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Chapter 1

Introduction

This dissertation examines the co-design of interactive visualizations and statistical

analysis algorithms to improve the process of visual analytics—to create e↵ective

workflows where human cognition and algorithms work in tandem to yield insights

about large and complex data.

Data analysis is an iterative process involving both statistical modeling and human

interpretation of the identified patterns. While the two aspects go hand-in-hand, they

are often studied in isolation. For example, many researchers treat statistical models

as a black box when designing user interfaces for analysis. As a result, many tools

are created based on a characterization of domain users and their analysis tasks but

without a full consideration of available modeling capabilities. Many e↵orts focus

on multiple prototypes and iterative refinement of the visual elements, but overlook

improvements to the statistical models. In these contexts, how do we design e↵ective

visual analysis tools that fully utilize available modeling capabilities?

Conversely, while many models can be built using automatic or unsupervised

learning techniques, applying them to real world analysis often requires intensive

human-in-the-loop supervision. To support reasoning, statistical models often need

to be manually verified to ensure they are semantically meaningful within the domain

of analysis. Eliciting human judgment, however, is a time-consuming task and can

dominate the time and cost of building high-quality statistical models. How do we

reduce the amount of manual e↵ort involved in the modeling process and e↵ectively

1
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design statistical models?

With the growth of big data, the demands for advanced statistical modeling in

data analysis are growing. Developments in machine learning have produced increas-

ingly powerful analysis algorithms, but the underlying modeling assumptions and

abstractions have also become increasingly opaque to the end users. How do we pro-

mote a better understanding and more e↵ective use of statistical analysis methods?

How do we design statistical models that are responsive to user needs and support

domain-specific applications?

1.1 Thesis

I demonstrate that an iterative design process—applied to refine the design of both

a visualization and its underlying models— leads to e↵ective data analysis tools. I

apply human-centered design methods to examine the model-driven analytic workflow.

I contribute methods, tools, and frameworks that allow users to more e�ciently utilize

domain expertise to assess model outputs and explore modeling options.

Visual analytics also contributes to the selection and evaluation of machine learn-

ing methods. Visualizations enable detailed inspection of model output, and help

researchers understand properties of their models. Interactivity allows more rapid

design cycles, so researchers can explore more design options. Visual tools also im-

prove communication between model builders and users. Incorporating feedback from

analysts and assessments by domain experts help create models that are more respon-

sive to analysis needs and more accurately reflect domain expertise.

In Section 1.2, I discuss my focus on model-driven text analysis. In Section 1.3, I

examine the human-centered iterative design process in greater detail, and outline how

it corresponds to the relevant sections of this thesis. I summarize my contributions

in Section 1.4.
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1.2 Problem Domain

While many aspects of my thesis apply to all areas of visual analytics, for my thesis

work, I focus primarily on the visualization and analysis of text data. Despite text

being an abundant data type relevant to studies of human culture and communication,

unstructured text is a notoriously di�cult data type to analyze.

Our interpretation of a passage of text depends heavily on context, such as the

domain of analysis or our prior knowledge about a subject matter. While textual un-

derstanding often requires reading the source document, for many real world analysis

tasks, analysts are faced with document collections too large for any single person to

read and must rely on statistical methods to guide their analysis.

To identify large-scale patterns in textual data, analysts typically need to first

transform a text corpus into numeric formats suitable for statistical analysis. Ana-

lysts spend a significant amount of time building models—applying a long chain of

text processing to extract relevant language features. To ensure that the models cap-

ture meaningful concepts situated in the appropriate context, analysts may consult

domain experts who would scrutinize and validate the model outputs. The subjective

nature of textual interpretation can thus complicate the construction, deployment,

and evaluation of text analysis tools.

I focus on model-driven text analysis because it presents us with not only a rich

set of research challenges but also an opportunity to impact many real-world analysis

practices.

1.3 Human-Centered Iterative Design Process

Across multiple projects, this dissertation demonstrates the value of applying a human-

centered iterative design process to the task of model formulation. I focus on four of

the tools that have resulted from my projects, and identify the common components

critical to the design process.

I begin each of my projects by characterizing e↵ective human strategies. I explore

the space of potential visual designs and available analysis algorithms. In particular,
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I identify analysis tasks that can be aided by interactive visualizations and/or are

amenable to statistical modeling. I then refine both the visualizations and the under-

lying models through an iterative design process. I discuss various relevant evaluation

measures I applied to determine the appropriateness of my modeling assumptions and

to assess the e↵ectiveness of the resulting tools.

1.3.1 The Stanford Dissertation Browser

I developed a set of visualizations to help social scientists explore various academic

publication datasets, including the Stanford Dissertation Browser (§3.2), a topic

flow visualization tool (§3.3.1), and a visualization of language transfer in academia

(§3.3.2). Here, I focus on the first tool, the Dissertation Browser.

At the start of the project, I conducted interviews with the social scientists (§3.2.1)

to understand their analysis needs and identify the concepts suitable for modeling

and visualization. My collaborating machine learning researchers proposed various

modeling techniques (§3.2.2). I initially applied 2D projection to visualize large-

scale patterns in the model output (§3.2.3). As the project progressed, we devised

a novel “word borrowing” topical similarity measure (§3.2.5), removed a problematic

“landscape” view (§3.1.1), and introduced two additional views. The model and

visual design changes were informed by evaluations by domain experts (§3.2.4). I

anecdotally noted the positive public reception of the system (§3.2.6).

1.3.2 Termite: Visualizations for Assessing Topical Quality

Working alongside the social scientists and machine learning researchers, in the afore-

mentioned series of collaborations, provided me with extensive in-field observations

(§3.2, §3.3.1, §3.3.2) of real-world model-driven analytic workflows. A significant

amount of our analysis e↵ort was spent on model design, as the social scientists

worked closely with machine learning researchers to experiment with di↵erent mod-

eling options. The experience helped me recognize the need to incorporate model

design into the iterative design process. The experience also drew attention to time-

consuming but recurring analysis tasks, such as manual verification of the extracted
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topics (§3.5.1).

Leveraging interactive visualization, I developed Termite to enable more rapid as-

sessment of topical quality. During the development of Termite (§3.5.2), I examined

available text processing techniques and devised a saliency measure to promote in-

formative vocabulary that can aid topical comparisons. I developed a novel seriation

algorithm to reveal the clustering of related words and improve the readability of

phrases in the visualization. I assessed the performance of Termite through informal

user feedback (§3.5.3).

1.3.3 Model Diagnostics via Topical Alignment

I then examined how we might reduce the cost of acquiring domain expertise and

increase its utilization in the modeling process. I began by characterizing how human

experts (§4.2.1) topically organize information (§4.3.2). To acquire the dataset, I

contributed a survey method (§4.2.2) as well as a method for synthesizing participant

responses (§4.3.1) and a corresponding method for validating the combined results.

I then assessed how well various topic models (§4.4.1) captured the expert concepts

(§4.4.2) in terms of shared mutual information.

Recognizing that data analysis often involves the use of multiple statistical models,

I devised the correspondence chart (§4.5.1), a visualization showing how a set of

statistically extracted topics aligned with the ground truth (or a set of known reference

concepts). The chart provided diagnostic feedback (§4.1.1) on how a topic model

di↵ered from expectation.

To enable large-scale assessment, I introduced a framework to determine the corre-

spondence between any number of topics models with a common set of reference con-

cepts. I began by obtaining human ratings of topical similarity (§4.5.2). I evaluated

how well various similarity measures captured user judgments, and developed a novel

technique that outperformed existing measures (§4.5.3, §4.5.4). I devised a method

to improve the numerical robustness of my approach (§4.5.5), and demonstrated its

e↵ectiveness through a use case where I identified suitable modeling settings from

over 10,000 parameter choices.
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1.3.4 Text Summarization Using Descriptive Phrases

To investigate how visualizations can better convey summary information about a

document collection, I began by looking into how people summarize text. I conducted

a formal user study (§5.2.1, §5.2.2) to collect examples of human-generated keyphrases

subject to three experimental conditions (§5.2.3). I examined the statistical and

linguistic properties (§5.2.4) of descriptive phrases chosen by human judges. I then

systematically assessed available computational features, identified ones predictive of

high-quality keyphrases, and contributed a novel keyphrase extraction algorithm.

I compared my technique to existing algorithms using a benchmark keyphrase

dataset (§5.3.3). While the performance of my algorithm matched that of existing

algorithms, further examination suggested that the standard precision-recall mea-

sures did not fully reflect how people judge keyphrase quality (§5.3.4). In response,

I introduced two post-processing steps: redundancy reduction (§5.4.1) and length

adjustment (§5.4.2). I evaluated my improved technique through both inspection

(§5.4.3) and crowdsourced ratings of tag cloud visualizations (§5.4.4) to obtain more

ecologically valid evaluations. I demonstrate novel interactions that were a↵orded by

my technique (§5.5).

1.4 Summary of Contributions

In Chapter 2, I review relevant literature (§2.1, §2.2) in information visualization,

machine learning, and natural language processing. I examine and discuss previous

work in three areas of text visualization (§2.3): text summarization with word clouds,

document visualization with statistical topic models, and investigative analysis of

entity-relation networks.

In Chapter 3, I examine how to e↵ectively visualize statistical topic models. In

a series of collaborations with social scientists and machine learning researchers, we

apply topic modeling to study large-scale academic discourse [100, 126] (§3.1). I de-

scribe my experiences in three projects [34, 37] (§3.2, §3.3) involving di↵erent models

and visual representations. Across these projects, the analysts spend a significant
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amount of time modifying and validating the topic models, to ensure that the uncov-

ered topics accurately reflect concepts in the domain of analysis [130]. I formulate two

design principles, interpretation and trust, that are critical in supporting an analyst’s

ability to comprehend and interrogate observed patterns predicted by a model. I also

present a set of design processes— align, modify, verify, and progressive disclose—

and discuss their use in successful visual analysis tools. Finally, I develop Termite

[35] (§3.5), a visual analysis tool for assessing topical quality.

In Chapter 4, I examine how human experts topically organize text corpora and

how we can utilize domain knowledge to more e�ciently design topic models. While

fitting topic models typically involves unsupervised learning algorithms, incorporating

these models into real-world data analysis requires a significant amount of human-in-

the-loop supervision. Analysts often need to repeatedly verify, compare, and modify

multiple models throughout their analytic workflow. Such manual judgment tasks are

time-consuming and can dominate the time and cost of model-driven data analysis. I

ask experienced researchers in information visualization to describe their field (§4.2)

and analyze their responses (§4.3). I evaluate current modeling practices (§4.4) by

comparing their outputs against expert categorizations. I develop a framework that

enables large-scale assessment of topical relevance [33] (§4.5) and demonstrate how it

can contribute to machine learning research (§4.6).

In Chapter 5, I examine text summarization using descriptive phrases [36]. I

demonstrate that a human-centered iterative design process can improve the design

of tools in domains beyond statistical topic modeling. I begin my investigation by

analyzing how people select descriptive phrases to summarize documents (§5.2). I

systematically examine computational features predictive of high-quality keyphrases

(§5.3), and embed them within predictive statistical models. I contribute a novel

keyphrase extraction algorithm where the specificity of the output terms can be dy-

namically adjusted (§5.4). The improved technique, in turn, enables novel interactive

visualizations (§5.5).



Chapter 2

Current Approaches to

Model-Driven Text Analysis

A rich and growing literature considers the use of statistical modeling methods to

drive text visualizations and text analyses. Many techniques, such as tag clouds

[163], analyze documents by their constituent words to support impression formation

[177], augment search [146], reveal language structure [161, 170], or aid document

comparison [41, 42]. Other tools infer latent topics [58, 59, 61, 62, 113, 152, 171],

sentiment [13, 121, 168], or word relationships (e.g., overlap [147], clustering [69, 79],

or latent semantics [44, 86]) from text. For large document collections, a common

approach is to model thematic patterns in the corpus and visually convey uncovered

patterns via dimensionality reduction [18, 19, 31, 92, 132, 174, 175]. A related litera-

ture concerns “science mapping” [14, 16, 17, 48, 138, 142], often via 2D projection of

academic citation networks.

In this chapter, I review relevant literature on statistical topic models and visual-

ization systems for exploring large text corpora. I also review the use of keyphrases

for text summarization. I then examine in greater detail three classes of visual anal-

ysis tools. I analyze their visual designs and modeling assumptions, and discuss how

they relate to analysis tasks.

8
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2.1 Statistical Topic Modeling

Statistical topic models enable the exploration of large document collections by iden-

tifying co-occurring words that can capture thematic patterns. In this section, I look

at Latent Dirichlet allocation, a popular topic modeling technique, examine issues

with its deployment in real-world analysis tasks, and review relevant literature on

how human experts organize topical information.

2.1.1 Latent Dirichlet Allocation Models

Latent Dirichlet allocation (LDA) [11] and its variations [9, 10, 128] are statistical

models that extract latent topics, probability distributions of words that tend to co-

occur in a corpus, and represent documents as topical mixtures. An active research

area in machine learning, these models have been applied to examine language in

social media [127], medical literature [113], academic publications [52], and even in-

ventories of household items in the ruins of Pompeii [105]. More recently, they have

also been incorporated into various visual analysis tools [58, 59, 171].

2.1.2 Topical Quality and Expert Verification

While LDA can produce some sensible topics, a prominent issue is the presence of

junk topics [1, 110] comprised of general and uninformative terms. LDA modeling

parameters are often chosen to minimize the perplexity of held out data. However,

recent studies show that perplexity score does not match human judgment of topics

[106, 116, 115].

LDA models are sensitive to the choice of parameter N , the number of latent topics

to learn [61]. Choosing N involves a trade-o↵ between topic quality and resolution

[152]. A large value of N produces small and noisy topics due to insu�cient data.

A small value of N generates generic topics that do not have su�cient details for

in-depth analysis. Both types of issues can occur at the same time; as the value N

increases, the larger topics might still be too generic while the smallest topics already

begin to take on nonsensical words. In addition, LDA models require the use of two
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smoothing hyperparameters (↵ and �); unsuitable values can also a↵ect the quality

of topics [71, 5].

Large-scale applications of topic modeling in the real world often involve human

experts in the loop. Talley et al. [152] examined 110,000 NIH grants over four years,

and applied LDA to uncover 700 latent topics in the corpus. The authors documented

steps taken to train and refine their model including: identification of stop words, res-

olution of acronyms, parameter search, manual removal of nonsensical topics, and

retraining the model. Hall et al. [62] studied the history of academic discourse in

Computational Linguistics over forty years by examining 14,000 papers published at

multiple conferences. The authors applied LDA to analyze topical trends over time,

and recruited experts to assess the quality of every topic. The experts retained 36

out of 100 automatically discovered topics, and manually inserted 10 additional top-

ics not produced by the model. The need to validate and modify model outputs are

challenging issues in application of statistical models, not only limited to LDA. For

example, the Guardian Newspaper [121, 120] analyzed the spread of misinformation

on London riot on Twitter based on sentiment. To ensure reliability of their algorith-

mic analysis, each of the 2.6 million tweets was then independently coded by three

sociology Ph.D. students.

Most recently, researchers have proposed several automatic methods for assess-

ing topical quality, by comparing topical word distributions with word occurrence

in other reference corpora (e.g., Wikipedia, WordNet, etc.) [116, 110], based on al-

ternative statistical measures (e.g., pointwise mutual information, etc.) [1, 167], or

indirectly via intrusion tests [28]. Some recent variations of LDA models recognize

the drawbacks of a completely automatic approach, and enable users to explicitly in-

corporate domain knowledge via labeled topics [128] or domain constraints [4]. Other

techniques aid interpretation by automatically labeling topics [87, 102]. Ultimately,

however, how meaningful a topic is depends on the user and task [172]. Assessing

relevance of model output to a task requires human expertise.
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2.1.3 Expert Categorization

Experts, through years of experience, develop e↵ective strategies for solving problems

in their domain of expertise. Psychologists comparing task performance between ex-

perts and novices have examined a wide range of professions from world-class chess-

masters [30] to taxi drivers [29], and a wide range of tasks from medical diagnoses [56]

to UNIX system operations [49]. These studies repeatedly demonstrate that experts

exhibit e�cient mental representation via information chunking [97, 103] and utilize

categorizations [32] that support reasoning [160].

Previous research has established various theories on human categorization. Rosch

et al. [137] observe that people create a hierarchy of categories, and that categories are

created starting at a basic level before super (more general) and sub-ordinate (more

specific) categories emerge. Basic level categories exhibit computationally favorable

properties such as the strongest within-category similarity and between-category dis-

similarity; they yield features [159] that are most amenable to codification [137], and

enable more e↵ective communication [43]. Members of a category exhibit a gradient

of membership. Prototypes [84, 136] refer to common exemplars of a category, corre-

spond to more stable and salient concepts, and are sometimes used as labels to help

communicate the content of a category [135].

Expert categories can exhibit di↵ering characteristics. Tversky shows that novices

create categories based on easy-to-detect features while experts create categories

based on features functionally significant to a task [160]. Tanaka et al. find that

expertise increases the use of subordinate categories [153].

2.2 Visualizations for Text Summarization

Descriptive phrases aid the exploration of text collections by communicating salient

aspects of documents. In this section, I examine existing text visualizations that use

keyphrases to display text summaries, paying particular attention to how they select

keyphrases. I compare their approaches to automatic keyphrase extraction algorithms

developed by the natural language processing community. I discuss the need of more
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suitable keyphrase extraction algorithms to support interactive visualizations.

2.2.1 Selection of Descriptive Terms in Text Visualizations

Many text visualization systems use descriptive keyphrases to summarize text or label

abstract representations of documents [24, 42, 45, 64, 68, 144, 162, 164]. One popular

way to represent a document is as a tag cloud: a list of descriptive words typically

sized by raw term frequency. Various interaction techniques summarize documents

as descriptive headers for e�cient browsing on mobile devices [22, 23, 176]. While

information visualization researchers have developed methods to improve the layout

of terms [45, 164], they have paid less attention to methods for selecting the best

descriptive terms.

Visualizations including Themail [162] and TIARA [144] display terms selected

using variants of tf.idf (term frequency by inverse document frequency [140])—a

weighting scheme for information retrieval. Rarely are more sophisticated methods

from computational linguistics used. One exception is Parallel Tag Clouds [42], which

weight terms using G2 [51], a probabilistic measure of the significance of a document

term with respect to a reference corpus.

Other systems, including Jigsaw [148] and FacetAtlas [24], identify salient terms

by extracting named entities such as people, places, and dates [57]. These systems

extract specific types of structured data, but may miss other descriptive phrases. In

this paper, I first score phrases independent of their status as entities, but later apply

entity recognition to group similar terms and reduce redundancy.

2.2.2 Automatic Keyphrase Extraction

As indicated above, the most common means of selecting descriptive terms is via

bag-of-words frequency statistics of single words (unigrams). Researchers in natural

language processing have developed various techniques to improve upon raw term

counts, including removal of frequent “stop words,” weighting by inverse document

frequency as in tf.idf [140] and BM25 [134], heuristics such as WordScore [88], or

probabilistic measures [81, 131] and the variance-weighted log-odds ratio [108]. While
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unigram statistics are popular in practice, there are two causes for concern.

First, statistics designed for document retrieval weight terms in a manner that

improves search e↵ectiveness, and it is unclear whether the same terms provide good

summaries for document understanding [12, 42]. For decades, researchers have anec-

dotally noted that the best descriptive terms are often neither the most frequent

nor infrequent terms, but rather mid-frequency terms [94]. In addition, frequency

statistics often require a large reference corpus and may not work well for short texts

[12]. As a result, it is unclear which existing frequency statistics are best suited for

keyphrase extraction.

Second, the set of good descriptive terms usually includes multiword phrases as

well as single words. In a survey of journals, Turney [158] found that unigrams account

for only a small fraction of human-assigned index terms. To allow for longer phrases,

Dunning proposed modeling words as binomial distributions using G2 statistics to

identify domain-specific bigrams (two-word phrases) [51]. Systems such as KEA++

or Maui use pseudo-phrases (“phrases” that remove stop words and ignore word

ordering) for extracting longer phrases [101]. Hulth considered all trigrams (phrases

up to length three) in her algorithm [74]. While the inclusion of longer phrases may

allow more expressive keyphrases, systems that permit longer phrases can su↵er from

poor precision and meaningless terms. The inclusion of longer phrases may also

result in redundant terms of varied specificity [53], such as “visualization,” “data

visualization,” and “interactive data visualization.”

Researchers have taken several approaches to ensure that longer keyphrases are

meaningful and that phrases of the appropriate specificity are chosen. Many ap-

proaches [6, 47, 53, 74] filter candidate keyphrases by identifying noun phrases using

a part-of-speech tagger or a parser. Of note is the use of so-called technical terms

[78] that match regular expression patterns over part-of-speech tags. To reduce re-

dundancy, Barker [6] chooses the most specific keyphrase by eliminating any phrases

that are a subphrase of another. Medelyan’s KEA++ system [101] trains a Näıve

Bayes classifier to match keyphrases produced by professional indexers. However, all

existing methods produce a static list of keyphrases and do not account for task- or

application-specific requirements.
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2.2.3 Supporting Interactive Visualizations

Recently, the Semantic Evaluation (SemEval) workshop [80] held a contest comparing

the performance of 21 keyphrase extraction algorithms over a corpus of ACM digital

library articles. The winning entry, named HUMB [93], ranks terms using bagged

decision trees learned from a combination of features including frequency statistics,

position in a document, and the presence of terms in ontologies (e.g., MeSH, WordNet)

or in anchor text in Wikipedia. Moreover, HUMB explicitly models the structure of

the document to preferentially weight the abstract, introduction, conclusion, and

section titles. The system is designed for scientific articles and intended to provide

keyphrases for indexing digital libraries.

The aims of my research are di↵erent. Unlike prior work, I seek to systematically

evaluate the contributions of individual features to keyphrase quality, allowing system

designers to make informed decisions about the trade-o↵s of adding potentially costly

or domain-limiting features. I have a particular interest in developing methods that

are easy to implement, computationally e�cient, and make minimal assumptions

about input documents.

My goal is to improve the design of text visualization and interaction techniques,

not indexing of digital libraries. This orientation has led me to develop techniques

for improving the quality of extracted keyphrases as a whole, rather than just scoring

terms in isolation (c.f., [6, 158]). I propose methods for grouping related phrases that

reduce redundancy and enable applications to dynamically tailor the specificity of

keyphrases. I also evaluate my approach in the context of text visualization.

2.3 Visual Designs, Model Abstractions, and

Analysis Tasks

I now discuss in greater detail a subset of the existing work on model-driven text

analysis. I choose three classes of visual analysis tools due to their widespread use

and significant research attention: summaries via word clouds, document visualization

using latent topic models, and investigative analysis of entity-relationship networks.
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I pay particular attention to visual designs and model abstractions, and discuss how

they relate to analysis tasks.

2.3.1 Text Summarization with Word Clouds

Word clouds are a popular visualization method used to summarize unstructured

text. A typical word cloud shows a 2D spatial arrangement of individual words with

font size proportional to term frequency. Despite documented perceptual issues [133],

word clouds are regularly found both in analysis tools and across the web [163].

Though simple, a word cloud rests on a number of modeling assumptions. Input text

is typically treated as a “bag of words”: analyses focus on individual words ignoring

structures (e.g., word position, ordering) and semantic relationships (e.g., synonym,

hypernym). Most implementations assume raw term counts are a su�cient statistic

for indicating the importance of terms in a text.

The ostensible goal of most word clouds is to provide a high-level summary of

a text. Is the visualization well suited for the task? A strength of word clouds is

that they are highly interpretable and directly display the units of analysis, words

and word-level statistics. Users can readily assess word distributions and identify key

recurring terms. Studies found summary information provided by a word cloud can

help form meaningful impressions [38] and answer broad queries [146].

To enable more specialized tasks, however, changes are required to the underly-

ing language model. For decades, researchers have anecdotally noted that the most

descriptive terms are often not the most frequent terms [94]. Significant absence of a

word can be a distinguishing indicator of a document’s content relative to a corpus.

To better support document comparison, Parallel Tag Clouds [42] apply G2 statistics

to surface both over- and under-represented terms. Others note that single words

account for only a small fraction of descriptive phrases used by people [158]. To

better capture sentiment in restaurant reviews, Review Spotlight [177] extends the

bag-of-words model to consider adjective-noun pairs (“great service” vs. “poor ser-

vice”, instead of just “service”). By modifying the unit of analysis, the tool improves

impression formation while retaining a familiar visual design.
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In-depth analyses may require more than inspection of individual words. Analysts

may want additional context in order to verify observed patterns and trust that their

interpretation is accurate. For example, does the presence of the word “matrix”

indicate an emphasis on linear algebra, the use of matrices to represent network data,

or a scatterplot matrix for statistical analysis? Interactive techniques can provide

progressive disclosure across modeling abstractions, e.g., selecting a word in a cloud

can trigger highlighting of term occurrences in a view of the source text. In other

tools, changes in visual design are accompanied by corresponding changes in the

model. WordTree [170] discloses all sentences in which a term occurs using a tree

layout. Taking into account the frequency of adjacent terms, WordTree expands

branches in the tree to surface recurring phrase patterns. DocuBurst [41] applies

radial layout to show word hierarchy; the tool infers word relationships by traversing

the WordNet hypernym graph.

2.3.2 Document Visualization with Statistical Topic Models

A growing body of visual analytics research attempts to support document under-

standing using topic modeling. Latent Dirichlet allocation (LDA) [11] is a popular

method of discovering latent topics in a text corpus by automatically learning dis-

tributions of words that tend to co-occur in the same documents. Given as input

a desired number of topics N and a set of documents containing words from a vo-

cabulary V , LDA derives N topics �

k

, each a multinomial distribution over words

V . For example, a “physics” topic may contain with high probability words such as

“optical,” “quantum,” “frequency,” “laser,” etc. Simultaneously, LDA recovers the

per-document mixture of topics ↵
d

that best describes each document. For example,

a document about using lasers to measure biological activity might be modeled as a

mixture of words from a “physics” topic and a “biology” topic.

Latent topics are often presented to analysts as a list of probable terms [28], which

imposes on the analysts the potentially arduous task of inferring meaningful concepts

from the list and verifying that these topics are responsive to their goals. In this

case, modeling abstraction increases the gulf of evaluation [75] required to interpret
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the visualization.

Evaluations of existing visualizations indicate that an analysis of “topical con-

cepts” can provide an overview of a collection [46], but that the value of the model

decreases when the analysis tasks become more specific [79]. Beyond “high-level un-

derstanding,” many existing systems (e.g., [59, 171]) stop short of identifying specific

analysis tasks or contexts of use. This omission makes it di�cult to assess their utility.

Notable issues of trust arise in the application of topic models to specific domains.

Talley et al. [152] examined the relationships between NIH-supported research and

NIH funding agencies. To characterize research output, the authors applied LDA to

uncover 700 latent topics in 110,000 grants over a four-year period. To verify that

the topics accurately capture significant research fields, the authors manually rated

individual topics and noted the presence of a large number of “junk” or nonsensical

topics. The authors modified the model by removing 1,200 non-informative words

from the analysis and inserting 4,200 additional phrases. The authors then performed

extensive parameter search and removed poor topics from the final model before

incorporating model output into their analysis. Hall et al. [62] studied the history

of Computational Linguistics over forty years. The authors applied LDA on 14,000

papers published at multiple conferences to analyze research trends over time, and

recruited experts to verify the quality of every topic. The experts retained only 36

out of 100 automatically discovered topics, and manually inserted 10 additional topics

not produced by the model. In many real-world analyses, extensive research e↵ort is

spent on validating the latent topics that support the analysis results.

2.3.3 Investigative Analysis of Entity-Relation Networks

One particularly successful class of visual analysis tools uses entity-relation models

to aid investigative analysis. In the context of intelligence analysis, “entities” may

include people, locations, dates, and phone numbers; “relationships” are modeled as

connections between them. Example systems include FacetAtlas [24], Jigsaw [149] (a

VAST’07 challenge winner), and Palantir [119] (a VAST’08 challenge winner).

