop.

Jesse Rosten, a photographer in California, created the video mockup below of what

208

a cover of Sunset Magazine might look like on the iPad (see video below).

The video shows ocean waves gently lapping a beach as the title of the magazine

and other typographical elements appear on the page almost like movie credits. He

points out that these kinds of videos will have to be shot in a vertical orientation

rather than a horizontal landscape one. This is just a mockup Rosten came up with

on his own, but the designers of these new magazine apps should take note. The

only way people are going to pay for these apps is if they create new experiences for

readers.

A.1.2 Classic UIST Paper [92]

The graphical user interface (GUI) has proven both a successful and durable model for

human-computer interaction which has dominated the last decade of interface design.

At the same time, the GUI approach falls short in many respects, particularly in

embracing the rich interface modalities between people and the physical environments

they inhabit. Systems exploring augmented reality and ubiquitous computing have

begun to address this challenge. However, these efforts have often taken the form of

exporting the GUI paradigm to more world-situated devices, falling short of much of

the richness of physical-space interaction they seek to augment.

In this paper, we present research developing “Tangible User Interfaces” (TUIs)

— user interfaces employing physical objects, instruments, surfaces, and spaces as

physical interfaces to digital information. In particular, we present the metaDESK

system, a graphically intensive system driven by interaction with graspable physical

objects. In addition, we introduce a prototype application driving an interaction with

geographical space, Tangible Geospace, to illustrate our approach.

The metaDESK effort is part of the larger Tangible Bits project. The Tangible

Bits vision paper introduced the metaDESK along with two companion platforms, the

transBOARD and ambientROOM. Together, these platforms explore both graspable

physical objects and ambient environmental displays as means for seamlessly coupling

people, digital information, and the physical environment.

The metaDESK system consists of several components: the desk, a nearly-horizontal

209

backprojected graphical surface; the active lens, an arm-mounted flat-panel display;

the passive lens, an optically transparent surface through which the desk projects; and

an assortment of physical objects and instruments which are used on desk’s surface.

These components are sensed by an array of optical, mechanical, and electromagnetic

field sensors.

Our research with the metaDESK system focuses on the use of tangible objects

— real physical entities which can be touched and grasped — as driving elements of

human-computer interaction. In particular, we are interested in pushing back from

the GUI into the real world, physically instantiating many of the metaphorical devices

the GUI has popularized. Simultaneously, we have attempted to push forward from

the unaugmented physical world, inheriting from the richness of various historical

instruments and devices often “obsoleted” by the advent of the computer.

In addition, we more broadly explore the use of physical affordances within TUI

design. For example, our active lens is not only grounded in the metaphor of a

jeweler’s magnifying lens; it also looks, acts, and is manipulated like such a device.

In this way, the active lens has a certain legibility of interface in that its affordances

suggest and support user’s natural expectations from the device.

In the following sections, we present our design approach towards making user

interfaces tangible. The operating scenario of the Tangible Geospace prototype is

then presented. This is followed by a description of the metaDESK implementation,

including display, sensor, and software architectures. Interaction issues encountered

with the prototype are then discussed, followed by future work and conclusions.

A.1.3 Draft UIST Paper [194]

Too often, even the best information retrieval tools cannot help us find what we are

seeking, because the information we want was never entered. This can happen for

many reasons. Sometimes, we simply do not recognize that the information might

be needed later. At other times, the perceived cost to launch and navigate through

multiple applications to capture the information seems too high for the currently per-

ceived value of the information. Lastly, our strong desire to record some information

210

can be stymied by the fact that there is no natural place for it—no place where we

have confidence that we will be able to find it when we need it, or, similarly, no native

application that may be associated with the particular kind of data being entered.

Many of these problems vanish if we turn to a much older recording technology—

text. Recording a fragment of text simply requires picking up a pen or typing at

a keyboard. When we enter text, each (pen or key) stroke is being used to record

the actual information we care about—none is wasted on application navigation or

configuration. The linear structure of text means there’s always an obvious place to

put anything—at the end. And the free form of text means we can record anything

we want to about anything, without worrying whether it fits some application schema

or should be split over multiple applications. All of this means that we have to do

less to record text, which makes it more efficient and also less of an interruption and

distraction than using a complex application.

While text is an outstanding solution for recording information, its weakness lies

in retrieval. Text’s fixed linear form reduces us to scanning through it for information

we need. Even with electronic text, the lack of structure means we cannot filter or

sort by various properties of the information. When [1] we aren’t sure what we

want, a blank text search box offers few cues to help us construct an appropriate

query. The [2] shorthand we use to record information in a given context can make it

incomprehensible when we return to it later without that context. And only the text

we explicitly enter is recorded, without any of the related information that might be

known to a sophisticated application.

In this paper we argue that it is possible and desirable to combine the easy in-

put affordances of text with the powerful retrieval and visualization capabilities of

graphical applications. We present WenSo, a tool that uses lightweight text input to

capture richly structured information for later retrieval and navigation in a graphical

environment. WenSo provides

• entry of information by typing arbitrary scraps of text (with all the text-input

benefits mentioned above)

211

• inclusion of structured information in the text through a natural and extensible

“pidgin”

• extraction of structure through lightweight recognition of entities and relation-

ships between them

• association of automatically-measured context with the information being recorded

• search and faceted browsing based on tags, entities, and relations for finding

relevant text scraps

• automatic routing of relevant pieces of the entered information to structured

applications such as calendar, address book, and web browser so that it can be

retrieved and visualized using those domain-specific tools.

In order to deliver these interactions, we had to solve several key problems: cap-

turing structure from text not entered in a form, modeling capture of desktop state

for appropriate association with a scrap, and integration of captured data for use

with existing applications. In the following sections we present the related work that

informs our approach, describe the interaction design and describe in our solutions

for the key system implementation challenges. We then discuss the future research

opportunities both for extending the WenSo platform, but most immediately, for us-

ing the platform to determine what happens in terms of information scrap entry and

reuse behaviour once these new affordances have been provided.

A.1.4 Rambling Enron E-mail

Lyne, My name is Mark Bain and I’m the Web Site Adminstrator for the Mariners. I

would be glad to help out in any way. Please pass this email and my phone numbers

(281-379-6896 hm. 281-518-3251 wk.) to your website person. I put alot of info in

this email to help get started but if it is a little overwhelming, just call.

