
SociaLite: Datalog Extensions
for Efficient Social Network Analysis

Jiwon Seo Stephen Guo Monica S. Lam
Computer Systems Laboratory

Stanford University
Stanford, CA, USA 94305

{jiwon, sdguo, lam}@stanford.edu

Abstract— With the rise of social networks, large-scale graph
analysis becomes increasingly important. Because SQL lacks the
expressiveness and performance needed for graph algorithms,
lower-level, general-purpose languages are often used instead.

For greater ease of use and efficiency, we propose SociaLite,
a high-level graph query language based on Datalog. As a logic
programming language, Datalog allows many graph algorithms
to be expressed succinctly. However, its performance has not
been competitive when compared to low-level languages. With
SociaLite, users can provide high-level hints on the data layout
and evaluation order; they can also define recursive aggregate
functions which, as long as they are meet operations, can be
evaluated incrementally and efficiently.

We evaluated SociaLite by running eight graph algorithms
(shortest paths, PageRank, hubs and authorities, mutual neigh-
bors, connected components, triangles, clustering coefficients,
and betweenness centrality) on two real-life social graphs, Live-
Journal and Last.fm. The optimizations proposed in this paper
speed up almost all the algorithms by 3 to 22 times. SociaLite
even outperforms typical Java implementations by an average
of 50% for the graph algorithms tested. When compared to
highly optimized Java implementations, SociaLite programs are
an order of magnitude more succinct and easier to write. Its
performance is competitive, giving up only 16% for the largest
benchmark. Most importantly, being a query language, SociaLite
enables many more users who are not proficient in software
engineering to make social network queries easily and efficiently.

I. INTRODUCTION

In recent years, we have witnessed the rise of a large
number of online social networks, many of which have at-
tracted hundreds of millions of users. Embedded in these
databases of social networks is a wealth of information, useful
for a wide range of applications. Social network analysis
encompasses topics such as ranking the nodes of a graph,
community detection, link prediction, as well as computation
of general graph metrics. These analyses are often built on top
of fundamental graph algorithms such as computing shortest
paths and finding connected components. In a recent NSF-
sponsored workshop on Social Networks and Mobility in
the Cloud, many researchers expressed the need for a better
computational model or query language to eventually achieve
the goal of letting consumers express queries on their personal
social graphs [10], [36].

Datalog is an excellent candidate for achieving this vision
because of its high-level declarative semantics and support

for recursion. The high-level semantics makes possible many
optimizations including parallelization and time-bounded ap-
proximations. However, the relational representation in Data-
log is not a good match for graph analysis. Users are unable to
control the data representation or the evaluation. Consequently,
the performance of Datalog is not competitive when compared
with other languages. For this reason, developers resort to
using general-purpose languages, such as Java, for social
network analysis. Not only is it more difficult to write analysis
programs in general-purpose languages, these programs cannot
be parallelized or optimized automatically.

This paper presents SociaLite, an extension of Datalog
that delivers performance similar to that of highly optimized
Java programs. Our proposed extensions include data layout
declarations, hints of evaluation order, and recursive aggregate
functions.

A. Performance of Datalog Programs

Consider the example of computing shortest paths from a
source node to all other nodes in a graph. Using a previously
proposed extension of aggregate functions [3], [24], shortest
paths can be succinctly expressed in Datalog as shown in
Figure 1. Here, the first statement declares that there is a path
of length d from node 1 to node t, if there exists an edge
from node 1 to node t of length d. The second statement is a
recursive statement declaring that there is a path from node 1
to node t with length d1 + d2, if there is a path from node 1
to node s of length d1 and an edge from s to t of length d2.
The shortest path from node 1 to node t is simply the shortest
of all the paths from node 1 to node t, as expressed in the
third statement. $MIN is a pre-defined aggregate function in
SociaLite.

PATH(t, d) : − EDGE(1, t, d). (1)
PATH(t, d) : − PATH(s, d1), EDGE(s, t, d2),

d = d1 + d2. (2)
MINPATH(t, $MIN(d)) : − PATH(t, d). (3)

Fig. 1. Datalog query for computing the single-source shortest paths. The
source node has node id 1.

Algorithm Dijkstra (G(V,E : V × V × I), s)
for each vertex v ∈ V

d[v]←∞
d[s]← 0
Q← s
while Q 6= ∅ do

u← n ∈ Q with minimum d[n]
Q← Q− u
for each (u, v, l) ∈ E

if d[v] =∞ then
Q← v

d′ = d[u] + l
if d′ < d[v] then

d[v]← l

Fig. 2. Dijkstra’s algorithm in an imperative programming language.

While the program in Figure 1 is succinct, it fails to
terminate in the presence of cycles because the path lengths are
unbounded. Even if the data contains no cycles, existing Dat-
alog implementations are relatively slow, due to unnecessary
computation of sub-optimal distances, as well as inefficient
data structures. We ran this shortest-paths algorithm on Log-
icBlox [20], a state-of-the-art commercial implementation of
Datalog. For a randomly generated acyclic graph with 100,000
nodes and 1,000,000 edges, the algorithm required 3.4 seconds
to terminate on an Intel Xeon processor running at 2.80GHz.

In contrast, imperative programming languages provide
users full control over the execution as well as the layout. For
example, Dijkstra’s algorithm in Figure 2 computes shortest
paths in O(m+n log n) time, where n is the number of nodes
and m is the number of edges. For the same acyclic graph used
to evaluate LogicBlox, a Java implementation of Dijkstra’s
algorithm requires less than 0.1 second. The large performance
gap with imperative languages makes Datalog not competitive
for solving fundamental graph algorithms. More generally, join
operations defined over relational databases do not seem to be
a good match for graph algorithms. Graphs can be represented
efficiently with linked lists, as opposed to relational tables.
Additionally, join operations tend to generate many temporary
tables that pessimize the locality of a program.

B. Contributions

This paper presents the SociaLite language, as well as
the design, implementation, and evaluation of the SociaLite
compiler. SociaLite is an extension of Datalog which allows
concise expression of graph algorithms, while giving users
some degree of control over the data layout and the evaluation
order. For example, the SociaLite version of the shortest-paths
algorithm, shown in Figure 3, terminates on cyclic graphs
and is as efficient as a Java implementation of Dijkstra’s
algorithm. We shall use this program as a running example
throughout this paper; details on this program will be described
in subsequent sections. We summarize the contributions of this
paper below.

Tail-nested tables. We introduce a new representation, tail-
nested tables, designed expressly for graphs. Singly nested
tables are essentially adjacency lists. Edges from the same

EDGE (int src:0..10000, (int sink, int len)).
PATH (int sink:0..10000, int dist).
PATH(t, $MIN(d)) : − EDGE(1, t, d); (4)

: − PATH(s, d1), EDGE(s, t, d2),
d = d1 + d2. (5)

Fig. 3. SociaLite program for computing the shortest paths. The source node
has node id 1.

node s are represented by a single entry in the top-level
table (s, t), where t is a table consisting of all destination
nodes. Arbitrary levels of nesting are allowed, but only in the
last column of each level. This representation reduces both
the memory usage and computation time needed for graph
traversals.

