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ABSTRACT
Junction is an application-level communication protocol
and library designed for writing mobile applications for
ad hoc groups without centralized application servers.
We propose that applications be built using a generic
switchboard service for communication. Each dynamic
instance can designate a unique switchboard, hosted by
a peer or by a third-party, for the session. Our con-
vention of naming a session by a Junction URI, which
encodes the location of the switchboard, enables a sim-
ple click-and-run user experience.

The Junction abstraction allows developers a choice of
switchboard implementations: XMPP for scalability,
IRC for free availability, Pocket Switchboard for mo-
bility, and OpenFlow, a software-defined network, for
performance. Invitations to sessions can be carried over
NFC, Bluetooth, or QR codes. Junction is available as
open source for Android, iPhone and Javascript plat-
forms. Over ten applications in multimedia sharing,
games, communication, education, and for enhancing
security for online transactions have been developed in
Junction.

INTRODUCTION
Smart phones enable a large-class of ad hoc multi-party
mobile and social applications from games, communica-
tion, and collaboration. Yet today, there are relatively
few multi-party applications available. This is remi-
niscent of the early days of the internet where homes
started to get connected but there was relatively little
content available online. The World Wide Web took off
overnight with the introduction of the HTTP protocol
in 1991. This paper asks if we can define an analogous
standard protocol that helps make multi-party applica-
tion mainstream?

Lampson lamented how computer science researchers
did not come up with the web in his SOSP keynote ad-
dress in 1999. This could be attributed to the lack of
academic focus on adoptability, which is the strength of
HTTP. For ad hoc mobile applications, while many of
the necessary ingredients, such as discovery [20, 14] and
naming [4], have been explored in prior research, numer-
ous obstacles remain in the deployment, creation, and
the use of such applications. This paper attempts to

identify and eliminate these obstacles to improve adopt-
ability.

As billions of smart phones come online, the demand
for multi-party interactions will rival the number of
phone calls we see today. The relatively few multi-party
mobile applications available today are typically imple-
mented with an application server in the cloud mediat-
ing all interactions. We postulate that having all the
application-specific code run locally on endpoints can
greatly reduce the barrier-to-entry and support large
numbers of interactions. ISVs (independent software
vendors) do not need to (1) write application server code
nor (2) deploy scalable servers. Eliminating centralized
application servers that can monitor all transactions has
an added benefit of improved user privacy.

To facilitate communication between mobile devices,
which are often not mutually addressable, each instance
of a multi-party application uses a thin message routing
service, known as a switchboard. This communication
service is application-agnostic and can be provided by
existing generic messaging solutions.

User Experience Illustration
Let us use the Texas Hold’em poker game to illustrate
the behavior enabled by Junction. Each player’s phone
holds a private hand and the TV or a tablet provides a
communal screen for the community cards (Figure 1).
Using Junction, a user can simply start the game on
his phone and tap his phone with a friend’s to have
him join. The friend receives a notification, asking if
he wishes to join the game. The friend confirms, the
phone automatically downloads the game if it is not
pre-installed, the game launches and joins the session.
Either player can then tap their phone to the TV’s NFC
reader to bring up the display. The TV displays the
game progress on the large screen requiring no further
human intervention.

Junction applications are distinctive in that there is
no server running any application-specific code in the
cloud. All Junction applications rely on a generic
switchboard (or a chatroom) for communication. In
this instance, the switchboard is hosted on the phone;
the session is identified by its Junction URI, which in-



Figure 1: A game of weHold’em.

cludes the switchboard’s ip address; the Junction URI
is shared with other players and the communal display
via NFC. NFC protocols can be used with non-NFC de-
vices by using connection handovers via bluetooth [6].
An NFC sticker, holding the bluetooth address of the
TV, can be placed on the remote. A touch of the remote
launches the game on the TV.

This game can also involve remote participants who see
their cards on their phones and the table on their own
TV or computer. In that case, a public IRC chat room
may be utilized as the switchboard for the session; the
Junction URI contains the IRC chat session address; the
URI can be transmitted in an SMS message or email.
All the application codes remain the same and run on
the end-point devices.

Ad hoc Peer-to-Peer Computing
The scope of this work is to support interactions among
friends in the same vicinity specifically, but can also in-
clude remote participation where relevant. More specif-
ically, we want to support applications with these char-
acteristics:

• Mobile.
• Multi-party: Two or more participants.
• Ad hoc: No prior arrangements necessary, partici-

pants may come and go as they wish.
• Native applications: To take advantage of sensors on

resource-constrained devices.
• Cross-platform: Participants may leverage different

devices, including servers.
• Device-spanning: A single user may use different de-

vices.