A previous board member, Steve Burleigh, created our web site last year and gave

me alot of ideas. For this year, I found a web site called eTeamZ that hosts web sites

212

for sports groups. Check out our new page:

http://www.eteamz.com/swimmariners/

eTeamsZ is really easy to use and does not require much web site knowledge. They

do the formatting and you supply the info. If your web guru wants to get creative,

they can do some custome stuff as well. The best part, however, is that it is FREE.

Of course with free you have to put up with a little advertising but since this site

is tailor made for sports (meetschedules, practice schedules calendars, news, maps,

etc.), I think it is worth it.

If you don’t decide to use eTeamZ, that’s fine too. I’ve created some other web sites

and should be able to answer some questions. Sounds like you have some experience

so it should be no problem. Good luck and let me know what else you need.

eTeamZ TIPS:

Oh, here are some tips on getting started with eTeamZ. (difficulties that I had any-

way):

Registration- http://www.eteamz.com/company/sites/register/

The toughest part was coming up with a nickname and a user name for the websites.

Seems that most of the users are into baseball and Mariners was taken. I think I used

Mariners Swim Team for nickname and goMariners for the username because I kept

hitting other name that were being used.

WebSite- When I got to the “build you web” page, I chose Team Web Site. They

also had options for Leagues and Orgs. My best advice is to start populating things

via the admin page and bring up another windows to check the progress of what is

actually displayed. PLUS — They have a premium service called PLUS that you

pay for but I didn’t see much use for it except you get rid of some of the advertising

banners. They also show that you can use this site for registration and other things

but we are keeping it pretty simple.

A.1.5 Technical Writing [5]

FAWN-DS uses an in-memory (DRAM) Hash Index to map 160-bit keys to a value

stored in the Data Log. It stores only a fragment of the actual key in memory to

213

find a location in the log; it then reads the full key (and the value) from the log

and verifies that the key it read was, in fact, the correct key. This design trades a

small and configurable chance of requiring two reads from flash (we set it to roughly

1 in 32,768 accesses) for drastically reduced memory requirements (only six bytes of

DRAM per key-value pair).

Figure 3 shows the pseudocode that implements this design for Lookup. FAWN-

DS extracts two fields from the 160-bit key: the i low order bits of the key (the index

bits) and the next 15 low order bits (the key fragment). FAWN-DS uses the index

bits to select a bucket from the Hash Index, which contains 2i hash buckets. Each

bucket is only six bytes: a 15-bit key fragment, a valid bit, and a 4-byte pointer to

the location in the Data Log where the full entry is stored.

Lookup proceeds, then, by locating a bucket using the index bitsand comparing

the key against the key fragment. If the fragments do not match, FAWN-DS uses

hash chaining to continue searching the hash table. Once it finds a matching key

fragment, FAWN-DS reads the record off of the flash. If the stored full key in the

on-flash record matches the desired lookup key, the operation is complete. Otherwise,

FAWN-DS resumes its hash chaining search of the inmemory hash table and searches

additional records. With the 15-bit key fragment, only 1 in 32,768 retrievals from the

flash will be incorrect and require fetching an additional record.

A.2 Crowdproof inputs

These texts were provided as inputs to the Shortn evaluation in Section 3.4.2.

A.2.1 Passes Word’s Checker

Marketing are bad for brand big and small. You Know What I am Saying. It is no

wondering that advertisings are bad for company in America, Chicago and Germany.

Updating of brand image are bad for processes in one company and many companies.1

1From http://faculty.washington.edu/sandeep/check

214

http://faculty.washington.edu/sandeep/check

A.2.2 English as a Second Language

However, while GUI made using computers be more intuitive and easier to learn, it

didn’t let people be able to control computers efficiently. Masses only can use the

software developed by software companies, unless they know how to write programs.

In other words, if one who knows nothing about programming needs to click through

100 buttons to complete her job everyday, the only thing she can do is simply to click

through those buttons by hand every time. But if she happens to be a computer

programmer, there is a little chance that she can write a program to automate ev-

erything. Why is there only a little chance? In fact, each GUI application is a big

black box, which usually have no outward interfaces for connecting to other programs.

In other words, this truth builds a great wall between each GUI application so that

people have difficulty in using computers efficiently. People still do much tedious and

repetitive work in front of a computer.

A.2.3 Notes from a Talk: NoSQL in the Cloud

Blah blah blah-argument about whether there should be a standard “nosql storage”

API to protect developers storing their stuff in proprietary services in the cloud.

Probably unrealistic. To protect yourself, use an open software offering, and self-host

or go with hosting solution that uses open offering.

Interesting discussion on disaster recovery. Since you’ve outsourced operations to

the cloud, should you just trust the provider w/ diaster recovery. People kept talking

about busses driving through datacenters or fires happening. What about the simpler

problem: a developer drops your entire DB. Need to protect w/ backups no matter

where you host.

A.2.4 Bad Wikipedia Page

Dandu Monara (Flying Peacock, Wooden Peacock), The Flying machine able to fly.

The King Ravana (Sri Lanka) built it. Accorinding to hindu believes in Ramayanaya

King Ravana used “Dandu Monara” for abduct queen Seetha from Rama. According

215

to believes ”Dandu Monara” landed at Werangatota, about 10 km from Mahiyangana.

It is the hill station of Nuwara Eliya in central Sri Lanka.

A.2.5 Draft UIST Paper [194]

Same as Section A.1.3.

216

Bibliography

[1] Mark S Ackerman and Thomas W Malone. Answer Garden: a tool for growing

organizational memory. In Proc. GROUP ’90, 1990.

[2] Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning to find answers

to questions on the Web. ACM TOIS, 4(2):129–162, May 2004.

[3] Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. The

jabberwocky programming environment for structured social computing. In

Proc. UIST ’11, October 2011.

[4] Vamshiti Amba, Stephan Vogel, and Jaime Carbonell. Collaborative workflow

for crowdsourcing translation. In Proc. CSCW ’12. ACM, 2012.

[5] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,

Lawrence Tan, and Vijay Vasudevan. FAWN: a fast array of wimpy nodes. In

Proc. SOSP ’09, 2009.

[6] Judd Antin and Aaron Shaw. Social desirability bias and self-reports of moti-

vation: a study of amazon mechanical turk in the US and India. In Proc. CHI

’12, May 2012.

[7] Shahar Ayal and Francesca Gino. Honest rationales for dishonest behavior. The

Social Psychology of Morality: Exploring the Causes of Good and Evil, 2011.

[8] Michele Banko, Michael J Cafarella, Stephen Soderland, Matt Broadhead, and

Oren Etzioni. Open information extraction for the web. In Proc. IJCAI ’07,

2007.