Recursive aggregate functions. SociaLite supports
recursively-defined aggregate functions. We show that
semi-naive evaluation can be applied to recursively-defined
aggregate functions, if they are meet operations and that
the rest of the rules are monotonic under the partial order
induced by the meet operations. In addition, taking advantage
of the commutativity of meet operations, we can speed up
the convergence of the solution by prioritizing the evaluation.

User-guided execution order. The order in which a graph
is traversed can have a dramatic effect on the performance of
a graph algorithm. For example, it is useful to visit a directed
acyclic graph in topological order, so that a node is visited only
after all its predecessors have been visited. SociaLite enables
users to hint at an efficient evaluation order, by referencing a
sorted column in the database that contains nodes in the order
to be visited.

Evaluation of SociaLite. All the optimizations presented in
the system have been implemented in a SociaLite compiler. We
show that a large collection of popular graph algorithms can be
expressed succinctly in SociaLite, including PageRank, hubs
and authorities, clustering coefficients, as well as betweenness
centrality, one of the most complex and important graph anal-
yses. Our experiments are performed on two real-life data sets,
the LiveJournal social network, consisting of 4.8M nodes and
69M edges, and Last.fm, consisting of 1.8M nodes and 6.4M
edges. Across the spectrum of graph algorithms, SociaLite
programs outperform initial implementations in Java, and are
also within 16% of their highly optimized Java counterparts.
This demonstrates that users of SociaLite can enjoy the
conciseness and ease of programming of a high-level language,
with a tolerable degradation in performance.

C. Paper Organization

The rest of this paper is organized as follows. Section
2 describes our layout optimizations. Section 3 explains re-
cursive aggregate functions and how they can be evaluated
incrementally. In Section 4, we explain how users can specify
a desired evaluation order. We put all the concepts together in
Section 5 and evaluate the performance of SociaLite in Section

6. Related work is reviewed in Section 7 and we conclude in
Section 8.

II. DATA REPRESENTATION

In traditional Datalog implementations, data is stored in
relational tables, which are inefficient when it comes to graph
algorithms. In this section, we present the data representation
used in SociaLite and demonstrate how graph analysis is
supported by fast join operations with this representation.

A. Data as Indices
A simple but highly effective technique used in imperative

programming is to number data items sequentially and use the
number as an index into an array. We make this representation
choice available to a SociaLite programmer by introducing the
concept of a data range. A range is simply a lower and an
upper bound on the values of a field, and the bounds can be
run-time constants.

Consider the single-source shortest-paths example in Fig-
ure 3. The first two statements in the program declare two
relations: EDGE contains the source node, destination node and
edge length for all edges in the graph, while PATH contains the
length of the shortest path to each node in the graph. All data
are represented as integers. The declaration indicates that the
relations EDGE and PATH are to be indexed by the src and sink
fields, respectively, both ranging from 0 to 10,000.

Our compiler uses the range as a hint to use the field as an
index. Coupled with the notion of tail-nested tables introduced
below, the compiler can simply allocate an array with as many
entries as the given range, allowing it to be indexed directly
by the value of the index.

B. Tail-Nested Tables
In conventional Datalog implementations or relational

database systems, data are stored in a two-dimensional table
of rows and columns. A column-oriented table stores the
values in the same column contiguously, while a row-oriented
table stores entire records (rows) one after another. To store
information such as edges in a graph, the source nodes of
edges must be repeatedly stored as shown in Figure 4.

Graphs in imperative programming are frequently repre-
sented as an adjacency list. As shown in Figure 4 (c), an
adjacency list can compactly store edges of a graph, or any
list of properties associated with a node. Not only does
this representation save space, the program is more efficient
because a single test suffices to compare the source node of
all the edges in the same adjacency list.

We introduce the notion of a tail-nested table as a general-
ization of the adjacency list. The last column of a table may
contain pointers to two-dimensional tables, whose last columns
can themselves expand into other tail-nested tables. The nest-
ing is indicated by parentheses in the table declarations. For
example,

R(〈type〉c1, . . . , 〈type〉cn1−1,

(〈type〉cn1,1, . . . , 〈type〉cn1,n2−1,

(〈type〉cn1,n2,1, . . . , 〈type〉cn1,n2,n3)))

!"""""""""""#"
!"""""""""""$"
!"""""""""""%"
&"""""""""""'"
&"""""""""""("
)"""""""""""#"
)"""""""""""*"
+""""""""""+""

!"""""""""""#"
!"""""""""""$"
!"""""""""""%"
&"""""""""""'"
&"""""""""""("
)"""""""""""#"
)"""""""""""*"
+""""""""""+"

!""""""""""""""
&""""""""""""""
)"""""""""""""""
+"""""""""""""

#"""""$"""""%""""""""""""""
'"""""(""""""""
#"""""*""""""""

,-."/01234567869"
"""""":-;<6"

,;."=0<>?7234567869"
"""""":-;<6"

,@."A9B-@67@C"<5D8"

Fig. 4. Storage with different structures: the dotted lines indicate logical
structure (columns and rows), and the normal lines indicate physical structure
where the elements are stored together, contiguously.

declares a relation R with 3 nested tables where n1, n2, n3 are
the number of columns in each level.

The EDGE array in Figure 3 is declared as a tail-nested table,
with the last column being a table containing two columns.
Thus, EDGE is represented by a table of 10,001 rows, indexed
by src. It has only one column containing pointers to a two-
dimensional array; each row of the array stores a sink node
and the length of the edge from source to sink. Note that the
PATH table is not nested. The second column, dist, is applied
to the $MIN aggregate function, so it can only have one value.
Therefore, the compiler can just dedicate one entry to one
value of the sink node, and use the sink node as an index into
the array.

C. Join operations

Let us now discuss how we accommodate tail-nested tables
in nested loop joins and hashed loop joins. Nested loop joins
are implemented by nesting the iteration of columns being
joined. To iterate down the column of a tail-nested table, we
simply nest the iterations of the columns’ parent tables, from
the outermost to the innermost tables. Observe that if the
column being joined is not in the leaf tail-nested table, then
each element visited may correspond to many more entries.
Therein lies the advantage of this scheme.

In hashed loop joins, values of a column are hashed, so
that we can directly look up the entries containing a value of
interest. To support hashed loop joins for columns in nested
tables, they each include a pointer back to its parent table and
the record index for each nested table. In this way, from an
entry in the column of a nested table, we can easily locate the
record in the parent table(s) holding the record.

III. RECURSIVE AGGREGATE FUNCTIONS

As illustrated by the shortest-paths algorithm example in
Section I, it is important that Datalog be extended with the
capability to quickly eliminate unnecessary tuples so that
faster convergence is achieved. To that end, SociaLite supports
recursive aggregate functions, which help to express many
graph analyses on social networks.

A. Syntax and Semantics

In SociaLite, aggregate functions are expressed as an argu-
ment in a head predicate. Each rule can have multiple bodies,
and the aggregate function is applied to all the terms matching
on the right. The aggregate function is recursive if the head
predicate is used as a body predicate as well.

For example, the shortest-paths algorithm shown in Figure 3
is specified with the help of a recursive $MIN aggregate
function. Each evaluation of the rule returns the minimum of
all the distances d for a particular destination node t. The
distances d computed in the rule body are grouped by the
node t, then the $MIN aggregate function is applied to find the
minimum distance. In this example, rule 4 states the base case
where the distances of the neighbor nodes of the source node
are simply the lengths of the edges. Rule 5 recursively seeks
the minimum of distances to all nodes by adding the length
of an edge to the minimum paths already found.

