
Towards Software Friendly Networks

Kok-Kiong Yap Te-Yuan Huang Ben Dodson Monica S. Lam Nick McKeown
Stanford University

{yapkke,huangty,bjdodson,lam,nickm}@stanford.edu

ABSTRACT
There has usually been a clean separation between networks,
and the applications that use them. Applications send pack-
ets over a simple socket API; the network delivers them.
However, there are many occasions when applications can
benefit from more direct interaction with the network, to
observe more of the current network state, and have more
control over its behavior. In this paper we explore some of
the potential benefits of closer interaction between applica-
tions and the network. We exploit the emergence of so-called
“software-defined networks”(SDN) built above network-wide
control planes, and explore how to build a more “software
friendly network”. We present results from a preliminary ex-
ploration that provide network services to applications via
an explicit communication channel.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; Network op-
erating systems

General Terms
Design, Management

Keywords
Software-Defined Networks, OpenFlow, Network OS, Net-
work Services

This research is supported in part by the NSF POMI (Pro-
grammable Open Mobile Internet) 2020 Expedition Grant
0832820, Stanford Clean Slate Program, Google, Xilinx,
Cisco, NEC, DT, DoCoMo and the Mr. and Mrs. Chun
Chiu Stanford Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0195-4/10/08 ...$10.00.

1. INTRODUCTION
Part of the success of the Internet undoubtedly comes

from the simple and consistent interface between applica-
tions and the network. Most applications use the socket
API to request a connection to a remote computer, then
simply send data into and out of the socket. The applica-
tion needs no knowledge of the topology or current state
of the network, and needs no control over how packets are
delivered. The network is a set of dumb pipes.

However, many applications can benefit from a richer in-
terface to the network with more visibility of its state, and
more control over its behavior. In general, past efforts to
increase the richness of the API have not been very suc-
cessful (e.g. RSVP [12]). While many applications could
benefit from the QoS control RSVP offers, few applications
find RSVP optimized for their needs. For example, Skype
employs a number of its own proprietary tricks to figure out
the current quality and state of the network, and then uses
multiple paths and rates to optimize its behavior [13]. This
may be feasible for Skype, but is beyond the reach of many
smaller applications.

One extreme approach to increasing the richness of the in-
terface would be to put application-specific support directly
into the network, as proposed in Active Networking [15]. Ac-
tive networks exploit the fact that the network knows its own
state, and attempts to expose state and control to user appli-
cations. However, the particular approach proved unpopular
for several reasons, most notably because of security (pre-
venting malicious use of the network), isolation (protecting
one application’s behavior from another) and performance
(programmable elements slow-down the forwarding path).

Software defined networks (SDN) are emerging as a new
(but backwardly compatible) way for networks to be archi-
tected. SDNs are being deployed in data centers now, and
we expect them to be deployed in enterprise, campus and
WAN networks in the next few years. It’s therefore interest-
ing to think about how, in light of this trend, the interface
between applications and the network may change.

An SDN has the following elements (see Fig. 1): (1) A
packet-forwarding datapath controlled by a narrow open
vendor-independent API (e.g. OpenFlow [9]). These are
the switches, routers and access points through which pack-
ets pass. (2) A network-wide operating system to control
the datapath. The network OS (e.g. NOX [5]) has a global
view of the network state, and has full programmatic con-
trol of the forwarding. (3) “Network features” are hosted
on the network OS, to implement various network services
such as routing (e.g. OSPF, BGP, multicast, multipath),

Figure 1: Components of SDN

mobility management, QoS control, etc. An SDN is simply
a repartitioning of the way networks are built. Initially, we
expect them to support many of the features in today’s net-
works. The key difference is that it is much easier to add new
features to an SDN; the owners and operators of networks
can improve their networks without having to wait for ven-
dors and standards bodies. We can therefore expect SDNs
to evolve and improve at a much faster pace than today’s
networks.