217

[9] Daniel W. Barowy, Emery D. Berger, and Andrew McGregor. AUTOMAN:

A Platform for Integrating Human-Based and Digital Computation. Technical

report, UM-CS-2011-044, University of Massachusetts, Amherst, 2012., 2012.

[10] Benjamin B. Bederson and Alexander J. Quinn. Web workers unite! addressing

challenges of online laborers. In Extended Abstracts CHI ’11, May 2011.

[11] Gerard Beenen, Kimberly Ling, Xiaoqing Wang, Klarissa Chang, Dan

Frankowski, Paul Resnick, and Robert E. Kraut. Using social psychology to

motivate contributions to online communities. In Proc. CSCW ’04, 2004.

[12] Adam Bernstein. The Acknowledged Master of the Moment. Washington Post,

August 2004.

[13] Michael Bernstein, Adam Marcus, David R Karger, and Robert C Miller. En-

hancing Directed Content Sharing on the Web. In Proc. CHI ’10, 2010.

[14] Michael Bernstein, Desney Tan, Greg Smith, Mary Czerwinski, and Eric

Horvitz. Collabio: A Game for Annotating People within Social Networks.

In Proc. UIST ’09, August 2009.

[15] Michael Bernstein, Desney Tan, Greg Smith, Mary Czerwinski, and Eric

Horvitz. Personalization via Friendsourcing. ACM Transactions on Human-

Computer Interaction (TOCHI), 17(2):1–28, 2010.

[16] Michael S Bernstein, Joel Brandt, Robert C Miller, and David R Karger.

Crowds in two seconds: Enabling realtime crowd-powered interfaces. In Proc.

UIST ’11, 2011.

[17] Michael S Bernstein, David R Karger, Robert C Miller, and Joel Brandt. Ana-

lytic Methods for Optimizing Realtime Crowdsourcing. Proc. Collective Intel-

ligence 2012, 2012.

[18] Michael S Bernstein, Greg Little, Robert C Miller, Björn Hartmann, Mark S

Ackerman, David Crowell, and Katrina Panovich. Soylent: A Word Processor

with a Crowd Inside. In Proc. UIST ’10, 2010.

218

[19] Michael S Bernstein, Andrés Monroy-Hernandez, Drew Harry, Paul Andre, Ka-

trina Panovich, and Greg Vargas. 4chan and /b/: An Analysis of Anonymity

and Ephemerality in a Large Online Community, 2011.

[20] Michael S Bernstein, Jaime Teevan, Susan Dumais, Daniel Liebling, and Eric

Horvitz. Direct answers for search queries in the long tail. In Proc. CHI ’12,

CHI ’12, 2012.

[21] Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller,

Robert C. Miller, Robin Miller, Aubrey Tatrowicz, Brandyn White, Samuel

White, and Tom Yeh. VizWiz: Nearly Real-time Answers to Visual Questions.

In Proc. UIST ’10, 2010.

[22] Daniel Billsus, Michael J. Pazzani, and James Chen. A learning agent for

wireless news access. In Proc. IUI ’00, 2000.

[23] Alessandro Bozzon, Marco Brambilla, and Stefano Ceri. Answering search

queries with CrowdSearcher. In Proc. WWW ’12, WWW ’12, 2012.

[24] Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder,

Pietro Perona, and Serge Belongie. Visual recognition with humans in the loop.

Proc. ECCV 2010, 2010.

[25] Eric Brill, Susan Dumais, and Michele Banko. An analysis of the AskMSR

question-answering system. In Proc. EMNLP ’02, volume 10, July 2002.

[26] Andrei Broder. A taxonomy of web search. ACM SIGIR Forum, 36(2):3,

September 2002.

[27] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors. The Adaptive

Web. Springer-Verlag, 2007.

[28] Chris Callison-Burch and Mark Dredze. Creating Speech and Language Data

With Amazon’s Mechanical Turk. In Proc. NAACL HLT 2010 Workshop on

Creating Speech and Language Data with Amazon’s Mechanical Turk, June 2010.

219

[29] MacGregor Campbell. The sinister powers of crowdsourcing.

http://www.newscientist.com/article/dn18315-innovation-the-sinister-powers-

of-crowdsourcing.html, 2009.

[30] Stuart K Card, Thomas P Moran, and Allen Newell. The psychology of human-

computer interaction. Lawrence Erlbaum, 1983.

[31] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and Shi-Min Hu.

Sketch2Photo. ACM Transactions on Graphics, 28(5), 2009.

[32] Lydia Chilton, John Horton, Robert C. Miller, and Shiri Azenkot. Task search

in a human computation market. In Proc. HCOMP ’10, 2010.

[33] Lydia Chilton and Jaime Teevan. Addressing people’s information needs di-

rectly in a web search result page. In Proc. WWW ’11, 2011.

[34] James Clarke and Mirella Lapata. Models for sentence compression: a compar-

ison across domains, training requirements and evaluation measures. In Proc.

ACL ’06, 2006.

[35] Michael F. Cohen and Richard Szeliski. The moment camera. Computer,

39(8):40–45, 2006.

[36] Trevor Cohn and Mirella Lapata. Sentence compression beyond word deletion.

Proc. COLING ’08, 2008.

[37] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee,

Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, and Foldit-

Players. Predicting protein structures with a multiplayer online game. Nature,

466(7307):756–760, 2010.

[38] Justin Cranshaw and Aniket Kittur. The polymath project: lessons from a

successful online collaboration in mathematics. In Proc. CHI ’11. ACM, 2011.

[39] Russell Cropanzano and Marie S. Mitchell. Social Exchange Theory: An Inter-

disciplinary Review. Journal of Management, 31(6):874–900, December 2005.

220

[40] Edward Cutrell and Zhiwei Guan. What are you looking for?: an eye-tracking

study of information usage in web search. In Proc. CHI ’07, 2007.

[41] Allen Cypher. Watch What I Do. MIT Press, Cambridge, MA, 1993.

[42] Peng Dai, Mausam, and Dan Weld. Decision-theoretic control of crowd-sourced

workflows. In Proc. AAAI ’10, 2010.

[43] Peng Dai, Mausam, and Dan Weld. Artificial Intelligence for Artificial Artificial

Intelligence. In Proc. AAAI ’11, 2011.

[44] A P Dawid and A M Skene. Maximum likelihood estimation of observer error-

rates using the EM algorithm. Applied Statistics, pages 20–28, 1979.