This example demonstrates how recursive aggregate func-
tions improves the ability of SociaLite to express graph
algorithms. Without recursive aggregation, the program in
Figure 1 first generates all the possible paths before finding
the minimum. It does not terminate in the presence of cycles
as the path lengths are unbounded. With recursive aggregation,
the SociaLite program specifies that only the minimum paths
are of interest, thus eliminating cycles from consideration.

The operational semantics of a SociaLite program is defined
similarly as Datalog: all rules are to be repeatedly evaluated
until convergence is achieved. Application of rule

P(x1, ..., xn, F (z)) : − Q1(x1, ..., xn, z);
. . .
: − Qm(x1, ..., xn, z).

yields

{(x1, ..., xn, z)|z = F (z′),∀1≤k≤mQk(x1, ..., xn, z
′)}

Only one argument of a head predicate can be an aggregate
function; we refer to all the other arguments in the predicate
as qualifying parameters for the aggregate function.

B. Greatest Fixed-Point Semantics

Definition 1: An operation is a meet operation if it is
idempotent, commutative, and associative. A meet operation
defines a semi-lattice; it induces a partial order v over a
domain, such that the result of the operation for any two
elements is the greatest lower bound of the elements with
respect to v.

For example, minimum and maximum are meet operations;
the induced partial orders are ≤ and ≥, respectively. Sum-
mation, in contrast, is not a meet operation since it is not
idempotent.

Theorem 1: Given a SociaLite program with an aggregate
function, let g be the function that applies the aggregate
function to each set of qualifying parameters, and let f
represent the rest of the rules. If g is a meet operation, inducing
a partial order v, and f is monotone with respect to v, then
there exists a unique greatest fixed point R∗ such that

1) R∗ = h(R∗) = (g ◦ f)(R∗)
2) R v R∗ for all R such that R = h(R).

Furthermore, iterative evaluation of SociaLite rules will yield
the greatest fixed-point solution R∗ if it converges.

Proof: If f is monotone under g, then h is also monotone
under g, which implies the existence of a unique greatest fixed-
point solution [34]. Let hi denote i applications of h. It follows
from the monotonicity of h that hi(∅) v hi−1(∅) under g. (∅
is the top element in the semi-lattice defined by g, and is thus
greater than any other elements.)

If the meet-semilattice defined by g is finite, then there must
be a finite k such that

∅ w h(∅) w h2(∅) w . . . w hk(∅) = hk+1(∅)

hk(∅) is an inductive fixed-point solution. Using mathematical
induction, we can show that the inductive fixed-point is
greater than any other fixed-point under g as long as f is
monotone. Therefore, the inductive fixed-point hk(∅) from
iterative evaluation is the greatest fixed-point solution.

Note that the monotonicity of f under g is required for
the existence of a unique greatest fixed-point solution. If f
is not monotone, the inductive fixed-point might be different
from the greatest fixed-point. Since the iterative evaluation
may reach a solution that is lower than the greatest fixed-point
solution, it may converge to a suboptimal solution.

C. Semi-Naive Evaluation

Semi-naive evaluation is an optimization critical to the
efficient execution of recursive Datalog rules. It avoids re-
dundant computation by joining only subgoals in the body
of each rule with at least one new answer produced in the
previous iteration. The final result is the union of all the results
obtained in the iterative evaluation. Semi-naive evaluation can
be extended to recursive aggregate functions if they are meet
operations.

Algorithm 1: Semi-naive evaluation of recursive aggregate
functions.

Input: A SociaLite program h = g ◦ f , where g : R →
R applies an aggregate function to each set of qualifying
parameters and f : R → R represents the rest of the rules.
g is a meet operation and f is monotone with respect to the
partial order induced by g.

Output: Returns the greatest fixed-point solution for the
SociaLite program h.

Method:
R0 ← ∅,∆0 ← ∅
i← 0
do

i← i+ 1
Ri ← g (f(∆i−1) ∪Ri−1)
∆i ← Ri −Ri−1

while ∆i 6= ∅
return Ri �

As an example, the shortest-paths algorithm in Figure 3 can
be expressed as h = g ◦ f , where

f(R) = {〈t, d〉|EDGE(1, t, d)∨
(〈s, d1〉 ∈ R ∧ EDGE(s, t, d2) ∧ d = d1 + d2)}

computes the new path lengths by adding one more edge to
the minimum paths found so far.

g(R) = {〈t,min〈t,d1〉∈Rd1〉|〈t, d〉 ∈ R}

finds the minimum path for each destination node. Since
minimum is a meet operation, we can apply Algorithm 1 to
this program.

∆i = {〈t, d〉|〈t, d〉 ∈ Ri ∧ (d 6= d1|〈t, d1〉 ∈ Ri−1)}

represents all the newly found shortest paths. Clearly, there is
no value in applying f to paths that were already found in
Ri−1, thus

Ri = g(f(∆i−1) ∪Ri−1) = g(f(Ri−1)) = h(Ri−1)

This means that the semi-naive evaluation in Algorithm 1
yields the same result as naive evaluation for the shortest-paths
program.

Theorem 2: Algorithm 1 yields the same greatest fixed
point as that returned with naive evaluation.

Proof: We use mathematical induction to show that Ri =
hi(∅).
Basis: R1 = g (f (∆0) ∪R0) = g ◦ f (∅) = h1(∅)
Inductive step: Assuming Rk = hk(∅) for all k ≤ i,

Ri+1 = g (f (∆i) ∪Ri)
= g

(
f
(
hi(∅)− hi−1(∅)

)
∪ hi(∅)

)
= g

(
f
(
hi(∅)− hi−1(∅)

)
∪ g ◦ f ◦ hi−1(∅)

)
= g

(
f
(
hi(∅)− hi−1(∅)

)
∪ f ◦ hi−1(∅)

)
(6)

= g ◦ f
((
hi(∅)− hi−1(∅)

)
∪ hi−1(∅)

)
(7)

= hi+1(∅)

Line 6 is true because g is a meet operation, and Line 7 is
true because f is distributive.

It is easy to extend the theorem for a program with multiple
recursive aggregate functions. We denote a program with n
aggregate functions as hn ◦ hn−1 ◦ ... ◦ h1, where hi = gi ◦ fi
for all i ≤ n, such that gi and fi satisfy the same conditions
as above. Then, following steps similar to those in the above
proof, we can see that semi-naive evaluation gives the same
results as naive evaluation for the program with n recursive
aggregations.

D. Optimizations

Taking advantage of the high-level semantics of SociaLite,
we have developed several optimizations for evaluating recur-
sive aggregate functions, as described below.

Prioritized evaluation. For recursive aggregate functions
that are meet operations, we can speed up convergence by
taking advantage of commutativity. We store new results from
the evaluation of aggregate functions in a priority queue, so
that the lowest values in the semi-lattices are processed first.

This optimization when applied to the shortest-paths program
in Figure 3 yields Dijkstra’s shortest-paths algorithm.