Current SDN’s (and NOX in particular) don’t specify how
applications should interact with the network. An applica-
tion may continue to use the minimal socket API, and con-
tinue to view the network merely as a means for interconnec-
tion. The question we are most interested in answering is:
How will applications interact with the network in a world
where owners and operators are free to add new functional-
ity to the control plane? Because SDN is still in its infancy,
our work is just a first step towards answering this question.

One possible outcome is that every application will pro-
vide its own “plugin” to the network OS to view and control
the network, and to also define its own application-specific
communication protocol to the plugin. For example, a plu-
gin optimized for Skype might interface directly with the
network OS to set up paths, reserve bandwidth, and create
access control rules. Alternatively, over time, a relatively
small number of “de facto standard” plugins might emerge
for common tasks (e.g. a plugin for multicast, another for
multipath routing, and yet another for bandwidth reserva-
tions). A third scenario is where plugins emerge to suit
certain classes of applications (e.g. a plugin for chat ap-
plications, another for real-time video, and a third for low-
latency applications). Of course, all three models can co-
exist: Many applications may choose to use common feature
plugins, whereas others can create their own. Our goal here
is not to propose, or mandate, that any particular model
will emerge. We merely make the observation that SDN
allows both models, and for each application to choose its
own path. The “winning features” will be picked by adop-
tion, rather than by standards bodies.

In this short paper we explore one possible path to more
“software friendly networks”. We assume that applications
will set up an explicit communication controller to a plugin
hosted by the network control plane, allowing applications
to query the network state, and issue requests.

We motivate our study using a multi-way high-definition
peer-to-peer video conferencing application for mobile users.

Figure 2: Architecture of SFNet

We assume that the application needs some services from the
network: a known data-rate, multicast, encryption, and the
means to include generic middle boxes for data transcoding.
While these services may be able in some form from network
boxes today, our goal here is to explore the desired API from
the application’s viewpoint, rather than from the network.

This enables interesting APIs, such as a congestion en-
quiry (which we discuss in §3). We also show that classical
bandwidth reservation(§4) and request for multicast session
(§5) can be provided through the same mechanism.

2. IMPLEMENTATION
To provide API to applications through a common frame-

work, we present our prototype implemented on top of NOX,
which we will refer to as SFNet (in Fig. 2). As we have previ-
ously mentioned, SFNet establish an explicit communication
between applications and the network controller to expose
common reusable API.

A key role of SFNet is to translate the communication be-
tween applications and the software-defined network. Mean-
ing SFNet hides the lower network protocols from the appli-
cations, i.e., it accepts high-level requests from applications
and translates into network primitives. This means applica-
tion writers will not be burdened with the menial networking
tasks, such as route calculation or discovering network topol-
ogy. Otherwise, the barrier to entry for using these network
services would be forbidding for most programmers, limit-
ing utility and uptake of the services. In our implementa-
tion, the requests are expressed in JSON (Fig. 3), which is
a simple and concise data format supported by most mod-
ern programming languages. SFNet exploits the global view
provided by NOX making it easy to support high-level prim-
itives, such as to satisfy the requests of network status and
implement resource reservation.

To exploit the functionalities of SFNet, applications need
to discover the location of SFNet’s controller. In our imple-
mentation, our controller replies the IP address(es) of the
machine it resides on when a JSON discovery request is sent
by the host into the network. Having control over the entire
network, we are able to make this discovery process without
using broadcast.

{ "type" : "sfnet",
"request" : "congestion",
"source" : "10.79.1.110",
"destination" : "10.79.1.111" }

{ "type" : "sfnet",
"request" : "congestion",
"congested" : true }

Figure 3: SFNet’s congestion request and reply in
JSON

3. CONGESTION AVOIDANCE BY
DELAY-TOLERANT BACKOFF

In this section, we illustrate how SFNet provides network
congestion status to applications, and show how that can be
used by applications to backoff. Here, the application com-
poses a query as a JSON message to inquire about the con-
gestion state of the path between two hosts (Fig. 3). SFNet
would then determine the switch and port on which the hosts
are connected and the shortest path between them. The con-
gestion state (i.e., percentage of link bandwidth in use) of
the links, including of those between switches and hosts, are
then determined. A reply is then generated for the enquiry
using a pre-defined threshold.