Contributions
This paper makes the following contributions:

Proposal of the Junction protocol for decentral-
ized, ad hoc multi-party applications. Anyone can
participate in a multi-party session provided he knows
the session’s unique Junction URI, which identifies not
where the code is run, but where the switchboard is lo-
cated. The Junction framework, whose architecture is
illustrated in Figure 2, has the following advantages:

Figure 2: Junction application architecture

• No centralized application server. This reduces the
burden of ISVs to create and deploy scalable server
codes and eliminates the invasion of privacy due to
central monitoring.
• Ease of use. An activity director which can launch

any application with a single click.
• Ease of programming made possible by three impor-

tant abstractions. The invitation abstraction removes
the complexity of coding different methods includ-
ing NFC, QR codes, and Bluetooth. The switch-
board abstraction enables applications to enjoy a large
variety of messaging implementations, each tailored
for different usages. They include XMPP–a popular
general-purpose multi-user chat protocol, IRC–a chat
protocol freely available in the cloud, a lightweight
mobile switchboard implemented directly on top of
TCP, Bluetooth for close range communication, as
well as OpenFlow, a software-defined network in-
frastructure to provide high performance. Finally,
the Props abstraction helps programmers maintain
shared state across devices.

Open-source implementation. The Junction frame-
work is fully implemented for Android, web, and iOS
(iPhone/iPad) platforms and made publicly available.

Extensive application experience. We have de-
veloped over ten applications for multimedia sharing,
games, communication, and for enhancing security for
online transactions. In particular, a research group in
education used Junction to study social learning in the
third world. We showed that many of the social appli-
cations run well across a variety of switchboards, so the
choice can be based on the locality of participants, scal-
ability, deployment ease, and privacy. We also showed
that Junction can be used to bridge the semantic gap
between applications and the network, so real-time data
applications can be written at a high-level while lever-
aging low-level network optimizations.

THE JUNCTION PROTOCOL



In the following, we describe the Junction URI nam-
ing convention, the activity script which defines the ap-
plication codes for the activity, and finally the session
management and communication protocol.

Junction URIs
A Junction URI specifies how to access a switchboard
of an activity. It has the following form:

junction://[host]/
[session]#[transport]?role=[role]

• host: Address of the device hosting switchboard. It
may be a public IP address, a local IP address, or
Bluetooth mac address.
• session: The unique session ID for the activity’s

switchboard.
• transport: The transport used in that switchboard.

Examples are XMPP, Bluetooth etc.
• role: As explained below, an activity can have mul-

tiple roles. For example, the weTube application for
remote-controlled YouTube videos has two roles: the
“player” and the “display”. A participant is invited
to take on a particular role.

A URI for a weTube session hosted on the public XMPP
switchboard at sb.openjunction.org looks like:

junction://
sb.openjunction.org/un1q#xmpp?role=player

Activity Scripts
The activity script defines the roles of the activity and
the specification of each role. A role can be run on a
variety of platforms and implemented in different lan-
guages, with download instructions listed in this activ-
ity script. For example, a role may be available both
natively for the iPhone and Android OS, as well as for
the web.

The activity script is a set of key-value pairs, structured
as a JSON object, with the following keys:

• ad: A unique identifier for the activity.
• friendlyName: A user-friendly name.
• roles: A mapping of role names to specifications for

those roles. Each role specification contains a “plat-
forms” object, mapping the name of a platform to
details about the code available on that platform, in-
cluding a download location. The fields of a platform
specification are defined uniquely for each platform.
For example, the “package” field allows an applica-
tion to be found and launched on an Android device,
whereas a “protocol” is required for launching an ap-
plication on iOS.

Session Management
We now describe the Junction protocol for creating
multi-party activity sessions, as depicted in Figure 3.
In this illustration, the “session initiator” (SI) runs a

Figure 3: Session Management Protocol.

multi-party activity on some switchboard. She invites
a “participant” (P) to join. The participant has an ac-
tivity director preinstalled and may or may not have
the application in question.

1. We begin with a user who wishes to start an activity.
The SI navigates to an application on her cell phone
and launches it.

2. Using the Junction library, the SI generates a unique
session identifier for the activity session. The SI cre-
ates the activity session by sending a “create” request
to the switchboard with the identifier, along with the
activity script.

3. The session has a unique URI that represents it. The
SI shares this URI with a participant P using some
out-of-band method.