In contrast to other text visualization systems, these tools exhibit clearly-defined
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units of analysis and provide strong support for model verification, model modifica-

tion, and progressive disclosure of model abstractions. First, the units of analysis

(people, places, events) are well-aligned to the analysis tasks. The entity-relationship

model provides an interpretable analytical abstraction that can be populated by sta-

tistical methods (e.g., using automated entity extraction [57]) and modified by manual

annotations (e.g., selecting terms in source text) or other override mechanisms (e.g.,

regular expressions). Jigsaw uses a simple heuristic to determine relations among

entities: co-occurrence within a document. This model assumption is readily inter-

pretable and verifiable, but might be revisited to infer more meaningful links. To

foster trust, Palantir provides an auditable history for inspecting the provenance of

an observed entity or relation.

Progressive disclosure, particularly in the form of linked highlighting, is used ex-

tensively by both Jigsaw and Palantir to enable scalable investigation and verification.

According to Jigsaw’s creators, the “workhorses” of the tool are the list view (which

groups entities by type and reveals connections between them) and the document

view (which displays extracted entities within the context of annotated source text).

In contrast, Jigsaw’s cluster view receives less use, perhaps due to the interpretation

and trust issues inherent in assessing an arbitrary number of automatically-generated

groupings.

Across these examples, I note that successful model-driven visualizations exhibit

relevant units of analysis responsive to delineated analysis tasks. However, I also find

that many text visualizations fail to align model abstractions with real-world tasks;

iterative design often considers interface elements, but not modeling choices. These

observations emphasize a recurring lack of attention to model design and a need for

principled approaches. I revisit these three classes of text visualizations in Section

3.4, and present a set of process-oriented design guidelines for model-driven systems.



Chapter 3

Visualizing Statistical

Topic Models

Statistical topic models enable the exploration of large document collections by iden-

tifying co-occurring words that can capture thematic patterns. To gain actionable

insights from the modeling results, analysts often need to first verify that the uncov-

ered topical concepts are semantically meaningful within the domain of analysis.

In this chapter, I introduce interpretation and trust, two design principles for

creating e↵ective model-driven visualizations. I demonstrate that model design is

just as critical as visual design in determining the e↵ectiveness of a visual analysis

tool. A user-centered iterative design process must consider the two aspects together;

doing so can lead to improvements in both. Through a series of collaborations with

social scientists and machine learning researchers, I applied topic modeling to study

large-scale academic discourse. I describe my experiences in three projects involving

di↵erent models and visual representations: the Stanford Dissertation Browser, a topic

flow visualization tool, and a visualization of language transfer in academia. Finally,

in response to the recurring need to inspect inferred topics, I introduce Termite, a

visual analysis tool for assessing topical quality.

19
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3.1 Model-Driven Visualizations

Analysts often use both statistical models and data visualizations to help them make

sense of large and complex data. Models are abstractions that represent data in terms

of entities and relationships relevant to a domain of inquiry. Visual representations

may depict a model, source data, or a combination of both. A central goal of visual

analytics research is to augment human cognition by devising new methods of coupling

data modeling and interactive visualization [155].

Statistical modeling—and model-driven visualizations on top of which they are

built—can greatly increase the scale of an analysis by automatically extracting pat-

terns from data, based on assumptions about structures in the data. While model

abstractions should ideally correspond to analysts’ mental models of a domain to aid

reasoning, unsuitable or unfamiliar abstractions can impede interpretation. Moreover,

reliable discoveries depend on analysts’ ability to scrutinize both data and model and

to verify that a visualization shows real phenomena rooted in appropriate model

assumptions. Abstractions, however, can prevent an analyst from inspecting the un-

derlying computation or data transformations backing an observation.

I begin this chapter with the following example to illustrate the potentials and

pitfalls of conducting visual analyses through modeling abstractions.

3.1.1 The Curious Case of Petroleum Engineering

Consider the visualizations in Figure 3.1, which depict “topical similarity” between

university departments in terms of their published Ph.D. dissertations. We fit a sta-

tistical topic model (latent Dirichlet allocation or LDA [11]) to the text and compute

topical similarity between departments (based on cosine similarity between topic vec-

tors that represent each department).

In the top view, we project departments onto a two dimensional plane based on

principal component analysis (PCA) projection of a matrix of all pairwise topical

similarities. Using this visualization we note an unexpected trend. Over the years,

Petroleum Engineering pulls away from other engineering departments, and by 2005,

it is situated between Neurobiology, Medicine, and Biology. This observation comes
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Figure 3.1: The curious case of Petroleum Engineering. The top visualization shows a
2D projection of pairwise topical distances between academic departments. In 2005,
Petroleum Engineering appears similar to Neurobiology, Medicine, and Biology. Was
there a collaboration among those departments? The bottom visualization shows the
undistorted distances from Petroleum Engineering to other departments by radial
distance. The connection to biology disappears: it was an artifact of dimensionality
reduction. The visual encoding of spatial distance in the first view is interpretable,
but on its own is not trustworthy.
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easily as the visualization is readily interpretable; pixel distance on the screen os-

tensibly represents topical similarity. However, the display is the result of a chain of

transformations—topic modeling, similarity measures, and dimensionality reduction.

Can an analyst trust the observed pattern?

The bottom view instead shows undistorted distances from Petroleum Engineering

to the other departments. The relationship with Biology evaporates; it is an artifact

of dimensionality reduction. Stripping a layer of model abstraction (in this case, PCA

projection) enables validation and disconfirms the initial insight.

3.1.2 Chapter Outline

In this chapter, I introduce interpretation and trust, two design considerations for

model-driven visual analysis. I define interpretation as the facility with which an an-

alyst makes inferences about the underlying data and trust as the actual and perceived

accuracy of an analyst’s inferences. As illustrated by the Petroleum Engineering ex-

ample, designs lacking in interpretation or trust can restrict an analyst’s ability to

generate and validate insights derived from an analysis.

In Section 3.2, I introduce the Stanford Dissertation Browser, a visual analysis

tool for exploring over 9,000 Ph.D. dissertations published at Stanford University by

topical similarity. A goal of the tool is to enable the investigation of shared ideas

and interdisciplinary collaboration among the academic departments at the univer-

sity. We initially envisioned an interface using existing statistical models. However,

we quickly arrived at a working visualization that revealed unexpected shortcomings

in the underlying model. Our design work instead involved close collaboration with

machine learning and natural language processing researchers to develop and evaluate

models that better supported our analysis goals. We describe our experience of build-

ing the Dissertation Browser, drawing attention to issues of interpretation and trust

as well as highlighting successful design decisions. We contribute a novel similarity

measure for text collections based on the notion of “word-borrowing” and show how

it arose from our iterative design process.
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In Section 3.3, I provide selected examples from two additional projects that incor-

porate di↵erent models and visual representations, and highlight the recurring need

for external validation in model-driven analyses. My topic flow visualization tool ini-

tially caused interpretation issues due to a di↵erence between how the experts and

the model assign importance to a citation graph. An improved visualization allowed

experts to identity unexpected trends which revealed ungrounded assumptions made

by the model. We then examined language transfer based on three decades of aca-

demic discourse. My tools allowed my collaborators to estimate model stability, test

alternative hypotheses, and verify their discoveries based on an analysis of over one

million Ph.D. dissertations.

Finally, I investigate how visualization can aid topic model assessment in Section

3.5. I present Termite, a visual analysis tool for examining the topical term distri-

butions produced by a statistical topic model. I contribute two novel techniques.

First, I describe a saliency measure for ranking and filtering terms. By surfacing

more discriminative terms, my measure enables faster assessment and comparison of

topics. Second, I introduce a seriation method for sorting terms to reveal clustering

patterns. My technique has two desirable properties, preservation of term reading

order and early termination when sorting subsets of words. I demonstrate how these

techniques enable rapid classification of coherent or junk topics and reveal overlap

among topics.

3.2 The Design of a Dissertation Browser

As part of the Stanford MIMIR Project, we were tasked with investigating the impact

of interdisciplinary collaboration at Stanford University. Our approach adopted the

idea that we could identify influences and convergent lines of research across disci-

plines by detecting shared language use within university-wide publications. Manually

reading the document collection is infeasible due to both the size of the corpus and the

expertise required to discern topical overlap between papers. The project also receives

the attention of university administrators who wish to evaluate the e↵ectiveness of

various research institutes on campus. Do multi-million dollar collaborative centers
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return suitable intellectual dividends? As a part of the collaboration, I designed the

Stanford Dissertation Browser, a visual analysis tool for exploring 16 years of Ph.D.

theses from 75 academic departments.

3.2.1 Identifying the Units of Analysis

The social scientists hypothesized that interdisciplinary collaborations foster high-

impact research, and wanted to identify ideas that might bridge disciplines. For

example, they posited that statistical methods are topically situated at the center of

the sciences and engineering. What data, models and representations would enable

rapid assessment of such hypotheses? We began by collecting 16 years of dissertation

abstracts, for which text and metadata were readily available.

Early conversations with my collaborators emphasized the need to examine large

scale patterns in the university’s research output. A first step toward that goal is to

survey research at a “disciplinary” level. Such a survey might suggest areas of horizon-

tal knowledge transfer— such as the application of theory, methodology, or techniques

across domains— that could then be verified as interdisciplinary collaborations. Be-

cause each department approximately acts as its own discipline, the university’s 75

academic departments were suggested as a sensible baseline unit of analysis. Each de-

partment’s school (such as Engineering or Medicine) provides further organizational

context that is meaningful to my collaborators and target audience within the univer-

sity. A visualization that demonstrates which departments share content would allow

my collaborators to focus on unexpected areas of inter-disciplinary collaboration and

verify known ones.

My collaborators also emphasized the need to assess the impact of interdisciplinary

initiatives, which requires tracking the topical composition of involved groups over

time. My collaborators want to correlate change in research output to the formation

of academic ties that cross disciplinary boundaries, such as the creation of research

institutes, joint grant proposals, and co-authorship. Time, in this case the year of

filing, is therefore necessary for the analysis tasks.

Textual similarity provides one means of identifying which disciplines are sharing
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information. Because each dissertation is associated with one or more departments,

the content of these dissertations was seen as a reasonable basis for inferring whether

two departments are working on the same content as seen through the words in their

published dissertations. We thus explored various text-derived similarity measures as

the basis of these similarity scores.

3.2.2 Data and Initial Models

Our dataset contains abstracts from 9,068 Ph.D. dissertations from Stanford Univer-

sity published from 1993 to 2008. These dissertations represent over 97% of all Ph.D.

degrees conferred by Stanford during that time period. The text of the abstract could

not be recovered for the remaining 263 dissertations. The advisor and department of

each dissertation are included as metadata as well as the year of each publication. The

abstracts average 181 words in length after tokenization, case-folding, and removal of

common stop words and very rare terms (occurring in fewer than five dissertations).

The total vocabulary contains 20,961 word types.

These words serve as the input to our models from which we derive scores of

departmental similarity based on the text of each department’s dissertations. We

initially constructed two models each representing a common approach to textual

similarity in the literature. The first metric is based on word similarity measuring

the overlap of words. The second is topic similarity in which we measure similarity

in a lower dimensional space of inferred topics.

Word Similarity Based on tf.idf

We compute the word similarity of departments based on the cosine similarity of

tf.idf vectors representing each department, a standard approach used in information

retrieval [141]. Each component i of the vector for a department v
D

is computed by

multiplying the number of times term i occurs in the dissertations from that depart-

ment (tf) by the inverse document frequency (idf), computed as log(N/df

i

) where N

is the number of dissertations in the dataset and df

i

is the number of dissertations

that contain the term i. We define the word similarity of two departments D

1

and
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Topic Similarity Based on Latent Topics

While tf.idf is e↵ective for scoring similarity for documents that use exactly identical

words, it cannot assign a high score to the shared use of related terms (e.g., “heat”

and “thermodynamics”) because each term is represented as its own dimension in the

vector space. To address term sparsity issues, we apply latent Dirichlet allocation

(LDA) [11] to infer latent topics in the corpus, and represent documents as a lower-

dimensional distribution over the topics.

We compute the topic similarity of two departments D

1

and D

2

as the cosine

similarity of their expected distribution over the topics ✓

d

learned by LDA. This

expectation is the average distribution over latent topics for dissertations in that

department, and is computed as the following.

E [✓
D

] =
1

|D|

X

d2D

✓

d

Accounting for Time

In both of the models above, we quantify the similarity of departments over time by

computing a time-aware signature vector. To compute the vector for a department

D within a year y, we sum across all dissertations in D either in the year y or in the

preceding two years y�1 and y�2, weighting the current year by 1

2

, the preceding year

by 1

3

and the remaining year by 1

6

. The extra years are included in the signature to

reduce sparsity and account for the influence of a student’s work prior to completing

a dissertation.

3.2.3 Landscape, Department, and Thesis Views

The first visualization I created was the Landscape View (Figures 3.1, 3.2, 3.3, and

3.4). This view was intended for revealing global patterns of change in departmental
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topical compositions. I encode academic departments as circles with areas propor-

tional to the number of dissertations filed in a given year. Distance between circles

encodes one of the similarity measures, subject to principal component analysis (PCA)

projection. I ensured visual stability by limiting the amount of movement between

adjacent years under the projection. Time is controlled by a slider bar that enables

analysts to view an animation of temporal changes or immediately access a specific

year.

Consider the landscape views. In Figure 3.2, word similarity suggests a relatively

uniform landscape. In Figure 3.3, however, topic similarity predicts a tight overlap of

research topics in Medicine (purple) and Humanities (orange) with a relative diverse

set of topics in Engineering (blue) and Sciences (green). Which measure best charac-

terizes the university’s research output? Without an interactive validation mechanism

or an external ground truth, we were left with no way to choose between the similar-

ity measures or to trust that the projection faithfully represents the similarity scores

derived from each model. The social scientists were unable to confirm whether the

observations— in any of the views—correspond to interdisciplinary work or to gain

insight about the nature of potential collaborations.

In response to these issues of trust, I designed the Department View as shown in

Figure 3.5 to focus on a single department at a time. This view explicitly displays the

distance from a focused department to every other department (i.e., a single row in

the similarity matrix) without distortion. Similarities are encoded as radial distances

from the focused department at the center of the display. The remaining departments

are arranged around the circle, first grouped by school, and then alphabetically within

each school. A circular representation was chosen to avoid a false impression of rank-

ordering among the departments and to fit into a single display without scrolling. By

restricting the amount of data visible at a single time, the department view avoids

projection artifacts.

This view enabled my collaborators to inspect expected patterns, such as connec-

tions between economics and business, and discover surprises. For example, contrary

to their expectations, they found that statistics and computer science were not be-

coming consistently more similar; instead, they were the most similar in year 1999.
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Figure 3.2: Departmental relationships based on tf.idf word similarity suggests a
relatively uniform landscape. When compared with Figures 3.3 and 3.4, all three
overviews seem plausible, but each makes di↵erent predictions and o↵ers little guid-
ance in choosing a model.
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Figure 3.3: LDA topic similarity predicts a tight overlap of research topics in Medicine
(purple) and Humanities (orange) with a relative diverse set of topics in Engineering
(blue) and Sciences (green). Compare with Figures 3.2 and 3.4.
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Figure 3.4: Similarities predicted by department mixture proportions best matches
expert judgment. Using a supervised machine learning approach, we estimate the sim-
ilarity of two departments by measuring how often dissertations from one department
“borrow” words from another. Compare with Figures 3.2 and 3.3.
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This surprise suggests the need for an even deeper level of verification—examining

individual dissertations that contribute to the high (or low) similarity scores of two

departments in a given year.

The department view also reveals peculiarities in the underlying models. Figure

3.5 centers on English and corresponds to the landscape view in Figure 3.3. This

figure immediately suggests a fundamental issue in the topic similarity score derived

from latent topic models: how to appropriately select the number of latent topics N

used to model the corpus. For the model in Figure 3.5, we chose the topic count

that maximizes the perplexity on the held-out data—the technique most commonly

used to select the number of topics. However, the visualization demonstrates that

the model clearly has too few topics to adequately describe variation within the

humanities. A larger number of topics may mitigate this e↵ect, but we lack data-

driven metrics for making a principled selection.

As a result, I added the Thesis View as shown in Figure 3.6 to support validation

and exploration of observed similarity scores. The thesis view is presented in response

to a click on the centered department in the department view. Every dissertation

from the focused department, as well as the most similar dissertations from other

departments, are added to the visualization within a concentric circle between the

focus and the other departments. The angular position of a thesis aligns with the

most similar department excluding the focus; the radial position is a function of the

ratio of the dissertation’s similarity to those two departments. This encoding provides

a simple means to note theses that might connect two departments.

Upon mouse over, the text of the thesis abstract is shown, enabling analysts to

read the source text and judge whether the two departments are sensible anchors

for the dissertation. This view allows users to explore the relationships between

departments at a fine-grained level, providing texture and context to the observed

department-level similarities.
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Figure 3.5: Department View using LDA topic similarity, focused on the English
department. While the overview (Figure 3.3) seems plausible, we now see that the
humanities have been clustered far too aggressively.
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3.2.4 Evaluating the Models

To assess our modeling options, we conducted an expert review. We invited academic

domain experts including professors and graduate students to use the interface and

recorded their responses. We found that the visualizations benefited from being model

agnostic. They display departmental similarity but otherwise are not constrained by

other modeling assumptions. A consistent visual representation can thus be used to

compare the results of di↵erent modeling approaches.

Using the landscape view, participants could not fully justify their observations.

Many potentially interesting patterns turned out to be projection artifacts, ultimately

leading us to remove this view from the tool. Using the department view, participants

were adept at noting similarities that violated their assumptions. Both word and topic

similarity led to many such instances. Rather than identifying a preferred model, we

became increasingly skeptical of both approaches.

The successes and mistakes of each similarity model were revealed by the thesis

view through the (mis)placement of individual dissertations with respect to the other

departments. Participants were able to discover systematic errors made by topic sim-

ilarity. For instance, several biology dissertations were spuriously linked to computer

science and vice versa because of the existence of a computational biology topic that

connected the dissertations, even though many dissertations made use of only the

biology or computer science words in the computational biology topic. The tf.idf

measure used for word similarity, on the other hand, often assigned documents very

high similarity to departments that happened to heavily use a common rare word.

We also used our own domain knowledge to examine the relationships between dis-

sertations and departments. The placement of three computational linguistics Ph.D.s

that graduated in 2005 provides an illustrative example (Figure 3.6). We expected

these dissertations to fall on the line between computer science and linguistics. In the

latent topic model’s similarity function, two of them did, but several unrelated disser-

tations were deemed substantially more similar to linguistics than the computational

linguistics dissertations. We discovered this was due to a shared latent topic that

covered both linguistics and information retrieval. While the tf.idf model succeeds in

placing these three dissertations between computer science and linguistics, it failed
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to accurately describe the relationship between the two departments. Year 2000 with

only one dissertation is the year of maximum similarity even though the dissertation

is not computational in nature.

3.2.5 Revising the Model: Department Mixture Proportions

The high frequency of “mismatch” between experts’ mental models and our similarity

scores led us to revisit our modeling assumptions. First, we wished to avoid arbitrary

parameters such as the number of latent topics (N) and realized that we might better

exploit the available metadata. Second, we had implicitly assumed that our similarity

measure should be symmetric, as required by the mathematical definition of a metric.

However, this need not be true of analysts’ views of departmental similarity. In

response, we formulated a novel similarity score that we call the department mixture

proportion. This measure uses a supervised machine learning approach to directly

represent the contents of each department, our primary unit of analysis. We estimate

the similarity of two departments by measuring how often dissertations from one

department “borrow” words from another.

To compute the department mixture proportion, my collaborating machine learn-

ing researcher utilizes the machineries of Labeled LDA 1 [128] which models each

document as a latent mixture of known labels. In a two-step process, we first learn

latent topics using the departments associated with each dissertation as labels. In

a second inference step where labels are subsequently ignored, we infer department

mixtures for each thesis.

To provide context, I briefly summarize the machineries of the unsupervised latent

Dirichlet allocation algorithm.

We train a Labeled LDA model using the departmental a�liations of dissertation

committee members as labels. Thus the departments themselves are the “topics”.

Each dissertation may have one or more labels. During training, we learn both

the per-topic term distributions (�
k

) and initial label-based topic mixtures (✓0
d

). In

Labeled LDA, topical term distributions are allowed to take on any word, as in normal

1
The Stanford Topic Modeling Toolbox, which includes a Labeled LDA implementation, is avail-

able online at http://nlp.stanford.edu/software/tmt/

http://nlp.stanford.edu/software/tmt/
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LDA training. However, per-document topic mixtures are restricted to only labels

associated with the document. For example, the topic mixture for a thesis labeled

“Biology” and “Chemistry” is zero for all topics except the two labeled departments.

Using the learned topical term distributions (�
k

), we next ignore all labels and

perform standard LDA inference on each dissertation (as if we were seeing it for the

first time). This results in a new topic mixture (✓
d

) in which the dissertation can

“borrow” words from any department, not just the ones it was initially labeled with.

We average the distributions for all dissertations in a given department to construct

the department mixture proportion. The values of this averaged distribution are the

desired similarity scores.

In short, we first determine the term distributions of each department and then

use these distributions to answer a simple hypothetical: if we let each dissertation

borrow words from any department, what mixture of departments would it use? The

resulting mixture proportion tells us the fraction of words in each dissertation that

can be best attributed to each department. The similarity of a department D
1

to D

2

is now simply the value at index D

2

in ✓

D

1

. Unlike the previous measures, this score

need not be symmetric. For instance, Music may borrow more words from Computer

Science than Computer Science does from Music, a pattern that we observe in several

years where computational music Ph.D. dissertations are filed. This new similarity

score ameliorates many of the “mismatches” identified by our earlier expert review.

3.2.6 System Deployment and Observations of Use

I first deployed the Dissertation Browser2 outside of my research team in March

2010, as part of a presentation to the University President’s O�ce. For convenience,

I launched the tool on the web where it remained available after the presentation. My

collaborators found the primary value of the tool to be in validation and communica-

tion. They noted the start of a large-scale Biophysics project connecting Biology and

Physics in 2006. Several finer stories were discovered that exhibit interdisciplinary

collaboration and knowledge transfer. In one case, the visualization demonstrated a

2
The Stanford Dissertation Browser is available online at http://vis.stanford.edu/

dissertations/

http://vis.stanford.edu/dissertations/
http://vis.stanford.edu/dissertations/
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strong connection between two departments driven by a small number of individuals

centered around the Magnetic Resonance Systems Research Lab. This lab graduated

a series of Electrical Engineering Ph.D. students in the 1990’s who worked on EE-

aspects of various MRI techniques. Around the same time, a hire in Radiology held

a courtesy appointment in Electrical Engineering. For the next decade, the influence

of these groups strongly connected the two departments until both eventually moved

onto other research areas.

As we made no e↵ort to publicize the tool, we were taken by surprise when the

system gained public attention from users on the web (e.g., in hundreds of Twitter

comments) beginning in December 2010. The majority of tweets expressed interest

or enjoyment in the use of the tool (“geeky and cool”, “i could spend hours on

this site”). Several pointed to specific patterns (“In 2003 Edu was closer to PoliSci

than English”, “Watch Psychology and Education PhD theses doing the hokey-pokey

over time”). Later, over a dozen science and tech blogs (including Hacker News,

Discover Magazine and Flowing Data) posted articles about the tool. We observed

commenters interpreting specific patterns of interest: “I was not surprised to see the

link between Computer Science and Philosophy. Heartened by a slight connection

between dissertations in Computer Science and Genetics.” and “Aha, so there are

terms that are common between civil engineering and biology but not between civil

engineering and religion or art history.” We also observed issues of trust: “[browser]

thinks neurobiology is closer to electrical engineering than to biology. It is easy to see

why that might be so based on key vocabulary terms (voltage, potential, conductance,

ion), but · · · .” From these and similar comments, we note that the ability to transition

between levels of model abstractions enabled users to interrogate the model and assess

unexpected correlations.

In summary, while text visualization research has traditionally focused on improv-

ing the e↵ectiveness of a visualization, I find that the iterative design process needs

to be extended to consider how the underlying model itself a↵ects or can be adapted

towards an analysis goal. I demonstrate how a novel “word-borrowing” modeling

approach arose through a design process that considered task analysis, visualization
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design, expert feedback, and modeling choices in a unified fashion. Moreover, ma-

chine learning research has normally been content with formal measures of model

quality, with less emphasis on user- and task-centric evaluations. However, con-

structing a high-quality model suitable for domain-specific analysis tasks necessitates

verification by experts in the domain. Aligning the units of analysis can improve the

interpretability of the visualization and the underlying model—and aid verification

as well as any possibly modifications to the model in response to user feedback. I

observe that analysts and other users of the Stanford Dissertation Browser gained

the most valuable insight—and trust in the system—by progressively inspecting the

visualization and the model at multiple levels of details.

3.3 Temporal and Large-Scale Academic Discourse

After the Dissertation Browser, I continued my collaboration with researchers from

the Stanford MIMIR Project to examine temporal trends in academic discourse. We

also expanded our topic modeling e↵orts to include over one million Ph.D. disserta-

tions in order to investigate large-scale language transfer among academic disciplines.

3.3.1 Topic Flow Visualization

My social scientist colleagues were interested in the history of academic disciplines.

For example, identifying the emergence and convergence of research topics might

provide insights on the factors that can give rise to a new field. Tracking the gradual

decline of a research topic might answer the following two questions: Do academic

disciplines die and disappear? Or, do they become mature, and in becoming a part

of the fundamental language of academic research, cease to be viewed as a topic?

For this investigation, our modeling goals were to quantify the notion of ideas

and to capture how ideas influence one another. To this end, we turned to topical

analysis of citation networks. My collaborating machine learning researcher applied

the TopicFlow model [111, 112] to the ACL Anthology Network [122, 123] consisting

of 15,160 conference papers and journal articles representing the research output of
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computational linguistics over the past 45 years. The dataset also contained 33,594

citations internally among these papers. Treating each publication as an idea, we

sought to capture the notation of influence through citations in order to identify and

track the development of research topics (i.e., aggregation of ideas).

TopicFlow combines network analysis with topic modeling. The algorithm an-

alyzes the hyperlink structure of the citation graph and computes influences in a

manner similar to PageRank [118]. At the same time, TopicFlow learns the topical

content of each document using latent Dirichlet allocation [11]. Unlike topic-sensitive

PageRank [63] where a set of topics need to be specified in advance, TopicFlow learns

the topics in conjunction with flow computation and generates topic-specific flows

along the citations.

The social scientists asked experts in di↵erent areas of computational linguistics to

verify the model output. To facilitate exploration, validation, and communication, I

created a visualization based on the citation graph (Figure 3.7). Vertical displacement

in the graph represented time. Topical flows and topical compositions (i.e., the total

topical flow through a node) were superimposed on the edges and nodes respectively.

The interface provided the users with options to search, filter, and highlight a subset

of the graph.

Misalignment between the experts’, model builders’, and the model’s views of the

data quickly surfaced. While the model’s basic unit of analysis was the amount of

topical flow along the citations, the experts reported that assessing the significance of

individual citations was extremely di�cult. During validation, the experts looked for

lineages of papers or groups of authors that advanced of a topic or body of knowledge.

In other words, papers and authors—not individual citations— formed the salient

units by which experts judged importance and relevance. The experts described

the display of flows as a hindrance as they tried to ignore the line widths imposed

by the visualization. On the other hand, the model builders preferred the display

of topical flows which matched the actual computational mechanism of the model.

Examining the flows—without any intervening abstractions—provided them with

detailed information about the performance of their model.

In response, I introduced customized views for the experts and the model builders.
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I applied di↵erent visual encodings to the nodes and edges, such as reducing the promi-

nence of the lines for the experts and introducing search options for expressing more

complex citation or author relationships. The personalized views featured visual el-

ements that more truthfully matched each user’s respective mental units of analysis

(papers and authors vs. topical flow) which in turn better supported their respec-

tive tasks (assessing the importance of papers vs. adjusting the modeling parameters

to produce topical flows that best capture expert opinion). By maintaining a com-

mon graph layout among all the views, the visualization enabled my collaborators to

communicate their findings despite the di↵erent visual encodings.

My final visualization revealed previously undocumented issues with the TopicFlow

algorithm. During validation, the experts were troubled by the fact that a number

of relatively unimportant papers received a large amount of topical assignment in

multiple topics. Examining the flows, the model builders reported that they were due

to flows accumulating along cyclical references in the citation graph: a condition that

the model had assumed should not exist but nonetheless occurred in real-world data.