The congestion state information is useful for a variety of
purposes. For example, delay-tolerant backup can backoff
when the network is congested to relieve the network for
delay sensitive traffic. It can also be useful for system ad-
ministrators who want to schedule backup during times for
which the network is uncongested, and avoid congesting the
network with backup for someone pulling an all-nighter for
an impending deadline.

To validate our congestion enquiry implementation, we
create a background task to generate a continuous traffic
load on the network. Here, we used a TCP iperf that will
try to saturate the route. We write two applications; they
both transfer a 10 MB file, but the first sends it right away,
and the second inquires the state of congestion from SFNet
at 10 s interval, and transmits the data only if there is no
congestion.

Our results shows that the file can be transferred in an
average of 18.7 s with standard deviation 0.2 s without con-
gestion (Fig. 4). With congestion and without SFNet, the
transfer took an average of 38.4 s with standard deviation
1.9 s. With SFNet, the transfer is completed in an aver-
age of 18.5 s with standard deviation of 0.3 s, showing not
significant difference from an uncongested network.

Our key result here is not how much faster the file transfer
went but that we can effectively determine the congestion
state of routes, allowing an application to backoff during
congestion.

4. BANDWIDTH RESERVATION BY
STREAMING SERVICE

We now describe how SFNet supports bandwidth reser-
vation as an example. The application can send to SFNet
a request for guaranteed bandwidth. SFNet determines the
route and tries to map the request to appropriate bandwidth
guaranteed queues in the OpenFlow network. The network
provisions the required bandwidth along the route for the

Figure 4: Flow completion time with(out) SFNet’s
congestion enquiry

Figure 5: Available TCP bandwidth with(out)
SFNet’s reservation

application at hand, to provide the best user experience pos-
sible. SFNet responds with either granted or denied to the
application, depending on the availability of the requested
bandwidth.

Many interactive applications, such as video on demand
and VoIP calls, are delay intolerant and has a strict band-
width requirement. Even with traffic classification tools, to-
day’s network cannot differentiate between a user watching a
random video clip from the web and an important customer
being presented a demonstration video. With SFNet, high-
priority applications can directly indicate the bandwidth re-
quired, so the network can make the bandwidth available.

To validate our implementation, we perform an experi-
ment where a high-priority application (using TCP) runs in
the presence of a low-priority UDP flow that is overwhelm-
ing the link. We create both flows using iperf, where the
UDP flow is specified with a sending rate of 3 Mbps. The
high-priority TCP flow submits a request for a bandwidth
of 3 Mbps to SFNet.

Our results (Fig. 5) show that the TCP flow achieves an
average rate of 280 Kbits/sec without reservation. By re-
serving bandwidth over SFNet, the TCP flow achieves 2.24
Mbits/sec—about 8 times more throughput. We also ob-
serve that the low priority UDP flow is also appropriately
throttled (Fig. 5). We also observe that this has a dramatic
effect on the quality of the playback of a streamed video.
Such bandwidth reservation allows applications to express
the tacit importance of each flow by explicitly reserving the
appropriate network resources.

5. MULTICASTING SESSIONS FOR
MULTI-WAY P2P CHAT

We now discuss how SFNet can support a multicast ses-
sion for an application. Here, the application indicates to
SFNet a set of IP addresses participating in the multicast
with a selected multicast IP address; SFNet then returns a
response (success or failure). Subsequently, messages sent
to that multicast address will be delivered to the partici-
pants. SFNet finds the shortest network paths between the
participants. Each message sent to the multicast IP ad-
dress is duplicated where necessary in-network. To deliver
packets among n participants, SFNet installs n multicast
trees—from a host to the other n− 1 hosts. Each multicast
message is carried only once on each link of the multicast
tree. This efficiency is critical for increasingly important
telepresence applications such as high-definition multi-user
video conferencing.