[45] Ofer Dekel and Ohad Shamir. Vox populi: Collecting high-quality labels from

a crowd. Proc. 22nd Annual Conference on Learning Theory, 2009.

[46] Joan Morris DiMicco and David R. Millen. Identity management: multiple

presentations of self in facebook. In Proc. GROUP ’07, 2007.

[47] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared

workspaces. In Proc. CSCW ’92, 1992.

[48] Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn Hartmann. Shepherd-

ing the crowd yields better work. In Proc. CSCW ’12, February 2012.

[49] Casey Dugan, Michael Muller, David R. Millen, Werner Geyer, Beth Brown-

holtz, and Marty Moore. The dogear game: a social bookmark recommender

system. In Proc. GROUP ’07, 2007.

[50] Douglas C Engelbart and William K English. A research center for augmenting

human intellect. In Proc. Fall Joint Computer Conference, Part I. ACM, 1968.

[51] Brynn M Evans and Ed H Chi. Towards a model of understanding social search.

In Proc. CSCW ’08. ACM, 2008.

221

[52] Jerry Alan Fails and Dan R. Olsen. Interactive machine learning. In Proc. IUI

’03. ACM, 2003.

[53] Stephen Farrell, Tessa Lau, Stefan Nusser, Eric Wilcox, and Michael Muller.

Socially augmenting employee profiles with people-tagging. In Proc. UIST ’07,

2007.

[54] Karën Fort, Gilles Adda, and K. Bretonnel Cohen. Amazon mechanical turk:

Gold mine or coal mine? Computational Linguistics, 37(2):413–420, 2011.

[55] Andrea Forte and Amy Bruckman. Why do people write for wikipedia? In-

centives to contribute to open-content publishing. Proc. of GROUP ’05, 5,

2005.

[56] Michael Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and

Reynold Xin. CrowdDB: answering queries with crowdsourcing. Proc. SIG-

MOD ’11, 2011.

[57] Bruno S Frey and Felix Oberholzer-Gee. The cost of price incentives: An

empirical analysis of motivation crowding-out. The American Economic Review,

87(4):746–755, 1997.

[58] Batya Friedman. Value-sensitive design. interactions, 3(6):16–23, 1996.

[59] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-

terns: elements of reusable object-oriented software. Addison-Wesley Profes-

sional, 1995.

[60] Tomio Geron. Why Start-Ups Must Pay Attention To

Whats Behind The Curtain. In Wall Street Journal.

http://blogs.wsj.com/venturecapital/2010/04/24/how-a-start-up-grew-by-

paying-attention-to-whats-behind-the-curtain/, 2010.

[61] Eric Gilbert and Karrie Karahalios. Predicting tie strength with social media.

In Proc. CHI ’09, 2009.

222

[62] Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or. Micro Perceptual Human

Computation. To appear in ACM Transactions on Graphics (TOG), 2012.

[63] Uri Gneezy. Deception: The role of consequences. The American Economic

Review, 95(1):384–394, 2005.

[64] Richard Gold. The plenitude: creativity, innovation, and making stuff. The

MIT Press, 2007.

[65] Mark Granovetter. The Strength of Weak Ties. American Journal of Sociology,

78(6):1360–1380, 1973.

[66] Saul Greenberg and Ralph Bohnet. GroupSketch: A multi-user sketchpad for

geographically-distributed small groups. In Proc. Graphics Interface’91, 1991.

[67] David Alan Grier. When Computers Were Human. Princeton University Press,

2005.

[68] David Alan Grier. Error Identification and Correction in Human Computation:

Lessons from the WPA. In Proc. HCOMP ’11, 2011.

[69] Donald Gross and Carl Harris. Fundamentals of queueing theory. 1998.

[70] Stephen Guo, Aditya Parameswaran, and Hector Garcia-Molina. So Who Won?

Dynamic Max Discovery with the Crowd. Technical report, Stanford University,

November 2011.

[71] Aakar Gupta, William Thies, Edward Cutrell, and Ravin Balakrishnan. mClerk:

Enabling Mobile Crowdsourcing in Developing Regions. In Proc. CHI ’12, 2012.

[72] Severin Hacker and Luis Von Ahn. Matchin: eliciting user preferences with an

online game. In Proc. CHI ’09. ACM, 2009.

[73] Severin Hacker and Luis von Ahn. Duolingo. www.duolingo.com, 2012.

[74] F. Maxwell Harper, Sherry Xin Li, Yan Chen, and Joseph A. Konstan. Social

Comparisons to Motivate Contributions to an Online Community. In Proc.

223

Persuasive Technology ’07, volume 4744 of Lecture Notes in Computer Science,

2007.

[75] Sandra G Hart and Lowell E Staveland. Development of NASA-TLX (Task

Load Index): Results of empirical and theoretical research. Human mental

workload, 1:139–183, 1988.

[76] Bjoern Hartmann and Folks on-the Internet. Amazing but True Cat Stories.

2008.

[77] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer.

What Would Other Programmers Do? Suggesting Solutions to Error Messages.

In Proc. CHI ’10, 2010.

[78] Marti A. Hearst. Search User Interfaces. Cambridge University Press, 2009.

[79] Jeffrey Heer and Michael Bostock. Crowdsourcing Graphical Perception: Using

Mechanical Turk to Assess Visualization Design. In Proc. CHI ’10, 2010.

[80] Kurtis Heimerl, Brian Gawalt, Kuang Chen, Tapan S. Parikh, and Bjoern Hart-

mann. Communitysourcing: Engaging Local Crowds to Perform Expert Work

Via Physical Kiosks. In Proc. CHI ’12, 2012.

[81] Joseph M Hellerstein and David L Tennenhouse. Searching for Jim Gray: a

technical overview. Communcations of the ACM, 54(7):77–87, July 2011.

[82] Raphael Hoffmann, Saleema Amershi, Kayur Patel, Fei Wu, James Fogarty, and

Daniel S. Weld. Amplifying community content creation with mixed initiative

information extraction. In Proc. CHI ’09, 2009.

[83] Jim Hollan and Scott Stornetta. Beyond being there. In Proc. CHI ’92, 1992.

[84] Damon Horowitz and Sepandar D Kamvar. The anatomy of a large-scale social

search engine. In Proc. WWW ’10, 2010.

[85] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6), 2006.

224

[86] Jeff Howe. Crowdsourcing: How the power of the crowd is driving the future of

business. Century, 2008.

[87] Takeo Igarashi, Tomer Moscovich, and John F Hughes. As-rigid-as-possible

shape manipulation. ACM Transactions on Graphics (TOG), 24(3):1134–1141,

2005.