This case study further highlights the need to support interpretation and establish

trust when designing data analysis tools. Statistical models are typically designed to

approximate meaningful concepts in a domain of analysis. However, model outputs

can deviate from the intended concepts due to a variety of reasons, such as inap-

propriate modeling assumptions. Here, we observe an additional possible source of

modeling errors: dirty data. My collaborating social scientists are rightfully concerned

about the validity of the model outputs. By modifying the visualization and improv-

ing its interpretability, my tool allows experts to more e�ciently interpret the model

predictions, and in doing so, spot errors in the data.

3.3.2 Visualizing Language Transfer in Academia

In a separate project, we extended our analysis on inter-disciplinary collaborations

to investigate large-scale language transfer across academic disciplines. While tra-

ditional survey methods such as literature reviews, expert interviews, and question-

naires can provide detailed stories about the development in specific subjects, such
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methods do not scale for our analysis goal, which was to analyze research output at

a national level. Network-based analysis (e.g., citations and co-authorship) capture

only formal references and might exclude influences due to informal conversations

and often-uncited distant readings of work in other fields. We chose to analyze Ph.D.

dissertations as they have a greater coverage of research fields than do journal pub-

lication databases. In the end, we examined abstracts from over 1.05 million Ph.D.

dissertations published between 1980 and 2010 from 157 U.S. universities classified

as research-intensive by the Carnegie Foundation [25].

Based on previous experience, our machine learning collaborators chose a topic

model that allowed analysts to explicitly express domain expertise and prevent unnec-

essary modeling abstractions and complexities. Partially labeled Dirichlet allocation

[129] is a semi-supervised learning algorithm based on a three-level soft clustering of

words. Users are allow to assign labels to documents that exemplify a predetermined

set of topical concepts. We chose 268 ProQuest subject codes as labels, which form

the basic modeling units. Dissertations tagged with the corresponding subject codes

were used as exemplary documents in the training process. We grouped the subject

codes into 69 subject codes based on National Research Council (NRC) classification.

These areas were then further grouped into six broad area designations chosen by our

team: engineering; physical and mathematical sciences; biological sciences; earth and

agricultural sciences; social sciences; and humanities. These areas and broad areas

became the common units of analysis.

I created two views of the results. First, a circle view shows all areas in a ring and

displays a link between areas exhibiting strong topical overlap (Figure 3.8). Second,

a matrix view shows detailed language transfer (Figure 3.9). The area of a circle at

row i and column j represents how likely it is that dissertations published in area j

uses the language of area i. Colors denote the broad areas.

My visual analysis tool enabled the social scientists, model builders, and experts

to iterate through many versions of the models based various parameter settings,

identify a high-quality model, and verify that the results were robust across a wide

range of assumptions and parameters. As described earlier in Section 3.2.4, a model
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Figure 3.8: Circle view showing topical overlap between research areas. Based on
partially labeled Dirichlet allocation or PLDA [129] applied to one million Ph.D.
dissertations published in 157 universities in the United States.
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agnostic representation is e↵ective in supporting model comparison. The final vi-

sualization and model led to various observations [125], including the identification

of methodological fields that export broadly, emergence of topical fields that borrow

heavily and expand, and old topical fields that grow insular and retract.

In summary, across these projects, we find that successful model-driven visualiza-

tions depend on appropriate alignment of the model, visualization, analysis task, and

user expertise. Exposing model abstractions can support model modification. Con-

textual information such as labels can aid model verification. Variables amenable to

modeling, however, may di↵er from the ideal dimensions for analysis or presentation.

In these cases, visualization can be critical in supporting collaboration—by adapting

to each stakeholder’s analysis task and by creating a shared representation to enable

e↵ective communication.

3.4 Design Guidelines

Across the three previous projects (Sections 3.2 and 3.3) and based on the earlier lit-

erature review on text visualizations (Section 2.3), I find that successful model-driven

visualizations depend on appropriate alignment of the model, visualization, analysis

task, and user expertise. Exposing model abstractions can support model modifica-

tion. Drilling down/zooming out and providing context can aid model verification.

Variables amenable to modeling, however, may di↵er from the ideal dimensions for

analysis or presentation. In these cases, visualization can be critical in supporting

collaboration—by adapting to each stakeholder’s analysis task and by creating a

shared representation to enable e↵ective communication.

To facilitate interpretation and trust in model-driven visualizations, I distill the

following process-oriented recommendations for model and visualization design:

• Align the analysis tasks, visual encodings, and modeling decisions along ap-

propriate units of analysis.

• Verify the modeling decisions: ensure that model output accurately conveys

concepts relevant to analysis.
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• Provide interactions to modify a model during analysis.

• Progressively disclose data to support reasoning at multiple levels of model

abstraction.

3.4.1 Model Alignment

I use the term alignment to describe the correspondences among modeling deci-

sions, visual encoding decisions, and an analyst’s tasks, expectations, and background

knowledge. I consider a visual analysis system to be well-aligned when the details

surfaced in the visualization are responsive to analyst’s tasks, while minimizing ex-

traneous information that might confuse or hamper interpretation. Alignment does

not result from interface design alone; both the visualization and model may require

iterative design.

Identify Units of Analysis

Alignment requires a su�cient understanding of users, their tasks, and the context of

use. Such domain characterization [109] relies on methods familiar to HCI researchers

(e.g., interviews, contextual inquiry, participant-observation). However, these tech-

niques may be foreign to model designers in fields such as statistics or machine learn-

ing. To facilitate communication among stakeholders with varying backgrounds, I

found it useful to frame insights in terms of units of analysis : entities, relationships,

and concepts about which the analysts reason. These units serve as a resource for

evaluating models and their fitness to the analysis task.

With the Dissertation Browser, I engaged in participatory design meetings with

my collaborators to determine the units of analysis. This process led us to realize that

changes in inter-department similarity could provide answers to the social scientists’

research questions. In turn, I was led to depict similarity data in the visualization

and avoid the potentially confusing route of trying to convey topical composition. In

later iterations I further aligned my model with this unit of analysis: I reduced the

number of abstractions by computing similarity directly as the department mixture
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proportion. This eliminated the need to set model parameters such as the number of

topics and freed analysts from unnecessarily assessing and classifying latent topics.

Assess Reliability vs. Relevance Tradeo↵s

Selecting the appropriate units of analysis often involves a balance between how

reliably a concept can be identified, and how relevant the concept is to the analysis

task. The final units of analysis reflected in a visual analysis tool may result from a

compromise: the units should correspond to the analysts’ questions but must also be

practical to model.

In the Dissertation Browser, I quantify “units of research” as academic depart-

ments. While my social science collaborators would ideally like to assess research

at a finer granularity (e.g., trends in microbiology or evolutionary systems), I lacked

reliable means to quantify such units of research. LDA models have the potential to

discover unnamed research activities, but in our case collapsed all of the humanities

into a single topic. Similarly, while investigating historical trends using LDA models,

Hall et al. [62] found that only 36 out of 100 automatically inferred “topics” were

judged relevant by experts in the field. Named organizations such as departments

can be identified reliably, and correspond to concepts that the analysts can compre-

hend and verify during analysis. More generally, I recommend leveraging available

metadata to provide reliable and relevant units of analysis.

Enumerate Model Assumptions

To assess alignment, it is valuable to explicitly enumerate the assumptions implicit in

a modeling approach. Common assumptions in quantitative statistics are that data

values are independently and identically distributed according to a known probability

distribution (e.g., Gaussian, Poisson, etc.). Within text processing, many models are

predicated on a bag-of-words assumption that ignores word ordering and relations.

Understanding such assumptions is important for determining if a model is appropri-

ate for the given units of analysis. Enumerating assumptions also provides a resource

for design, suggesting potential starting points for alternative models.
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While designing the Dissertation Browser, I assumed that similarity must be based

on a proper metric, and hence symmetric. Once I identified this assumption, it freed

us to consider the possibility of asymmetric similarity scores, ultimately leading to

a “word borrowing” model based on the department mixture proportion. In Review

Spotlight [177], the mismatch between the bag-of-words model and sentiment per-

ception was resolved by making adjective-noun pairs the units of analysis, yielding

improved performance.

3.4.2 Model Verification

Once candidate models have been identified, I need to assess how well they fit an

analyst’s goals. An analytical abstraction based on identified units of analysis can

often be realized by di↵erent modeling approaches. Verification may require collab-

oration among designers and domain experts to assess model quality and validate

model output.

Assess Model Fit

In domains with objective accuracies, one can take a quantitative approach to verifi-

cation: common evaluation measures include precision (e.g., comparing model output

to known ground truth data) or internal goodness-of-fit statistics (e.g., information

criteria such as AIC and BIC). However, one should ensure that such metrics cor-

relate with analysis goals. Domains such as text interpretation may be subjective

in nature and so di�cult to quantify. For LDA topic models, quality is typically

measured in perplexity, which describes the “distinctiveness” of the learned topics.

While perplexity is a sensible measure of encoding quality in an information-theoretic

sense, in our case it did not correspond to our task: identifying concepts representing

coherent “research topics.”

Conduct End-User Evaluations

HCI evaluation methods can enable verification. For example, task-based user studies

or real-world deployments may be used to assess how well a system aids analysis
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tasks. Walkthroughs with representative users can help designers gauge analysts’

familiarity with a presented analytical abstraction. A potential trade-o↵ is that if

analysts don’t fully understand the model (e.g., higher gulf of evaluation) but gain

more useful and verifiable insights, a less familiar model may be preferred. In my

case, I found that expert review was a relatively lightweight means to assess model

quality by cataloging instances in which users believed the model to be in error. These

“mismatches” became points of comparison across modeling options. An interesting

challenge for future work is to better correlate the results of user-centered evaluation

with less costly model quality metrics: Can we identify or invent better metrics that

reliably accelerate verification?

Enable Comparison via Model-Agnostic Views

Another method for verification is triangulation: comparing the output of multiple

models or parameter settings and gauging agreement. To enable cross-model com-

parison in a model-driven visualization, the visualized units of analysis should be

stable across modeling choices. I use the term model-agnostic views to describe vi-

sualizations that use a single analytical abstraction to compare the output of various

underlying modeling options. To be clear, such views rely on a stable abstraction;

what they are “agnostic” to is the inferential machinery of the models. For exam-

ple, the Dissertation Browser uses inter-department similarity as the shared unit of

analysis, enabling comparisons with any model that can generate suitable similarity

scores. Interactive comparison of parameter settings and modeling options can be in-

valuable to model designers when assessing choices. Providing similar facilities to end

users is also helpful, but might best be treated as a “last resort” when an accurate,

well-aligned model can’t be found.

3.4.3 Model Modification

Even with careful attention to alignment and verification, a model’s output may be

incorrect or incomplete. Whether due to limited training data or inaccurate yet prag-

matic modeling assumptions, analysts often require mechanisms to modify a model
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abstraction over time. The approaches listed below constitute ways to interactively

improve model alignment.

Modify Model Parameters

A simple form of model modification is to adjust free parameters. Examples include

setting the number of topics in an LDA model or adjusting threshold values for data

inclusion (e.g., weights on edges in a social network). I have found that this ability is

critical for early stage model exploration. While ideally this would not be necessary in

a final analysis tool, in practice one rarely finds a “perfect” model. Consequently it is

important for analysts to be able to assess various parameterizations. One challenge

is to support real-time interactivity, as changes of model parameters may require

expensive re-fitting or other operations. For such cases, visual analysis tools might

provide facilities for scheduling o✏ine, batch computation across a range of parameter

values.

Add (Labeled) Training Data

Another approach to model modification is to introduce additional training data. For

example, an analyst might add new text documents labeled as positive or negative

examples of a category. In the context of the Dissertation Browser, new inference

procedures might incorporate expert annotations into the model fitting process. To

avoid costly re-fitting, designers might leverage techniques for online, interactive ma-

chine learning [2, 54]. An important research challenge is to design reflective systems

that elicit the most useful training data from users, perhaps using active learning

methods [39].

Adjust The Model Structure

Analysts familiar with a modeling method may wish to directly edit the model struc-

ture. An analyst might add new latent variables or conditional dependencies within

a Bayesian network, or add a new factor to a generalized linear model. In this case,
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the model itself becomes a unit of analysis, requiring that users possess su�cient

modeling expertise.

Allow Manual Override

An alternative approach is to bypass the modeling machinery entirely to override

model output. For example, to correct modeling mistakes or impose relations outside

the scope of the model or source data. Analysts may wish to delete or modify inferred

LDA topics. Hall et al. [62] removed 64 topics and inserted 10 hand-crafted topics

in order to complete their investigation; Talley et al. [152] removed poor topics and

flagged questionable topics in their visualization. Similar to model agnostic views,

manual override benefits from an analytical abstraction decoupled from any inferential

machinery. However, overrides may prove problematic with dynamic data: should

overrides persist when modeling incoming data?

3.4.4 Progressive Disclosure

By abstracting source data, models can improve scalability, surface higher-order pat-

terns and suppress noise. However, they might also discard relevant information. To

compensate, model-driven visualizations can enable analysts to shift among levels of

abstraction on-demand. Progressive disclosure is the strategy of drilling down from

high-level overview, to intermediate abstractions, and eventually to the underlying

data itself. Progressive disclosure balances the benefit of large-scale discovery using

models with the need for verification to gain trust. A tool can support reasoning

and improve interpretation by displaying the right level of detail when it is needed.

The critical concerns are that detailed data (1) is revealed on an as-needed basis

to avoid clutter and (2) highlights the connections between levels of abstraction to

aid verification. I identify two primary interaction techniques for achieving progres-

sive disclosure: semantic zooming [8] and linked highlighting (a.k.a. “brushing and

linking”) [7].
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Disclosure via Semantic Zooming

Semantic zooming changes the visible properties of an information space based on

the current “zoom” level, exposing additional detail within an existing view. Us-

ing semantic zooming for progressive disclosure entails incorporating elements across

di↵erent levels of modeling abstraction. The Dissertation Browser uses semantic

zooming to move from department view to thesis view: individual dissertations are

visualized in relation to the higher-level departmental structure. I hypothesize that

semantic zooming is particularly e↵ective for facilitating interpretation if it can show

the next level of abstraction within the context of an established abstraction. Se-

mantic zooming relies on a hierarchical organization of relevant model abstractions

or metadata.

Disclosure via Linked Highlighting

Another option is to present di↵erent levels of analytical abstraction in distinct visu-

alizations. Linked selection and highlighting between views can then enable investi-

gation: given distinct visualizations at di↵erent levels of abstraction (e.g., a network

of extracted entities and a document viewer) highlight the cross-abstraction connec-

tions (e.g., the occurrences of the entity in the document). Perhaps the simplest case

is showing details-on-demand. The Dissertation Browser shows the source text of a

dissertation abstract in a separate panel when a thesis is selected. Linked highlighting

is desirable if the di↵erent levels of abstraction are more e↵ectively presented using

disjoint visual encodings— that is, when combining levels via semantic zooming is

either impossible or inadvisable. When faced with non-hierarchical relations or si-

multaneous inspection of three or more levels of abstraction, linked views are likely

to be preferable to semantic zooming.

Choosing Levels of Analytical Abstraction

A primary design challenge for progressive disclosure is to select the proper levels of

abstraction. I consider this an instance of (vertical) model alignment that depends on
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the identified units of analysis. Another outstanding question is how “deep” progres-

sive disclosure should go. For example, comments from Dissertation Browser users

suggest that my design would be further improved by incorporating word-level details

to aid verification of thesis-level similarities (e.g., what words does Civil Engineering

“borrow” from Biology?). In most instances, I find that progressive disclosure should

terminate in the original source data, enabling analysts to connect model abstractions

to the raw input.

3.5 Visualizations for Assessing Topical Quality

In this section, I demonstrate how visualizations can enable e↵ective use and de-

ployment of statistical topic models. When applying topic modeling to real-world

analysis, a recurring task in my own experiences and as documented in the literature

is the evaluation of topical quality. An e↵ective means for assessing topical quality is

thus an important step toward making topic models more useful for analyses.

Existing literature suggests that the quality of a topic is often determined by the

coherence of its constituent words [1] and its relative importance to the analysis task

[172] in comparison to other topics. However, in many documented cases, evaluation

is done by users visually inspecting lists of words—a representation that is ill-suited

for quality assessment or topical comparisons.

In response, I developed Termite (Figure 3.10), a visual analysis tool designed

for inspecting the topical term distributions produced by a topic model. My tool

contributes two novel techniques to aid topical quality assessment. First, I describe

a saliency measure for ranking and filtering terms. By surfacing more discriminative

terms, my measure enables faster assessment and comparison of topics. Second, I

introduce a seriation method for sorting terms to reveal clustering patterns. My

technique has two desirable properties: preservation of term reading order and early

termination when sorting subsets of words. I demonstrate how these techniques enable

rapid classification of coherent or junk topics and reveal topical overlap.
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3.5.1 Design Goals

My goal is to create a tool that supports the e↵ective evaluation of term distributions

associated with latent topics. The tool should help with assessing the quality of

individual topics and all topics as a whole. In particular, I examine how to select

appropriate descriptive terms to aid rapid impression formation; incorporate term

relatedness to reveal high-level patterns and improve readability; and provide context

for more in-depth analysis.

LDA topics are multinomial probability distributions over terms. At present, the

evaluation of topical quality relies heavily on experts examining lists of most probable

words for a given topic in descending order [28, 62, 106, 116] (e.g., “dna, replication,

rna, repair, complex, interaction, base, . . .”). I highlight relevant visualization design

and describe the potential techniques that may better support the task.

Prior work shows that an appropriate choice of descriptive terms can aid com-

parison and understanding, and suggest design alternatives to displaying the most

frequent words. Parallel tag clouds [42] apply G2 statistics [51] to identify words that

are over-represented and under-represented (i.e., not just merely frequent in absolute

counts), and find that they aid comparison between groups of documents. Review

Spotlight [177] presents adjective-noun pairs (i.e., phrases instead of words) to better

capture the notion of sentiments in restaurant reviews (e.g., “good service” instead

of “service”); participants are able to form more detailed impressions faster. Tag

clouds [163] are a natural generalization of displaying top terms; both are aimed at

supporting initial assessment of word distributions. Notably, tag clouds presents text

as a bag of words, which matches the underlying language model.

Word relatedness can be incorporated into the visualization to surface high-level

patterns in the text. DocuBurst [41] leverages hypernyms (from WordNet [104]) to

radially layout words in a document to show hierarchical relationships between terms.

The layout reveals patterns within or between texts, and enables comparison across

multiple documents. TileBar infers word relatedness by co-occurrence [65]. The

presentation enables users to make better judgments about the potential relevance of

a document.
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Reading and language comprehension often requires context. Interpreting individ-

ual words in isolation can be di�cult and error-prone. A common technique is to

display the original text, and highlight relevant terms within the source document.

Concordance [169] shows all sentences in which a word occurs, and enable analysts

to read the original text to gain deeper understanding. WordTree [170] shows all

words following a selected term based on tree layout. Branches of the tree can reveal

frequent word sequences.

3.5.2 The Termite System

Termite consists of a matrix of term-topic distributions, with support for filtering and

ordering by terms, ordering by topics, and drilling down to a specific topic to reveal

related documents. All results described in this paper are based on the LDA models

[124] with 25 to 50 topics, trained on abstracts from 372 papers published in IEEE

Information Visualization Conferences from 1995 to 2010 [148].

Term-Topic Matrix

The term-topic matrix (Figures 3.10 and 3.11) shows term distributions for all latent

topics. Unlike lists of per-topic words (the current standard practice), matrices sup-

port comparison across both topics and terms. For a matrix view to be e↵ective I

must address multiple design criteria.

I use circular area to encode term probabilities. Texts typically exhibit long tails

of low probability words. Any encoding choice must deal with the long tail in a term

distribution. Area has a higher dynamic range than length encodings (quadratic vs.

linear scaling). Curvature enables perception of area even when the circles overlap;

overlap is unavoidable in order to retain su�cient resolution for a list including less-

frequent terms. I also experimented with a parallel tag cloud [42] presentation where

text is displayed directly in the matrix; the resulting visualization was not su�ciently

compact for even a modest number of terms.
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Displaying Informative Terms

Showing all words in the term-topic matrix is neither desirable nor feasible due to

large vocabularies with thousands of words. Termite can filter the display to show

the most probable or salient terms. Users can choose between 10 and 250 terms.

For most reasonable large displays, setting N over 250 causes significant amount of

scrolling and reduces the e↵ectiveness of the visualization.

I define term saliency as follows. For a given word w, I compute its conditional

probability P (T |w): the likelihood that observed word w was generated by latent

topic T . I also compute the marginal probability P (T ): the likelihood that any

randomly-selected word w

0 was generated by topic T . I define the distinctiveness of

word w as the Kullback-Leibler divergence [83] between P (T |w) and P (T ):

distinctiveness(w) =
X

T

P (T |w) log
P (T |w)

P (T )

This formulation describes (in an information-theoretic sense) how informative the

specific term w is for determining the generating topic, versus a randomly-selected

term w

0. For example, if a word w occurs in all topics, observing the word tells

us little about the document’s topical mixture; thus the word would receive a low

distinctiveness score. The saliency of a term is defined by the product:

saliency(w) = P (w)⇥ distinctiveness(w)

As shown in Figure 3.11, filtering terms by saliency can aid rapid classification

and disambiguation of topics. Given the same number of words, the list of most

probable terms contains more generic words (e.g., “based, paper, approach”) than

the list of distinctive terms (e.g., “tree, context, tasks”). My saliency measure speeds

identification of topical composition (e.g., Topic 6 on focus+context techniques). By

producing a more sparse term-topic matrix, my measure can enable faster di↵eren-

tiation among the topics and identification of potential junk topics lacking salient

terms.
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Ordering the Term-Topic Matrix

Termite provides three options for term ordering : alphabetically to aid scanning, by

frequency, or using seriation. Seriation permutes the presentation order to reveal

clustering structure, and are commonly used to improve visualizations of matrices

[90] or cluster heatmaps [173].

Termite uses a novel seriation method for text data. First, I define an asymmetric

similarity measure to account for co-occurrence and collocation likelihood between all

pairs of words. Collocation defines the probability that a phrase (sequence of words)

occurs more often in a corpus than would be expected by chance, and is an asymmetric

measure. For example, “social networks” is a likely phrase; “networks social” is not.

Incorporating collocation favors adjacent words that form meaningful phrases, in the

correct reading order. I compute the likelihoods using G2 statistics [51].

G2 estimates the likelihood of an event v taking place when another event u is also

observed. The likelihood is computed using the following 2⇥ 2 contingency table:

events u ¬u

v a = P (u|v) b = P (¬u|v)

¬v c = P (u|¬v) d = P (¬u|¬v)

The G2 statistic is then defined as:

G

2 = a log
a(c+ d)

c(a+ b)
+ b log

b(c+ d)

d(a+ b)

For word co-occurrences, G2 represents the likelihood of a word v appearing in a

document/sentence when another word u also appears in the same document/sentence.

For bigrams, G2 examines all adjacent pairs of words, and estimates the likelihood of

v being the second word when u is the first word.

I then place the terms according to their similarity scores by applying the Bond

Energy Algorithm (BEA) [99]. I terminate BEA whenever a sorted sub-list with

the desired number of terms is generated. Assessing topical composition typically

requires examining only a subset of the common or mid-frequency words [94], and does

not require seriating the full vocabulary. I use BEA because it accepts asymmetric
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Figure 3.11: Top 30 frequent (left) vs. salient (right) terms. My saliency measure
ranks “tree, context, tasks, focus, networks” above the more frequent but less infor-
mative words “based, paper, approach, technique, method.” Distinctive terms enable
speedier identification: Topic 6 concerns focus+context techniques, but this topical
composition is ambiguous when examining the frequent terms.



CHAPTER 3. VISUALIZING STATISTICAL TOPIC MODELS 60

similarity measures as input and is a greedy algorithm; early termination does not

a↵ect the quality of its results.

As shown in Figures 3.12 and 3.13, my seriation algorithm reveals topical clus-

ters of terms. For example, my visualization enables rapid identification of coherent

concepts, such as Topic 2 on parallel coordinates. Term grouping reveals shared prop-

erties between topics, e.g., “maintaining stability” in both treemaps and force-directed

graph layout. My technique preserves reading order down the list of terms; examples

include “online communities,” “social networks,” and “aspect ratio.” Seriating terms

in reading order facilitates scanning and a sense of term use in context.

Qualitatively, I observe that seriating terms using a combined similarity mea-

sure based on both document and sentence level co-occurrence is preferable to either

statistics alone. Bigram likelihood produces a significantly sparser matrix than does

document co-occurrence alone. As a result, adding bigram likelihood doesn’t signifi-

cantly change the global seriation order. Instead, it a↵ects local orderings and places

words such as “parallel coordinates,” “user interface,” “social networks,” and “small

multiples” in the correct reading order. I experimented with trigram statistics, but

find that it degrades the overall seriation quality. Longer phases such as “node link

diagram” are already produced by bigram statistics. Adding trigrams yields marginal

gains and produces phrases such as “graph layout algorithm,” “large data set,” and

“social network analysis.” However, adding trigram likelihood leads to false positives:

because the stop word “of” is omitted, the recurring trigram “level of detail” adds

undesirable weight to the word sequence “level detail.”

Termite also provides two options for topic ordering : default (i.e., order in which

topic is generated by LDA) and by topical weight. Prior work suggests that small

topics tend to contain more nonsensical and incoherent terms. Topic ordering by

weight may surface such patterns.

Examining a Single Topic

When a topic is selected in the term-topic view (i.e., clicking on a circle or topic

label in the matrix), the visualization show two additional views. Word frequency

view (middle of Figure 3.10) shows the topic’s word distribution relative the full
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corpus. Document view (right of Figure 3.10) highlights topical terms within the

most representative documents.

3.5.3 User Feedback

Distinctiveness Measure

I observe that filtering terms by distinctiveness supports faster assessment of topical

quality as shown in Figure 3.11. Given the same number of words, the list of probable

terms contains more generic words (e.g., “based, paper, approach”) than the list of

distinctive terms (e.g., “free, context, tasks”). My distinctive measure enables quick

identification of topical composition for single topics, e.g. Topic 6 on focus+context

techniques. By producing a more sparse term-topic matrix, my distinctive mea-

sure also enables faster di↵erentiation of topics, and identification of potential “junk

topics” that lack any significant descriptive terms. One initial concern is that dis-

tinctiveness measure might over-compensate and produce too many rare words, but

I did not observe any such issues over the range of model settings.

I do observe value in retaining the option of showing frequent terms. While

frequent terms do not yield su�cient details, they can reassure users that the model

is doing reasonably well (e.g., top words in InfoVis are “data” and “visualization”)

at initial inspection whenever a new model output is loaded into the visualization.

Term Seriation

Seriation reveals a much clearer clustering structure among terms. In Figure 3.12,

my visualization enables rapid identification of coherent concepts, such as Topic 2 on

parallel coordinates, etc. Term grouping reveals shared properties between topics, e.g.

“maintaining stability” between treemaps and force-directed graph layout, etc. Also,

my technique preserves reading order down the list of terms, e.g. “online communi-

ties,” “social networks,” etc. Seriating terms in reading order facilitates scanning and

imparts some sense of term use in context.
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Figure 3.12: Terms ordered by frequency. Compare with my seriation technique in
Figure 3.13. Discerning high-level patterns can be di�cult when words are listed by
decreasing frequency.
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Figure 3.13: My seriation technique. Compare with term ordering by frequency in
Figure 3.12. Seriation reveals clusters of terms and aids identification of coherent con-
cepts such as Topic 2 (parallel coordinates), Topic 17 (network visualization), Topic
25 (treemaps), and Topic 41 (graph layout). My term similarity measure embeds word
ordering and favors reading order (e.g., “online communities,” “social networks,” and
“aspect ratio”).
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Qualitatively, I observe that seriating terms based on combined similarity mea-

sures from document and sentence co-occurrence seems to be better than either co-

occurrence statistics alone.

The similarity measure for bigram statistics results in a significantly more sparse

matrix than co-occurrence counts. As a result, bigram statistics don’t significantly

change the global seriation order much. However, they do a↵ect local orderings: it will

place words such as “parallel coordinates”, “user interface,” “social networks,” “node

link diagrams,” and “small multiples” adjacent to each other in the correct reading

order. Adding trigram statistics doesn’t add much beyond what bigram statistics

provide, either algorithmically or semantically. Adding trigram statistics leads to

term orders such as “node link diagram” (already produced by bigram statistics) and

less informative examples such as “graph layout algorithm,” “large data set,” and

“social network analysis.” However, there are also false negatives: because “of” is

omitted, the recurring trigram “level of detail” adds undesirable weight to the term

sequence “level detail.”