Distributing meet operations. When the aggregate function
is a meet operation, we can take advantage of distributivity to
prune out redundant tuples to reduce the execution overhead.
Given a rule of the following pattern:

BAR(a, $MIN(b)) : − FOO(a, c), BAR(c, b).

instead of applying the join operation before finding the
minimum for each value of a, we can take advantage of
distributivity by finding the minimum for each value of a as
each join is performed. This reduces both memory usage and
execution time. Especially in the case where BAR is a nested
table, the code generated will simply compare the c values
once and return the minimum of b in the nested table.

Pipelining. This optimization improves data locality by
interleaving rule evaluation, instead of evaluating one state-
ment in its entirety before the next. If rule R2 depends
on rule R1, pipelining applies R2 to the new intermediate
results obtained from R1, without waiting for all the results
of R1 to finish. While pipelining is not specific to aggregate
functions, it is particularly useful for recursive and distributive
aggregate functions whose bodies have multiple parts. This
enables prioritization across statements, which can translate
to significant improvement.

IV. ORDERING

SociaLite lets users control the order in which the graphs
are traversed by declaring sorted data columns and including
these columns in Socialite rules as a hint to the execution
order.

A. Ordering Specification

The SociaLite programmer can declare that a column in a
table is to be sorted by writing

R(〈type〉f1, 〈type〉f2, . . .) orderbyfi[asc|desc], . . .

This syntax is familiar to programmers well versed in SQL.
Note that in the case where the declared column belongs to a
nested table, the scope of the ordering is confined within that
nested table.

B. Evaluation Ordering

When a sorted column is included in a Datalog rule, it
indicates to the compiler that the rows are to be evaluated
in the order specified. Suppose we wish to count the number
of shortest paths leading to any node from a single source, a
step in the important problem of finding betweenness central-
ity [11]:

PATHCOUNT(n, $SUM(c)) : − SOURCE(n), c = 1;
: − SP(n, d, p), PATHCOUNT(p, c).

The predicate SP(n, d, p) is true if the shortest path from
the source node to node n has length d and the immediate
predecessor on the shortest path is node p. PATHCOUNT(n, c)
is true if c shortest paths reach node n. The base case is that

DISTS(int d) : orderby d
DISTS(d) : − SP(, d,).
PATHCOUNT(n, $SUM(c)) : − SOURCE(n), c = 1;

: − DISTS(d), SP(n, d, p),
PATHCOUNT(p, c).

Fig. 5. Ordering of evaluation in SociaLite.

the path count of the source node is 1; the path count of a node
n is simply the sum of the path counts of all its predecessors
along the shortest paths leading to n.

Notice that the second rule is recursively dependent on
PATHCOUNT. Since $SUM in the rule head is not a meet
operation (because it is not idempotent), the recursion here
indicates that whenever the PATHCOUNT changes for a node,
we have to reevaluate the PATHCOUNT for all the successors
along the shortest paths. If the evaluation is ordered such
that many reevaluations are required, it may incur a large
performance penalty.

We note that the shortest paths from a single source to all
nodes form an acyclic graph. We can compute the path count
just once per node if we order the summations such that each
node is visited in the order of its distance from the source node.
We can accomplish this by including a sorted column with the
right ordering in the SociaLite rule, as shown in Figure 5.

Notice that the correctness of the SociaLite rule is indepen-
dent of the execution order. The user provides a hint regarding
the desired execution order, but the compiler is free to ignore
the desired order if it sees fit. For example, if a SociaLite
program is to be executed on a parallel machine, then it may be
desirable to relax a request for sequential execution ordering.

C. Condition Folding

Our compiler takes advantage of the sorted columns to speed
up computations predicated on the values of the data. Consider
a statement such as:

BAR(int a, int b) : sortedby b
FOO(a, b) : − BAR(a, b), b > 10.

We can use binary search to find the smallest value of b that
is greater than 10, and return the rest of the tuples with no
further comparisons.

V. PUTTING IT ALL TOGETHER

Having presented the high-level concepts in this paper, we
now combine everything together and describe the prototype
SociaLite compiler that we have developed.

A. User-Specified Functions

Users can supply natively implemented functions and use
them in SociaLite rules. A Java function F with n arguments
can be invoked in SociaLite with $F (a1, . . . , an), which can
return one or more results.

SociaLite has a number of pre-defined aggregate functions
such as $SUM, $MIN, and $MAX. We also allow users to define

!"#$%#& '()%&
*+"),-%#& ./012-%#&

341/2)%#&'(+01%&

5462"728%&
!#49#"1&

*5:& *++48"8%;&
*5:&

<,8%64;%& =">"&34;%&
34;%&

?%+%#"84#&

./012-%;&
*5:&

Fig. 6. SociaLite system overview

their own aggregate functions in Java. Users can supply a
custom aggregate function as a Java class, where the Java
class has the aggregate function as its class name. Users can
indicate that a given aggregate function is a meet operation,
by subclassing from the pre-defined MeetOp class, instead of
the more general AggregateOp class.

An aggregate class has:
• an identity() method, which returns the initial value of

the accumulated value.
• an invoke(accum,v) method, which returns the result of

aggregating argument v into the running accum argument.
For example, the union aggregate function is defined as:

class Union: MeetOp {
identity(): return {};
invoke(set accum; elem v): return accum+{v};

}

Our compiler does not check if the user has correctly
defined a meet operation. In addition, we assume that if a
set of recursively defined SociaLite rules have two or more
aggregated functions declared to be meet operations, it is safe
to apply semi-naive evaluation to those aggregate functions.

B. System Overview

The SociaLite compiler accepts a SociaLite program, to-
gether with additional Java functions, and translates it into
Java source code. The generated code is then compiled by
a regular Java compiler into byte code, which is executed
with the SociaLite runtime system, as shown in Figure 6. The
SociaLite compiler parses the code into an abstract syntax tree
(AST), performs syntactic and semantic analysis, optimizes it,
and generates code.

The optimizer analyzes the dependency in the program and
evaluates the strongly connected components in topological
order. The compiler implements all the optimizations described
in the previous sections: data layout and optimizations of
tail-nested tables, prioritized evaluation of recursive aggregate
functions that are meet operations, distribution of meet oper-
ations, and pipelining and ordering the execution as hinted by
sorted columns in the rules.

VI. EXPERIMENTS

In this section, we present an evaluation of our SociaLite
compiler. We start by comparing SociaLite to other Datalog
engines, using the shortest-paths algorithm, and establish that
our baseline implementation is competitive. We then evaluate

Programs Exec Time(sec)
Overlog 24.9
IRIS 12.0
LogicBlox 3.4
SociaLite 2.6
SociaLite (with layout opt) 1.2
SociaLite (plus recursive min) 0.1
Java (Dijkstra’s algorithm) 0.1

Fig. 7. Comparing the execution time of the shortest-paths program on
representative Datalog engines.

the compiler with seven core graph analysis routines and a
complete algorithm for computing betweenness centrality.

A. Comparison of Datalog Engines

To evaluate how SociaLite compares with state-of-the-art
Datalog engines, we experimented with three representative
systems: Overlog [8], IRIS [14], and LogicBlox [20]. Overlog
is a research prototype designed to explore the use of declara-
tive specification in networks, IRIS is an open-source Datalog
engine, and LogicBlox is a commercial system.