We next describe how we can use this multicasting in
SFNet to improve the implementation of a chat service that
uses XMPP as a rendezvous point to set up chat sessions,
hereafter referred to as P2PChat. Fig. 6 describes a use sce-
nario of P2PChat. To join the service, each user will sub-
mit a join request to P2PChat using the XMPP protocol
(Fig. 6(a)). P2PChat aggregate requests for a chat session
and submits the IP addresses of the participants in a request
to SFNet, which installs the appropriate multicast routes for
the session (Fig. 6(b)). The participant can then communi-
cate with each other by sending messages to the multicast
IP address. The chat messages are forwarded directly in-
network, instead of going through the server (Fig. 6(c)).

Once a chat session is set up, the participants can com-
municate directly with each other using multicast sessions.
This translates to reduced traffic as well lower latency. Our
results show that by having participants communicate di-
rectly, we can reduce delay from 21 ms to 3 ms compared
to communicating through the XMPP server residing in the
same LAN. In the meantime, relieved of its message rout-
ing duty, the P2PChat server can scale to serve more users.
Moreover, failures of the chat server will not affect any of
the ongoing chat sessions. This opens up interesting possi-
bilities, such as using a transient client in the network as the
chat server.

6. RELATED WORK
Previous works, such as Resource ReSerVation Protocol

(RSVP) [12] and Darwin [3], aims at developing application-
aware networks. RSVP allows applications piggyback QoS
request in their packets and request resources from routers
the packets traverse. However, RSVP suffers from scalabil-
ity and reliability problems and is therefore not widely sup-
ported. Darwin uses a global resource scheduler to handle

(a) Chat clients issues join requests to P2PChat server. This
is how the chat will be carried out today, i.e., via the server
at all times.

(b) P2PChat server delegates message exchange to the
network through SFNet’s request and SFNet installs n-
multicast routes.

(c) Clients switch to P2P chat where the malfunction of the
XMPP server and/or SFNet controller will not affect the
chat session.

Figure 6: P2P chat via in-network mesh-casting (n-
multicast)

requests from applications, and allocate network resources
through “active networking”, i.e., embedding code into ap-
plication packets and executing the code in routers en route.
However, “active networking” is plagued with concerns, such
as security and computation loading. Also, the result of code
execution might differ based on router’s architecture, which
is difficult to track.

Application developers has also try to seek solutions at
the application layer. Numerous methods have been devel-
oped to estimate the end-to-end network capacity and route
quality. Available bandwidth (ABW) estimation is one of
the most well-studied techniques [7, 11, 14, 10]. Real-time
multimedia applications often use the estimation to choose
encoding rate [13]. Peer-to-peer applications uses ABW
estimation for route selection, QoS verification, and traffic
engineering over the overlay network [8]. However, due to
the dynamic nature of Internet traffic, it is difficult to accu-
rately estimate end-to-end available bandwidth [6]. Other
than ABW, applications would also monitor the packet loss
rate and apply different forward error correction mechanism.
However, these techniques can only help applications rem-
edy their performance loss, and not proactively improve it.

On the other hand, network operators are also trying very
hard to understand the traffic from the applications. Traf-
fic classification mechanisms are widely used to help net-
work operators deploy appropriate QoS mechanisms, pre-
vent network congestion, or to defend against network at-
tacks. Many techniques can be used to classify application
traffic from aggregated flows. Some are based on statistical
properties of network traffic, such as packet size, inter-packet
gap and flow duration [1, 4], while others are based on pro-
tocol signatures and deep packet inspection. None of these
would be able to determine the importance of a flow with
certainty.

With software-friendly networks, we are taking the“guess-
work”out both from applications and networks, allowing the
network to a service to the applications hence fulfilling their
requirements directly. The central controller can also pro-
vide the appropriate authentication to relieve many security
concerns [2].