4. P accepts the invitation to join by opening it with his
activity director.

5. The director contacts the switchboard to determine
the activity details, contained in the activity script.

6. Knowing the user’s platform, the director locates the
appropriate code needed to join the activity. If it is
available locally, it is launched; otherwise, the script
contains details of where it can be downloaded.

7. The director launches P’s local application to join the
session. It passes the invitation URI as an argument.

8. P’s application joins the session, and the activity
commences.

Invitations
A Junction URI can be shared in any way a web URL
can be shared today, including email, instant message,
and embedding them on web pages. However for many
ad hoc face-to-face applications such as sharing business
cards using mobile phones, these methods are awkward.
For example, Bump allows two phones to find each other
by shaking them together [3]; it relies on a central server
to match accelerometer readings sent from the devices.



Transport Latency Max. Distance Users per Session
Bluetooth
Pocket Switchboard

5-20ms Room-scale
(10m)

Spec: 7 [25]
In practice: 3 or 4

TCP/IP
Pocket Switchboard

∼10ms Room/Building-scale
(10-100m)

∼100 with switchboard on phone

IRC ∼300ms in WAN
with server throttling

Internet-scale 1000s on public servers

XMPP ∼200ms in WAN Internet-scale 1000s per server
supports federation

Software-Defined Network
(OpenFlow)

∼10ms in LAN
∼200ms in WAN

Campus-scale 100,000
(depends on switch’s flow table size)

Figure 4: A comparison of various switchboard implementations.

To reduce surveillance opportunities and improve scal-
ability, it is desirable that invitations be transmitted
locally whenever possible. As smart phones all come
with cameras, QR codes can be used to share URI ses-
sions between devices like TV or web pages with mobile
phones. They can also be printed out and displayed,
say, at an event. Invitations can also be broadcast us-
ing a Bluetooth radio beacon [4]; this method is suitable
for inviting many participants in the vicinity at once,
perhaps in a meeting or classroom environment.

As NFC becomes available on more smartphones, it will
become an ideal method for sharing invitations. An in-
vitation can be made available over NFC without re-
quiring blocking UI or extra button presses from the
user. Simply touch two devices to share an invitation.

To accept an invitation, we need to pass the Junction
URI representing the session to the director. This can
be easily achieved on systems that support protocol
handlers, such as Android and iOS, by having the di-
rector register itself as a process that handles Junction
URIs.

What if a device does not already have a director? To
bootstrap, one approach is to embed the Junction URI
in a web URL that points to a server hosting a director
web application. Clicking such a URL would bring up
a web page that recommends downloading the director
code. The downloaded director would register itself as a
listener of the particular web URL, so subsequent clicks
of the same URL would be intercepted by the director,
which would launch the desired application.

MULTI-PARTY COMMUNICATION
Besides session management, Junction also defines a
high-level chatroom-like communication protocol. The
protocol includes sending messages to a particular ac-
tor (by id) or to a set of actors claiming a role (say, a
poker “dealer” or “player”). The high-level communi-
cation primitives provide a valuable abstraction, saving
the developers’ time and providing a choice of switch-
board implementations. It is also possible to develop
using one protocol, which may be more supportive of
debugging, and deploy on another. A high-level com-
parison of the different switchboards is shown in Fig-
ure 4.

XMPP: Federated Multi-User Chat

It is attractive to implement Junction switchboards on
top of XMPP because of its widespread deployment, ex-
tensibility, and support for federation. XMPP has sup-
port for native socket connectivity as well as HTTP con-
nectivity using BOSH [18], thus supporting both phones
and web browsers. By running entirely within a Multi-
User Chat room [22], Junction can be run on existing
infrastructures. If the XMPP server is publicly named,
then players can participate remotely; encryption can
be used to keep the communication confidential. The
XMPP server can be embedded in access points in an
institution or be available in home servers like game
consoles or multi-media centers for reduced latency of
local interactions and better scalability and privacy.

IRC: Leveraging Public Services
Freely available IRC services can also be used as imple-
mentations of Junction switchboards. Users can con-
nect to many IRC servers without an existing username
and password. Public servers typically add software de-
lays to messages to avoid flooding and general network
misuse. Thus, IRC is useful only for applications that
have relatively little traffic and are tolerant of delays.

Pocket Switchboard: No Servers
It is sometimes desirable to run the switchboard on the
phone itself, while leveraging the phones ability to com-
municate via Bluetooth or WiFi hot spots hosted on the
phone. We found this especially true for rural areas–
standing up a local XMPP server was a significant ob-
stacle in using Junction for social learning in Africa.