[88] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality management

on amazon mechanical turk. In Proc. HCOMP ’10. ACM, 2010.

[89] Panos G Ipeirotis. Analyzing the Amazon Mechanical Turk marketplace.

XRDS: Crossroads, The ACM Magazine for Students, 17(2):16–21, 2010.

[90] Panos G Ipeirotis. Mechanical Turk, Low Wages, and the Market for

Lemons. http://www.behind-the-enemy-lines.com/2010/07/mechanical-turk-

low-wages-and-market.html, 2010.

[91] Hiroshi Ishii and Minoru Kobayashi. ClearBoard: a seamless medium for shared

drawing and conversation with eye contact. In Proc. CHI ’92, pages 525–532,

1992.

[92] Hiroshi Ishii and Brygg Ullmer. Tangible Bits: Towards Seamless Interfaces

between People, Bits and Atoms. In Proc. UIST ’97, 1997.

[93] Tomáš Ižo and Jay Yagnik. Smart Thumbnails on YouTube, 2009.

[94] Ece Kamar, Severin Hacker, and Eric Horvitz. Combining Human and Machine

Intelligence in Large-scale Crowdsourcing. In Proc. AAMAS ’12, 2012.

[95] B Kanefsky, N.G. Barlow, and V.C. Gulick. Can Distributed Volunteers Accom-

plish Massive Data Analysis Tasks? In Lunar and Planetary Institute Science

Conference Abstracts, volume 32 of Lunar and Planetary Inst. Technical Report,

March 2001.

225

[96] Steven J Karau and Kipling D Williams. Social loafing: A meta-analytic re-

view and theoretical integration. Journal of Personality and Social Psychology,

65(4):681–706, 1993.

[97] Michael Kearns, Siddharth Suri, and Nick Montfort. An experimental study of

the coloring problem on human subject networks. Science, 313(5788):824–827,

2006.

[98] Melanie Kellar, Carolyn Watters, and Michael Shepherd. A field study char-

acterizing Web-based information-seeking tasks. JASIST, 58(7):999–1018, May

2007.

[99] J F Kelley. An iterative design methodology for user-friendly natural language

office information applications. ACM Transactions on Information Systems

(TOIS), 2(1):26–41, 1984.

[100] Do-kyum Kim, Marti Motoyama, Geoffrey M. Voelker, and Lawrence K. Saul.

Topic modeling of freelance job postings to monitor web service abuse. In Proc.

Security and Artificial Intelligence. ACM, 2011.

[101] Aniket Kittur. Crowdsourcing, collaboration and creativity. XRDS: Crossroads,

The ACM Magazine for Students, 17(2):22–26, 2010.

[102] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies with

Mechanical Turk. In Proc. CHI ’08, 2008.

[103] Aniket Kittur, Susheel Khamkar, Paul André, and Robert E. Kraut. Crowd-

Weaver: visually managing complex crowd work. In Proc. CSCW ’12. ACM,

2012.

[104] Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E. Kraut. Crowd-

Forge. In Proc. UIST ’11, October 2011.

[105] Aniket Kittur, Bongwon Suh, Bryan A. Pendleton, and Ed H. Chi. He says,

she says: conflict and coordination in Wikipedia. In Proc. CHI ’07, 2007.

226

[106] Kevin Knight and Daniel Marcu. Summarization beyond sentence extraction:a

probabilistic approach to sentence compression. Artificial Intelligence, 139(1),

2002.

[107] Aaron M Koblin. The sheep market. In Proc. Creativity and Cognition ’09,

2009.

[108] Alex Kosorukoff. Human based genetic algorithm. In Proc. Systems, Man, and

Cybernetics, volume 5. IEEE, 2001.

[109] Robert E. Kraut and Paul Resnick. Building Successful Online Communities:

Evidence-Based Social Design. The MIT Press, 2012.

[110] Michel Krieger, Emily Margarete Stark, and Scott R. Klemmer. Coordinating

tasks on the commons: designing for personal goals, expertise and serendipity.

In Proc. CHI ’09, 2009.

[111] Travis Kriplean, Ivan Beschastnikh, and David W McDonald. Articulations of

wikiwork: uncovering valued work in wikipedia through barnstars. In Proc.

CSCW ’08. ACM, 2008.

[112] Karen Kukich. Techniques for automatically correcting words in text. ACM

Computing Surveys (CSUR), 24(4), 1992.

[113] Anand Kulkarni. The Complexity of Crowdsourcing: Theoretical Problmes

in Human Computation. In Proc. CHI ’11 Workshop on Crowdsourcing and

Human Computation, 2011.

[114] Anand Kulkarni, Matthew Can, and Björn Hartmann. Collaboratively crowd-

sourcing workflows with Turkomatic. In Proc. CSCW ’12, February 2012.

[115] Cliff A.C. Lampe, Nicole Ellison, and Charles Steinfield. A familiar face(book):

profile elements as signals in an online social network. In Proc. CHI ’07, 2007.

[116] Leslie Lamport. LaTeX: A Document Preparation System, volume 14. Addison-

Wesley, 1994.

227

[117] Walter S. Lasecki, Kyle I. Murray, Samuel White, Robert C. Miller, and Jef-

frey P. Bigham. Real-time crowd control of existing interfaces. In Proc. UIST

’11. ACM Press, October 2011.

[118] Walter S Lasecki, Samuel C White, Kyle I Murray, and Jeffrey P Bigham.

Crowd memory: Learning in the collective. Proc. Collective Intelligence 2012,

2012.

[119] Bibb Latane, Kipling Williams, and Stephen Harkins. Many hands make light

the work: The causes and consequences of social loafing. Journal of Personality

and Social Psychology, 37(6):822, 1979.

[120] Bibb Latane and John M Darley. The Unresponsive Bystander: Why doesn’t

he help? Appleton-Century Crofts, New York, 1970.

[121] Bibb Latane, Kipling Williams, and Stephen Harkins. Many hands make light

the work: The causes and consequences of social loafing. Journal of Personality

and Social Psychology, 37(6):822–832, 1979.

[122] Edith Law and Luis von Ahn. Human computation. Synthesis Lectures on

Artificial Intelligence and Machine Learning, 5(3):1–121, 2011.

[123] Edith Law and Haoqi Zhang. Towards Large-Scale Collaborative Planning:

Answering High-Level Search Queries Using Human Computation. In Proc.

AAAI ’11, 2011.