Based on usage by members of my research group, I observed that users are able to

meaningfully comprehend topical composition with Termite. Example quotes include:

“The current [dataset] seems to overfit in places... much more so than the 30 topic

example I used in [a previous iteration]” and “We may have single-doc topics!” I

also received initial feedback requesting the ability to label and organize topics and

examine document-topic probabilities.

3.5.4 Deployment and Future Releases

Termite is a first step towards a visual analysis system for human-centered iterative

topic modeling. In this section, I focused on understanding terms and term-topic

distributions. We publicly released the source code for Termite in February 2013, and

are currently expanding Termite to visualize the topical composition of documents

and adding interactions to support user inputs (e.g., adjusting model parameters,

deleting junk topics, merging related topics). I believe supporting interactive model

refinement can significantly improve the utility and reduce the cost of applying topic
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models to make sense of large text corpora.

3.6 Gulfs of Evaluation and Next Steps

In this chapter, I examined how visualizations can be applied to support model-driven

analysis as well as the design and deployment of the models themselves. I proposed

interpretation and trust as criteria to guide the design of model-driven visualizations.

I demonstrated that creating e↵ective model-driven visualization requires considera-

tions of both the visualization and the underlying model and that a human-centered

iterative design process can produce e↵ective tools.

3.6.1 Visual Assessment, Modeling Error, and Bias

Researchers in information visualization and machine learning have traditionally fo-

cused on the design of e↵ective visualizations and the design of high-performance

models in their respective fields. In the context of supporting model-driven visual

analysis, however, the analytic process requires that all components work together.

My principle of interpretation can be viewed as a measure of gulf of evaluation [75]

in the analytic process. As illustrated in Figure 3.14, model-driven visual analysis

depends on a chain of data transformation, visual assessment, and communication

tasks. E�cient visual encoding minimizes the gulf of visual assessment between

a user and the visual presentation—which might depict either the source data or

the data transformed according to some modeling abstraction. Model performance

refers to the amount of modeling error which measures how well the source data

fit a model’s abstraction under some parameter setting. High-performance models

can minimize modeling error under a suitable choice of parameters. The quality

of a model-driven visualization, however, also depends on how well the modeling

abstractions match an intended analysis task in a specific domain, a gap I refer to

as the modeling bias. All three types of discrepancies—visual assessment, modeling

error, and bias—contribute to the gulfs of evaluation. To support e↵ective visual

reasoning, a tool must account for interpretability issues at all levels.
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Figure 3.14: Interpretation, trust, and gulfs of evaluation in the model-driven visual
analysis process. Visual assessment, modeling error, and bias all contribute to gulfs
of evaluation in the analytic process.

Applying human-centered design methods to the design of models can reduce

modeling bias. In my projects, by eliciting expert feedback, I identified discrepan-

cies between modeling assumptions and known characteristics of the a domain (for

example, symmetric similarity measures vs. directional departmental relationships in

Section 3.2.5); revealed problems when real-world data deviated from idealized model

representation (for example, cyclical citations in Section 3.3.1); and traded o↵ mod-

eling error to reduce bias (for example, LDA model under optimal settings grouped

humanities into a single topic which minimized error according to the model’s intrin-

sic measures but violated common sense in Figure 3.5). Expert verification also helps

instill trust that the modeling results accurately reflect meaningful facts in context.

An iterative design process allows us to examine the e↵ectiveness of all components



CHAPTER 3. VISUALIZING STATISTICAL TOPIC MODELS 67

of a visual analysis tool. In many cases, I arrived at my design, not by piecewise

optimizing the visualization or model performance but by designing an appropriate

model that reduced the gulfs of evaluation at multiple levels.

Finally, the need for models will continue to grow in the face of big data appli-

cations. Statistical models enabled our analysis of language transfer at the national

level (Section 3.3.2) which otherwise would not be possible using only traditional

survey methods. My model design strategies (align, verify, modify, and progressive

disclosure) introduced in Section 3.4 can serve as practical aids for designers and

practitioners who wish to achieve interpretability and trustworthiness in their model-

driven visual analysis tools.

3.6.2 Next Steps

Going forward, in the next chapter, I revisit the process of statistical topic modeling.

While expert verification can help validate specific model and visualization designs,

inspecting individual models requires human attention to every model instance and

does not scale. I rethink the model design process and examine how we might elicit

domain knowledge once so that we can use the information to evaluate any number of

models afterward. I build on Termite and examine how we might leverage interactive

visualization to support machine learning research, demonstrate its e↵ective use, and

improve its relevance in domain-specific analyses.



Chapter 4

Expert Organization of

Text Corpora

As demonstrated in the previous chapter, while fitting statistical topic models typi-

cally involves unsupervised learning algorithms, applying these models to real-world

analysis tasks requires a significant amount of human-in-the-loop supervision. For

example, automatically extracted topics often need to be manually verified to ensure

they are semantically meaningful within the domain of analysis. Eliciting human

judgment, however, is a time-consuming task and can dominate the total amount of

e↵ort involved in building high-quality topic models.

In this chapter, I investigate how we can reduce the cost of acquiring domain

expertise and increase its utilization in the modeling process. First, I conduct a survey

experiment in which I ask ten experienced information visualization researchers to

characterize the significant research topics in their field. My analysis of the resulting

the topical concepts enables domain-specific evaluations of topic modeling practices.

I then introduce a framework that enables large-scale assessment of topical relevance

by aligning the outputs from any number of topic models to a common set of reference

concepts. Diagnostic information generated by this framework can contribute to topic

modeling research (e.g. studying the e↵ects of model parameters).

68
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4.1 Human Supervision in the Analytic Process

Human experts often utilize categorization [32] to process a large quantity of data and

support e↵ective reasoning [160]. Categories represent how people mentally organize

or chunk information [97, 103] into groups comprised of items that share common

attributes or functions. Established design principles [117] and case studies [157]

suggest that incorporating informative categories [84, 137] into analysis tools can

enable e↵ective sensemaking [139] and e�cient communication [43].

On this basis, an often stated goal of statistical topic modeling is to extract a

semantic space [50] or structured representation [40] that corresponds to human infor-

mation organization [85]. Expectedly, data analysts are eager to utilize topic models

to analyze document collections too large for any one person to read. However, while

topic modeling may be an unsupervised learning algorithm, applying them to real-

world analysis tasks requires a significant amount of human-in-the-loop supervision. I

begin this chapter with an examination of the manual e↵ort involved in model-driven

data analysis.

4.1.1 The Need for Reusable Diagnostic Feedback

As demonstrated in Chapter 3, discrepancies between statistically extracted topics

and domain concepts abound. Creating domain-relevant models often requires that

latent topics be manually inspected and model assumptions verified. In many cases,

analysts may construct multiple models or re-train them using di↵erent parameter

settings. Expert evaluation is then needed to compare the models and select a suitable

one. In relation to other stages of the model design process that can be automated,

these human judgment tasks can dominate the time and cost of building high-quality

topic models.

At the present, when experts are employed to evaluate models [62, 152], they

are typically tasked with validating latent topics after a model is created. In such

a workflow, expert responses are tied to a specific model and cannot be reused in

subsequent analyses. Even though tools such as Termite can aid the interpretation

of topics, some tasks (e.g., model modification) may require experts to express their



CHAPTER 4. EXPERT ORGANIZATION OF TEXT CORPORA 70

knowledge about a subject matter. For example, analysts frequently remove terms or

stopwords that are deemed low in information content from a model’s vocabulary. As

illustrated in Section 3.3.1, experts may organize their knowledge about a discipline

based on units of analysis (e.g., authors and seminal papers) that di↵er from a model’s

representation (e.g., flows of words). One might reasonably suspect whether people

can e�ciently or accurately articulate domain concepts as a bag of words. Rethinking

when, what, and how to elicit user input might reduce the cost of acquiring domain

expertise and increase its utilization.

While automatic evaluation methods are available, such as statistical [11] or coher-

ence [28, 115] measures, they can be problematic in domain-specific settings because

they do not account for the notion of relevance. Many of these techniques target

the identification of junk topics [1] comprised of a nonsensical collection of words.

However, poor topical quality can be attributed to various other factors: for example,

words that represents a mix of two distinct concepts [116] or words that are deemed

irrelevant to the domain [1]. Also, many evaluation techniques typically produce

only a single goodness-of-fit likelihood measure. As the analytic process is iterative,

interpretable diagnostic feedback on how (i.e., not just how much) a model di↵ers

from expectation can be valuable in informing analysts on possible approaches for

improving the model.

4.1.2 Chapter Outline

In this chapter, I propose an alternative workflow in which we begin the model de-

sign process by first eliciting topical categorizations from human experts. Using a

computational framework that measures topical correspondence, I then apply the ac-

quired concepts to explore a large space of model designs. Not only does my approach

enable large-scale assessment of topical relevance, my work also contributes to vari-

ous aspects of topic modeling research including the evaluation of current practices,

potential future models, and parameter choices.

To support the investigation, I develop a survey method to collect expert topical

organization in Section 4.2. I identify and address issues (i.e., bias, recall, accuracy,
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participant exhaustion) associated with eliciting free-form categorization responses.

I conducted a survey and collected 202 topical responses from ten experienced re-

searchers in information visualization (InfoVis).

In Section 4.3, I introduce a method for topical aggregation of InfoVis survey

responses and their subsequent validation. I synthesize a set of 28 most coherent

concepts in InfoVis, based on three high-precision, low-recall predictors of topical

similarity. My analysis reveals that human topical concepts may be defined through

a multifaceted set of attributes.

In Section 4.4, I demonstrate that establishing a reference set of expert-provided

concepts can enable novel approaches to evaluating topic modeling practices. I con-

struct three sets of theoretically optimal word-based topic models. By measuring the

amount of mutual information between model outputs and the expert concepts, I

quantify the limits of both existing latent Dirichlet allocation (LDA) [11] models and

potential future models. The results allow me to place an upper bound on the pro-

portion of the expert concepts that can be recovered using only word co-occurrence

statistics, based on document abstracts vs. the full text. Finally, I evaluate LDA

model outputs directly in terms of experts’ organization of a domain.

In Section 4.5, I introduce a framework for measuring the topical alignment be-

tween a set of latent topics and a set of reference concepts. My framework enables

large-scale assessment of topical relevance by enabling comparison of any number

models to a common set of expert concepts. I say a topic resolves to a concept if a

one-to-one correspondence exists between the two, and recognize four types of mis-

alignment: when models produce junk or fused topics or when reference concepts are

missing or repeated among the latent topics. To compute an alignment, I estimate

the likelihood that a topic-concept pair would be considered equivalent by human

judges, based on a user study on Amazon Mechanical Turk. To ensure the stability

of my alignment measures for large-scale comparisons, I also contribute a method for

estimating and discounting topical correspondences that can be attributed to random

chance via a generative probabilistic process.

Finally, in Section 4.6, I present the findings from an exploratory process of topic

model construction. I create LDA models trained using 10,816 parameter settings.
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By evaluating the resulting 569,000 latent topics against the 202 InfoVis concepts

provided by experts using my framework, I observe that a small change in term

smoothing (�) can significantly alter the ratio of resolved and fused topics. In many

cases, increasing the number of latent topics (N) leads to more junk and fused topics

with a corresponding reduction in resolved topics. About 10% of the concepts are

only uncovered within a narrow range of parameters. Treating a model’s outputs as

reference concepts, my framework can also provide diagnostic information on how two

models di↵er.

4.2 Eliciting Expert Categorizations

In this section, I introduce a survey method for eliciting expert topical organiza-

tion based on freeform responses. Through preliminary studies, I identify four issues

(i.e., bias, recall, input accuracy, and participant exhaustion) associated with elicit-

ing open-ended categorization responses, and devise user interface and survey design

modifications to address these issues. Using the survey method, I asked ten experi-

enced researchers to describe topics of information visualization research and received

202 hand-crafted topical responses, each consisting of a title, keyphrases, and repre-

sentative documents.

4.2.1 Topical Domain and Participants

I focused on InfoVis research due to relevance, scope and familiarity. Analysis of

academic publications is one of the common real-world uses of topic modeling [61,

130]. Our familiarity with the InfoVis community allowed us to contact experts

capable of exhaustively enumerating its research areas. InfoVis has a single primary

conference, simplifying the construction and analysis of its publications.

Survey recruitment was by invitation only. I contacted 23 researchers (12 past

chairs of the IEEE Information Visualization Conference, six faculty members, two

senior industry researchers, and three Ph.D. students within a year of graduation) on

a rolling basis over four months from March to June 2012. Of the 14 surveys that were
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sent out, I received ten completed results from four past chairs, two faculty members,

one industry researcher, and three Ph.D. students. I initially limited the survey

to only past conference chairs, but expanded the criteria to established researchers

(including final year Ph.D. students) to enable greater participation.

4.2.2 Survey Design

I asked participants to describe topics using labels, terms, and documents they would

use if communicating with a peer. Representative terms should exemplify a topic

and di↵erentiate the topic from other areas of research. Terms could be any notable

techniques, methods, systems, or people. Both words and phrases (multi-word terms)

were allowed. Representative documents should exemplify the core contributions of a

topic. Pilot studies showed that citing a paper using freeform text was time consum-

ing, disruptive to the recall process, and prone to errors. In response, I limited the

representative papers to those published at IEEE InfoVis Conferences. To associate

a paper with a topic, participants could drag-and-drop a paper entry into the topic

boxes in the main panel. I requested that participants enter ten or more terms and

three or more papers per topic, though fewer responses were permissible. I asked

participants to complete the survey in a single session if possible.

Design Considerations

Conducted using a single webpage (Figure 4.1), I designed the survey to: (1) elicit

expert responses with minimal bias, (2) support recall, (3) enable accurate data col-

lection, and (4) balance between maximizing the value of available expert time and

preventing participant exhaustion. To avoid artificially limiting what they consider

to be the scope of information visualization research, the participants were instructed

to consider work published anywhere when creating the research topics. Participants

were provided with multiple blank boxes in the survey user interface. I asked subjects

to list all areas they consider to be significant. The interface contained twenty boxes

by default, but subjects could add additional boxes if desired.
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In pilot studies, the single most prominent issue was recall. Exhaustively iden-

tifying all concepts in a domain purely from memory was di�cult. In response, I

added a panel on the right that contains a list of all 442 papers published at the

IEEE InfoVis Conferences (1995 to 2011), grouped by year. As InfoVis is a single

track conference, I grouped papers within each year by session, so the ordering of

sessions and papers were consistent with the actual conference program. Participants

could browse through the proceedings or search for specific papers by title, author,

or abstract.

The most scarce resource in conducting the survey was acquiring available time

from the experts. To maximize the value of their responses, I chose exemplary words

and documents as the means to express a concept. Prior cognitive psychology studies

on categorization typically identify categories by their labels. I worried that labels

alone would not su�ciently capture the abstract concept of a research area. Based on

pilot studies, the two chosen properties— freeform typing of a list of terms, and drag-

and-drop specification of papers—minimized input complexity and allowed experts

to focus on the construction of the categories. I omitted other descriptive attributes,

such as summary sentences, which took pilot participants much longer to enter. I

displayed twenty topic boxes by default to provide reasonably exhaustive coverage

of the domain while bounding the length of the survey. In a preliminary study, my

primary advisor and I exhaustively annotated every document in the corpus with

multiple tags. The overlap between the two sets of annotations indicated that the

domain was covered by approximately twenty shared topics.

Survey Data

I received a total of 202 topical responses (maximum of 22 and minimum of 18 per

subject). The participants specified an average of 5.71 terms (max 19, min 1, me-

dian 8) and 5.15 documents (max 25, min 1, median 7) per topic. The subjects

also provided 171 distinct topic labels (158 using case-insensitive comparison) and

769 distinct terms (747 case-insensitive). Together, the experts cited a total of 342

distinct documents (77% of all papers published at IEEE InfoVis Conferences) which

I considered to be a reasonable coverage of the field.
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I analyzed timing information for the seven of ten participants who had active

internet connections for the full duration of their survey. The survey user interface

automatically saved responses every minute, allowing me to track changes at that

granularity. On average, the experts spent 91.7 minutes (max 162, min 42) editing

their responses within a maximum of five sessions. The amount of editing time

suggested that the survey taxed the experts’ attention and available contiguous time.

4.3 Synthesizing Coherent Concepts in InfoVis

In this section, I synthesize and analyze the survey responses from the InfoVis ex-

perts. I create a topical similarity measure to identify matching topics from the

di↵erent participants. My similarity measure is comprised of three independent high-

precision, low-recall predictors using topic label, textual descriptions, and exemplary

documents. The combined measure resolves matching topics with 92% precision as

verified by four additional experts. In an analysis of the resulting set of 28 combined

topics, I find that each attribute alone captures about 69% to 73% of the total topical

contents in terms of mutual information.

In contrast to previous methods [137, 153] which examine only named categories,

my synthesis approach can resolve topics without well-defined labels. During val-

idation, many such unnamed topics are deemed equivalent by independent human

judges, suggesting that topical concepts may be defined through a multifaceted set of

attributes. As some topics lack a shared vocabulary, I hypothesize that content-based

analyses cannot characterize the complete set of expert categories. I also discuss the

lack of hierarchical organization in the dataset in relation to the cognitive psychology

literature [84, 135, 136, 137].

4.3.1 Topical Resolution

To provide data for constructing the similarity measures, I examined 23 randomly-

selected pairs of participants (half of 45 possible pairs). For each participant pair,

I identified pairs of matching topics under the constraint that each topic can only
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be matched once. I manually examined 9,117 topic pairs (out of 18,134 possible),

finding 280 matching topics. On average, I find 12.2 matching topics per participant

pair (max 16, min 9, median 12).

Prefixes and su�xes Examples

... data multidimensional data ! multidimensional
... visualization(s) graph visualization ! graph

... data visualization(s) text data visualization ! text
... analysis network analysis ! network

... data analysis social data analysis ! social
... method(s) navigation methods ! navigation

... view(s) focus and context views ! focus and context
... paper(s) evaluation papers ! evaluation
... issues(s) database issues ! database

... technique(s) interaction techniques ! interaction
visual ... visual perception ! perception

visualization ... visualization toolkits ! toolkits

Table 4.1: List of 12 prefixes and su�xes removed from labels and terms

Label Similarity

Based on preliminary examination, topics with matching labels typically refer to the

same concept. However, I also find that some labels contain a mixture of concepts.

As a pre-processing step, I split labels on conjunctions (“Maps and Geospatial”),

commas (“Spatial, Temporal”), slashes, and ampersand signs, and manually dupli-

cate any substring that grammatically applies to both concepts (“Ambient/Casual

Visualization” to “Ambient Visualization” and “Casual Visualization”). I make two

exceptions for the cases “Focus and Context” and “Overview and Detail” that are

known to be single coherent concepts in InfoVis. After pre-processing, 13% of labels

are split into two sub-labels.

For each sub-label, I apply the following text processing. My intention is to min-

imize modification of the user data while producing higher quality string matching

than is provided by näıve string comparison. I manually correct for misspellings,



CHAPTER 4. EXPERT ORGANIZATION OF TEXT CORPORA 78

and remove common prefixes and su�xes as shown in Table 4.1. I replace punctua-

tions (“focus+context” to “focus and context”), and fold all responses to lower case.

I manually rephrase verb phrases into noun phrases (“visualizing uncertainty” to

“uncertainty visualization”), and convert adjectives and plurals into singular nouns

(“hierarchical” to “hierarchy”). I modify individual words in only two cases from

“bioinformatics” to “biology” and from “geospatial” to “geography.” Based on do-

main knowledge, these two pairs of words typically refer to the same concepts within

the context of InfoVis research. Altogether, I convert the 171 distinct label strings

into 109 distinct sub-labels. I assign a label similarity of 1 if the set of sub-labels

between two topics are identical, 0.5 if the set of the sub-labels intersect, 0 otherwise.

LabelSim(x, y) =

8
>>><

>>>:

1 if SubLabels(x) = SubLabels(y)

0.5 if SubLabels(x) \ SubLabels(y) 6= ;

0 otherwise

Textual Similarity

I devise a second predictor based on textual information associated with a topic. I

assign a set of tags to each topic consisting of the list of exemplary terms given by

the participants, plus the sub-labels from the previous step. I apply the same text

processing to the terms. In addition, I manually identify 61 named persons and 31

project titles from the list, so they are properly resolved (e.g., from “shneiderman”

to “Ben Shneiderman” and from “word tree” to “The Word Tree”). These text

processing steps produce a total of 653 distinct tags. Each topic is assigned an average

of 6.70 tags (max 20, min 2, median 9). For each tag, I tally its overall frequency in the

corpus (the most frequent tag “geography” occurs 21 times, followed by “perception”

at 18). Textual similarity between two topics is defined as the set overlap (Jaccard



CHAPTER 4. EXPERT ORGANIZATION OF TEXT CORPORA 79

Index) between their tags, weighted by log-transformed tag frequency:

TextSim(x, y) =
|Tags(x) \ Tags(y)|

|Tags(x) [ Tags(y)|

log Freq

=

P
t2Tags(x)\Tags(y) log Freq(t)P
t2Tags(x)[Tags(y) log Freq(t)

Document Similarity

The third predictor is based on the expert-selected exemplary documents. I com-

pute the overall citation count of each document within the collected data (the most

expert-cited papers are “Ordered Treemap Layouts” [145], “Many Eyes: A Site for

Visualization at Internet Scale” [165], and “D3: Data-Driven Documents” [15] at

10 times each). The document similarity between two topics is defined as the set

overlap (Jaccard Index) between their representative documents, weighted by each

document’s log-frequency.

DocSim(x, y) =
|Docs(x) \ Docs(y)|

|Docs(x) [ Docs(y)|

log Freq

=

P
d2Docs(x)\Docs(y)

log Freq(d)
P

d2Docs(x)[Docs(y)

log Freq(d)

Topic Similarity

The final topical similarity between two topics is a linear combination of the three

predictor outputs:

Sim(x, y) = LabelSim(x, y) + TextSim(x, y) + DocSim(x, y)

TopicSim(x, y) =

8
>>><

>>>:

1 if Sim(x, y) 2 (0.75, 3.00]

0 if Sim(x, y) 2 [0.00, 0.30)

(Sim(x, y)� 0.3)/0.45 otherwise

The thresholds 0.75 and 0.30 are chosen to achieve targets of 90% precision and
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90% recall respectively. In other words, I design the topic similarity so that I can

expect topic pairs with a similarity of 1.0 to be truly matching at least 90% of the

time, and topic pairs with non-zero similarity to contain 90% of all matching topics.

Empirically, of the 216 pairs of topics with a combined Sim score of 0.75 or higher,

195 pairs (91.1%) are annotated as matching in the training data. Of the 390 pairs

of topics with a combined Sim score of 0.30 or higher, 252 pairs are annotated as

matching, covering 90.0% of the 280 matching topics at a precision of 64.6%. Details

are provided in Table 4.2.

Topical similarity 1 (0, 1) 0

Matching 195 57 28
Non-matching 19 119 8,699

Precision 91.1% 64.6%
Recall 69.6% 90.0%

Table 4.2: Precision and recall of my topical similarity measure, based on the author’s
annotation (training dataset). Topic pairs with a similarity of 1.0 are expected to
be truly matching 90% of the time. Pairs with non-zero similarity are expected to
contain 90% of all annotated matching topics.

Verification

I conducted a second survey to ensure that my similarity measure is not over-fitted to

the training data and to ensure that annotations by the author are representative of

expert consensus on matching concepts. Four experts (including three who were not

in the original survey) were asked to verify the results. These four experts included

two faculty members, one senior industry researcher, and one post doctoral researcher.

Verification participants were shown pairs of expert topic lists in a single webpage

(Figure 4.2) and their corresponding lists of InfoVis topics. The participants were

told that the topics are generated by fellow researchers and represent what their

peers consider to the be the complete list of significant and coherent research areas in

InfoVis. Pairs of topics, one from each list, were then selected and presented to the
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participant in the same webpage. Selected topics were accompanied by their label,

exemplary terms and documents. I asked participants if the selected topics were

matching (“The two researchers are communicating the same concept.”), partially

matching (“The two topics have some overlapping content, but the two researchers

may be referring to di↵erent concepts.”), or not matching.

Figure 4.2: Verification user interface. Participants were provided with lists of re-
sponses from two experts at a time. Pairs of topics, one from each list, were then
selected and presented to the participant who was asked to identify whether the topics
were matching, partially matching, or not matching.

Each participant compared topic lists for five pairs of experts. The pairs of ex-

perts shown were not included training dataset (i.e., used to determine our similarity
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metric). For each pair of experts, the participants were shown 30 pairs of randomly

selected topics. The sampling process was designed so that topic pairs with a wide

range of topical similarity scores are equally likely to be chosen. The results are sum-

marized in Table 4.3. Counting each partial match as a prediction rate of 0.5, the

verification results confirmed the precision of my topical similarity measure. The ad-

ditional experts considered topic pairs with a similarity of 1.0 to be matching 93.1% of

the time, and those with non-zero similarity to be matching 78% of the time. Applied

to the full dataset, my similarity measure identified 405 pairs of matching topics and

335 pairs of partially matching topics (i.e., those with a non-zero similarity score),

validating to the earlier reported results on the training dataset.

4.3.2 Coherent Concepts in Information Visualization

I create a matrix visualization that displays all pairwise topical similarities to help

with identification of coherent groups of responses. Rows and columns of the matrix

correspond to expert responses; topical similarities are visually encoded using circles

at the interactions of rows and columns. I sort the matrix to place similar responses

in close proximity and reveal high-level clustering.

I observe high levels of agreement among multiple sets of responses, which appear

as blocks along on the diagonal. Examples include Text and GeoVis (Figure 4.3) and

Animation (bottom-right of Figure 4.4). I mark each of these blocks as a coherent

InfoVis topic comprised of all responses that make up the block. I also observe

Topical similarity 1 (0, 1) 0

Matching 183 40 1
Partial matching 27 66 37

Non-matching 1 27 213

Precision 93.1% 78.3%

Table 4.3: Precision of my topical similarity measure, as verified by four additional
experts. The expert find that topic pairs with a similarity of 1.0 to be matching 93%
of the time, comparable to results obtained from the training dataset.
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Figure 4.3: Submatrix of pairwise topical similarities. Each column and row cor-
responds to a single topical response provided by an expert. Areas of the circles
represent similarity between the responses. Responses are seriated to surface concept
grouping. Here, Text and GeoVis exhibit high levels of coherence and appear as
blocks along the diagonals.

multiple pairs of overlapping blocks such as Interaction Theories and Interaction

Techniques (top-left of Figure 4.4). I mark each of these blocks as a coherent topic,

and note that these overlapping topics share underlying constituent responses.

In three instances, I observe a small 2 ⇥ 2 block attached to a larger block (i.e.,

Focus and Context attached to the larger Overview and Detail, Statistical Visual-

ization attached to Uncertainty Visualization, and Visualization beyond the Desktop

attached to Devices). In these cases, domain knowledge suggests that they likely refer

to similar concepts; I group the smaller blocks into their corresponding larger blocks.

Altogether, I identify 28 coherent InfoVis topics comprised of three or more responses.

These topics consist of 14 independent topics and seven pairs of overlapping topics,

as shown in Table 4.4.
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Figure 4.4: Submatrix of pairwise topical similarities. The upper-left corner contains
responses that correspond to interactions. The two overlapping blocks suggest two
distinct concept groupings that share common elements. Due to the lack of a coherent
label, I refer to these concepts as Interaction Theories and Interaction Techniques
respectively. In the bottom-right corner, I observe a coherent set of six responses
corresponding to the topic Animation.

The Contributions of Labels, Terms, and Documents

Having identified a set of coherent concepts, I now examine the attributes with which

experts define the topics. I first explore the data using visualizations and then quan-

tify the results using information theoretic measures.

I visualize the contributions of the three predictors of topical similarity using ma-

trix views. For example, the topic Evaluation shown in Figure 4.5 is well-named.