None of the other Datalog engines support recursive aggre-
gate functions. We added nonrecursive aggregate functions,
which are supported by Overlog and LogicBlox, to IRIS in a
straightforward manner for the sake of comparison. Without
recursive aggregation, our choice of a graph algorithm bench-
mark was limited. To approximate graph analyses as closely as
possible, we selected the shortest-paths program in Figure 1 as
the benchmark and ran it on an acyclic graph, since it would
not terminate otherwise. Note that the LogicBlox Datalog
engine warns users that the program may not terminate. Since
real-world graphs often contain cycles, a randomly generated
acyclic graph with 100,000 nodes and 1,000,000 edges was
used as input to all the programs. We authored the programs
for Overlog and IRIS ourselves; the program for LogicBlox
was written with the help of a LogicBlox expert.

We ran the shortest-paths algorithm on a machine with an
Intel Xeon processor running at 2.80GHz. Figure 7 compares
the execution times of all the four Datalog engines, including
SociaLite. LogicBlox ran in 3.4 seconds, which is significantly
faster than Overlog and IRIS. In comparison, SociaLite ex-
ecuted in 2.6 seconds, showing that our baseline system is
competitive. With the data layout optimizations described in
Section II, the program ran in 1.2 seconds. Had we written
the SociaLite program using recursive aggregate functions,
as shown in Figure 3, the performance achieved with all the
optimizations described in this paper would be 0.1 seconds,
which is similar to the performance of Dijkstra’s algorithm in
Java.

B. Graph Algorithms

Our experimentation with different graph algorithms began
with a survey of the literature on social network analyses.
Common graph algorithms include computing the importance
of vertices, community detection, link prediction, and other
general graph metrics [11], [18], [26], [28]. We selected seven

representative graph analysis routines, three of which operate
on directed graphs:
Shortest Paths: Find shortest paths from a source node

to all other nodes in the graph. This is fundamental
to many other algorithms, such as link prediction [18]
and betweenness centrality [11], which itself is useful
for computing the importance of vertices and detecting
communities.

PageRank: PageRank [6] is a link analysis algorithm (used
for web page ranking) which computes the importance
of nodes in a graph. In general, a node is considered
important if other important nodes point to it. This
algorithm is used ubiquitously in information retrieval,
data mining, and computational social science.

Hubs and Authorities: Hyperlink-Induced Topic Search
(HITS) [16] is another link analysis algorithm (and a
precursor to PageRank) that can be used to compute the
importance of nodes in a graph. Two scores, a hub score
and an authority score, are assigned to each node. A node
is a good hub if it points to a large number of authoritative
nodes; a node is a good authority if it is pointed to by a
large number of good hubs.

The rest of the benchmarks operate on undirected graphs.
Note that an undirected edge is typically represented by a pair
of unidirectional edges.
Mutual Neighbors: Find all common neighbors of a pair

of nodes. The number of common neighbors between
two nodes is an important metric often used for link
prediction [18].

Connected Components: Find all connected components
in a graph. A connected component is a subgraph in
which every pair of nodes is connected by at least one
path, and no node in the component is connected to any
node outside the component. This is used in many graph
analysis routines and fields such as computer vision and
computational biology.

Triangles: Find all triangles (i.e., cliques of size three) in
the graph. Triangles are used in many graph algorithms:
they can define similarity between two graphs [28] or
similar sub-structures in a graph [29]. They are also
used in the clique percolation algorithm for detecting
communities [26].

Clustering Coefficients: We compute the local clustering
coefficient of each node, as well as the network average
clustering coefficient. In general, the local clustering
coefficient is a measure of how well a node’s neighbors
are connected with each other. The network average
clustering coefficient is the average of the local clustering
coefficients of all vertices.

C. SociaLite Programs

All the benchmarks in this study can be succinctly expressed
in SociaLite. To give readers a flavor of what SociaLite
programs look like, we show several representative programs
in Figure 8. Whereas these SociaLite programs range from

PageRank (Iteration i+ 1)

int N = 4847571. // # of nodes in LiveJounal data
EDGE (int src: 0..N , (int sink)).
EDGECOUNT (int src: 0..N , int cnt).
NODES (int n: 0..N).
RANK (int iter : 0..10, (int node: 0..N , int rank)).
RANK(i+ 1, n, $SUM(r)) : − NODES(n), r = 0.15/N ;

: − RANK(i, p, r1), EDGE(p, n),
EDGECOUNT(p, cnt),
cnt > 0, r = 0.85× r1/cnt .

Connected Components

int N = 1768195. // # of nodes in Last.fm data
EDGE (int src: 0..N , (int sink)).
NODES (int n: 0..N).
COMP (int n: 0..N , int root).
COMPIDS (int id).
COMPCOUNT (int cnt).
COMP(n, $MIN(i)) : − NODES(n), i = n;

: − COMP(p, i), EDGE(p, n).
COMPIDS(id) : − COMP(, id).
COMPCOUNT($SUM(1)) : − COMPIDS(id).

Triangles

int N = 1768195. // # of nodes in Last.fm data
EDGE (int src: 0..N , (int sink)) orderby sink .
TRIANGLE (int x, int y, int z).
TOTAL (int cnt).
TRIANGLE(x, y, z) : − EDGE(x, y), x < y,

EDGE(y, z), y < z, EDGE(x, z).
TOTAL($SUM(1)) : − TRIANGLE(x, y, z).

Fig. 8. Sample SociaLite programs.

4 to 17 lines, with a total of 60 lines; Java programs for
these algorithms with comparable performance range from 77
to 161 lines of code, with a total of 704 lines (Figure 9).
SociaLite programs are an order of magnitude more succinct
than Java programs and are correspondingly easier to write.
(More details on these Java programs will be presented in
Section VI-F.)

PageRank. Unlike most other graph algorithms that seek a
fixed-point solution, PageRank is an iterative algorithm which
runs until a convergence threshold is achieved. Shown in
Figure 8 is the code for iteration i+ 1. Let r = RANK(i, n) be
the rank of node n in iteration i, expressed as RANK(i, n, r)
in the SociaLite program. In each step, the new PageRank is
computed with the following formula:

RANK(i+ 1, n) =
1− d
N

+ d
∑

p|EDGE(p,n)

RANK(i, p)

|EDGE(p, n)|

where N is the number of nodes in the graph, and d is a
parameter called the damping factor, which is typically set to
0.85 [6]. The SociaLite program expresses the formula directly
and simply in two rules; the first computes the constant term,
and the latter adds the contributions from all the predecessor
nodes. The $SUM aggregate function is computed once for
each node; since there is no recursion within each step of

Hand-optimized SociaLite
Java

Shortest Paths 161 4
PageRank 92 8
Hubs and Authorities 104 17
Mutual Neighbors 77 6
Connected Components 103 9
Triangles 83 6
Clustering Coefficients 84 10
Total 704 60

Fig. 9. Number of non-commented lines of code for optimized Java programs
and their equivalent SociaLite programs.

the iteration, the fact that $SUM is not a meet operation is
inconsequential.

Connected Components. The connected component ID for
each node is simply the minimum of all the node IDs that the
node is connected to. The algorithm is expressed simply and
directly in four rules. The first rule initializes the component
of each node to its own ID. The second rule recursively sets
the component ID to the minimum of the component IDs it is
connected to directly. Since $MIN is a meet operation, semi-
naive evaluation can be applied. Because of the priority queue
used to keep track of the component IDs, the lowest values
propagate quickly to the neighboring nodes. The third and
fourth simply collect up all the unique component IDs and
count them.