[124] John Le, Andy Edmonds, Vaughn Hester, and Lukas Biewald. Ensuring quality

in crowdsourced search relevance evaluation: The effects of training question

distribution. In Proc. SIGIR 2010 Workshop on Crowdsourcing for Search Eval-

uation, pages 21–26, 2010.

[125] Jane Li, Scott Huffman, and Akihito Tokuda. Good abandonment in mobile

and PC internet search. In Proc. SIGIR ’09, July 2009.

228

[126] Henry Lieberman. Your wish is my command: Programming by example. Mor-

gan Kaufmann, 2001.

[127] Jimmy Lin. An exploration of the principles underlying redundancy-based fac-

toid question answering. ACM TOIS, 25(2), April 2007.

[128] Greg Little, Lydia Chilton, Max Goldman, and Robert C Miller. Exploring

iterative and parallel human computation processes. In Proc. HCOMP ’10,

2010.

[129] Greg Little, Lydia Chilton, Max Goldman, and Robert C. Miller. TurKit:

Human Computation Algorithms on Mechanical Turk. In Proc. UIST ’10. ACM

Press, 2010.

[130] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. TurKit:

tools for iterative tasks on mechanical Turk. Proc. HCOMP ’09, 2009.

[131] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser

Kandogan. Koala: Capture, Share, Automate, Personalize Business Processes

on the Web. Proc. CHI ’07, 2007.

[132] Thomas W. Malone, Robert Laubacher, and Chrysanthos N. Dellarocas. Har-

nessing Crowds: Mapping the Genome of Collective Intelligence. SSRN Elec-

tronic Journal, 2009.

[133] Charles F Manski. Interpreting the predictions of prediction markets. Technical

report, National Bureau of Economic Research, 2004.

[134] Andrew Mao, David C. Parkes, Ariel D. Procaccia, and Haoqi Zhang. Human

Computation and Multiagent Systems: An Algorithmic Perspective. In Proc.

AAAI ’11, 2011.

[135] Daniel Marcu. The Theory and Practice of Discourse Parsing and Summariza-

tion. MIT Press, 2000.

229

[136] Adam Marcus, David R Karger, Samuel Madden, Robert C Miller, and Sewoong

Oh. Counting with the Crowd. In In Submission to VLDB, 2012.

[137] Adam Marcus, Eugene Wu, David R Karger, Samuel Madden, and Robert C

Miller. Human-powered sorts and joins. Proceedings of the VLDB Endowment,

5(1):13–24, 2011.

[138] Adam Marcus, Eugene Wu, David R Karger, Samuel R Madden, and Robert C

Miller. Crowdsourced databases: Query processing with people. In Proc. CIDR

’11. CIDR, 2011.

[139] P Markey. Bystander intervention in computer-mediated communication. Com-

puters in Human Behavior, 16(2):183–188, March 2000.

[140] Winter Mason and Siddharth Suri. A Guide to Conducting Behavioral Research

on Amazon’s Mechanical Turk. Social Science Research Network, 1691163, 2010.

[141] Winter Mason and Duncan J Watts. Financial Incentives and the Performance

of Crowds. In Proc. HCOMP ’09. ACM Press, 2009.

[142] Ian McGraw, Chia-ying Lee, Lee Hetherington, Stephanie Seneff, and James R.

Glass. Collecting voices from the cloud. In Proc. LREC, volume 100, 2010.

[143] Robert C Miller and Brad A Myers. Interactive simultaneous editing of multiple

text regions. In Proc. USENIX ’01, 2001.

[144] Vincent Miller. New media, networking and phatic culture. Convergence: The

International Journal of Research into New Media Technologies, 14(4):387–400,

2008.

[145] Patrick Minder and Abraham Bernstein. CrowdLang—First Steps Towards

Programmable Human Computers for General Computation. In Proc. HCOMP

’11, 2011.

[146] Meredith Ringel Morris and Eric Horvitz. SearchTogether: an interface for

collaborative web search. In Proc. UIST ’07. ACM, 2007.

230

[147] Robert R Morris and Rosalind W Picard. Crowdsourcing Collective Emotional

Intelligence. In Proc. Collective Intelligence 2012, volume abs/1204.3, 2012.

[148] E V Nalimov, C Wirth, G M C Haworth, and Others. KQQKQQ and the

Kasparov-World Game. ICGA Journal, 22(4):195–212, 1999.

[149] Prayag Narula, Philipp Gutheim1, David Rolnitzky, Anand Kulkarni, and Bjo-

ern Hartmann. MobileWorks: A Mobile Crowdsourcing Platform for Workers

at the Bottom of the Pyramid. In Proc. HCOMP ’11, 2011.

[150] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1993.

[151] Jakob Nielsen. Ten usability heuristics. 2005.

[152] Jon Noronha, Eric Hysen, Haoqi Zhang, and Krzysztof Z. Gajos. Platemate:

crowdsourcing nutritional analysis from food photographs. In Proc. UIST ’11.

ACM, 2011.

[153] Ory Okolloh. Ushahidi, or ’testimony’: Web 2.0 tools for crowdsourcing crisis

information. Participatory Learning and Action, 59(1):65–70, 2009.

[154] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-

drew Tomkins. Pig latin: a not-so-foreign language for data processing. In

Proc. SIGMOD ’08. ACM, 2008.

[155] Katrina Panovich, Robert C Miller, and David R Karger. Tie strength in

question & answer on social network sites. In Proc. CSCW ’12. ACM, 2012.

[156] Aditya Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Poly-

zotis, Aditya Ramesh, and Jennifer Widom. CrowdScreen: Algorithms for

Filtering Data with Humans.

[157] Aditya Parameswaran, Hyunjung Park, Hector Garcia-Molina, Neoklis Polyzo-

tis, and Jennifer Widom. Deco: Declarative Crowdsourcing. 2011.

[158] Manoj Parameswaran and Andrew B Whinston. Research issues in social com-

puting. Journal of the Association for Information Systems, 8(6):336–350, 2007.

231

[159] Ioana Patringenaru and Tiffany Fox. UC San Diego Team’s

Effort in DARPA’s Shredder Challenge Derailed by Sabotage.

http://www.jacobsschool.ucsd.edu/news/news releases/release.sfe?id=1150,

2012.

[160] Peter Pirolli. Information foraging theory: adaptive interaction with informa-

tion. Oxford Press, 2007.

[161] Alex J Quinn and Benjamin B Bederson. Human computation: a survey and

taxonomy of a growing field. In Proc. CHI ’11. ACM, 2011.