Every expert but one labeled the topic “Evaluation” (the outlier labeled it “Purpose

and Value”). All responses that make up the topic share a common vocabulary (“eval-

uation”, “experiment”, “qualitative”, “quantitative”, “user study”). This is indicated

by the prominent block in the left submatrix, which shows the textual description

similarities among the responses. However, the experts cite a wide variety of docu-

ments to represent the research area, without a single prominent paper, illustrated

by the lack of structure in the right submatrix (document similarities).

For each coherent InfoVis topic identified in the previous section, I examine the
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Topic Size Label Text Doc

Graphs (a) 9 X X
Networks (a) 9 X

Trees (b) 9 X X
Treemaps (b) 9 X X

Multi-Dimensional (c) 10 X X X
Parallel Coordinates (c) 7 X

Text 10 X X X
GeoVis 10 X X
BioVis 8 X X

Time Series 8 X X X
Uncertainty 6 X X

Narrative 4 X X
Software 3 X X X
Devices 3 X X

Evaluation 9 X X
Perception 8 X X
Cognition 8 X
Theory (d) 5 X X

Collaboration (d) 5 X X X
Social (e) 8 X

For the Masses (e) 8 X
Toolkits (f) 10 X X X
Systems (f) 4 X

Interaction Theories (g) 5 X
Interaction Techniques (g) 6 X

Animation 6 X X X
Overview and Detail 6 X

Multiple Views 4 X

Table 4.4: The list of 28 InfoVis topics identified by at least three experts. Size
refers to the number of experts who identify the topic. A marker in the Label column
indicates that the experts assign a coherent label to the topic. Text indicates the
presence of coherent textual descriptors (label or exemplary term). Doc indicates the
citation of a common exemplary paper. Superscripts indicate overlapping topics that
share responses.
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Figure 4.5: Submatrices of textual similarities (left) and document similarities (right).
The label Evaluation is well-defined: all but one expert assigned the same name.
The topic is unified by a common vocabulary, as indicated by the block on the left.
However, the topic lacks a unifying document, exemplified by the lack of structure
on the right.

whether its constituent responses (1) are assigned a coherent label, (2) contain a

coherent set of textual descriptions, and (3) contain a common exemplary paper. I

codify a topic as unified by label, text, and document accordingly as shown in the

right columns in Table 4.4.

Previous psychology studies typically recognize categories as well-named (or la-

beled) concepts. Here, I find a heterogeneous combination of attributes used to define

the abstract category of a research area. In fact, among the 28 InfoVis topics, I ob-

serve all seven combinations of label, text, and document used to define topics as

shown in Table 4.5.

To better quantify the contributions of the three attributes, I examine the amount

of topic information that can be communicated among the experts. Given two experts

x and y, I create a joint probability distribution P (x, y) that specifies how likely a

concept x
i

given by expert x matches a concept y
j

given by expert y.

P (x
i

, y

j

) / TopicSim(x
i

, y

i

)

The mutual information between the marginal distributions P (x) and P (y) mea-

sures how much knowing the set of concepts given x informs us about the set of
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Unifying attributes Number of topics

Label + Text + Doc 7
Text + Doc 6

Text 6
Label + Text 4

Label 2
Doc 2

Label + Doc 1

Table 4.5: Attributes by which a topic is defined. Topics are defined by a heteroge-
neous combinations of attributes. In fact, all seven combinations of Label, Text, and
Doc are observed among the 28 topics.

concepts given by y. I find that experts on average share 3.482 bits or 11.2 (= 23.482)

matching topics; this is consistent with my earlier findings of 12 common topics during

the annotation process.

Replacing values of the P (x, y) with the three constituent predictors LabelSim,

TextSim and DocSim, I can now estimate the amount of shared topics if experts

are allowed to communicate their concepts using only labels, textual descriptions, or

exemplary documents. The average mutual information for the three attributes are

7.7, 8.2, and 8.1 topics respectively. While textual descriptions convey slightly more

information, the spread among the three values is quite small, suggesting that all

three contribute to topical di↵erentiation.

Hierarchy and Basic Level Categories

Previous psychology work suggests that humans organize categories hierarchically

and that categories are first created at a basic level before more general and more

specific categories emerge. Examining the seven pairs of overlapping topics, I find

two cases of vertical organization: Treemap and Trees ; and Parallel Coordinates and

Multi Dimensional. Both are examples of a specific technique within a more general

class of problems. The other five pairs of overlapping topics, however, are generally
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not considered to be hierarchically organized based on my domain knowledge.

Further examining the full set of expert responses (i.e., ones that are given by

fewer than three experts), I do observe more general and more specific topics. Two

experts provided “Visualization Techniques” and “Applications” as their responses.

Within techniques, the experts identified graphs, trees, and multidimensional visual-

ization. I also observe specific categories, such as “Color” that could be a subtopic

of “Perception” and “Social Network” as a subtopic of “Network.” Due to the small

number of hierarchal topic pairs, I am unable to define reliable measures to detect

them automatically.

One participant felt so strongly about hierarchical organization that she initiated

a follow-up email message specifying the five overarching categories (“paper types”,

“data types”, “techniques”, “methodologies”, and “applications”) under which she

would group her responses.

I also observe two additional types of categories not hierarchically organized.

Two experts generated exclusive (instead of inclusive) concepts “Hierarchies/Non-

treemap” and another topic that groups together “other application domains”. One

expert generated a horizontally organized topic “Specific Techniques” that groups

together the specific subtopics such as treemaps and parallel coordinates.

While informal discussions and anecdotal feedback suggest that human catego-

rizations are hierarchical organized, the most coherent topics in the survey appear

to be at a single level of organization. I hypothesize that these topics may serve as

basic level categories for InfoVis researchers, and that super- and sub-ordinate topics

might emerge more strongly if I am to collect more responses.

In summary, based on 202 topic responses from ten experts, I resolve matching

concepts to identify a final set of 28 coherent InfoVis topics given by at least three

of the experts. These topics are defined by a combination of attributes. Though

some hierarchy is present, overall these topics do not exhibit a strong hierarchical

organization. In the next section, I examine how well statistical topic models—and

its abstraction of representing topical concepts as a bag of words—can capture this

set of concepts.
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4.4 An Analysis of Word-Based Topic Models

A common computational approach to organizing documents is via word-based analy-

sis. Representing each document as a multinomial probability distribution of words, a

model estimates the similarities (or distances) among the documents in order to infer

clustering or high-level groupings. As demonstrated in the previous section, textual

descriptions are only one part of a larger set of attributes experts use to define a topic.

Here I establish a theoretical upper bound on the capability of word-based analysis in

capturing expert-generated topics. I then evaluate the performance of topic models

trained using LDA, a popular statistical topic modeling technique.

4.4.1 Four Encoding Schemes

I calculate the proportion of the 28 expert-generated InfoVis topics that can be en-

coded (and decoded) using various word-based representations. I examine four en-

coding schemes. A minimum criteria for a model to analyze topical relationships is

that the topics must have distinguishable representations under their encoding. A

model has no analytical power if distinct concepts appear the same to the model.

Expert-Crafted Textual Descriptions

For my first scheme, I used the set of 533 terms provided by the experts to encode the

content of the InfoVis topics. Every topic was represented as a probability distribution

over these 533 terms, in proportion to how often the responses that made up the topic

were tagged with one of these terms. Under this representation, the vocabulary of

the model was unrestricted. During the survey, the experts were free to use any word

or phrase to the describe the topics. The terms needed not appear anywhere in the

documents, and there were no restrictions on the relationships between the terms.

I constructed a joint probability distribution P (x
i

, y

i

) where x
i

was the ith InfoVis

topic and y

j

was the jth InfoVis topic. Freq
k

(w) was the number of times the term
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w is assigned to responses belong to the kth InfoVis topic.

P (x
i

, y

j

) /
X

w2Vocab

Freq
i

(w)⇥ Freq
j

(w)

I then computed the mutual information between the marginal distributions P (x)

and P (y) to measure the amount of information transmitted from an InfoVis topic x,

encoded via the expert-crated textual descriptions that is then decoded as an InfoVis

topic y. The resulting mutual information was 4.138 bits or 17.1 (= 24.138) topics,

representing 61% of coherent concepts.

Optimal Representation Based on Abstracts

For my second scheme, I constructed a model that was aware of the expert-generated

topics and exemplary documents associated with each. The model was also provided

with a list of the 533 most distinctive words drawn from document abstracts that

maximally distinguished the topics. The model, however, must assign a probability

distribution to each of the 28 topics based on word co-occurrence in the title and

abstract of the documents to represent the topics.

I constructed a joint probability distribution P (x
i

, y

i

), as defined below, in which

AbstrFreq
k

(w) is the number of times a word w appears in the abstracts of documents

belonging to topic x. The resulting mutual information between P (x) and P (y) was

4.033 bits or 16.3 (= 24.033) topics, representing 58% of coherent concepts.

P (x
i

, y

j

) /
X

w2Vocab

AbstrFreq
i

(w)⇥ AbstrFreq
j

(w)

Optimal Representation Based on Full Text

For my third scheme, the model was provided with similar information as above,

except that the body text of papers were used rather than the abstracts. The model

must assign a probability distribution to each of the 28 topics based on word co-

occurrence in the full text of the documents, extracted from the (typically eight-page)

full paper. The resulting mutual information was 3.876 bits or 15.0 (= 23.876) topics,
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covering 54% of coherent concepts.

Latent Dirichlet Allocation Topic Models

Finally, I built latent Dirichlet allocation (LDA) topic models [124] using 225 sets of

parameters. I performed a grid search over 9 values of k (between 5 and 50 numbers

of topics); 5 values of ↵ (topic smoothing hyperparameter = 0.0025, 0.005, 0.01,

0.02, 0.04); and 5 values of � (term smoothing hyperparameter = 0.0025, 0.005,

0.01, 0.02, 0.04). I then selected the model that maximized the mutual information

score. These LDA models were provided with list of all documents (i.e., title and

abstract) in the InfoVis corpus. The models, however, were completely unaware of

the human-generated concepts, and must discover k latent topics from the corpus in

an unsupervised manner where k ranged between 5 and 50.

I then constructed a joint probability distribution P (x
i

, y

j

) where x

i

was the ith

LDA latent topic and y

j

was the jth expert-generated InfoVis topic. P̄

i

(w) was the

probability distribution for word w for the ith latent topic. The probability was

summed over all words that appear in all InfoVis abstracts.

P (x
i

, y

j

) /
X

w2Vocab

P̄

i

(w)⇥ AbstrFreq
j

(w)

Latent topics from the highest quality LDA topic model (n = 50, ↵ = 0.0025,

� = 0.02) shared 11.6 (= 23.538) or 41% of the expert concepts.

The LDA model produced several redundant topics. For example, it generated

four latent topics corresponding to each of the Graph and Network concepts from

the experts. The pairs of topics Cognition and Theory ; and Multi-Dimensional and

Parallel Coordinates were not separated by the model. Two notable omissions were

the Perception and Animation concepts which exhibited coherent textual descriptions

in the survey but were missing from the LDA model. Another prominent issue was

the lack of a recognizable Collaboration topic which emerged as a well-defined concept

in the survey data, but was merged with BioVis by LDA. I also observed that 22 of

the generated topics were junk topics [106] that did not usefully help organize InfoVis

research areas.
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4.4.2 Discussions

At least for the domain of information visualization, these results indicate that topical

categorization is multi-faceted, such that experts’ descriptive terms alone can at best

discern only 61% of the topics. I find that even an optimal word-based approach

based on document text can at best discern 58% of expert topics, with abstract text

being more informative than the larger collection of body text. I also find that latent

Dirichlet allocation (LDA), a popular topic modeling algorithm, performs well below

this idealized scheme, recovering only 41% of the expert topics.

While the above results await corroboration from analyses of other textual do-

mains, they suggest that there may exist a theoretical upper bound on the quality of

word-based analysis which, to the best of my knowledge, has not been established.

Moreover, there may be great utility in incorporating additional data types (e.g., ci-

tations and metadata) or using semi-supervised approaches that incorporate human

expertise [34, 128].

4.5 Model Diagnostics via Topical Alignment

In the previous section, by comparing LDA model output directly to expert organiza-

tion, I obtain a detailed domain-specific view on how latent topics match up with the

InfoVis concepts. Figure 4.6 allows us to identify high quality topics that uniquely

correspond to a domain concept. The chart can also reveal domain-aware junk topics

(i.e., those deemed irrelevant to the domain) and topics that fuse distinct concepts

into one. Moreover, the chart allows us to determine model quality from the perspec-

tive of the experts’ information organization, we identify known concepts that are

missing from the model as well as those with repeated representations.

To enable large-scale assessment of topical relevance, I present a method for auto-

matically aligning latent topics with reference concepts. At the heart of my method

is the calculation of matching likelihoods for topic-concept pairs: the probability that

a human judge will consider a latent topic and a reference concept to be equiva-

lent. Based on human-subjects data, I examine how well various similarity measures
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predict topic matches and describe how I transform similarity scores into matching

likelihoods. I introduce a method to account for correspondences that occur due to

random chance, to improve robustness when making a large number of comparisons.

I also introduce the correspondence chart which visualizes the alignment between

latent topics and reference concepts.

4.5.1 Correspondence Chart and Misalignments

The correspondence chart, as shown in Figure 4.7, is an n⇥m matrix of all possible

pairings among n reference concepts and m latent topics. Each concept or topic

is a multinomial distribution over words. I treat each entry p

s,t

as an independent

Bernoulli random variable representing the matching likelihood that a user examining

the word distributions associated with concept s and topic t would respond that the

two are equivalent.

I consider a correspondence optimal when every latent topic maps one-to-one to

a reference concept. Deviations from an optimal arrangement lead to four types of

misalignment, as shown in Figure 4.8. I treat entries {p
i,t

}

n

i=1

corresponding to topic

t as a Bernoulli-like process: a series of independent events that can take on di↵erent

probabilities. In this framework, Ṗ
t

(k) is the likelihood that a user responds with

exactly k matches after comparing topic t to all n reference concepts. Similarly, P̈
s

(k)

is the likelihood of observing exactly k positive outcomes after comparing concept s

to all m latent topics. The junk score for topic t is the probability Ṗ

t

(0); the topic

has no matching concept. The fused score for topic t is the likelihood
P

m

k=2

Ṗ

t

(k);

the topic matches two or more concepts. Similarly, the missing score for concept s is

P̈

s

(0), and the repeated score is
P

n

k=2

P̈

s

(k).

4.5.2 Human Judgment of Topic Matches

I conducted a study to acquire data on when topics (probability distributions over

terms) are considered matching by people. I trained two LDA topic models on a

corpus of information visualization publications and sampled pairs of topics, one

from each model. The texts were chosen to be consistent with the expert-generated
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Figure 4.7: Correspondence between a set of latent topics (columns) and a set of ref-
erence concepts (rows). Shading represents the likelihood that a latent topic matches
a reference concept, and circles show if the likelihood exceeds random chance. On the
right, I mark reference concepts that are missing, on the left repeated, on the bottom
model topics that are junk and on the top fused. The 5th topic resolves excellently
to the 5th concept.

concepts that I collected (details in Section 4.3). Earlier analysis suggested that the

corpus contained about 28 domain concepts, and thus I trained the two models with

40 and 50 latent topics using priors ↵ = 0.01 and � = 0.01.

I presented study subjects with topical pairs, one at a time in a webpage as shown

in Figure 4.9. Each topic was displayed as a list of words, sorted by frequency,

where the height of each word was scaled proportional to its frequency in the topic’s

distribution. I asked the subjects whether the two topics match (“represent the same

meaningful concept”), partially match, or do not match (“represent di↵erent concepts

or meaningless concepts”). The study was conducted on Amazon Mechanical Turk.
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Figure 4.8: Correspondence Chart Construction. In a correspondence chart, each
entry p

s,t

represents the probability that a user considers the word distributions as-
sociated with concept s and topic t as equivalent. Misalignment scores measure how
much topical alignment deviates from an optimal one-to-one correspondence. Com-
paring a topic to all concepts, junk and fused scores measure how likely the topic
matches exactly zero, or more than one reference concept. Missing and repeated
scores measure how likely a concept matches exactly zero, or more than one latent
topic.
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Figure 4.9: User interface for the study on human judgement of topical matches.

I included five topical pairs in each task, posted 200 tasks with a US$0.25 reward per

task in December 2012, and received 1,000 ratings for 167 topical pairs.

4.5.3 Evaluating Topical Similarity Measures

I evaluated how well similarity measures can predict human judgment in terms of

precision and recall. For each topical pair, I assigned it a rating of {1, 0.5, 0} for

each {match, partial match, no match} response and consider a pair as matching if it

has an average rating above 0.5. I computed the similarity between topics using the

four measures listed in Table 4.6. Cosine, rank, and KL-divergence represent three

common approaches for measuring topical similarity. I also introduced a rescaled dot

product to improve upon cosine.

Precision-recall scores in Figure 4.10 compare user-identified matches to the or-

dering of topical pairs induced by the similarity measures. The rescaled dot product

achieves the highest scores for AUC, F1, F0.5, and F2 measures. I find that KL-

divergence does a poor job of predicting human judgment; topical pairs ranked in

the 90th percentile (among the 10% of most divergent pairs) still contain matches.
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Spearman’s correlation is concentrated in a narrow range (�0.04, 0.16) for 96% of the

data points. I observe that L
2

normalization in the cosine calculation is largely inef-

fective when applied to (L
1

normalized) probability distributions. Instead, given two

word distributions I rescale their dot product to the range of minimum and maximum

possible similarities, and find that this outperforms the other measures.

4.5.4 Mapping Similarity Scores to Likelihoods

While the rescaled dot product is predictive of human judgment, the actual similarity

values deviate from the definition of matching likelihood. Figure 4.11 plots precision

against the similarity score at which that precision is achieved. By definition, topical

pairs ranked above a precision of 0.5 are considered matching by human judges over

50% of the time. For the rescaled dot product, this threshold occurs at 0.1485 instead

of the desired value of 0.5.

Linear transformation in log-ratio likelihood space performs well for correcting this

deviation. I convert similarity scores and precision values to log-ratio likelihoods, and

apply linear regression to determine optimal mapping coe�cients (see Table 4.7). For

the rescaled dot product, the transformed scores deviate from average user ratings

Cosine
P ·Q

kPk

2

kQk

2

Rescaled Dot Product
P ·Q� d

Min

d

Max

� d

Min

d

Max

=
�!

P ·

�!

Q

d

Min

=
�!

P ·

 �

Q

Rank SpearmanCorrelation(I(P ), I(Q))

KL-Divergence
P

i

p

i

log
p

i

q

i

Table 4.6: Similarity Measures. Similarity scores for two word probability distribu-
tions P and Q. Scalar x

i

denotes the probability for term i in X. For the rescaled dot
product,

�!

X is a vector consisting of all x
i

sorted in descending value;
 �

X is a vector
consisting of all x

i

sorted in ascending value. For rank, I(X) denote the ranks of
terms in X. For KL-divergence, I treat topics from one model as reference concepts
P and the others as latent topics Q.
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Figure 4.10: Precision and recall. Predicting human judgment of topic matches using
topical similarity measures.
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Figure 4.11: Similarity Score vs. Precision. Topical pairs with a rescaled dot product
score greater than 0.148 were considered matching by human judges over 50% of the
time.
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by 0.0650. Transformed cosine angles deviate from user ratings by 0.1036. Provided

with sets of reference concepts and latent topics, I can now populate entries of a

correspondence chart using the transformed rescaled dot product scores.

Similarity Score s

Log-Ratio Likelihood s

0 =
log s

log(1� s)

Linear Regression t

0 = as

0 + b

Inverse of Log-Ratio Likelihood t =
e

t

0

e

t

0 + 1
Transformed Similarity Score t

Table 4.7: Transformed Similarity Score. I fit similarity scores to empirically obtained
precision values, based on linear regression in log-ratio likelihood space. For rescaled
dot product, the coe�cients are a = 1.567088 and b = 2.445738. For cosine, they are
a = 1.970030 and b = 4.163359.

4.5.5 Estimating Random Chance of Matching

Matching likelihoods determined from human judgments are rarely exactly zero. As

a topic model may contain hundreds of latent topics, even a small chance probability

of matching can accumulate and bias misalignment scores toward a high number of

repeated concepts or fused topics. To ensure the framework is robust for large-scale

comparisons, I introduce a method to estimate and remove topical correspondences

that can be attributed to chance.

Given a correspondence matrix, I treat it as a linear combination of two sources:

a definitive matrix whose entries are either 0 or 1; and a noise matrix representing

some chance probability. I assume that matching likelihoods are randomly drawn

from the definitive matrix (1��) of the time and from the noise matrix � of the time,

where � is a noise factor between [0, 1].

Without explicitly specifying the values of the entries in the definitive matrix, I

can still construct P

k

definitive

if I know it contains k non-zero values. I compute the

average row and column matching likelihoods, and create a noise matrix whose entries
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equal p̂
s,t

= 0.5
P

n

i=1

p

i,t

/n + 0.5
P

m

j=1

p

s,j

/m. The action of sampling from the two

source charts produces a corresponding P

combined

= P

k(1��)

definitive

⇤ P

�

noise

where ⇤ is the

convolution operator. A full derivation is in Appendix A.1.

I compute � by solving the convex optimization (implementation details are in

Section A.2):

min
�

KL(P k(1��)

definitive

⇤ P

�

noise

||P ).

The optimal � represents the estimated amount of matches that can be attributed

to noise. I then estimate the most likely distribution of topical matches P

denoised

without the chance matches, by solving the following constrained optimization:

min
P

denoised

KL(P
denoised

⇤ P

�

noise

||P )

subject to P

denoised

being a proper probability distribution whose entries sum to 1 and

are in the range [0, 1]. Implementation details are in Appendices A.2 and A.3.

I apply the above process to each row and column in the correspondence matrix,

to obtain Ṗ

denoised

and P̈

denoised

from which I estimate topical misalignment scores as

described previously.

4.6 Applications of Model Diagnostic Framework

I experimented with an exploratory process of topic model construction, in which

a user specifies reference concepts a priori and uses alignment scores to analyze the

parameter space of models. Talley et al. [152] found that the number of latent topics

a↵ects both concept resolution and the number of poor quality topics. They arrived

at this conclusion only after building a large number of models and performing an

extensive manual review. In contrast, my framework allows users to map a large

number of models onto predefined concepts, and immediately inspect model qualities.

As shown in Figure 4.12, my misalignment measures indicate that the maximum

number of resolved topics peaks at N = 18. While the ratio of fused topics dips at

N = 20, the proportion of fused topics increases again for N � 30. Trends in Figure
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Figure 4.12: Alignment of LDA models for ↵ = 5/N , � = 0.25, N 2 [1, 80]. The
y-axis shows the percentage of reference concepts that have a single matching topic
(Resolved), multiple matching topics (Repeated) or are subsumed by one (Fused)
or multiple fused topics (Fused & Repeated). These models uncover up to 75% of
the reference concepts, but coverage increases only marginally for N � 10. Further
increases in N result in duplicate latent topics that correspond to concepts already
uncovered. For N � 40, the models produce an increasing number of latent topics
that fuse multiple concepts, and a corresponding reduction in resolved concepts.
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Figure 4.13: Alignment for ↵ = 50/N , � = 0.001, N 2 [1, 80]. This series of LDA
models uncovers up to 40% of the reference concepts. Coverage peaks at N=8. The
proportion of resolved and fused topics remains stable for N � 15; increasing N

produces only more junk topics.
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Figure 4.14: Alignment of LDA models for ↵ 2 [0.5/N, 5000/N ], � 2 [0.0001, 1], and
N 2 [1, 80], over a grid of ↵-values (vertical) and �-values (horizontal). We observe
a qualitative shift in alignment at �=0.25. For �>0.25, the models generate fused
topics that uncover but do not fully resolve a majority of the reference concepts as
N increases. For �<0.25, the proportion of resolved and fused topics remain stable
regardless of N . For �=0.25, the models resolve the most concepts at ↵=5 and N=18.
Overall, decreasing � or increasing ↵ leads to a decrease in coverage.

4.13 suggest that, for a di↵erent hyperparameter setting, increasing N produces only

more junk topics.

In Figure 4.14, I extend the space of models to over 10,000 parameter settings,

and observe additional patterns. We find a qualitative change in topic composition
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around � = 0.25. For � > 0.25, the models generate fused topics that uncover but do

not fully resolve a majority of the reference concepts as N increases. For � < 0.25,

the proportion of resolved and fused topics remain stable regardless of N .

4.7 Summary

In this chapter, I examined how human-centered approaches and interactive visu-

alizations can help improve the topic modeling process. I began by collecting and

analyzing expert topical organization of document collections. I contributed a survey

method as well as a method for synthesizing participant responses and a correspond-

ing method for validating the combined results. I assessed how well various topic

models captured the expert concepts in terms of shared mutual information.

I devised the correspondence chart, a visualization showing how a set of statis-

tically extracted topics aligned with a set of known reference concepts. The chart

provided diagnostic feedback that can help analysts examine and compare multiple

models. To increase the utilization and reusability of acquired domain expertise, I in-

troduced a framework to determine the correspondence between any number of topics

models with a common set of reference concepts. I developed a matching likelihood

measure to capture human judgment of topical similarity. I devised a method to

improve the numerical robustness of my approach, and demonstrated its e↵ectiveness

through a use case where I identified suitable modeling settings from over 10,000

parameter choices.



Chapter 5

Descriptive Phrases for

Text Summarization

Descriptive phrases aid the exploration of text collections by communicating salient

aspects of documents. For statistical topic models, labeling can improve the inter-

pretability of the discovered concepts. Keyphrases are also frequently used to create

e↵ective visualizations of text. While prior work in information visualization has

proposed a variety of ways of presenting keyphrases, less attention has been paid to

selecting the best descriptive terms.

In this chapter, I demonstrate how a human-centered design process leads to im-

proved keyphrase extraction algorithms and enables novel interactive visualizations

for summarizing text. Based a study of 69 graduate students describing a corpus

of dissertation abstracts, I analyze the statistical and linguistic properties most pre-

dictive of high-quality keyphrases chosen by human judges. I systematically assess

the contribution of potential features within statistical models of keyphrase quality.

I then introduce a method for grouping similar terms and varying the specificity of

displayed terms so that keyphrases can be dynamically chosen based on the avail-

able screen space or the current context of interaction. Precision-recall measures find

that my technique generates keyphrases matching those selected by human judges and

scores comparably to existing keyphrase extraction algorithms. Crowdsourced ratings

of tag cloud visualizations rank my approach above other automatic techniques.

105
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5.1 Chapter Outline

Document collections, from academic publications to blog posts, provide rich sources

of information. People explore these collections to understand their contents, uncover

thematic patterns, or find documents matching an information need.

Keywords (or keyphrases) aid exploration by providing summary information in-

tended to communicate salient aspects of one or more documents. When applying

statistical topic modeling to analyses, labeling can aid interpretation especially when

communicating with or presenting the uncovered topical concepts to users unfamiliar

with the dataset [102]. Keyphrase selection is also critical to e↵ective visualiza-

tion and interaction, including automatically labeling documents, clusters, or themes

[64, 68]; choosing salient terms for tag clouds or other text visualization techniques

[42, 162, 164]; or summarizing text to support small display devices [22, 23, 176].

While terms hand-selected by people are considered the gold standard, manually

assigning keyphrases to thousands of documents simply does not scale.

To aid interpretation, keyphrase extraction algorithms select descriptive phrases

from text. A common method is bag-of-words frequency statistics [88, 108, 131,

134, 140]. However, such measures may not be suitable for short texts [12] and

typically return single words, rather than more meaningful longer phrases [158]. While

others have proposed methods for extracting longer phrases [6, 51, 53, 74, 80, 101],

researchers have yet to systematically evaluate the contribution of individual features

predictive of keyphrase quality and often rely on assumptions—such as the presence

of a reference corpus or knowledge of document structure— that are not universally

applicable.

I characterize the statistical and linguistic properties of human-generated key-

phrases in Section 5.2. My analysis is based on 5,611 responses from 69 students de-

scribing Ph.D. dissertation abstracts. I use the results to develop a two-stage method

for automatic keyphrase extraction. I first apply a regression model to score candi-

date keyphrases independently (Section 5.3). I then group similar terms to reduce

redundancy and control the specificity of selected phrases (Section 5.4). Throughout

the analysis and modeling process, I investigate the following concerns.
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Reference Corpora. Human-computer interaction (HCI) researchers work with

text from various sources including data whose domain is unspecified or in which a

domain-specific reference corpus is unavailable. I examine several frequency statistics

and assess the trade-o↵s of selecting keyphrases with and without a reference corpus.