Triangles. Finding triangles can be easily described in
SociaLite. We specify the condition for having a triangle in the
first rule. To avoid counting the same triangle multiple times,
the edges of the triangles are sorted from smallest to largest.
The second rule simply counts up all the triangles.

Discussion. In imperative programming, the programmer
lays out all the data structures and controls the order in which
every piece of data is accessed. SociaLite programmers simply
describe the computations declaratively as recursive SociaLite
rules; they have some control over the layout and execution
order by declaring how the data are to be indexed, ordered
and nested. The choice is limited and the decisions are often
obvious.

For example, we see from the sample SociaLite programs
that indexed arrays are used to represent properties of nodes
(such as source nodes in graph edges and the iterations for
PageRank). Relations expected to have common columns, such
as graph edges, have nested structures. Also, for the Triangles
program, due to the comparison in the rules, it is useful to
sort the sink field, so that a binary search can be used to
quickly determine the range of sink values that will satisfy
the predicate. Note that because the sink field is represented
by nested tables, sorting is applied to the column of each table,
which is exactly what we need for this algorithm.

D. Overall Performance

We used two real-world graphs for our experiments, since
the first three benchmarks need a directed graph, and the rest
need an undirected graph. Our first graph was extracted from

SociaLite Programs Unoptimized (row) Unoptimized (column) Optimized Speedup (over column)
Shortest Paths 37.9 35.2 6.6 5.3
PageRank 55.4 24.1 19.2 1.3
Hubs and Authorities 114.5 93.5 30.9 3.0
Mutual Neighbors 7.7 5.1 1.5 3.4
Connected Components 25.9 18.7 1.3 14.4
Triangles 158.1 106.1 4.8 22.1
Clustering Coefficients 353.7 245.8 15.4 15.9

Fig. 10. Execution times of unoptimized and optimized SociaLite programs (in seconds).

LiveJournal, a website that enables individuals to keep a jour-
nal and read friends’ journals [19]. Our LiveJournal dataset is
a directed graph with 4,847,571 nodes and 68,993,773 edges.
Our second graph was extracted from Last.fm. a social music
website that connects users with similar musical tastes [17].
The Last.fm dataset is an undirected graph consisting of
1,768,195 nodes and 6,428,807 edges.

All applications were executed on the entire data set, except
for Mutual Neighbors. Since finding mutual neighbors for all
pairs of nodes in the Last.fm graph is expensive, the algorithm
was instead evaluated on 2,500,000 randomly selected node
pairs. We executed the directed graph algorithms on a machine
with an Intel Xeon processor running at 2.80GHz and 32GB
memory, and the undirected graph algorithms on a machine
with an Intel Core2 processor running at 2.66GHz and 3GB
memory.

To evaluate the optimizations proposed in this paper, we
compared fully optimized SociaLite programs with non-
optimized SociaLite programs. We also compared the per-
formances of two SociaLite variants, one using row-oriented
tables and one using column-oriented tables. Note that the
row-oriented tables are implemented as arrays of references
pointing to tuples in the tables; the column-oriented tables
store each column in an array. Our experimental results are
shown in Figure 10. The execution times of the unoptimized
graph algorithms range from 8 seconds to 354 seconds for the
row-oriented implementation. The column-oriented implemen-
tation runs up to two times faster. Since the column-oriented
implementation is consistently better than the row-oriented
counterpart, we use the column version as the baseline of
comparison in the rest of our experiments.

The experimental results show that our optimizations deliver
a dramatic improvement for all the programs, even over the
column-oriented implementation. In particular, all programs
finished under 31 seconds. The speedup observed ranged from
1.3 times for simpler algorithms like Pagerank and up to
22.1 times for Triangles. Across all the programs, optimized
SociaLite outperformed the column-oriented implementation
optimizations by a harmonic mean of 4.0 times.

E. Analysis of the Optimizations

Our next set of experiments attempts to determine the
contribution of the different optimizations proposed in this
paper.

1) Data Layout Optimizations: Because the data layout
interacts with all optimizations, we wished to isolate the effect

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

!"#$%&'%(
)*%"'(

)*+&,*-.(/01'(*-2(
30%"#$45&'(

60%0*7(
8&4+"1#$'(

9#--&:%&2(
9#;<#-&-%'(

=$4*-+7&'(970'%&$4-+(
9#&>:4&-%'(

!<
&&
20

<(

Fig. 11. Speedup due to tail-nested tables and data indexing over column-
orientation, with other optimizations applied.

of data layout optimizations. We obtained two measurements:
(1) the performance with all optimizations, and (2) the perfor-
mance with all but data layout optimizations, and column-
oriented relational tables being used. The speedup of the
former to the latter measures the effect of data layout in the
presence of all the optimizations (Figure 11). We see that the
data layout optimization provides a considerable improvement
across the board, with the speedup over column orientation
ranging from 1.3 to 3.5. The reasons for the speedup are easier
to explain when we observe the results of the next experiment.

2) Effects of Individual Optimizations: We discovered
through experimentation that all optimizations are mostly
independent of each other, except for the data layout. This
allowed us to understand the contribution of each optimization
by simply compounding them one after the other. We ran a
series of experiments where we measured the performance
of the benchmarks as we added one optimization at a time
(Figure 12). The baseline of this experiment was obtained
using no optimizations and a column-oriented layout. We then
added optimizations in the following order:

1) nested tables and data indexing,
2) prioritization in aggregate functions,
3) pipelining, and
4) conditional folding.
We observe that data layout optimizations on their own have

limited improvement, except for Hubs and Authorities and
Mutual Neighbors. The reason for the improvement is that the
representation of edges is more compact, and we can iterate
through the edges of the same source node without testing the
source node for each edge. Comparison with Figure 11 shows
that data layout optimizations make all the other optimizations
more effective.

!"

#"

$!"

$#"

%!"

%#"

!"#$%&'%(
)*%"'(

)*+&,*-.(/01'(*-2(
30%"#$45&'(

60%0*7(
8&4+"1#$'(

9#--&:%&2(
9#;<#-&-%'(

=$4*-+7&'(970'%&$4-+(
9#&>:4&-%'(

!<
&&
20

<(
9#-245#-(?#724-+(

)4<&74-4-+(

)$4#$45@*5#-(

8&'%&2(%*17&(

A*'&74-&(

Fig. 12. Speedups from optimizations. Baseline is SociaLite with column
orientation.

Both Shortest Paths and Connected Components use the
$MIN aggregate function and can therefore benefit from the
prioritization optimization. For Shortest Paths, the use of
a priority queue provides a large speedup, transforming it
from a Bellman-Ford algorithm to Dijkstra’s algorithm. For
Connected Components, the priority queue allows the lowest-
ranked component ID to propagate quickly through the con-
nected nodes. In both cases, we observe more than a 5-fold
speedup. For Connected Components, pipelining increases the
speedup 14-fold. The reason for this tremendous improvement
is that the two parts of the recursive definition of Connected
Components are pipelined. If the base definition is run to
completion before the recursive computation, the priority
queue is filled with component ID values that are rendered ob-
solete almost immediately. Hence for Connected Components,
prioritization together with pipelined evaluation provides a
large performance improvement. Finally, both Triangles and
Clustering Coefficients benefit from condition folding; this
optimization returns a significant speedup when coupled with
data layout optimizations.