[162] Al M. Rashid, Kimberly Ling, Regina D. Tassone, Paul Resnick, Robert Kraut,

and John Riedl. Motivating participation by displaying the value of contribu-

tion. In Proc. CHI ’06. ACM Press, 2006.

[163] Paul Resnick and Richard Zeckhauser. Trust among strangers in Internet trans-

actions: Empirical analysis of eBay’s reputation system. Advances in Applied

Microeconomics, 11:127–157, 2002.

[164] J Rocchio. Relevance feedback in information retrieval. In Gerard Salton, editor,

The SMART retrieval system: experiments in automatic document processing,

pages 313–323. Prentice Hall, Englewood Cliffs, NJ, 1971.

[165] Mario Rodriguez and James Davis. CrowdSight: Rapidly Prototyping Intelli-

gent Visual Processing Apps. In Proc. HCOMP ’11, 2011.

[166] Yvonne Rogers, Helen Sharp, and Jenny Preece. Interaction Design: Beyond

Human Computer Interaction. 2002.

[167] Joel Ross, Lilly Irani, M. Six Silberman, Andrew Zaldivar, and Bill Tomlinson.

Who Are the Crowdworkers? Shifting Demographics in Amazon Mechanical

Turk. In alt.chi ’10. ACM Press, 2010.

[168] Brian C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.

LabelMe: a database and web-based tool for image annotation. International

journal of computer vision, 77(1):157–173, 2008.

232

[169] Jeffrey M Rzeszotarski and Aniket Kittur. Instrumenting the crowd: using

implicit behavioral measures to predict task performance. In Proc. UIST ’11.

ACM, 2011.

[170] Matthias Sala, Kurt Partridge, Linda Jacobson, and James Begole. An Explo-

ration into Activity-Informed Physical Advertising Using PEST. In Pervasive

’07, volume 4480 of Lecture Notes in Computer Science, Berlin, Heidelberg,

2007. Springer Berlin Heidelberg.

[171] Matthew J Salganik and Karen E C Levy. Wiki surveys: Open and quantifiable

social data collection. Arxiv preprint arXiv:1202.0500, 2012.

[172] Gerard Salton and Christopher Buckley. Term-weighting approaches in auto-

matic text retrieval. Information Processing and Management, 24(5):513–523,

1988.

[173] Eric Schurman and Jake Brutlag. Performance related changes and their user

impact. In Velocity Web Performance and Operations Conference, 2009.

[174] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another label?

improving data quality and data mining using multiple, noisy labelers. In Proc.

KDD ’08, pages 614—-622. ACM, 2008.

[175] M Six Silberman, Lilly Irani, and Joel Ross. Ethics and tactics of professional

crowdwork. XRDS, 17(2):39–43, December 2010.

[176] M. Six Silberman, Joel Ross, Lilly Irani, and Bill Tomlinson. Sellers problems

in human computation markets. In Proc. HCOMP ’10. ACM, 2010.

[177] Herb A. Simon. Rational choice and the structure of the environment. Psycho-

logical review, 63(2):129, 1956.

[178] Ian Simon, Dan Morris, and Sumit Basu. MySong: automatic accompaniment

generation for vocal melodies. In Proc. CHI ’08, 2008.

233

[179] Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins, and

Wan Li Zhu. Open Mind Common Sense: Knowledge acquisition from the

general public. On the Move to Meaningful Internet Systems 2002: CoopIS,

DOA, and ODBASE, pages 1223–1237, 2002.

[180] Deborah A. Small, George Loewenstein, and Paul Slovic. Sympathy and cal-

lousness: The impact of deliberative thought on donations to identifiable and

statistical victims. Organizational Behavior and Human Decision Processes,

102(2):143–153, 2007.

[181] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. Cheap

and fastbut is it good?: evaluating non-expert annotations for natural language

tasks. In Proc. ACL ’08, 2008.

[182] Alexander Sorokin, Dmitry Berenson, Siddhartha Srinivasa, and Martial

Hebert. People helping robots helping people: Crowdsourcing for grasping

novel objects. In Proc. IROS ’10, 2010.

[183] Alexander Sorokin and David Forsyth. Utility data annotation with Amazon

Mechanical Turk. Proc. CVPR ’08, 2008.

[184] Sofia Stamou and Efthimis N Efthimiadis. Queries without clicks: Successful or

failed searches. In Proc. SIGIR ’09 Workshop on the Future of IR Evaluation,

2009.

[185] Ruben Stranders, Sarvapali D. Ramchurn, Bing Shi, and Nicholas R. Jennings.

CollabMap: Augmenting Maps Using the Wisdom of Crowds. In Proc. HCOMP

’11, 2011.

[186] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO : A Core

of Semantic Knowledge Unifying Wikipedia and WordNet. In Proc. WWW ’07,

2007.

[187] James Surowiecki. The Wisdom of Crowds. Random House, New York, 2005.

234

[188] Ivan E Sutherland. Sketch pad a man-machine graphical communication system.

In Proceedings of the SHARE design automation workshop, pages 6–329. ACM,

1964.

[189] John C. Tang, Manuel Cebrian, Nicklaus A. Giacobe, Hyun-Woo Kim, Taemie

Kim, and Douglas ”Beaker” Wickert. Reflecting on the DARPA Red Balloon

Challenge. Communications of the ACM, 54(4):78, April 2011.

[190] Jaime Teevan, Daniel J. Liebling, and Gayathri Ravichandran Geetha. Under-

standing and predicting personal navigation. In Proc. WSDM ’11, February

2011.

[191] Michael Toomim, Travis Kriplean, Claus Pörtner, and James A. Landay. Util-

ity of Human-Computer Interactions: Toward a Science of Preference Measure-

ment. In Proc. CHI 2011, 2011.

[192] M M Tseng, R J Jiao, and C Wang. Design for mass personalization. CIRP

Annals-Manufacturing Technology, 59(1):175–178, 2010.

[193] Kathleen Tuite, Noah Snavely, Dun-yu Hsiao, Nadine Tabing, and Zoran

Popović. PhotoCity: Training experts at large-scale image acquisition through

a competitive game. In Proc. CHI ’11. ACM, 2011.

[194] Max Van Kleek, Michael Bernstein, M C Schraefel, and David R Karger. GUI–

Phooey!: The Case for Text Input. In Proc. UIST ’07, 2007.

[195] Simine Vazire and Samuel D. Gosling. e-Perceptions: Personality impressions

based on personal websites. Journal of Personality and Social Psychology,

87(1):123–132, 2004.