While models trained on a specific domain can generate higher-quality phrases, I

find that models incorporating language-level statistics in lieu of a domain-specific

reference corpus produce competitive results.

Document Diversity. Interactive systems may need to show keyphrases for a

collection of documents. I compare descriptions of single documents and of multiple

documents with varying levels of topical diversity. I find that increasing the size or

diversity of a collection reduces the length and specificity of selected phrases.

Feature Complexity. Many existing tools select keyphrases solely using raw

term counts or tf.idf scores [140], while recent work [42, 108] advocates more advanced

measures, such as G2 statistics [51, 131]. I find that raw counts or tf.idf alone provide

poor summaries but that a simple combination of raw counts and a term’s language-

level commonness matches the improved accuracy of more sophisticated statistics. I

also examine the impact of features such as grammar and position information. For

example, I find that part-of-speech tagging provides significant benefits, over which

more costly statistical parsing provides little improvement.

Term Similarity and Specificity. Multi-word phrases identified by an extrac-

tion algorithm may contain overlapping terms or reference the same entity (person,

location, organization, etc). I present a method for grouping related terms and re-

ducing redundancy. The resulting organization enables users to vary the specificity

of displayed terms and allows applications to dynamically select terms in response to

available screen space. For example, a keyphrase label might grow longer and more

specific through semantic zooming.

I assess the resulting extraction approach by comparing automatically and manu-

ally selected phrases and via crowdsourced ratings. I find that the precision and recall

of candidate keyphrases chosen by my model can match that of phrases hand-selected

by human readers. I also apply my approach to tag clouds as an example of real-world

presentation of keyphrases. I asked human judges to rate the quality of tag clouds
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using phrases selected by my technique and unigrams selected using G2. Raters prefer

the tag clouds generated by my method and identify other factors such as layout and

prominent errors that a↵ect judgments of keyphrase quality. Finally, I conclude the

paper by discussing the implications of this research for human-computer interaction,

information visualization, and natural language processing.

5.2 Characterizing Human-Generated Keyphrases

To better understand how people choose descriptive phrases, I compiled a corpus of

phrases manually chosen by expert and non-expert readers. I analyzed this corpus to

assess how various statistical and linguistic features contribute to keyphrase quality.

5.2.1 User Study Design

I asked graduate students to provide descriptive phrases for a collection of Ph.D. dis-

sertation abstracts. I selected 144 documents from a corpus of 9,068 Ph.D. disserta-

tions published at Stanford University from 1993 to 2008. These abstracts constitute

a meaningful and diverse corpus well suited to the interests of the study participants.

To ensure coverage over a variety of disciplines, I selected abstracts each from the

following six departments: Computer Science, Mechanical Engineering, Chemistry,

Biology, Education, and History. I recruited graduate students from two universities

via student email lists. Students came from departments matching the topic areas of

selected abstracts.

5.2.2 Study Protocol

I selected 24 dissertations (as eight groups of three documents) from each of the six

departments in the following manner. I randomly selected eight faculty members

from among all faculty who have graduated at least ten Ph.D. students. For four of

the faculty members, I selected the three most topically diverse dissertations. For the

other four members, I selected the three most topically similar dissertations.
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Subjects participated in the study over the Internet. They were presented with

a series of webpages and asked to read and summarize text. Subjects received three

groups of documents in sequence (nine in total); they were required to complete one

group of documents before moving on to the next group. For each group of docu-

ments, subjects first summarized three individual documents in a sequence of three

webpages and then summarized the three as a whole on a fourth page. Participants

were instructed to summarize the content using five or more keyphrases, using any

vocabulary they deemed appropriate. Subject were not constrained to only words

from the documents. They would then repeat this process for two more groups. The

document groups were randomly selected such that they varied between familiar and

unfamiliar topics.

I received 69 completed studies, comprising a total of 5,611 free-form responses:

4,399 keyphrases describing single documents and 1,212 keyphrases describing multi-

ple documents. Note that while I use the terminology keyphrase in this chapter for

brevity, the longer description “keywords and keyphrases” was used throughout the

study to avoid biasing responses. The online study was titled and publicized as an

investigation of “keyword usage.”

5.2.3 Independent Factors

I varied the following three independent factors in the user study.

Familiarity. I considered a subject familiar with a topic if they had conducted

research in the same discipline as the presented text, and relied on self-reports to

determine subjects’ familiarity.

Document count. Participants were asked to summarize the content of either a

single document or three documents as a group. In the case of multiple documents,

I used three dissertations supervised by the same primary advisor.

Topic diversity. I measured the similarity between two documents using the

cosine of the angle between tf.idf term vectors. My experimental setup provided sets

of three documents with either low or high topical similarity.



CHAPTER 5. DESCRIPTIVE PHRASES FOR TEXT SUMMARIZATION 110

5.2.4 Dependent Statistical and Linguistic Features

To analyze responses, I computed the following features for the documents and

subject-authored keyphrases. For the remainder of this chapter, I use “term” and

“phrase” interchangeably. Term length refers to the number of words in a phrase; an

n-gram is a phrase consisting of n words.

Documents are the texts I showed to subjects, while responses are the provided

summary keyphrases. I tokenize text based on the Penn Treebank standard [96] and

extract all terms of up to length five. I record the position of each phrase in the

document and whether a phrase occurs in the first sentence. Stems are the roots of

words with inflectional su�xes removed. I apply light stemming [107] which removes

only noun and verb inflections (such as plural s) according to a word’s part of speech.

Stemming allows us to group variants of a term when counting frequencies.

Term frequency (tf ) is the number of times a phrase occurs in the document

(document term frequency), in the full dissertation corpus (corpus term frequency),

or in all English webpages (web term frequency) as indicated by the Google web

n-gram corpus [20]. I define term commonness as the normalized term frequency

relative to the most frequent n-gram, either in the dissertation corpus or on the web.

For example, the commonness of a unigram equals log(tf)/ log(tf
the

) where tf

the

is

the frequency of “the”—the most frequent unigram. When distinctions are needed,

I refer to the former as corpus commonness and the latter as web commonness.

Term position is a normalized measure of a term’s location in a document. A

value of 0 corresponds to the first word and 1 to the last. The absolute first occur-

rence is the minimum position of a term (cf., [101]). However, as frequent terms are

more likely to appear earlier due to higher rates of occurrence, I introduce a new

feature— the relative first occurrence—to factor out the correlation between posi-

tion and frequency. Relative first occurrence (formally defined in Section 5.3.1) is the

probability that a term’s first occurrence is lower than that of a randomly sampled

term with the same frequency. This measure makes a simplistic assumption—that

term positions are uniformly distributed—but allows us to assess term position as

an independent feature.

I annotate terms that are noun phrases, verb phrases, or match technical term
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Pattern Regular Expression

Technical term T = (A|N)+ (N |C) | N

Compound technical term X = (A|N)⇤ N of (T |C) | T

Table 5.1: Technical terms. Technical terms are defined by part-of-speech regular
expressions. N is a noun, A an adjective, and C a cardinal number. I modify the
definition of technical terms [78] by permitting cardinal numbers as the trailing word.
Examples of technical terms include the following: hardware, interactive visualization,
performing arts, Windows 95. Examples of compound technical terms include the
following: gulf of execution, War of 1812.

patterns [78] (see Table 5.1). Part-of-speech information is determined using the

Stanford POS Tagger [156]. I additionally determine grammatical information using

the Stanford Parser [82] and annotate the corresponding words in each sentence.

5.2.5 Exploratory Analysis of Human-Generated Phrases

Using these features, I characterized the collected human-generated keyphrases in an

exploratory analysis. My results confirm observations from prior work—the preva-

lence of multi-word phrases [158], preference for mid-frequency terms [94], and pro-

nounced use of noun phrases [6, 47, 53, 74]—and provide additional insights, includ-

ing the e↵ects of document count and diversity.

For single documents, the number of responses varies between 5 and 16 keyphrases

(see Figure 5.1). I required subjects to enter a minimum of five responses; the peak

at five in Figure 5.1 suggests that subjects might respond with fewer without this re-

quirement. However, it is unclear whether this reflects a lack of appropriate choices or

a desire to minimize e↵ort. For tasks with multiple documents, participants assigned

fewer keyphrases despite the increase in the amount of text and topics. Subject famil-

iarity with the readings did not have a discernible e↵ect on the number of keyphrases.

Assessing the prevalence of words vs. phrases, Figure 5.2 shows that bigrams

are the most common response, accounting for 43% of all free-form keyphrase re-

sponses, followed by unigrams (25%) and trigrams (19%). For multiple documents
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Figure 5.1: How many keyphrases do people use? Participants use fewer keyphrases
to describe multiple documents or documents with diverse topics, despite the increase
in the amount of text and topics.

or documents with diverse topics, I observe an increase in the use of unigrams and

a corresponding decrease in the use of trigrams and longer terms. The prevalence

of bigrams confirm prior work [158]. By permitting users to enter any response, my

results provide additional data on the tail end of the distribution: there is minimal

gain when assessing the quality of phrases longer than 5 words, which account for less

than 5% of responses.

Figure 5.3 shows the distribution of responses as a function of web commonness. I

observe a bell-shaped distribution centered around mid-frequency, consistent with the

distribution of significant words posited by Luhn [94]. As the number of documents

and topic diversity increases, the distribution shifts toward more common terms. I

found similar correlations for corpus commonness.

For each user-generated keyphrase, I find matching text in the reading, and note
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Figure 5.2: Do people use words or phrases? Bigrams are the most common. For
single documents, 75% of responses contain multiple words. Unigram use increases
with the number and diversity of documents.

that 65% of the responses are present in the document. Considering for the rest of this

paragraph just the two thirds of keyphrases present in the readings, the associated

positional and grammatical properties of this subset are summarized in Table 5.2.

22% of keyphrases occur in the first sentence, even though first sentences contain

only 9% of all terms. Comparing the first occurrence of keyphrases with that of

randomly sampled phrases of the same frequency, I find that keyphrases occur earlier

56% of the time—a statistically significant result (�2(1) = 88, p < 0.001). Nearly two-

thirds of keyphrases found in the document are part of a noun phrase (i.e., continuous

subsequence fully contained in the phrase). Only 7% are part of a verb phrase, though

this is still statistically significant (�2(1) = 147,000, p < 0.001). Most strikingly, over

80% of the keyphrases are part of a technical term.

In summary, the above exploratory analysis shows that subjects primarily choose
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Figure 5.3: Do people use generic or specific terms? Term commonness increases with
the number and diversity of documents.

multi-word phrases, prefer terms with medium commonness, and largely use phrases

already present in a document. Moreover, these features shift as the number and

diversity of documents increases. Keyphrase selection also correlates with term po-

sition, suggesting we should treat documents as more than just “bags of words.”

Finally, human-selected keyphrases show recurring grammatical patterns, indicating

the utility of linguistic features.

5.3 Automatic Keyphrase Extraction

Informed by the exploratory analysis, I systematically assessed the contribution of

statistical and linguistic features to keyphrase quality, resulting in a pair of regres-

sion models (one corpus-dependent, the other independent) that incorporate term
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Feature % of Keyphrases % of All Phrases

First sentence 22.09% 8.68%
Relative first occurrence 56.28% 50.02%

Noun phrase 64.95% 13.19%
Verb phrase 7.02% 3.08%

Technical term 82.33% 8.16%
Compound tech term 85.18% 9.04%

Table 5.2: Positional and grammatical statistics. Position and grammar features
of keyphrases present in a document (65% of total). Keyphrases occur earlier in a
document: two-thirds are noun phrases, over four-fifths are technical terms.

frequency, commonness, position, and grammatical features. I evaluated my models

in two ways. First, I compared the performance of my models with that of the human

judges. Second, I compared my techniques with results from the Semantic Evaluation

(SemEval) contest of automatic keyphrase extraction methods [80].

5.3.1 Statistical Modeling of Keyphrase Quality

I modeled keyphrase quality using logistic regression. I chose this model because its

results are readily interpretable: contributions from each feature can be statistically

assessed, and the regression value can be used to rank candidate phrases. I initially

used a mixed e↵ects model [55], which extends generalized linear models to let one

assess random e↵ects, to include variation due to subjects and documents. I found

that the random e↵ects were not significant and so reverted to a standard logistic

regression model.

I constructed the models over 2,882 responses. I excluded user-generated key-

phrases longer than five words (for which I am unable to determine term commonness;

my data on web commonness contains only n-grams up to length five) or not present

in the documents (for which I am unable to determine grammatical and positional

information). I randomly selected another set of 28,820 phrases from the corpus as

negative examples, with a weight of 0.1 (so that total weights for positive examples
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and negative examples are equal during model fitting). Coe�cients generated by lo-

gistic regression represent the best linear combination of features that di↵erentiate

user-generated responses from the random phrases.

I examine three classes of features— frequency statistics, grammar, and posi-

tion—visited in order of their predictive accuracy as determined by a preliminary

analysis. Unless otherwise stated, all features are added to the regression model as

independent factors without interaction terms.

I present only modeling results for keyphrases describing single documents. I did

fit models for phrases describing multiple documents, and they reflect observations

from the previous section, for example, weights shifted toward higher commonness

scores. However, the coe�cients for grammatical features exhibit large standard

errors, suggesting that the smaller data set of multi-document phrases (641 phrases

vs. 2,882 for single docs) is insu�cient. As a result, I leave further modeling of

multi-document descriptions to future work.

I evaluate features using precision-recall curves. Precision and recall measure

the accuracy of an algorithm by comparing its output to a known, “correct” set of

phrases; in this case, the list of user-generated keyphrases up to length five. Precision

measures the percentage of correct phrases in the output. Recall measures the total

percentage of the correct phrases captured by the output. As more phrases are

included, recall increases but precision decreases. The precision-recall curve measures

the performance of an algorithm over an increasing number of output phrases. Higher

precision is desirable with fewer phrases and a larger area under the curve indicates

better performance. I also assessed each model using model selection criteria (i.e.,

AIC, BIC). As these scores coincide with the rankings from precision-recall measures,

they are omitted.

Frequency Statistics

I computed seven di↵erent frequency statistics. My simplest measure was log term

frequency: log(tf). I also computed tf.idf, BM25, G2, variance-weighted log-odds

ratio, and WordScore. Each requires a reference corpus, for which I use the full

dissertation abstract collection. I also created a set of hierarchical tf.idf scores (e.g.,
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Statistic Definition
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Table 5.3: Frequency Statistics. Given a document from a reference corpus with N

documents, the score for a term is given by these formulas. t

Doc

and t

Ref

denote
term frequency in the document and reference corpus; T

Doc

and T

Ref

are the number
of words in the document and reference corpus; D is the number of documents in
which the term appears; r is the average word count per document; t0 and T

0 indicate
measures for which I increment term frequencies in each document by 0.01; terms
present in the corpus but not in the document are defined as t

Doc

= t

Ref

� t

Doc

and
T

Doc

= T

Ref

�T

Doc

. Among the family of tf.idf measures, I selected a reference-relative
form as shown. For BM25, the parameters k

1

= 2 and b = 0.75 are suggested by [95].
A term is any analyzed phrase (n-gram). When frequency statistics are applied to
n-grams with n = 1, the terms are all the individual words in the corpus. When
n = 2, scoring is applied to all unigrams and bigrams in the corpus, and so on.

as used by Viégas et al. in Themail [162]) by computing tf.idf with five nested

reference corpora: all terms on the web, all dissertations in the Stanford dissertation

corpus, dissertations from the same school, dissertations in the same department,

and dissertations supervised by the same advisor. Due to its poor performance on

5-grams, I assessed four variants of standard tf.idf scores: tf.idf on unigrams, and all

phrases up to bigrams, trigrams, and 5-grams. Formulas for frequency measures are

shown in Table 5.3.
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Figure 5.4: Precision-recall curves for keyphrase regression models. Among models
based on only frequency statistics, G2 and log-odds ratio perform well. Legends are
sorted by decreasing initial precision.

Figure 5.4 shows the performance of these frequency statistics. Probabilistic mea-

sures—namely G2, BM25 and weighted log-odds ratio—perform better than count-

based approaches (e.g., tf.idf) and heuristics such as WordScore. Count-based ap-

proaches su↵er with longer phrases due to an excessive number of ties (many 4- and

5-grams occur only once in the corpus). However, tf.idf on unigrams still performs

much worse than probabilistic approaches.

Adding Term Commonness. During keyphrase characterization, I observed

a bell-shaped distribution of keyphrases as a function of commonness. I quantiled

commonness features into web commonness bins and corpus commonness bins in

order to capture this non-linear relationship. I examined the e↵ects of di↵erent bin

counts up to 20 bins.

As shown in Figure 5.5, the performance of log(tf ) + commonness matches that
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Figure 5.5: For keyphrase regression models based on frequency statistics and term
commonness, a simple combination of log(tf ) and commonness performs competi-
tively to G2. Graph shows precision-recall curves; legends are sorted by decreasing
initial precision.

of statistical methods such as G2. As corpus and web commonness are highly corre-

lated, the addition of both commonness features yields only a marginal improvement

over the addition of either feature alone. I also measured the e↵ects due to bin count.

Precision-recall increases as the number of bins are increased up to about five bins,

and there is marginal gain between five and eight bins. Examining the regression

coe�cients for a large number of bins (ten bins or more) shows large random fluc-

tuations, indicating overfitting. As expected, the coe�cients for commonness peak

at middle frequency; see Table 5.5. Adding an interaction term between frequency

statistics and commonness yields no increase in performance. Interestingly, the coef-

ficient for tf.idf is negative when combined with web commonness; tf.idf scores have

a slight negative correlation with keyphrase quality.
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Grammatical Features

Computing grammatical features requires either parsing or part-of-speech (POS) tag-

ging. Of note is the higher computational cost of parsing—nearly two orders of

magnitude in run time. I measure the e↵ectiveness of these two classes of features

separately to determine if the extra computational cost of parsing pays dividends.

Parser features. For each term extracted from the text, I tag the term as a full

noun phrase or full verb phrase if it matches exactly a noun phrase or verb phrase

identified by the parser. A term is tagged as a partial noun phrase or partial verb

phrase if it matches a substring within a noun phrase or verb phrase. I add two

additional features that are associated with words at the boundary of a noun phrase.

Leading words in a noun phrase are referred to as optional leading words if their part-

of-speech is one of cardinal number, determiner, or pre-determiner. The last word in

a noun phrase is head noun. If the first word of a term is an optional leading word, or

if the last word of a term is a head noun, then the term is tagged accordingly. These

two features occur only if the beginning or end of the term is aligned with a noun

phrase boundary.

Tagger features. Phrases that match technical term patterns (Table 5.1) are

tagged as either a technical term or compound technical term. Phrases that match a

substring in a technical term are tagged as partial technical term or partial compound

technical terms.

As shown in Figure 5.6, adding parser-derived grammar information yields an im-

provement significantly greater than the di↵erences between leading frequency statis-

tics. Adding technical terms matched using POS tags improves precision and recall

more than parser-related features. Combining both POS and parser features yields

only a marginal improvement. Head nouns (cf., [6]) did not have a measurable e↵ect

on keyphrase quality. The results indicate that statistical parsing may be avoided in

favor of POS tagging.
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Figure 5.6: Adding part-of-speech features improve the performance of keyphrase
regression models more than parser-related features. Combining both POS and parser
features yields only a marginal improvement.

Positional Features and Final Models

Finally, I introduce relative first occurrence and presence in first sentence as positional

features; both predictors are statistically significant.

First occurrence. The absolute first occurrence of a term is the earliest position

in the document at which a term appears, normalized between 0 and 1. If a term is

the first word of a document, its absolute first occurrence is 0. If the only appearance

of a term is as the last word of a document, its absolute first occurrence is 1. The

absolute first occurrences of frequent terms tend to be earlier in document, due to

their larger number of appearances.

I introduce relative first appearance to have a measure of early occurrence of a word

independent of its frequency. Relative first occurrence measures how likely a term

is to initially appear earlier than a randomly-sampled phrase of the same frequency.

Let P (W ) denote the the expected position of words W in the document. As a null
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hypothesis, I assume that words are uniformly distributed P (W ) ⇠ Uniform[0, 1]. The

expected absolute first occurrence of a randomly-selected term that appears k times

in the document is the minimum of the k instantiations of the term P (w
1

), · · · , P (w
k

),

and is given by the following probability distribution:

k

min
i=1

P (w
i

) = ⌘ (1� x)k�1

for position x 2 [0, 1] and some normalization constant ⌘. Suppose a term w

0 occurs k

times in the document and its first occurrence is observed to be at position a 2 [0, 1].

Its relative first occurrence is the cumulative probability distribution from a to 1.

Relative first occurrence of w0 =

Z
1

a

k

min
i=1

P (w
i

) =

Z
1

a

⌘ (1� x)k�1

dx = (1� a)k

Combining log(tf ), commonness (five bins), grammatical, and positional features, I

built two final models for predicting keyphrase quality. The full model is based on

all significant features using the dissertation corpus as reference. In the simplified

model (Table 5.5), I excluded corpus commonness and statistical parsing to eliminate

corpus dependencies and improve running time. Omitting the more costly features

incurs a slight decrease in precision, as shown in Figure 5.7.

5.3.2 Comparison with Human-Selected Keyphrases

I compared the precision-recall of keyphrases extracted using my methods to human-

generated keyphrases. In the previous comparisons of model performance, a candidate

phrase was considered “correct” if it matched a term selected by any of the K hu-

man subjects who read a document. When evaluating human performance, however,

phrases selected by one participant can only be matched against responses from the

K � 1 other remaining participants. A näıve comparison would thus unfairly favor

my algorithm, as human performance would su↵er due the smaller set of “correct”

phrases. To ensure a meaningful comparison, I randomly sample a subset of K partic-

ipants for each document. When evaluating human precision, a participant’s response

is considered accurate if it matches any phrase selected by another subject. I then
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Figure 5.7: Positional features provide further gains for both a complete keyphrase
regression model and a simplified corpus-independent model.

replace the participant’s responses with the model’s output, ensuring that both are

compared to the same K � 1 subjects. I chose K = 6, as on average each document

in the study was read by 5.75 subjects.

Figure 5.8 shows the performance of the two models versus human performance.

At low recall (i.e., for the top keyphrase), the full model achieves higher precision

than human responses, while the simplified model performs competitively. The full

model’s precision closely matches that of human accuracy until mid-recall values.

5.3.3 Comparison with SemEval 2010 Contest Task #5

Next I compared the precision-recall performance of the corpus-independent model

to the results of the SemEval 2010 contest. Semantic Evaluation (SemEval) is a series

of workshops focused on evaluating methods for specific text analysis problems. Task

#5 of SemEval 2010 [80] compared 21 keyphrase extraction algorithms for scientific

articles. A total of 244 articles from four di↵erent subdisciplines were chosen from



CHAPTER 5. DESCRIPTIVE PHRASES FOR TEXT SUMMARIZATION 124

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

G2

Weighted Log-Odds Ratio
BM25
tf.idf  (1-grams)
tf.idf  (hierarchical)
log tf
tf.idf  (2-grams)
tf.idf  (3-grams)
tf.idf  (5-grams)
WordScore

(a) Frequency Statistics
Pr

ec
isi

on

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

log tf  + All  Commonness
log tf  + Corpus Com
log tf  + Web Com
G2

log tf

(b) Adding Term Commonness

Pr
ec

isi
on

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

log tf  + Com + All  Grammar
log tf  + Com + Tagger
log tf  + Com + Parser
log tf  + All  Commonness
G2

log tf

(c) Adding Grammatical Features

Pr
ec

isi
on

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Best-Performing Model
Corpus-Independent  Model
log tf  + All  Commonness
G2

log tf

(d) Adding Positional Features

Pr
ec

isi
on

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Best-Performing Model
Corpus-Independent  Model
Humans

(e) Comparison with Human-Selected Phrases

Pr
ec

isi
on

Recall

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

SemEval  Maximum
SemEval  Median
Corpus-Independent  Model
SemEval  Minimum

(f) Comparison with SemEval 2010

Pr
ec

isi
on

Recall

Figure 5.8: Comparison with human-selected keyphrases. My models provide higher
precision at low recall values.

the ACM Digital Library. Contestants received 144 articles for training; the sub-

mitted techniques were then tested on the remaining 100 articles. Three classes of

keyphrases were evaluated: author-assigned, reader-assigned, and the combination of

both. Reader-assigned phrases were provided by volunteers who were given five pa-

pers and instructed to spend 10 to 15 minutes per paper generating keyphrases. For

each class, precision and recall were computed for the top 5, 10, and 15 keyphrases.

I used this same data to evaluate the performance of the corpus-independent mod-

eling approach trained on the SemEval corpus. The coe�cients of the SemEval model

di↵er slightly from those of the Stanford dissertations model (Table 5.5), but the rel-

ative feature weightings remain similar, including a preference for mid-commonness

terms, a strong negative weight for high commonness, and strong weights for technical

term patterns.

Figure 5.9 compares my model’s precision-recall scores against the distribution

of SemEval results for the combined author- and reader-assigned keyphrases. The

corpus-independent model closely matches the median scores. Though intentionally
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Model Feature Regression Coe�cients

(intercept) -2.88114***
log(tf ) 0.74095***

WC 2 (0%, 20%] 0.08894
WC 2 (20%, 40%] 0.04390
WC 2 (40%, 60%] -0.19786
WC 2 (60%, 80%] -0.46664*
WC 2 (80%, 100%] -1.26714***

CC 2 (0%, 20%] 0.20554
CC 2 (20%, 40%] 0.39789**
CC 2 (40%, 60%] 0.24929
CC 2 (60%, 80%] -0.34932
CC 2 (80%, 100%] -0.97702**

relative first occurrence 0.52950***
first sentence 0.83637**

partial noun phrase 0.14117
noun phrase 0.29818*
head noun -0.16509

optional leading word 0.46481*
partial verb phrase 0.15639

verb phrase 1.12310*
full technical term -0.58959
partial tech. term 1.37875*

full compound tech. term 1.09713
partial comp. tech. term 1.10565*

Table 5.4: Regression coe�cients for the full (corpus-dependent) model based on the
PhD dissertations. WC = web commonness. CC = corpus commonness. Statistical
significance = *: p < 0.05, **: p < 0.01, ***: p < 0.001

simplified, my approach matches or outperforms half of the contest entries. This

outcome is perhaps surprising, as competing techniques include more assumptions

and complex features (e.g., leveraging document structure and external ontologies)

and more sophisticated learning algorithms (e.g., bagged decision trees vs. logistic

regression). I believe these results argue in favor of the identified features.
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Model Feature Regression Coe�cients

Dissertations SemEval

(intercept) -2.83499*** -5.4624**
log(tf ) 0.93894*** 2.8029*

WC 2 (0%, 20%] 0.17704 0.8561
WC 2 (20%, 40%] 0.23044* 0.7246
WC 2 (40%, 60%] 0.01575 0.4153
WC 2 (60%, 80%] -0.62049*** -0.5151
WC 2 (80%, 100%] -1.90814*** -2.2775

relative first occurrence 0.48002** -0.2456
first sentence 0.93862*** 0.9173

full tech. term -0.50152 1.1439
partial tech. term 1.44609** 3.4539***

full compound tech. term 1.13730 1.0920
partial comp. tech. term 1.18057* 2.0134

Table 5.5: Regression coe�cients for corpus-independent model. WC = web com-
monness. Statistical significance = *: p < 0.05, **: p < 0.01, ***: p < 0.001

5.3.4 Lexical Variation and Relaxed Matching

While I am encouraged by the results of the precision-recall analysis, some skepticism

is warranted. Up to this point my analysis has concerned only exact matches of

stemmed terms. In practice, it is reasonable to expect that both people and algorithms

will select keyphrases that do not match exactly but are lexically and/or conceptually

similar (e.g., “analysis” vs. “data analysis”). How might the results change if we

permit a more relaxed matching?

To gain a better sense of lexical variation among keyphrases, I analyzed the impact

of a relaxed matching scheme. I experimented with a number of matching approaches

by permitting insertion or removal of terms in phrases or re-arrangement of terms in

genitive phrases. For brevity, I report on just one simple but e↵ective strategy: I

consider two phrases “matching” if they either match exactly or if an exact match

can be induced by adding a single word to either the beginning or the end of the
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Figure 5.9: Comparison with SemEval 2010 [80] results for 5, 10, and 15 phrases. My
corpus-independent model closely matches the median scores.

shorter phrase.