We have developed a lightweight Pocket Switchboard
for the phone that can support a small number of users.
Using Bluetooth radio beaconing for invitations, ad hoc
mobile applications can be run on just mobile devices,
without the need of any infrastructure. We have cre-
ated two variants, one that runs over TCP/IP sock-
ets and another over Bluetooth. Bluetooth pairing is
required only between the peers with the switchboard
service, but not with each other. The number of peers
that can connect over Bluetooth is limited to 7 [25].
Our experience shows that using the Motorola Droid
as a switchboard, we can connect a maximum of three
phones (one acting as the switchboard), while a Nexus
One can support four.

OpenFlow: Integration with Networks



Some multi-party applications have high communica-
tion bandwidth requirements, examples include voice
and video teleconference calls. With the emergence of
the new software-defined networks [16, 12], we can im-
plement the Junction switchboard directly in the net-
working infrastructure itself and communicate the ap-
plication requirement with the underlying network. For
example, the Junction library can transparently sub-
stitute message routing through a switchboard with a
direct network multicast implementation [29].

Our implementation uses the OpenFlow technol-
ogy [16]. The multicast session is identified by a mul-
ticast IP address—messages sent to that address are
broadcast to participants. Once a session is set up in a
switchboard, the switchboard asks the OpenFlow con-
troller to set up the multicast session and hands the
multicast address to the Junction platform running on
the participating end nodes. The switchboard updates
the OpenFlow controller with the latest list of IP ad-
dresses of the participants. The controller then installs
the multicast route between the participants.

SHARED STATE MANAGEMENT
When an application runs on end-point devices, appli-
cation writers must cope with the difficulty in imple-
menting shared state in a distributed manner. Dis-
tributed state consistency is a well-studied problem [24,
1, 19]. We noticed that for some applications (the
shared whiteboard or the shared playlist, for example)
the entire behavior can be described in terms of opera-
tions applied to a replicated state. To simplify this style
of programming in Junction we extended the platform
with the notion of a Prop, a managed data structure
that is replicated and kept consistent between all peers.
Our design is informed by the state replication strategy
of Croquet [23].

A Prop is a developer-defined data structure with a set
of operations to be applied to the data structure. It
provides several fundamental properties useful for ad
hoc multi-party applications.

1. Participants can join and drop out at different times.
A participant can acquire the current state of the
data structure upon joining; all this is done without
designating a particular participant as the ultimate
source.

2. Sequential consistency. Every participant eventually
sees the same global order for everybody’s operations.

3. Predictive operations. For the sake of responsiveness,
it is desirable for users to get immediate feedback,
even though the state may need to be adjusted later.
For example, when a user submits a song, he should
see the song on the list right away and on his phone
as an acknowledgment.

At runtime, an instance of the Prop is created at each
peer. The Prop instances conduct a synchronization
protocol using the standard Junction messaging layer.

These messages are namespaced so as to be invisible to
higher level application code. The base Prop behavior
is defined in terms of an abstract state and abstract
operations. The application developer extends the class
Prop and defines i) the form of the state (this can be
arbitrary), ii) the operations that may be applied to the
state (again, arbitrary), iii) a routine to create a deep
copy of a given state.

In Croquet, all operations are broadcast through a thin,
central router with no application logic. Sequential con-
sistency is guaranteed because the global order of op-
erations is enforced by the router and every peer ap-
plies them in the same order. Props borrows this same
model, where the router is replaced with a Junction
switchboard. We also borrow Croquet’s state transfer
concept. When a new user joins the activity, their in-
stance of the Prop listens to the protocol and determines
if it is out of date. If so, it requests an update from the
other instances. The state (copied using the routine
mentioned above) is streamed from the instance that
responds with the most advanced state within a short
window of time. This is an optimistic strategy: there
is no authoritative state due to the potential for drop
out.

We extended the croquet scheme to include support for
prediction to improve responsiveness. Predictive oper-
ations are applied locally, speculatively, to a copy of
the last-known consistent state before being sent to the
switchboard. If an update from the switchboard inval-
idates a prediction (the update from the server arrives
before the confirmation of a prediction), we rollback to
the last-known consistent state and re-apply all opera-
tions in the correct order.

Props interfaces with application code via change
events. When a new state is streamed from a peer or a
new operation is applied, the Junction system will send
the application code a “state-change” event. Upon re-
ceiving such a notice, the program may need to refresh
the screen or update application-level private state to
reflect the update. This is a seemingly naive strategy, as
application code must be written to account for sudden
and unexpected state changes. However, we’ve found
in practice that the states evolve incrementally, and
the event-driven design encourages good separation be-
tween the model and view portions of a program.