F. Comparison with Java Implementations

To understand the difference between programming in Data-
log and imperative programming languages like Java, we asked
a colleague who is well versed in both graph analysis and Java
to write the same graph analysis routines in Java.

The first implementation of the algorithms in Java is
significantly faster than the unoptimized Datalog programs.
However, with the optimizations proposed in this paper, our
SociaLite programs surpassed the performance of the first
implementations in Java. As shown in Figure 13, SociaLite is
faster than the first implementation in 6 out of the 7 cases, with
speedup ranging from 1.25 to almost 3 times. The harmonic
mean in speedup for SociaLite over unoptimized Java for all
the programs is 1.52. Note that the original shortest-paths

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

!"#$%&'%(
)*%"'(

)*+&,*-.(/01'(*-2(
30%"#$45&'(

60%0*7(
8&4+"1#$'(

9#--&:%&2(
9#;<#-&-%'(

=$4*-+7&'(970'%&$4-+(
9#&>:4&-%'(

!<
&&
20

<(

?*@*(AB<%C(

!#:4*74%&(

Fig. 13. Performance of optimized SociaLite programs and optimized Java
programs relative to initial implementation in Java.

algorithm in Java did not finish within a reasonable amount
of time; we improved the implementation by substituting the
priority queue in the standard Java library with a custom
priority queue. Even with this improvement, it is more than
50% slower than the SociaLite program.

Conceptually, it is always possible to duplicate the perfor-
mance obtained with SociaLite in a Java program; after all, our
compiler translates SociaLite into a Java program. We asked
our Java programmer to optimize his Java programs using
the concepts in our SociaLite compiler. With considerably
more effort, the programmer created optimized Java versions
that perform similarly as the SociaLite counterparts, with a
harmonic speed up of 1.51 over the unoptimized Java versions.

As shown in Figure 9, the code size of SociaLite programs
is much smaller than that of the optimized Java programs.
The ratio of the Java to SociaLite code size has a harmonic
mean of 11.1. Whereas it took a few minutes to implement the
SociaLite programs; it took a few hours for the Java programs.
The complexity of the optimizations makes it much harder to
get the code to run correctly.

G. Betweenness Centrality

Besides the seven core algorithms, we also experimented
with using SociaLite to implement a full application, be-
tweenness centrality [11]. Betweenness centrality is a popular
network analysis metric for the importance of a node in a
graph. The betweenness centrality of a node v is defined to

be
∑

s6=v 6=t

σst(v)

σst
, where σst(v) is the number of shortest paths

from s to t passing through v and σst is the total number of
shortest paths from s to t.

We implemented Brandes’s algorithm [5], which is the
fastest known algorithm for computing betweenness centrality.
The algorithm is an iterative process. Each iteration begins
with a single-source shortest-paths computation from a source
node, followed by path counting (which visits all nodes in
increasing order of their distances from the source). It ends
with computing the fraction of paths passing through each
node, which requires visiting all nodes in the opposite order
(e.g., decreasing order of distance from the source). Note
that we have already shown how we can control the order
of evaluation for finding path counts in Figure 5. Similarly,

Comparison Java SociaLite
Development time for 10 0.1
Shortest Paths (hours)
Total development time (hours) 12 0.4
Lines of code 258 21
Execution time (hours) 1.8 2.1

Fig. 14. Betweenness Centrality: Java vs SociaLite

we can reverse the order of evaluation by sorting distances in
decreasing order.

We used the Last.fm graph for this experiment. It is too
expensive to compute centrality exactly for this large graph,
as it requires finding the shortest paths from all nodes. Instead,
we computed an approximate centrality by running the shortest
paths algorithm from 1,000 randomly selected nodes.

To understand how SociaLite compares with an imperative
programming language, one author of this paper wrote the
code in SociaLite and the other in Java. Figure 14 compares
the two implementations. The SociaLite version took about 24
minutes from start to finish. The Java version took about 12
hours, 10 of which were spent in optimizing the shortest-paths
algorithm. The program size of the SociaLite version is much
smaller than that of the Java version: the SociaLite version
uses 21 lines, whereas the Java program requires 258 lines.

The SociaLite implementation is slower than the Java ver-
sion, but by only 16%. Around 6% of the overhead is due
to the overhead of computing ordering hints; the Java version
is faster because it determines the ordering as the shortest
paths are found. The rest of the slowdown can be attributed to
the computation of the shortest paths. Overall, this experiment
shows that programming in SociaLite is simpler and faster than
coding in Java and the performance overhead is tolerable.

VII. RELATED WORK

Aggregate functions in Datalog. Various attempts have
been made in the past to allow incremental analysis of
aggregate functions in Datalog [12], [15], [33]. Ganguly
et al. showed how a non-recursive minimum or maximum
function can be rewritten with a set of recursive rules involving
negation, and proved that incremental analysis will yield the
same result [12].

Ross and Sagiv proposed a language semantics that, like
ours, allows aggregate functions to be defined recursively [30].
They require that aggregate functions be monotonic, that is,
adding more elements to the multi-set being operated upon
can only increase the value of the function. For example, both
minimum and summation are monotonic aggregate functions.
As we have noted in Section III, we cannot simply add
incremental values to a partial sum because summation is not
idempotent and this may double count some values. To address
this problem, they have an additional requirement that each
cost argument (variable to be aggregated) must be functionally
dependent on the rest of the tuple. This restriction means
that there cannot be two tuples that differ only in the cost
argument. With this restriction, removing all duplicates before

applying the aggregate function will eliminate the double-
counting problem. Unfortunately, such a formulation is too
restrictive to be useful, since the point of recursion is often
to iteratively refine the value of the variables in a program.
For example, our shortest-paths algorithm shown in Figure 3
would fall outside their formulation. Note that any aggregate
function satisfying their assumptions is also a meet operation.
Thus, our formulation is a strict generalization of theirs.

Other Datalog research. Recently Datalog research has
been revived in many domains including security [32], pro-
gramming analysis [35], and network/distributed systems [1],
[21]. Datalog is used in the domain of network and distributed
systems to implement, for example, network protocols like
distributed consensus. Datalog engines for those domains are
extended with features for network programming. Dedalus, for
example, has incorporated the notion of time as a language
primitive, which helps reasoning with distributed states [2].

In contrast, SociaLite has different goals. It aims to make
graph analysis easy and efficient. The extensions of So-
ciaLite (tail-nested tables, recursive aggregate functions, and
execution ordering) are designed and implemented to help
programmers write efficient analysis programs easily.

Data layout. Various projects in the past have explored
nested data structures. NESL is a data-parallel programming
language with nested data structures [4]. Nested data structures
are also used in object-oriented databases [13]. More recently,
nested structures have been adopted in Pig Latin, a high-level
language that allows users to supply an imperative program
that is similar to a SQL query execution plan [25]. The
language then translates the plan into map-reduce operations.
In contrast, nested tables in SociaLite are strictly layout
hints. The SociaLite rules are oblivious to the nesting in the
representation. Users can treat elements in a nested table just
like data in any other columns.

