
Emergent, Crowd-scale
Programming Practice
in the IDE
Ethan Fast, Daniel Steffee, Lucy Wang, Michael Bernstein, Joel Brandt
Stanford HCI, Adobe Research

Emergent behaviors, or
the ways people adapt
to a system, can be just
as informative as a
system’s design.

Many norms for
programming systems
aren’t codified in
documentation or on
the web.

Developers can have
unanswered questions

What is the best idiom or library to use for a
certain kind of task?

Does my code follow common practice?

How is a language being used today?

A Ruby Idiom

How does this code work? What is the block doing?

A Ruby Idiom

How does this code work? What is the block doing?

Extracting an
options hash
from a function
that takes any
number of
arguments

Codex is a knowledge
base that records
emergent practice for
the Ruby programming
language.

Codex normalizes code
structure to identify
common functions,
blocks, and syntactic
patterns.

Codex enables new
data-driven interfaces
for programming

Detect unlikely code

Create a living library

Annotate common idioms

Building the Codex
Knowledge Base

Part 1: Building the Knowledge Base

The goal: identify
emergent patterns that
good programmers
would use

Part 1: Building the Knowledge Base

Part 1: Building the Knowledge Base

Each record in the
Codex knowledge base
is an AST node

Each record in the
Codex knowledge base
is an AST node

Part 1: Building the Knowledge Base

novels.map { |title| title.downcase + “!” }

movies.map { |name| name.downcase + “?” }

Are these snippets equivalent?

# Snippet 2	
chi_hash = Hash.new do |h,k| 	
 h[k] = {}	
end	
chi_hash[:CHI][“2014”] = “Toronto”

# Snippet 1	
uist_hash = Hash.new do |hash,key| 	
 hash[key] = {}	
end	
my_hash[:UIST][“2014”] = “Hawaii”

Part 1: Building the Knowledge Base

# Snippet 2	
chi_hash = Hash.new do |h,k| 	
 h[k] = {}	
end	
chi_hash[:CHI][“2014”] = “Toronto”

# Snippet 1	
uist_hash = Hash.new do |hash,key| 	
 hash[key] = {}	
end	
my_hash[:UIST][“2014”] = “Hawaii”

Part 1: Building the Knowledge Base

# Snippet 2	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:CHI][“2014”] = “Toronto”

# Snippet 1	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:UIST][“2014”] = “Hawaii”

Part 1: Building the Knowledge Base

# Snippet 2	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:CHI][“2014”] = “Toronto”

# Snippet 1	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:UIST][“2014”] = “Hawaii”

Part 1: Building the Knowledge Base

# Snippet 2	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:SYM0][“2014”] = “Toronto”

# Snippet 1	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:SYM0][“2014”] = “Hawaii”

Part 1: Building the Knowledge Base

# Snippet 2	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:SYM0][“2014”] = “Toronto”

# Snippet 1	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:SYM0][“2014”] = “Hawaii”

Part 1: Building the Knowledge Base

# Snippet 2	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:SYM0][“STR0”] = “STR1”

# Snippet 1	
var0 = Hash.new do |var1,var2| 	
 var1[var2] = {}	
end	
var0[:SYM0][“STR0”] = “STR1”

Part 1: Building the Knowledge Base

Statistical Linting

Part 2: Statistical Linting

Statistical linting:
detecting code that is
unlikely to occur in
practice

Part 2: Statistical Linting

Codex observes var0 =
var1.downcase more than
200 times, but var0 =
var1.downcase!only 1
time.

Chaining & Composition
Warning: Line 3

Part 2: Statistical Linting

Chaining & Composition

The function downcase!!
has a side-effect and
changes name

Codex observes var0 =
var1.downcase more than
200 times, but var0 =
var1.downcase!only 1
time.

Warning: Line 3

Part 2: Statistical Linting

Unlikely variable names

Codex observes variables
named array 116 times
and variables assigned a
Hash value 1248 times, but
has never seen the two
together.

Warning: Line 2

Part 2: Statistical Linting

Unlikely variable names

You might wonder: does
an Array really have a
method named keys?

Warning: Line 2
Codex observes variables
named array 116 times
and variables assigned a
Hash value 1248 times, but
has never seen the two
together.

Part 2: Statistical Linting

Other kinds of analysis

Function chains

Function types

Block return
values

Part 2: Statistical Linting

var0.split.to_s

.split .to_s

“Function split has appeared 29 times and
to_s has appeared 12 times, but they’ve
never been chained together.”