7. CONCLUSION
In this short paper, we have presented our preliminary

exploratory foray of how to provide software friendly net-
work in the context of SDN. At the time of writing, SFNet
has been deployed in our production network [16] allowing
applications to make better use of our network. We are en-
couraged by how easy it is to provide conventional API like
bandwidth reservation and multicasting, while supporting
interesting new API like congestion enquiry.

What we presented is but a small step in the direction of
creating software friendly networks, using a particular ap-
proach in an early prototype system. There are much more
work to be done. We hope others will become similarly
aspired towards the goal of creating software friendly net-
works, and explores the multitude of approaches possible in
the solution space.

8. REFERENCES
[1] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and

P. Tofanelli. Revealing skype traffic: when randomness
plays with you. In SIGCOMM ’07: Proceedings of the

2007 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 37–48, New York, NY, USA,
2007. ACM.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking control
of the enterprise. In Proc. ACM SIGCOMM
Conference, Kyoto, Japan, Aug. 2007.

[3] P. Chandra, Y.-H. Chu, A. Fisher, J. Gao, C. Kosak,
T. Ng, P. Steenkiste, E. Takahashi, and H. Zhang.
Darwin: customizable resource management for
value-added network services. volume 15, pages 22
–35, jan/feb 2001.

[4] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli.
Traffic classification through simple statistical
fingerprinting. volume 37, pages 5–16, New York, NY,
USA, 2007. ACM.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards and
operating system for networks. In ACM SIGCOMM
CCR, July 2008.

[6] C. D. Guerrero and M. A. Labrador. On the
applicability of available bandwidth estimation
techniques and tools. In Computer Communications,
January 2010.

[7] M. Jain and C. Dovrolis. Pathload: A measurement
tool for end-to-end available bandwidth. In Passive
and Active Measurement Workshop, April 2002.

[8] M. Jain and C. Dovrolis. Path selection using available
bandwidth estimation in overlay-based video
streaming. Comput. Netw., 52(12):2411–2418, 2008.

[9] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, 2008.

[10] B. Melander, M. Bjorkman, and P. Gunningberg. A
new end-to-end probing and analysis method for
estimating bandwidth bottlenecks. In Global
Telecommunications Conference, 2000. GLOBECOM
’00. IEEE, volume 1, pages 415 –420 vol.1, 2000.

[11] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil,
and L. Cottrell. pathchirp: Efficient available
bandwidth estimation for network paths. In Passive
and Active Measurement Workshop, April 2003.

[12] RFC 2205: The resource reservation protocol (rsvp).
http://tools.ietf.org/html/rfc2205.

[13] Skype and network management.
http://share.skype.com/sites/en/2009/12/skype_
and_network_management.html.

[14] J. Strauss, D. Katabi, and F. Kaashoek. A
measurement study of available bandwidth estimation
tools. In ACM IMC, October 2003.

[15] D. L. Tennenhouse and D. J. Wetherall. Towards an
active network architecture. SIGCOMM Comput.
Commun. Rev., 37(5):81–94, 2007.

[16] K.-K. Yap, M. Kobayashi, D. Underhill,
S. Seetharaman, P. Kazemian, and N. McKeown. The
stanford openroads deployment. In WINTECH ’09:
Proceedings of the 4th ACM international workshop on
Experimental evaluation and characterization, pages
59–66, New York, NY, USA, 2009. ACM.

http://share.skype.com/sites/en/2009/12/skype_and_network_management.html
http://tools.ietf.org/html/rfc2205
http://share.skype.com/sites/en/2009/12/skype_and_network_management.html

	Introduction
	Implementation
	Congestion Avoidance byDelay-Tolerant Backoff
	Bandwidth Reservation byStreaming Service
	Multicasting Sessions forMulti-way P2P Chat
	Related Work
	Conclusion
	References