Graph analysis. A number of query languages have been
proposed for graph databases, including GraphLog [9], G-
Log [27], GOQL [31], and GRDB [23]. These query languages
support functionalities that are useful for graph analysis, such
as subgraph matching and node traversal. SociaLite is as
expressive as, if not more, than these query languages, with
its recursive aggregate functions and user-defined functions.

In terms of distributed frameworks for graph analysis, the
popular MapReduce model does not support graph analysis
very well [36], so a number of languages have been proposed
to simplify the processing of large-scale graphs in parallel.
HaLoop provides programming support to iterate map-reduce
operations until they converge [7]. Pregel programs consist
of a sequence of iterations, where every vertex in a graph
can receive messages from a previous iteration, modify its
state, and send messages to other vertices [22]. Parallelization
of SociaLite while promising, due to its high-level language
semantics, is outside the scope of this paper.

VIII. CONCLUSION

Database languages are powerful as they enable non-expert
programmers to formulate queries quickly to extract value out

of the vast amount of information stored in databases. With the
rise of social networks, we have huge databases that require
graph analysis. Analysis of these large databases is not readily
addressed by standard database languages like SQL. Datalog,
with its support for recursion, is a better match. However,
current implementations of Datalog are significantly slower
than programs written in conventional languages.

Our proposed language, SociaLite, is based on Datalog and
thus can succinctly express a variety of graph algorithms in
just a few lines of code. SociaLite supports recursive aggregate
functions, which greatly improve the language’s expressive-
ness. More importantly, the convenience of our high-level
query language comes with a relatively small overhead. Semi-
naive evaluation and prioritized computation can be applied to
recursive aggregate functions that are meet operations. Another
important feature of SociaLite is user-specified hints for data
layout, which allow the SociaLite compiler to optimize the
data structures.

In our evaluation of graph algorithms in SociaLite, we
found that the optimizations proposed sped up almost all of
the applications by 3 to 22-fold. The average speedups of
SociaLite programs over unoptimized SociaLite and the first
implementations in Java are 4.0 and 1.5 times, respectively.
SociaLite is 11.1 times more succinct on average when com-
pared to Java implementations of comparable performance.
The SociaLite implementation of betweenness centrality is
slower than the highly optimized Java version by just 16%,
but it took 12 hours to write the Java application instead of
half an hour.

The most important contribution of SociaLite is that, as
a query language, it makes efficient social network queries
accessible to users who are not proficient in software engi-
neering.

ACKNOWLEDGMENT

We thank LogicBlox and especially Shan Shan Huang for
her assistance with the LogicBlox comparison. We also thank
Jeffrey D. Ullman, Stefano Ceri, and Jongsoo Park for useful
discussions and feedback on this paper, and Junsang Cho for
his help with the comparison with Java programs. This re-
search was funded in part by NSF Programmable Open Mobile
Internet (POMI) 2020 Expedition Grant 0832820, Stanford
MobiSocial Computing Laboratory, which is sponsored by
AVG, Google, ING Direct, Nokia and Sony Ericsson, as well
as a Samsung Scholarship.

REFERENCES

[1] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein,
and R. C. Sears. Boom analytics: Exploring data-centric, declarative
programming for the cloud. In EuroSys, pages 223–236, 2010.

[2] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier,
and R. Sears. Dedalus: Datalog in time and space. In Datalog, pages
262–281, 2010.

[3] C. Beeri, S. Naqvi, R. Ramakrishnan, O. Shmueli, and S. Tsur. Sets and
negation in a logic database language (ldl1). In PODS, pages 21–37,
1987.

[4] G. E. Blelloch. Programming parallel algorithms. Commun. ACM,
39:85–97, 1996.

[5] U. Brandes. A faster algorithm for betweenness centrality. The Journal
of Mathematical Sociology, 25(2):163–177, 2001.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In WWW7, pages 107–117, 1998.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient
iterative data processing on large clusters. PVLDB, pages 285–296,
2010.

[8] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis. Evita raced:
Metacompilation for declarative networks. PVLDB, 1:1153–1165, 2008.

[9] M. P. Consens and A. O. Mendelzon. Expressing structural hypertext
queries in graphlog. In Hypertext, pages 269–292, 1989.

[10] S. Elnikety and Y. He. System support for managing large graphs in the
cloud. In Proceedings of the NSF Workshop on Social Networks and
Mobility in the Cloud, 2012.

[11] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[12] S. Ganguly, S. Greco, and C. Zaniolo. Minimum and maximum
predicates in logic programming. In PODS, pages 154–163, 1991.

[13] R. Hull. A survey of theoretical research on typed complex database
objects. In Databases, pages 193–261, 1987.

[14] Iris, an open-source datalog engine. http://www.iris-reasoner.org/.
[15] D. B. Kemp and P. J. Stuckey. Semantics of logic programs with

aggregates. In ISLP, pages 387–401, 1991.
[16] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J.

ACM, 46:604–632, 1999.
[17] Last.fm. http://last.fm/.
[18] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for

social networks. Journal of the American Society for Information
Science and Technology, 58:1019–1031, 2007.

[19] Livejournal. http://www.livejournal.com/.
[20] Logicblox inc. http://www.logicblox.com/.
[21] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,

P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking. Commun. ACM, 52(11):87–95, 2009.

[22] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: A system for large-scale graph processing.
In SIGMOD, pages 135–146, 2010.

[23] W. E. Moustafa, G. Namata, A. Deshpande, and L. Getoor. Declarative
analysis of noisy information networks. In ICDE GDM Workshops,
pages 106–111, 2011.

[24] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The magic of
duplicates and aggregates. In VLDB, pages 264–277, 1990.

[25] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A not-so-foreign language for data processing. In SIGMOD, pages
1099–1110, 2008.

[26] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435:814–818, 2005.

[27] J. Paredaens, P. Peelman, and L. Tanca. G-log: A graph-based query
language. IEEE Trans. Knowl. Data Eng., 7(3):436–453, 1995.

[28] J. W. Raymond, E. J. Gardiner, and P. Willett. Rascal: Calculation
of graph similarity using maximum common edge subgraphs. The
Computer Journal, 45:631–644, 2002.

[29] N. Rhodes, P. W. 0002, A. Calvet, J. B. D. Jr., and C. Humblet. Clip:
Similarity searching of 3D databases using clique detection. Journal of
Chemical Information and Computer Sciences, 43(2):443–448, 2003.

[30] K. A. Ross and Y. Sagiv. Monotonic aggregation in deductive databases.
Journal of Computer and System Sciences, 54(1):79–97, 1997.

[31] L. Sheng, Z. M. Özsoyoglu, and G. Özsoyoglu. A graph query language
and its query processing. In ICDE, pages 572–581, 1999.

[32] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze.
A3: An Extensible Platform for Application-Aware Anonymity. In
NDSS, pages 247–266, 2010.

[33] S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in
deductive databases. In VLDB, pages 501–511, 1991.

[34] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, 1955.

[35] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analyses using binary decision diagrams. In PLDI, pages 131–144, 2004.

[36] C. Yu. Beyond simple parallelism: Challenges for scalable complex
analysis over social data. In Proceedings of the NSF Workshop on Social
Networks and Mobility in the Cloud, 2012.