Used 0 times

Used 12 times Used 29 times

var0.split.to_s #=> Error: Array => String

Pattern Annotation

Part 3: Pattern Annotation

Pattern annotation:
finds common idioms,
then annotates them
using crowds

Part 3: Pattern Annotation

Query for snippets with
sufficient commonality
and complexity
mongo_query = { 	
 project_count: { gt: .02 }, 	
 total_count: { lt: 0.9 },	
 file_count: { lt: 0.2 },	
 token_count: { lt: 0.8 },	
 function_count: { gt: 2.0 } 	
}

Part 3: Pattern Annotation

Next we crowdsource
a title, description, and
vote of usefulness
from oDesk workers

Part 3: Pattern Annotation

Nested Hashes

Creating a Nested Hash

Creates a Hash with a new
empty Hash object as a default
key value

Total count: 66 Project count: 10

Part 3: Pattern Annotation

Nested Hashes

Creating a Nested Hash

Creates a Hash with a new
empty Hash object as a default
key value

Total count: 66 Project count: 10

This simple idiom is easy to mess up!

Part 3: Pattern Annotation

Configure Rails Caching
Configure Rails Caching

By setting this to false, you can
turns off caching for the Rails
web framework

Total count: 78 Project count: 34

Part 3: Pattern Annotation

Raise StandardError

Raise Custom Error

Raise a new StandardError using
a custom message, passed as a
string value

Total count: 66 Project count: 10

Part 3: Pattern Annotation

Library Generation

Part 4: Library Generation

Library generation
constructs a utility
package that reflects
common practice

Part 4: Library Generation

String#capital_tokens

Capitalize each
word token in
a string

This idiom occurred 10 times across 5 different projects.

Part 4: Library Generation

Hash##nested

Create a helper
method for
nested Hashes

This idiom occurred 66 times across 12 different projects.

Part 4: Library Generation

Evaluation

Part 5: Evaluation

Hit-rate after 500k LOC

Part 5: Evaluation: Knowledge Base

9%

14%

76%

Standard Library External Library
Data / Control Flow

Part 5: Evaluation: Pattern Annotation

Snippet categories

Part 5: Evaluation: Pattern Annotation

A survey of expert
crowdworkers

86% of snippets are useful

91% have no more common form

96% are recomposable

Statistical linting and
false positives

Part 5: Evaluation: Statistical Linting

We find 1,248 warnings over 49,735 lines, a
rate of 2.5%.

Common false positives
Part 5: Evaluation: Statistical Linting

Ambiguous false positives
Part 5: Evaluation: Statistical Linting

Conclusion

Mining emergent
practice can support a
broad set of software
engineering interfaces

Programming
languages can be
living artifacts
Libraries self-update to the latest idioms

IDEs offer suggestions to suit new coding styles

Languages evolve to better support their users

Emergent, Crowd-scale
Programming Practice
in the IDE
Ethan Fast, Daniel Steffee, Lucy Wang, Michael Bernstein, Joel Brandt
Stanford HCI, Adobe Research

Extra Slides

Conventions emerge
among many different
kinds of domains.

Writing Photography

ResearchProgramming Design

Presentations

…

Chaining & Composition

Chaining & Composition

The function
downcase!!
has a side-
effect and
changes!
name

Chaining & Composition

Codex observes var0 = var1.downcase more than 200 times,
but var0 = var1.downcase! only 1 time.

The function
downcase!!
has a side-
effect and
changes!
name

Unlikely variable names

Unlikely variable names

You might
wonder: does
an Array really
have a method
named keys?

Unlikely variable names

Codex observes variables named array 116 times and variables assigned a
Hash value many thousands of times, but we never see the two together.

You might
wonder: does
an Array really
have a method
named keys?

Nested Hashes

Nested Hashes

Assigns an
empty Hash as
the default key
value

Nested Hashes

This simple idiom is easy to mess up!

Assigns an
empty Hash as
the default key
value

Turn off Rails Caching

Turning off
default
caching for the
Rails web
framework

Raise StandardError

Raise a new
StandardError
message using
a custom
message

Data mining for Codex

1. Gather Ruby code from Github

4. Collapse normalized ASTs

2. Parse the code into AST representation

3. Normalize the ASTs (rename variables,
strings, symbols, and numbers)

Data mining for Codex

1. Gather Ruby code from Github

4. Collapse normalized ASTs

2. Parse the code into AST representation

3. Normalize the ASTs (rename variables,
strings, symbols, and numbers)

An AST node s must
occur fewer than t
times, and its children
ci must occur more
then ti times

E.g., the snippet var0.split.to_s is composed
of .split and .to_s

Part 2: Statistical Linting