Permitting relaxed matching significantly raises the proportion of automatically

extracted keyphrases that match human-selected terms. Considering just the top-

ranked term produced by my model for each document in the SemEval contest, 30.0%

are exact matches while 75.0% are relaxed matches. Looking at the top five terms per

document, 27.4% exactly match a human-selected term, permitting a relaxed match

increases this number to 64.2%. These results indicate that human-selected terms

regularly di↵er from the automatically extracted terms by a single leading or trailing

word. This observation suggests that (a) precision-recall analysis may not reveal

the whole picture and (b) related keyphrases might vary in length but still provide

useful descriptions. I now build upon this insight to provide means for parameterizing

keyphrase selection.
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5.4 Keyphrase Grouping and Selection

The previous section describes a method for scoring keyphrases in isolation. However,

candidate keyphrases may overlap (e.g., “visualization”, “interactive visualization”)

or reference the same entity (e.g., “Barack Obama”, “President Obama”). Keyphrase

selection might be further improved by identifying related terms. An intelligent group-

ing can also provide a means to interactively parameterizing the display of keyphrases.

Users might request shorter/longer—or more general/more specific—terms. Alter-

natively, a user interface might automatically vary term length or specificity to opti-

mize the use of the available screen space. Once I have extracted a set of candidate

keyphrases, I can next optimize the overall quality of that set. Here I present a simple

approach for filtering and selecting keyphrases— su�cient for removing a reasonable

amount of redundancy and adapt keyphrase specificity on demand.

5.4.1 Redundancy Reduction

Redundancy reduction suppresses phrases similar in concept. The goal is to ensure

that each successive output keyphrase provides a useful marginal information gain

instead of lexical variations. For example, the following list of keyphrases di↵er

lexically but are similar, if not identical, in concept: “Flash Player 10.1”, “Flash

Player”, “Flash”. I propose that an ideal redundancy reduction algorithm should

group together phrases that are similar in concept (e.g., perhaps similar to synsets in

WordNet), choose the most prominent lexical form of a concept, and suppress other

redundant phrases.

I use string similarity to approximate conceptual similarity. I consider two phrases

A and B to be similar if A can be constructed from B by prepending or appending a

word. For example, “Flash Player 10.1” and “Flash Player” are considered similar.

For many top-ranked keyphrases, this assumption is true. Figure 5.10 shows an

example of terms considered conceptually similar by my algorithm.

I also account for the special case of names. I apply named entity recognition

[57] to identify persons, locations, and organizations. To resolve entities, I consider

two people identical if the trailing substring of one matches the trailing substring of
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route 
(2.35098) 

map 
(2.37236) 

hand-designed 
(-1.46399) 

route map 
(3.25849) 

hand-designed route map 
(1.27821) 

hand-designed map 
(0.66357) 

hand-designed route 
(0.64336) 

Figure 5.10: Term grouping. The above graph shows a subset of unigrams, bigrams,
and trigrams considered to be conceptually similar by my algorithm. Connected terms
di↵er by exactly one word at the start or the end of the longer phrase. Values in
parentheses are the scores from the simplified model for the dissertation “Visualizing
Route Maps.” By default, my algorithm displays the keyphrase “route map” and
suppresses “route”, “map”, and “hand-designed route maps”. Users may choose to
display a shorter word (“map”) or longer phrase (“hand-designed route map”) to
describe this document.

the other. For example, “Obama”, “President Obama”, and “Barack Obama” are

considered the same person. If the name of a location or organization is a substring

of another, I consider the two to be identical, for example, “Intel” and “Intel Corpo-

ration”. I also apply acronym recognition [143] to identify the long and short forms

of the same concept, such as “World of Warcraft” and “WoW ”. For most short texts

my assumptions hold. However, in general, a more principled approach will likely be

needed for robust entity and acronym resolution. Figure 5.11 shows additional typed

edges connecting terms that my algorithm considers as referring to the same entity.
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5.4.2 Length and Specificity Adjustment

Once similar terms have been grouped, I must select which term to present. To pa-

rameterize final keyphrase selection, I allow users to optionally choose longer/shorter

and more generic or specific terms. I use two simple features to determine which form

of similar phrases to display: term length and term commonness. When two terms

are deemed similar, I can bias for longer keyphrases by subtracting the ranking score

from the shorter of the two terms and adding that to the score of the longer term,

in proportion to the di↵erence in term length. Similarly, I can bias for more generic

or specific terms by shifting the ranking score between similar terms in proportion

to the di↵erence in term commonness. The operation is equivalent to shifting the

weights along edges in Figures 5.10 and 5.11.

Other adjustments can be specified directly by users. For recognized people,

users can choose to expand all names to full names or contract to last names. For

locations and organizations, users can elect to use the full-length or shortened form.

For identified acronyms, users may choose to expand or contract the terminology.

In other words, for each subgraph of terms connected by named entity typed edges,

the user may choose to assign the maximum node weight to any other nodes in the

subgraph. In doing so, the chosen term is displayed suppressing all other alternatives.

5.4.3 Qualitative Inspection of Selected Keyphrases

As an initial evaluation of my two-stage extraction approach, I compared the top

50 keyphrases produced by my models with outputs from G2, BM25, and variance-

weighted log-odds ratio. I examined both dissertation abstracts from the user study

and additional documents described in the next section. Terms from the 9,068 Ph.D.

dissertations are used as the reference corpus for all methods except my simplified

model, which is corpus independent. I applied redundancy reduction to the output

of each extraction method.

My regression models often choose up to 50 or more reasonable keyphrases. In

contrast, I find that G2, BM25, and variance-weighted log-odds ratio typically select a

few reasonable phrases but start producing unhelpful terms after the top ten results.
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Barack 
(1.61472) 

President 
(0.76839) 

H. 
(-0.32276) 

Barack H. 
(0.71780) 

Obama 
(2.43130) 

Barack H. Obama 
(1.34950) 

President Obama 
(2.26657) 

H. Obama 
(0.71722) 

President Barack Obama 
(1.77101) 

Barack Obama 
(0.64336) 

Figure 5.11: Term grouping for named entities and acronyms. The above graph
shows typed edges that embed additional relationships between terms in a document
about President Obama. Black edges represent basic term grouping based on string
similarity. Bold blue edges represent people: terms that share a common trailing
substring and are tagged as “person” by a named entity recognition algorithm. By
default, my algorithm displays “Obama” to summarize the text. Users may choose
to show a longer phrase “President Obama” or display a longer and more specific
description “President Barack Obama” by shifting the scores along the typed edges.
Users may also apply type-specific operations, such as showing the longest name
without honorifics, “Barack H. Obama”.

The di↵erence is exacerbated for short texts. For example, in a 59-word article about

San Francisco’s Mission District, my algorithm returns noun phrases such as “colorful

Latino roots” and “gritty bohemian subculture”, while the other methods produce only

one to three usable phrases: “Mission”, “the District”, or “district”. In these cases,

my method benefits from grammatical information.

My algorithm regularly extracts salient longer phrases, such as “open-source dig-

ital photography software platform” (not chosen by other algorithms), “hardware-

accelerated video playback” (also selected by G2, but not others), and “cross plat-

form development tool” (not chosen by others). Earlier in the exploratory analysis,
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I found that the inclusion of optional leading words degrades the quality of descrip-

tive phrases. However, many phrases tend to be preceded by the same determiner

and pre-determiner. Without a su�ciently large reference corpus, statistics alone

often cannot separate meaningful phrases from common leading words. By applying

technical term matching patterns, my model naturally excludes most types of non-

descriptive leading words and produces more grammatically appropriate phrases such

as “long exposure” (my models) versus “a long exposure” (G2, BM25, weighted log-

odds ratio). Even though term commonness favors mid-frequency phrases, my model

can still select salient words from all commonness levels. For example, from an article

about the technologies in Google versus Bing, my models choose “search” (common

word), “navigation tools” (mid-frequency phrase), and “colorful background” (low-

frequency phrase), while all other methods output only “search”.

I observe few di↵erences between the full and simplified models. Discernible di↵er-

ences are typically due to POS tagging errors. In one case, the full model returns the

noun phrase “interactive visualization”, but the simplified model returns “interactive

visualization leverage”, as the POS tagger mislabels “leverage” as a noun.

On the other hand, the emphasis on noun phrases can cause my algorithm to omit

useful verb phrases, such as “civilians killed” in a news article about the NATO forces

in Afghanistan. My algorithm chooses “civilian casualties” but places it significantly

lower down the list. I return several phrases with unsuitable prefixes such as “such

scenarios” and “such systems” because the word “such” is tagged as an adjective in

the Penn Treebank tag set, and thus the entirety of the phrase is marked as a technical

term. Changes to the POS tagger, parser, or adding conditions to the technical term

patterns could ameliorate this issue. I also note that numbers are not handled by

the original technical term patterns [78]. I modified the definition to include trailing

cardinal numbers to allow for phrases such as “H. 264” and “Windows 95”, dates

such as “June 1991”, and events such as “Rebellion of 1798”.

Prior to redundancy reduction, I often observe redundant keyphrases similar in

term length, concept, or identity. For example, “Mission”, “Mission District”, and

“Mission Street” in an article about San Francisco. My heuristics based on string

similarity, named entity recognition, and acronym recognition improve the returned
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keyphrases (see Tables 5.6 and 5.7). As I currently consider single-term di↵erences

only, some redundancy is still present.

5.4.4 Crowdsourced Ratings of Tag Clouds

I evaluated my extracted keyphrases in a visual form, and asked human judges to

rate the relative quality of tag cloud visualizations with terms selected using both

my technique (i.e., simplified model) and G2 scores of unigrams (cf., [42, 51, 131]). I

chose to compare tag cloud visualizations for multiple reasons. First, keyphrases are

often displayed as part of a webpage or text visualization; I hypothesize that visual

features such as layout, sizing, term proximity, and other aesthetics are likely to a↵ect

the perceived utility of, and preferences for keyphrases in real-world applications.

Tag clouds are a popular form used by a diverse set of people [164]. Presenting

selected terms in a simple list would fail to reveal the impact of these e↵ects. Second,

keyphrases are often displayed in aggregate; I hypothesize that the perceived quality of

a collective set of keyphrases di↵ers from that of evaluating each term independently.

Tag clouds encourage readers to assess the quality of keyphrases as a whole.

Parallel Tag Clouds [42] use unigrams weighted by G2 for text analytics, making

G2 statistics an interesting and ecologically valid comparison point. I hypothesized

that tag clouds created using my technique would be preferred due to more descrip-

tive terms and complete phrases. I also considered variable-length G2 that includes

phrases up to 5-grams. Upon inspection, many of the bigrams (e.g., “more about”,

“anyone can”) and the majority of trigrams and longer phrases selected by G2 statis-

tics are irrelevant to the document content. I excluded the results from the study as

they were trivially uncompetitive. Including only unigrams results in shorter terms,

which may lead to a more densely-packed layout (this is another reason that I chose

to compare to G2 unigrams).

Method

I asked subjects to read a short text passage and write a 1–2 sentence summary.

Subjects then viewed two tag clouds and were asked to rate which they preferred on
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My Corpus-Independent Model G2

Adobe Flash
Flash Player Player
technologies Adobe
H. 264 video
touch-based devices Flash Player is
runtime 264
surge touch
fair amount open source
incorrect information 10.1
hardware-accelerated video playback Flash Player 10.1
Player 10.1 SWF
touch the Flash Player
SWF more about
misperceptions content
mouse input H.
mouse events battery life
Seventy-five percent codecs
codecs browser
many claims desktop
content protection FLV/F4V
desktop environments Flash Player team
Adobe Flash Platform Player 10.1 will
CPU-intensive task actively maintained
appropriate APIs Anyone can
battery life both open and proprietary
further optimizations ecosystem of both
Video Technology Center ecosystem of both open and
memory use for the Flash
Interactive content hardware-accelerated
Adobe Flash Player runtime hardware-accelerated video playback
static HTML documents include support
rich interactive media multitouch
tablets of both open
new content on touch-based
complete set open source and is

Table 5.6: Top 25 keyphrases for an open letter from Adobe about Flash technologies.
I apply redundancy reduction to both lists.
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Figure 5.12: Tag cloud visualizations of an online biography of the pop singer Lady
Gaga. Top: single-word phrases (unigrams) weighted using G2. Bottom: multi-
word phrases, including significant places and song titles, selected using my corpus-
independent model.
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Figure 5.13: Tag clouds for a research paper on chart perception. Top: unigrams
weighted using G2. Bottom: multi-word phrases selected by my method.
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Figure 5.14: Tag clouds for a travel article. Top: unigrams weighted using G2. Bot-
tom: multi-word phrases selected by my method.
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Shorter Keyphrase Longer

Flash  Flash Player ! Flash Player 10.1
devices  mobile devices ! Apple mobile devices

happiness  national happiness  Gross national happiness
emotion  emotion words ! use of emotion words
networks  social networks ! online social networks
Obama  President Obama  Barack H. Obama
Bush  President Bush  George H.W. Bush

WoW ! World of Warcraft

Table 5.7: Term length adjustment. Examples of adjusting keyphrase length. Terms
in boldface are selected by my corpus-independent model. Adjacent terms show the
results of dynamically requesting shorter ( ) or longer (!) terms.

a 5 point scale (with ‘3’ indicating a tie) and provide a brief rationale for their choice.

I asked raters to “consider to what degree the tag clouds use appropriate words, avoid

unhelpful or unnecessary terms, and communicate the gist of the text.” One tag cloud

consisted of unigrams with term weights calculated using G2; the other contained

keyphrases selected using the corpus-independent model with redundancy reduction

and with the default preferred length. I weighted the terms by their regression score:

the linear combination of features used as input to the logistic function. Each tag

cloud contained the top 50 terms, with font sizes proportional to the square root of

the term weight. Occasionally my method selected less than 50 terms with positive

weights; I omitted negatively-weighted terms. Tag cloud images were generated by

Wordle [164] using the same layout and color parameters for each. I randomized the

presentation order of the tag clouds.

I included tag clouds of 24 text documents. To sample a variety of genres, I used

documents in four categories: CHI 2010 paper abstracts, short biographies (based

on three U.S. presidents and three musicians), blog posts (two each from opinion,

travel, and photography blogs), and news articles. Figure 5.12 shows tag clouds from

a biography of the singer Lady Gaga; Figures 5.13 and 5.14 show two other clouds

used in the study.
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I conducted this study using Amazon Mechanical Turk (cf., [70]). Each trial was

posted as a task with a US$0.10 reward. I requested 24 assignments per task, resulting

in 576 ratings. Upon completion, I tallied the ratings for each tag cloud and coded

free-text responses with the criteria invoked by raters’ rationales.

Results

On average, raters significantly preferred tag clouds generated using my keyphrase

extraction approach (267 ratings vs. 208 for G2 and 101 ties; �

2(2) = 73.76, p <

0.0001). Moreover, my technique garnered more strong ratings: 49% (132/267) of

positive ratings were rated as “MUCH better,” compared to 38% (80/208) for G2.

Looking at raters’ rationales, I find that 70% of responses in favor of my technique

cite the improved saliency of descriptive terms, compared to 40% of ratings in favor

of G2. More specifically, 12% of positive responses note the presence of terms with

multiple words (“It’s better to have the words ‘Adobe Flash’ and ‘Flash Player’

together”), while 13% cite the use of fewer, unnecessary terms (“This is how tag

clouds should be presented, without the clutter of unimportant words”). On the

other hand, some (16/208, 8%) rewarded G2 for showing more terms (“Tag cloud 2

is better since it has more words used in the text.”).

Tag clouds in both conditions were sometimes preferred due to visual features

such as layout, shape, and density: 29% (60/208) for G2 and 23% (61/267) for my

technique. While visual features were often mentioned in conjunction with remarks

about term saliency, G2 led to more ratings (23% vs. 14%) that mentioned only visual

features (“one word that is way bigger than the rest will give a focal point . . . it is

best if that word is short and in the center”).

The study results also reveal limitations of my keyphrase extraction technique.

While my approach was rated superior for abstracts, biographies, and blog posts, on

average, G2 fared better for news articles. In one case, this was due to layout issues

(a majority of raters preferred the central placement of the primary term in the G2

cloud), but others specifically cite the quality of the chosen keyphrases. In an article

about racial discrimination in online purchasing, my technique disregarded the term

“black” due to its commonness and adjective part-of-speech. The tendency of my
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technique to give higher scores to people names non-central to the text at times led

raters to prefer G2. In general, prominent mistakes or omissions by either technique

were critically cited.

Unsurprisingly, my technique was preferred by the largest margin for research

paper abstracts, the domain closest to the training data. This observation suggests

that applying my modeling methodology to human-selected keyphrases from other

text genres may result in better selections. The study also suggests that we might

improve our keyphrase weighting by better handling named entities, so as to avoid

giving high scores to non-central actors. Confirming our hypothesis, layout a↵ects

tag cloud ratings. The ability to dynamically adjust keyphrase length, however, can

produce alternative terms and may allow users to generate tag clouds with better

spatial properties.

5.5 Implications for HCI, InfoVis, and NLP

In this section, I highlight my contributions to the fields of human-computer inter-

action (HCI), information visualization (InfoVis), and natural language processing

(NLP). First, I summarize my experiences and distill them in a set of design guide-

lines. Second, I demonstrate how my work can enable novel interactive visualizations.

Finally, my keyphrase extraction algorithm is the cumulative result of applying HCI

methods to collect data, analyze, develop, and evaluate text summarization tech-

niques. I review the process through which I arrived at my model and emphasize

how HCI concepts and approaches can help advance research in natural language

processing and other fields.

Guidelines for Human-Centered Design

I summarize the key lessons from my study and evaluations and distill them in the

following set of guidelines on designing text visualizations and model feature selection.

Multi-word phrases. My results find that multi-word phrases—particularly

bigrams—often provide better descriptions than unigrams alone. In the case of mul-

tiple documents, this decision may need to be traded o↵ against the better aggregation
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a↵orded by unigrams. Designers may wish to give users the option to parameterize

phrase length. My grouping approach (Section 5.4) provides a means of parameter-

izing selection while preserving descriptive quality.

Choice of frequency statistics. In my studies, probabilistic measures such

as G2 significantly outperformed common techniques, such as raw term frequency

and tf.idf. Moreover, a simple linear combination of log term frequency and web

commonness matches the performance of G2 without the need of a domain-specific

reference corpus. I advocate using these higher-performing frequency statistics when

identifying descriptive keyphrases.

Grammar and position. At the cost of additional implementation e↵ort, my

results show that keyphrase quality can be further improved through the addition of

grammatical annotations (specifically, technical term pattern matching using part-of-

speech tags) and positional information. The inclusion of these additional features

can improve the choice of keyphrases. More computationally costly statistical parsing

provides little additional benefit.

Keyphrase selection. When viewed as a set, keyphrases may overlap or refer-

ence the same entity. My results show how text visualizations might make better use

of screen space by identifying related terms (including named entities and acronyms)

and reducing redundancy. Interactive systems might leverage these groupings to en-

able dynamic keyphrase selection based on term length or specificity.

Potential e↵ects of layout and collective accuracy. My study comparing

tag cloud designs provides examples suggesting that layout decisions (e.g., central

placement of the largest term) and collective accuracy (e.g., prominent errors) impact

user judgments of keyphrase quality. My results do not provide definitive insights but

suggest that further studies on the spatial organization of terms may yield insights for

more e↵ective layout and that keyphrase quality should not be assessed in isolation.

Applications to Interactive Visualization

In this section, I illustrate how my keyphrase extraction methods can enable novel

interactions with text. I present two example applications: phrase-level text summa-

rization and dynamic adjustment of keyphrase specificity.