[196] Fernanda B Viegas, Martin Wattenberg, Frank van Ham, Jesse Kriss, and Matt

McKeon. ManyEyes: a site for visualization at internet scale. IEEE Transac-

tions on visualization and computer graphics, 13(6):1121–1128, 2007.

235

[197] Jesse Vig, Shilad Sen, and John Riedl. Tagsplanations: explaining recommen-

dations using tags. In Proc. IUI ’09. ACM Press, 2009.

[198] Luis von Ahn. Games with a Purpose. Computer, 39(6):92–94, 2006.

[199] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In

CHI ’04, 2004.

[200] Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel

Blum. recaptcha: Human-based character recognition via web security mea-

sures. Science, 321(5895):1465–1468, 2008.

[201] Paul Wais, Shivaram Lingamneni, Duncan Cook, Jason Fennell, Benjamin

Goldenberg, Daniel Lubarov, David Marin, and Hari Simons. Towards Building

a High-Quality Workforce with Mechanical Turk. In Proc. NIPS Workshop on

Computational Social Science and the Wisdom of Crowds, 2010.

[202] Jing Wang, Siamak Faridani, and Panagiotis G Ipeirotis. Estimating the Com-

pletion Time of Crowdsourced Tasks Using Survival Analysis Models. In Proc.

Crowdsourcing for Search and Data Mining ’11, 2011.

[203] Peter Welinder, Steve Branson, Serge Belongie, and Pietro Perona. The multidi-

mensional wisdom of crowds. Neural Information Processing Systems, 6(7):1—

-9, 2010.

[204] Ryen W. White, Mikhail Bilenko, and Silviu Cucerzan. Studying the use of

popular destinations to enhance web search interaction. In Proc. SIGIR ’07,

2007.

[205] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. CrowdSearch: exploiting

crowds for accurate real-time image search on mobile phones. In Proc. MobiSys

’10. ACM, 2010.

[206] Lisa Yu and Jeffrey V Nickerson. Cooks or cobblers?: crowd creativity through

combination. In Proc. CHI ’11. ACM, 2011.

236

[207] Haoqi Zhang, Edith Law, Robert C Miller, Krzysztof Z Gajos, David C Parkes,

and Eric Horvitz. Human Computation Tasks with Global Constraints. In Proc.

CHI ’12, 2012.

[208] Chen-Bo Zhong. The ethical dangers of deliberative decision making. Admin-

istrative Science Quarterly, 56(1):1–25, 2011.

237

	Introduction
	Interactive Systems Powered by Crowds
	Realtime Crowdsourcing Platform and Modeling
	Realtime Crowd-Powered Systems
	Beyond Generic Paid Crowds: Targeted Information Needs

	Contributions
	Design of Crowd-Powered Systems
	Computational Techniques to Guide Crowds
	Generalization to Unpaid Crowds and Specific Needs

	Thesis Overview

	Related Work
	Crowdsourcing
	Definitions and Design Space
	Voluntary Crowdsourcing
	Paid Crowdsourcing

	Crowd-Powered Systems
	Soylent
	Adrenaline and Realtime Crowd-Powered Systems

	Crowds and Algorithms
	Social Network-based Crowds
	Mining Crowd Data
	Conclusion

	Soylent: A Word Processorwith a Crowd Inside
	Soylent
	Shortn: Text Shortening
	Crowdproof: Crowdsourced Copyediting
	The Human Macro:Natural Language Crowd Scripting

	Techniques for Programming Crowds
	Challenges in Programming with Crowd Workers
	The Find-Fix-Verify Pattern

	Implementation
	Evaluation
	Shortn Evaluation
	Crowdproof Evaluation
	Human Macro Evaluation
	Impact of Price on Wait Time

	Discussion
	Conclusion

	Realtime Crowdsourcing:Platform and Model
	The Retainer Model
	Retainer Design and Wait Time
	Retainer Field Experiments

	Queueing Theory Model
	Model Formalization
	Optimal Retainer Pool Size
	Worker Abandonment
	Limited Retainer Lifetimes

	Application to Common Crowdsourcing Tasks
	Improvements to Crowdsourcing Platforms
	Retainer Subscriptions
	Global Retainer Pools
	Precruitment: Predictive Recruitment
	Evaluation

	Discussion

	Realtime Crowdsourcing:Systems
	Adrenaline
	Rapid Refinement: Coordinating Synchronous Crowds for Fast Results
	Algorithm Design

	Evaluation
	Method
	Results

	Realtime Crowd-Powered Creativity
	Discussion
	Realtime Crowd-Powered Systems
	Rapid Refinement

	Conclusion

	Beyond Generic Paid Crowds:Specific Data Needs
	Friendsourcing
	Collabio: Social Friend-Tagging
	FeedMe: A Friendsourced Recommender System
	Systems Powered by Friendsourcing
	Conclusion: Friendsourcing

	Data Mining
	Tail Answers
	Identifying Answer Candidates
	Filtering Answer Candidates
	Extracting the Tail Answer
	Implementation
	Evaluation
	Discussion
	Data Mining Extensions: AI, Snippets, and More Answer Types
	Conclusion: Data Mining

	Conclusion: Beyond Generic Crowds

	Discussion:Framework, Limits, Ethics
	Deployable Wizard-of-Oz Prototypes
	Design Framework and Tradeoffs
	Crowd Design Tradeoffs
	User Design Tradeoffs

	Limitations of Crowdsourcing
	Limits to Crowd Cognition and Crowd Work
	Stifling Individual Abilities
	Scale
	Cost
	Privacy
	Legal Ownership
	Collusion

	Ethics
	Wages
	Power Imbalance between Workers and Requesters
	Crowdsourcing for Evil?
	Cyber-Taylorism vs. Rethinking the Design Process
	The Water Cooler for the Crowd:Encouraging Social Interaction
	Career Advancement

	Conclusion
	Summary of Contributions
	Impact and Recent Developments
	Future Work
	Hybrid Crowd–A.I. Systems
	Crowdsourcing Markets
	A Science of Crowdsourcing
	Autonomous, Self-Correcting Crowds
	Large-Scale Systems

	Looking Ahead

	Soylent Evaluation Texts
	Shortn inputs
	Blog
	Classic UIST Paper tangible
	Draft UIST Paper guiphooey
	Rambling Enron E-mail
	Technical Writing Andersen2009

	Crowdproof inputs
	Passes Word's Checker
	English as a Second Language
	Notes from a Talk: NoSQL in the Cloud
	Bad Wikipedia Page
	Draft UIST Paper guiphooey