CHAPTER 5. DESCRIPTIVE PHRASES FOR TEXT SUMMARIZATION 142

A
lic

e
A

nt
ip

at
hi

es
ba

ts
bi

t h
ur

t
bo

tt
le

ca
ke

ca
nd

le
ca

ts
co

nv
er

sa
ti

on
co

ol
 fo

un
ta

in
s

cu
pb

oa
rd

s
cu

ri
os

it
y

cu
rt

ai
n 

A
lic

e
da

is
ie

s
da

rk
 h

al
l

da
rk

 o
ve

rh
ea

d
D

in
ah

do
or

do
or

w
ay

dr
ea

m
y 

so
rt

ha
ll

he
ad

he
ap

he
dg

e
ja

r
la

rg
e 

ra
bb

it
 h

ol
e

lit
tl

e 
do

or
lit

tl
e 

th
re

e 
le

gg
ed

 ta
bl

e
Lo

ng
it

ud
e

lo
w

 c
ur

ta
in

lo
w

 h
al

l
M

a'
am

m
om

en
t

no
th

in
g

O
R

A
N

G
E

 M
A

R
M

A
LA

D
E

pi
nk

 e
ye

s
po

is
on

po
or

 A
lic

e
sa

uc
er

sc
ho

ol
ro

om
sh

el
ve

s
sm

al
l p

as
sa

ge
st

ai
rs

st
ic

ks
te

le
sc

op
e

th
um

p
ti

ny
 d

oo
r

w
ai

st
co

at
w

ai
st

co
at

 p
oc

ke
t

w
hi

sk
er

s

A
da

A
LI

C
E

ba
th

in
g 

m
ac

hi
ne

s

ca
ts

ch
ild

re
n 

di
gg

in
g

ch
in

cl
aw

s
C

ur
io

us
er

D
uc

he
ss

E
SQ

.
fa

n
FE

N
D

E
R

Fr
en

ch
 le

ss
on

 b
oo

k
ga

llo
ns

ga
rd

en
 d

oo
r

G
ia

nt
 A

lic
e

gl
ov

es
go

ld
en

 s
ca

le
gr

ea
t h

ur
ry

gr
in

ha
ll

H
E

A
R

TH
R

U
G

hi
pp

op
ot

am
us

ja
w

s
lit

tl
e 

br
ig

ht
 e

ye
d 

te
rr

ie
r

lit
tl

e 
cr

oc
od

ile
lit

tl
e 

pa
tt

er
in

g
M

ab
el

N
ile

no
ns

en
se

pa
rd

on
po

ky
 li

tt
le

 h
ou

se
Po

or
 A

lic
e

qu
ee

r 
th

in
g

qu
ee

r 
to

 d
ay

R
IG

H
T 

FO
O

T
ri

ng
le

ts
se

as
id

e
so

rt
s

su
ch

 lo
ng

 r
in

gl
et

s
sw

am
Te

ar
s

te
le

sc
op

e
ti

m
es

 fi
ve

ti
m

es
 s

ix
ti

m
id

 v
oi

ce
w

al
ru

s
w

el
co

m
e 

lit
tl

e 
fis

he
s

w
oo

de
n 

sp
ad

es
ye

st
er

da
y 

th
in

gs

A
he

m
A

lic
e

ar
ch

bi
sh

op
bi

rd
s

C
au

cu
s

C
au

cu
s 

ra
ce

ch
or

us
co

m
fit

s
C

on
qu

er
or

co
nq

ue
st

D
in

ah
D

od
o

dr
ag

gl
ed

 fe
at

he
rs

E
ag

le
t

E
ag

le
t b

en
t

ea
rl

s
E

dg
ar

 A
th

el
in

g
E

dw
in

en
er

ge
ti

c 
re

m
ed

ie
s

fr
og

fr
ow

ni
ng

Fu
ry

im
m

ed
ia

te
 a

do
pt

io
n

im
po

rt
an

t a
ir

in
so

le
nc

e
Lo

ng
 T

al
e

Lo
ry

m
ee

ti
ng

 a
dj

ou
rn

m
el

an
ch

ol
y 

to
ne

M
er

ci
a

M
or

ca
r

M
ou

se
N

or
m

an
s

N
or

th
um

br
ia

of
fe

nd
ed

 to
ne

pa
rd

on
pa

tr
io

ti
c 

ar
ch

bi
sh

op
po

or
 A

lic
e

po
pe

Pr
iz

es
pr

iz
es

qu
ee

r 
lo

ok
in

g 
pa

rt
y

ra
ce

St
ig

an
d

ta
le

th
im

bl
e

th
im

bl
e 

A
lic

e
U

gh
us

ur
pa

ti
on

w
or

m

A
lic

e
A

lic
e 

cr
am

pe
d

an
gr

y 
to

ne
ap

pl
es

ar
m

ba
rr

ow
fu

l
B

ill
bo

tt
le

br
ig

ht
 b

ra
ss

 p
la

te
ca

ke
s

ch
im

ne
y

D
in

ah
do

or
D

R
IN

K
 M

E
D

uc
he

ss
el

bo
w

fa
n

fe
et

fe
rr

et
s

fo
ol

is
h 

A
lic

e
gl

ov
es

he
ad

ho
us

em
ai

d
hu

nt
in

g
hu

rr
y

le
ss

on
 b

oo
ks

le
ss

on
s

lit
tl

e 
m

ag
ic

 b
ot

tl
e

lit
tl

e 
pa

tt
er

in
g

lit
tl

e 
sh

ri
ek

m
ic

e
m

om
en

t
m

us
hr

oo
m

no
t

pa
ir

Pa
t

pe
bb

le
s

po
or

 A
lic

e
pu

pp
y

R
ab

bi
t N

ex
t

re
al

 M
ar

y 
A

nn
R

un
 h

om
e

so
rr

ow
fu

l t
on

e
so

rt
st

ic
k

th
is

tl
e

vo
ic

e
W

. R
A

B
B

IT
w

hi
sk

er
s

ye
r 

ho
no

r

A
lic

e
ar

m
s

ba
ck

 s
om

er
sa

ul
t

be
ak

bu
tt

er
fly

C
at

er
pi

lla
r

ch
in

ch
ry

sa
lis

co
nv

er
sa

ti
on

D
ot

h
ee

l
eg

gs
Fa

th
er

Fa
th

er
 W

ill
ia

m
go

od
 h

ei
gh

t
go

os
e

gr
ay

 lo
ck

s
ho

ok
ah

ja
w

lim
bs

Li
tt

le
 B

us
y 

B
ee

lit
tl

e 
qu

ee
r

m
el

an
ch

ol
y 

vo
ic

e
m

in
ut

e
m

ou
th

m
us

hr
oo

m
ne

ck
no

t
no

th
in

g
oi

nt
m

en
t

Pi
ge

on
pi

te
ou

s 
to

ne
po

or
 A

lic
e

Pr
ay

pu
zz

lin
g 

qu
es

ti
on

ri
gh

t h
an

d 
bi

t
sa

ge
Se

rp
en

t
sh

or
t r

em
ar

ks
si

le
nc

e
sl

ee
py

 v
oi

ce
st

ai
rs

su
et

te
m

pe
r

ti
m

e 
A

lic
e

to
ne

un
pl

ea
sa

nt
 s

ta
te

vi
ol

en
t b

lo
w

w
re

tc
he

d 
he

ig
ht

yo
ut

h

A
lic

e
ar

m
ax

es
ca

ul
dr

on
C

he
sh

ir
e

C
he

sh
ir

e 
C

at
C

H
O

R
U

S
cr

ea
tu

re
cr

oq
ue

t
di

sh
do

or

D
uc

he
ss

ea
r

ex
tr

ao
rd

in
ar

y 
no

is
e

Fi
sh

 F
oo

tm
an

Fo
ot

m
an

Fr
og

 F
oo

tm
an

Fr
og

 s
er

va
nt

s
gr

ea
t c

ra
sh

gr
ea

t l
et

te
r

gr
in

H
ar

e
he

ad
he

ar
th

in
vi

ta
ti

on
ke

tt
le

kn
uc

kl
es

la
rg

e 
ca

ul
dr

on
liv

er
y

M
ar

ch
 H

ar
e

m
uc

h 
pe

pp
er

pa
us

e

pi
g

pi
g 

ba
by

 A
lic

e
po

w
de

re
d 

ha
ir

Q
ue

en
 to

 d
ay

qu
ee

r 
sh

ap
ed

 li
tt

le
 c

re
at

ur
e

re
m

ar
k

sa
m

e 
so

le
m

n 
to

ne
sa

uc
ep

an
sk

y
sn

ee
zi

ng
so

le
m

n 
to

ne
so

rt
so

up ta
il

to
ne

w
ag

w
oo

d
w

ow

A
lic

e
an

sw
er

bu
tt

er
cl

ea
n 

cu
p

cl
oc

k
co

nf
us

ed
 p

oo
r 

A
lic

e
cr

um
bs

cu
ri

os
it

y
cu

sh
io

n

D
or

m
ou

se
do

ze
el

bo
w

s
E

ls
ie

en
co

ur
ag

in
g 

to
ne

ex
tr

ao
rd

in
ar

y 
w

ay
s

ey
es

fe
eb

le
 v

oi
ce

fe
llo

w
s

fu
nn

y 
w

at
ch

gr
ea

t d
is

gu
st

H
ar

e
H

at
te

r
La

ci
e

la
rg

e 
ar

m
 c

ha
ir

lit
tl

e 
ba

t
lit

tl
e 

ho
t t

ea
lit

tl
e 

sh
ri

ek
lit

tl
e 

si
st

er
s

m
an

y 
te

a 
th

in
gs

M
ar

ch
 H

ar
e

m
ou

rn
fu

l t
on

e

m
uc

hn
es

s
no

t
no

th
in

g
of

fe
nd

ed
 to

ne
pe

rs
on

al
 r

em
ar

ks
po

ck
et

ra
ve

n
re

m
ar

k
rh

et
or

ic
ri

dd
le

s
ru

de
ne

ss
se

ve
ri

ty
Sh te
ap

ot
Ti

lli
e

Tr
ea

cl
e

tr
ea

cl
e 

w
el

l
Tw

in
kl

e
w

ri
ti

ng
 d

es
k

A
lic

e
ar

ch
es

ar
m

C
he

sh
ir

e 
C

at
co

ok
 tu

lip
 r

oo
ts

co
ur

ti
er

s
cr

im
so

n 
ve

lv
et

 c
us

hi
on

C
ro

qu
et

 G
ro

un
d

cu
ri

ou
s 

cr
oq

ue
t g

ro
un

d
do

 n
't

do
ub

le
d 

up
 s

ol
di

er
s

D
uc

he
ss

ea
rs

el
bo

w
fa

ce
fla

m
in

go
ga

rd
en

er
s

gr
an

d 
pr

oc
es

si
on

he
ad

H
ea

rt
s

he
dg

eh
og

Id
io

t
K

in
g

K
na

ve
la

rg
e 

ro
se

 tr
ee

lit
tl

e 
de

ar
s

M
aj

es
ty

m
an

y 
fo

ot
st

ep
s

m
in

ut
e

m
om

en
t F

iv
e

ne
rv

ou
s 

m
an

ne
r

N
on

se
ns

e
ob

lo
ng

on
io

ns
pi

ty
pr

oc
es

si
on

Q
ue

en
R

ab
bi

t
re

d 
ro

se
 tr

ee
ri

dg
e

ro
se

ro
se

 tr
ee

ro
se

bu
sh

ro
se

tr
ee

ro
un

d
ro

ya
l c

hi
ld

re
n

so
ld

ie
rs

su
lk

y 
to

ne
to

ne
un

ju
st

 th
in

gs

A
lic

e
ar

ch
es

ar
m

ch
ea

p 
so

rt
ch

in
cr

oq
ue

t g
ro

un
d

di
gg

in
g

D
ra

w
lin

g 
m

as
te

r

D
uc

he
ss

E
ve

ry
bo

dy
ex

ec
ut

io
ns

fla
m

in
go

G
ry

ph
on

he
rs

ho
pe

fu
l t

on
e

la
rg

e 
m

us
ta

rd
 m

in
e

le
ss

on
s

M
aj

es
ty

M
oc

k
M

oc
k 

Tu
rt

le
m

us
ta

rd
no

t
ol

d 
co

ng
er

 e
el

pa
us

e
pa

w
s

pe
pp

er
pi

gs
pl

ea
sa

nt
 te

m
pe

r
pl

ea
se

d 
to

ne
Q

ue
en

re
m

ar
k

Sh
al

l
sh

ar
p 

ch
in

sh
ar

p 
lit

tl
e 

ch
in

sh
ou

ld
er

si
gh

So
m

eb
od

y
so

rr
ow

te
m

pe
r

th
e 

M
oc

k
th

un
de

rs
to

rm
Ti

s
to

ne
To

rt
oi

se
Tu

rt
le

Tu
t

U
gl

ifi
ca

ti
on

vi
ne

ga
r

vo
ic

e 
cl

os
e

w
ai

st

, w
o 

n'
t

, w
o 

n'
t y

ou
ad

ve
nt

ur
es

A
lic

e
B

ea
u

C
ha

ng
e 

lo
bs

te
r

ch
ee

ks
cr

ea
tu

re
s

cr
um

bs
da

nc
e

de
lig

ht
fu

l t
hi

ng
ev

en
in

g
ey

es
fla

pp
er

fo
re

pa
w

s

G
ry

ph
on

G
ry

ph
on

 s
in

gi
ng

Lo
bs

te
r

Lo
bs

te
r 

pr
im

pi
ng

Lo
bs

te
r 

Q
ua

dr
ill

e
m

ad
 th

in
gs

M
oc

k
M

oc
k 

Tu
rt

le
m

ou
th

s
of

fe
nd

ed
 to

ne
oo

p
oo

ti
fu

l S
oo

O
w

l
p 

en
ny

w
or

th
Pa

nt
he

r
po

rp
oi

se
Q

ua
dr

ill
e

ro
un

d 
A

lic
e

se
a

Se
al

s
sh

in
gl

e
sn

ai
l

so
bs

so
m

er
sa

ul
t

So
o

So
up

ta
ils Ti
s

to
es

to
ne

Tu
rt

le
w

hi
ti

ng
w

o 
n'

t y
ou

yo
u 

, w
o 

n'
t

yo
u 

, w
o 

n'
t y

ou

A
lic

e
be

as
ts

bl
as

ts
co

ok
co

ur
t

co
ur

tr
oo

m
D

or
m

ou
se

fir
st

 w
it

ne
ss

fr
on

ti
sp

ie
ce

gr
ea

t w
ig

G
ry

ph
on

gu
in

ea
H

ar
e

H
at

te
r

H
ea

rt
s

in
di

gn
an

t v
oi

ce
ju

dg
e

ju
ro

rs
ju

ry
ju

ry
 m

en
K

in
g

K
na

ve
la

rg
e 

di
sh

la
st

 w
or

d 
tw

o
M

aj
es

ty
M

ar
ch

 H
ar

e
ne

xt
 w

it
ne

ss
ni

ce
 m

ud
dl

e
of

fic
er

s
pa

rc
hm

en
t

pe
nc

il
pi

g
Q

ue
en

R
ab

bi
t

re
fr

es
hm

en
ts

Si
le

nc
e

si
ng

er
s

sl
at

es
sp

ec
ta

cl
es

ta
rt

s
Ta

rt
s

te
a

te
ac

up
th

ro
ne

tr
ia

l
tr

um
pe

t
tw

in
kl

in
g

W
hi

te
 R

ab
bi

t
w

ig
w

it
ne

ss

ac
ci

de
nt

A
lic

e
at

om
bu

sy
 fa

rm
 y

ar
d

cu
ri

ou
s 

dr
ea

m
dr

ea
m

ev
id

en
ce

flu
rr

y
G

ia
nt

 A
lic

e 
up

se
ts

go
ld

fis
h

gr
av

e 
vo

ic
e

gr
ea

t d
is

m
ay

G
ry

ph
on

ha
st

e
he

ad
he

ad
 d

ow
nw

ar
ds

he
rs

hu
rr

y
ju

ry
ju

ry
 b

ox
ju

ry
m

en
K

in
g

K
na

ve
kn

ee
lit

tl
e 

A
lic

e
Li

za
rd

M
aj

es
ty

m
el

an
ch

ol
y 

w
ay

ne
ve

r 
en

di
ng

 m
ea

l
N

ot
hi

ng
pa

rd
on

pe
nc

il
pr

is
on

er
Q

ue
en

qu
ee

r
re

sp
ec

tf
ul

 to
ne

sh
ri

ek
si

st
er

sl
at

es
ta

rt
s

te
ac

up
s

to
ne

tr
ia

l o
ne

un
de

rt
on

e
va

gu
e 

so
rt

ve
rd

ic
t

ve
rs

es
vo

ic
e

W
hi

te
 R

ab
bi

t
W

on
de

rl
an

d

M
oc

k-
up

 v
is

ua
liz

at
io

n 
fo

r 
“W

it
ho

ut
 th

e 
C

lu
tt

er
 o

f U
ni

m
po

rt
an

t W
or

ds
”:

 D
es

cr
ip

ti
ve

 K
ey

ph
ra

se
s 

fo
r 

Te
xt

 V
is

ua
liz

at
io

n 
by

 J
as

on
C

hu
an

g,
 C

hr
is

 M
an

ni
ng

, a
nd

 J
ef

f H
ee

r,
 to

 a
pp

ea
r 

in
 T

O
C

H
I.

 S
ou

rc
e 

te
xt

 o
f A

lic
e’

s 
A

dv
en

tu
re

s 
in

 W
on

de
rl

an
d 

is
 fr

om
 P

ro
je

ct
G

ut
en

be
rg

.
F
ig
u
re

5.
15
:
P
ar
al
le
l
ta
g
cl
ou

d
u
si
n
g
m
y
ke
yp

h
ra
se

ex
tr
ac
ti
on

al
go
ri
th
m

as
th
e
u
n
d
er
ly
in
g
te
xt

p
ro
ce
ss
in
g
st
ep
.

T
h
e
co
lu
m
n
s
co
nt
ai
n
th
e
to
p
50

ke
yp

h
ra
se
s
(w

it
h
ou

t
re
d
u
n
d
an

cy
re
d
u
ct
io
n
)
in

ch
ap

te
rs

3
th
ro
u
gh

12
of

L
ew

is
C
ar
ro
ll
’s

A
li
ce
’s

A
dv
en

tu
re
s
in

W
on

de
rl
an

d.
L
on

ge
r
p
h
ra
se
s
en
ab

le
d
is
p
la
y
of

en
ti
ti
es
,
su
ch

as
“C

he
sh
ir
e
C
at
”

an
d
“L

ob
st
er

Q
ua

dr
il
le
”,

th
at

m
ig
ht

b
e
m
or
e
sa
li
en
t
to

a
re
ad

er
th
an

u
n
ig
ra
m
s
al
on

e.
T
er
m

gr
ou

p
in
g
ca
n
en
ab

le
n
ov
el
in
te
ra
ct
io
n
te
ch
n
iq
u
es

su
ch

as
b
ru
sh
in
g-
an

d
-l
in
ki
n
g
co
n
ce
p
tu
al
ly

si
m
il
ar

te
rm

s.
W

h
en

a
u
se
r
se
le
ct
s
th
e
w
or
d

“t
on

e”
,
th
e
vi
su
al
iz
at
io
n
sh
ow

s
th
e
si
m
il
ar

b
u
t
ch
an

gi
n
g
to
n
es

in
A
li
ce
’s

ad
ve
nt
u
re
s
fr
om

“m
el
an

ch
ol
y
to
n
e”

to
“s
ol
em

n
to
n
e”

an
d
fr
om

“e
n
co
ur
ag
in
g
to
n
e”

to
“h
op
ef
ul

to
n
e”

as
th
e
st
or
y
d
ev
el
op

s.



CHAPTER 5. DESCRIPTIVE PHRASES FOR TEXT SUMMARIZATION 143

I apply keyphrase extraction algorithm to Lewis Carroll’s Alice’s Adventures in

Wonderland, and compare the text in each chapter using a Parallel Tag Cloud in

Figure 5.15. Each column contains the top 50 keyphrases (without redundancy re-

duction) from a chapter of the book. By extracting longer phrases, my technique

enables the display of entities, such as “Cheshire Cat” and “Lobster Quadrille”, that

might be more salient to a reader than a display of unigrams alone. My term group-

ing approach can enable novel interactions. For example, when a user mouses over

a term, the visualization highlights all terms that are considered conceptually simi-

lar. As shown in Figure 5.15, when the user selects the word “tone”, the visualization

shows the similar but changing tones in Alice’s adventures from “melancholy tone” to

“solemn tone” and from “encouraging tone” to “hopeful tone” as the story develops.

My algorithm can enable text visualizations that respond to di↵erent audiences.

The tag clouds in Figures 5.16 and 5.17 show the top keyphrases of an article dis-

cussing a new subway map by the New York City Metropolitan Transportation Au-

thority. By adjusting the model output to show more specific or more general terms,

the tool can adapt the text for readers with varying familiarity with the city’s subway

system. For example, a user might interactively drag a slider to explore di↵erent levels

of term specificity. The top tag cloud provides a general gist of the article and of the

redesigned map. By increasing term specificity, the middle tag cloud progressively

reveals additional terms including neighborhoods, such as “TriBeCa”, “NoHo”, and

“Yorkville”, that may be of interest to local residents. The bottom tag cloud pro-

vides additional details, such as historical subway maps with the “Massimo Vignellis

abstract design”.

Applications of HCI Methods to Natural Language Processing

In addition to contributing a keyphrase extraction algorithm, I would like to empha-

size the process through which the algorithm was developed. I highlight the various

steps at which I applied human-centered design methods and point out how HCI

concepts helped guide the development. I hope that my experiences can serve as an

example for creating algorithms that are responsive to users’ tasks and needs.
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Figure 5.16: Adaptive tag clouds; continue onto Figure 5.17. These tag clouds sum-
marize an article about the new subway map by the New York City Metropolitan
Transportation Authority. By adjusting the model output to show more specific or
more general terms, a visualization can adapt the text for readers with varying fa-
miliarity with the city’s subway system. For example, a user might interactively drag
a slider to explore di↵erent levels of term specificity. The top tag cloud provides a
general gist of the article and of the re-designed map. By increasing term specificity,
the bottom tag cloud progressively reveals additional terms including neighborhoods
such as “TriBeCa”, “NoHo”, and “Yorkville” that may be of interest to local resi-
dents. Tag cloud in Figure 5.17 provides additional details such as historical subway
maps with the “Massimo Vignellis abstract design”.



CHAPTER 5. DESCRIPTIVE PHRASES FOR TEXT SUMMARIZATION 145

subway
authority

map

riders

new subway map

Manhattan

balloons

ubiquitous blue and taupe rectangle

Neighborhood names

ferries

train

Massimo Vignellis abstract design

spreadsheetlike service guide

maps bottom border

stripped down map

fellow riders shoulders

right angled routes

subterranean icon

world class art museums

simple street grid

adorning products

handicapped accessible stations

Small wheelchair symbolssleepy industrial lane
few Manhattan streets Eddie Jabbour

iPhone users

Massimo Vignellis

grayish square
clarity

Converse high top sneakers

authoritys Web site

well known map

Kick Map designer
quizzical features

bus connections

Hells Kitchen

recognizable skyline

first overhaul

decade

Jay H. Walder

cluttered composition

amateur cartographers

Figure 5.17: Adaptive tag clouds; continued from Figure 5.16.

My model arose through the cumulative application of HCI methods to collect-

ing data, and analyzing, developing, and evaluating text summarization techniques.

First, I collected human-generated keyphrases via a formal experiment. The data en-

abled us to examine the relationships between the descriptors and the corresponding

text in a systematic manner and to determine the e↵ects of three controlled factors.

Second, an exploratory analysis yielded insights for designing more e↵ective algo-

rithms. I assessed the quality of various linguistic and grammatical features (e.g.,

accuracy of existing frequency statistics, computational cost of tagging vs. parsing)

and characterized the properties of high-quality descriptors. The characterizations

enabled identification of appropriate natural language processing techniques (e.g.,

technical terms for approximating noun phrases). In turn, the choice of features led

to a simple regression model that is competitive with outputs generated by more
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advanced statistical models. Third, I designed ecologically valid evaluations. In ad-

dition to standard quantitative measures (e.g., precision-recall on exact matches), I

evaluated the extracted keyphrases in situations closer to the actual context of use.

An analysis using relaxed matching yielded insights on the shortcomings of the stan-

dard equality-based precision-recall scores and provided the basis for my redundancy

reduction algorithm. Evaluating keyphrase use in tag clouds revealed e↵ects due to

visual features as well as the impact of prominent mistakes.

While many of the proceeding concepts may be familiar to HCI practitioners,

their uses in natural language processing are not widely adopted. Incorporating HCI

methods, however, may benefit various active areas of NLP research.

Summary

In this chapter, I characterize the statistical and grammatical features of human-

generated keyphrases and present a model for identifying highly descriptive terms in

a text. The model allows for adjustment of keyphrase specificity to meet application

and user needs. Based on simple linguistic features, my approach does not require

a pre-processed reference corpus, external taxonomies, or genre-specific document

structure while supporting interactive applications. Evaluations reveal that my model

is preferred by human judges, can match human extraction performance, and performs

well even on short texts.

Finally, the process through which I arrived at my algorithm— identifying human

strategies via a formal experiment and exploratory analysis, designing my algorithm

based on these identified strategies, and evaluating its performance in ecologically-

valid settings—demonstrates how human-centered design methods can be applied

to the design and development of e↵ective algorithms. A holistic approach to co-

designing algorithms and visualizations can enable novel interactive techniques and

user interface designs.



Chapter 6

Conclusion

In this dissertation, I presented the results of applying a human-centered iterative de-

sign process to a variety of projects: visualizations of statistical topic models, analysis

tools to support topical quality assessment, a framework to support large-scale top-

ical relevance assessment, and descriptive phrases for text summarization. My work

has produced e↵ective interactive visualizations, enabled more e�cient analytic work-

flows, and contributed to our understanding of human categorization, topic modeling,

and text summarization. I demonstrated how we can e↵ectively integrate methods

from information visualization, human-computer interaction, and machine learning

to support e↵ective model-driven data analysis.

I distilled design principles and design processes to inform practitioners on how to

incorporate increasingly sophisticated models into data analysis tools. I designed, de-

veloped, and deployed various visual analysis tools for both builders and end users of

statistical topic models. In all of my projects, my approach led to not only improved

visualizations but also the design of novel modeling techniques. I contributed sur-

vey methods and various datasets that can enable future studies on human-centered

approaches to topic modeling. To conclude, I discuss potential future work.

147
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6.1 Review of Contributions

6.1.1 Design Guidelines

Based on my experiences and a review of relevant literature, I formulated two de-

sign principles— interpretation and trust —for for creating visualizations driven by

statistical models. I distilled a set of design processes— align, modify, verify, and

progressive disclose—for achieving interpretable and trustworthy visualizations.

6.1.2 Visual Analysis Tools

I developed a set of visual analysis tools to help social scientists examine large-scale

academic discourse. The Stanford Dissertation Browser contributed to an investiga-

tion into inter-disciplinary collaborations. My topic flow visualization tool revealed

modeling issues in an existing topic modeling algorithm. My visualization of language

transfer allowed social scientists to examine three decades of academic discourse based

on topical analyses of over one million Ph.D. dissertations.

I developed Termite, a visual analysis tool for evaluating topic model quality.

Termite supports rapid visual assessment through the use of a matrix view, the iden-

tification of distinctive vocabulary, and term seriation to promote the clustering of

related words and the legibility of phrases.

I contributed a computational framework to support large-scale assessment of top-

ical relevance. I quantified four types of topical misalignment— junk, fused, missing,

and repeated topics—and introduced the correspondence chart, a visualization to

provide diagnostic feedback on topical alignment.

6.1.3 Modeling and Visualization Techniques

In collaboration with social scientists and machine learning researchers, I devised

a novel word borrowing topical similarity measure during the development of the

Stanford Dissertation Browser. My measure more closely matched expert judgment

of departmental topical relationships, and produced asymmetric relationships that

were expressed by the experts but not captured by existing techniques.
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I developed a novel term saliency measure and a novel text seriation technique

that were incorporated into Termite. My saliency measure identifies distinctive vo-

cabulary suitable for topical comparison. My seriation technique not only surfaces

the clustering of related words but also promotes the legibility of phrases (multi-word

terms) through the incorporation of bigram collocation statistics.

I contributed a matching likelihood measure predictive how likely a human judge

would consider a latent topic and a reference concept to be equivalent. The measure

is based on a rescaled dot product calculation that outperformed existing techniques

in predicting user topical similarity ratings. The matching likelihood measure was

incorporated into my framework for assessing topical relevance.

I developed a novel keyphrase extraction algorithm based on an analysis of human-

generated descriptive phrases. I presented two novel interactive text visualizations

that were enabled by my algorithm: phrase-level text summarization and a tag cloud

with dynamic adjustment of keyphrase specificity.

6.1.4 Survey Methods and Datasets

I contributed a survey method for eliciting topical organization based on freeform

responses. I identified four issues (i.e., bias, recall, input accuracy, and participant

exhaustion) associated with collecting open-ended categorization responses, and de-

vised user interface and survey design modifications to address these issues. Using

the survey method, I asked ten experienced researchers to describe topics of infor-

mation visualization research and collected 202 hand-crafted topical responses, each

consisting of a title, keyphrases, and representative documents.

I contributed a method for synthesizing similar topical concepts a corresponding

method for validating the combined topics. I identified a set of 28 most coherent

topical concepts in information visualization.

I also compiled a corpus of over 5,600 descriptive phrases, manually chosen by

expert and non-expert readers, for summarizing Ph.D. dissertation abstracts.
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6.2 Limitations and Future Work

6.2.1 Interactive Topic Modeling

While I compared topic models against an exhaustive list of reference concept pro-

vided by experts in my work, I believe the framework is useful when users specify only

a subset of the concepts, or can construct concepts from existing metadata. Multiple

research questions need to be addressed to support such a modeling workflow.

What learning technique should we apply? Several semi-supervised topic mod-

els permit users to express domain knowledge by specifying exemplary documents

[129], constraints on word relationships [4], or by treating a given word distribution

as observed [128]. The choice of model needs to be made by considering both the

performance of the model (i.e., modeling error) and other human factors. For exam-

ple, how accurately and e�ciently can experts express their domain knowledge in a

representation suitable for the model?

I examined the e↵ects of three factors—number of latent topics (N), term smooth-

ing (�), and topic smoothing (↵)—on the quality of statistical topic models trained

on information visualization publications. How well do these results hold for larger

text corpora? Or, for other academic publication datasets? Or, for other domains

of text? Topic model quality also depends on other factors as well as pre- and post-

processing steps. For example, what are the e↵ects of asymmetric priors [166]? What

are the e↵ects of stopword removal or the introduction of domain-specific phrases?

6.2.2 Hierarchy in Human Topical Organization

Previous psychology work suggests that humans organize categories hierarchically

and that categories are first created at a basic level before more general and more

specific categories emerge. My survey results from the information visualization ex-

perts consisted of a mostly flat list of topics. How do we design survey methods to

identify hierarchical structures in topical organization?

People are able to assign subordinate and superordinate relationships to concepts.
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Cognitive psychology experiments are typically based on small datasets, where the ex-

tracted hierarchical relationships are presented using a taxonomy or a tree of concepts.

This presentation, however, sidesteps the issue that local subordinate/superordinate

relationships may be inconsistent— for larger or more complex datasets or when the

data is elicited from people with di↵erent domain expertise.

Assuming we are able to elicit hierarchical topical organization from a large num-

ber of users, can their responses be fitted to a strict tree structure? If not, what is the

appropriate modeling abstraction for representing hierarchical topical organization?

Assuming we are able to e�ciently elicit and accurately model hierarchical human

topical organization, how do we design tools, such as search interfaces, to best support

browsing and exploration by topical concepts?

6.2.3 Facets vs. Categories

In user interface design, an established paradigm to support e↵ective browsing of large

datasets is through the use of faceted navigation. A facet is a superordinate category

that groups together several concepts. Concepts belonging to the same facet typi-

cally satisfy additional constraints such as being on the same level of organization or

confirming to the same hyponym (“is-a”) relationships. Faceted organization permit

a concept to appear in multiple facets or none at all. Such an organization di↵ers

from the fundamental modeling assumption of most statistical topic models. How do

we evaluate and select an appropriate model for a given analytic task? What are the

implications for visualization and interaction design?

6.2.4 Deployment of Machine Learning Algorithms

Many of the techniques that I developed in this dissertation focused on supporting

the evaluation of statistical topic models. More than providing diagnostic feedback,

can we design visual analysis tools to encourage best practices?

Many of my tools were developed for experience practitioners—machine learning

researchers and investigators who were familiar with the inner workings of a statistical

topic model. My work also benefited from close collaborations with model builders
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who helped investigate and modify model designs. How do we design topical curation

or data analysis tools for users without computing technical backgrounds? How do

we turn prototypes, such as Termite, into e↵ective tools and put them in the hands

of anyone who wish to perform topic modeling?

6.3 Closing Remarks

Model-driven visual data analysis draws on the work of multiple disciplines including

information visualization, human-computer interaction, and machine learning. This

dissertation sets an example on how to integrate such a diverse set of techniques into

an e↵ective tool. I envision that stronger collaboration among these disciplines will

enable us to better understand and explore the growing of amount of data that we

face.



Appendix A

Derivations and Implementations

A.1 Mixing as a Convolution Operator

Since events in a Bernoulli process are considered independent, I can re-arrange the

order of events without a↵ecting the expected outcome. When computing the number

of expected topic-concept matches for the combined definitive and noise charts, I re-

arrange all the definitive events to occur first and the noise events later.

Let {xk

} be a series of Bernoulli events for k � 1 where x

k is the probability of

observing a positive outcome for event k. I represent Xk as 2-vector [1� x

k

, x

k]. Let

P

k be the multinomial distribution representing the observed cumulative outcome of

the first k events where P

k(i) is the probability that I observed exactly i positive

outcomes for the first k events. I represent P

k as an (k + 1)-vector with entries

[P k(0), P k(1), · · · , P k(k)]. I prove by induction, that P k+1 = P

k

⇤X

k+1.

As the base case:

P

0 = 1

P

1 = X

1 = 1 ⇤X1 = P

0

⇤X

1
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For the inductive step:

P

k+1

i

= P

k

i�1

· x

k+1 + P

k

i

· (1� x

k+1)

= P

k

i�1

·X

k+1

1

+ P

k

i

·X

k+1

0

=
1X

t=0

P

k

i�t

·X

k+1

t

P

k+1 = P

k

⇤X

k+1

Let P j,k represent the observed cumulative outcome for events j to k (inclusive).

Since convolution is communicative:

P

0,n = P

0,k

⇤X

k+1

⇤X

k+2

⇤ · · · ⇤X

n

= P

0,k

⇤ P

k+1,n

It follows that the expected topical-concept matches for the combined chart is:

P

combined

= P

definitive

⇤ P

noise

A.2 Setting k and Solving for �

By construction, the distributions P and P

noise

have the same mean. I arbitrarily

choose k so that P
definitive

has the same mean as P . For non integer values of k, P
definitive

is zero everywhere except for two values, P
definitive

(bkc) = dke�k and P

definitive

(dke) =

k � bkc.

Discrete convolution can be converted to matrix multiplication. I convert the

“convolute by P

noise

” operation into a Toeplitz matrix A = A

noise

. Let P 0 = P

k(1��)

definitive

.

min
�

KL(P 0
⇤ P

�

noise

||P )

min
�

KL(AP 0
||P )

min
�

P

0T
A

T log(AP 0)� P

0T
A

T log(P )
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I apply gradient descent to determine the optimal value � that minimizes the objective

function.

A.3 Solving for Pdenoised

Let P 00 = P

denoised

.

min
P

00
KL(P 00

⇤ P

noise

||P )

min
P

00
KL(AP 00

||P )

min
P

00
P

00T
A

T log(AP 00)� P

00T
A

T log(P )

I apply sequential quadratic programming to determine optimal vector P 00. The

above optimization involves both equality (
P

i

P

00
i

= 1) and inequality constraints

(0  P

00
i

 1). To improve the speed of computation and reduce complexity, I apply

barrier method to remove the inequality constraints. I modify the objective function

accordingly.

P

00T
A

T log(AP 00)� P

00T
A

T log(P ) + e

�↵P

00
+ e

↵(1+P

00
)

I perform 50 iterations and gradually increase ↵ from 500 to 50000.

To ensure better convergence, I solve the linear system of equations AP 00 = P , to

obtain an initial solution P

00(0). I clamp the values of P 00(0) to within [0, 1] and L

1

normalize the vector to ensure it’s a valid probability distribution. I use the resulting

vector as the initial solution.
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