EVALUATION
We have a full implementation of the Junction frame-
work described above and performed an extensive eval-
uation of the system. We have written over ten use-
ful applications to understand the ease of use and ease
of development of the system. The system is mature
enough for a research group in education to use Junction
to study how social interactions can enhance learning in
rural areas. To understand the characteristics of differ-
ent switchboards, we implemented them and measured
them with micro-benchmarks. We created a real-time
game to stress the switchboards and a teleconference



application to test the OpenFlow implementation.

Implementation of the Junction Platform

SwitchboardSwitchboard

Invitations
QR, SMS, ...

 Session 
Mgmt.

State 
Mgmt.

Application

Pocket
Switchboard

XMPP
Client

...IRC
Client

MessagingDirector

Figure 5: The Junction client library architecture.

We have developed a prototype of the Junction infras-
tructure for the desktop, web, Android, and iOS plat-
forms. The client libraries are composed of the same
architecture, depicted in Figure 5. Each library has
a pluggable set of supported switchboard implementa-
tions that provide connectivity to peers. On the mobile
clients, we bundle the Pocket Switchboard’s server im-
plementation as well as client library, and include the
libraries for XMPP and IRC connectivity. The applica-
tion developer interacts with an abstraction layer on top
of these implementations with a common set of func-
tionality. The library exposes the ability to create and
join a session, send messages (either directly to peers
or to the entire session), and propagate lifecycle events
such as “session joined” and “session created” to the
application layer. An application may also use Props
to help manage shared, distributed state.

We found the Android Platform’s system of Intents [9]
very helpful for building programs that provide services
to other apps. The director application uses Intents as
a way to return p2p configuration details to a Junction
application running in a separate process. This is in
contrast to the iOS platform, where interprocess com-
munication is limited to applications registering han-
dlers for URIs opened by other programs.

We found connectivity to be a challenge for Javascript.
Since Javascript cannot open standard socket connec-
tions to remote servers, we need to tunnel socket-based
protocols like XMPP over HTTP [18]. Tunneling li-
braries carry a heavy performance overhead. We plan
to use WebSockets for connectivity in the future, which
should be comparable in efficiency to a standard socket
connection. Where possible, we use CORS [27] to avoid
cross-domain request restrictions.

Applications
We have found that Junction is useful for a variety of
applications, from collaborative multimedia sharing, to

(a) weTube

(b) weBluff (c) PocketTanks

(d) weMeet

Figure 7: Screenshots of Junction Applications

games, to improving security by using the phone as a
second factor, and for communications. A selection of
9 applications built using Junction platform is summa-
rized in Figure 6.

PocketSchool
In addition to the applications we have developed inter-
nally, Junction has also been used by a research group
in the Stanford School of Education to create Pock-
etSchool. PocketSchool is an educational game that
runs amongst several cell phones (Figure 8.) The activ-
ity consists of a facilitator and several students. Each
student reads a short story and responds to quiz ques-
tions at the end. The first student to complete the quiz
successfully wins. Another version of the game requires
the students to work together to comprehend the story
being told.

PocketSchool has been piloted both at nearby schools
and rural communities in the third world, and is dis-
cussed further in [13]. By taking advantage of Junc-
tion’s Pocket Switchboard, PocketSchool can be used
in rural areas without networking infrastructure.



Application Description Lines of Code Dev. Time
Multimedia: Quick and fun collaboration

weTube Use phones to share YouTube videos on a commu-
nal display, with support for voting up favorites
(Figure 7(a)).

Display: 450 lines html, css, js
Android remote: 1500 lines Java
iOS remote: 900 lines Objective-C

2 days

wePix Share photos either recently taken or in the
phone’s existing library with a group and display
them on a communal display.

Display: 450 lines of html, css, js
Android controller: 1400 lines of Java
iOS controller: 1500 lines Objective-C

2 days

Games: Interactive Multiplayer Social and Real-Time
weBluff A “common hand” version of the Liar’s Dice

game; each phone shows the player’s view of the
dices, 5 for each person. 2–8 players. (Fig-
ure 7(b))

Player: 1500 lines of Android Java 3 days

weHold’Em A Texas Hold’Em variant using Android devices
to display private cards and a web browser to
display communal cards. 2–8 players. (Figure 1)

Player: 800 lines of Android Java
Table: 750 lines of html, css, js
Dealer: 1700 lines of server Java

30 days

PocketTanks A mobile real-time tank commander game; users
drive around to shoot each other. 2–5 players
(Figure 7(c))

Player: 2000 lines of Android Java 2 days

Security: Using Phones as a Second Factor
Snap2Pass Visually authenticating into a web page using a

mobile phone as the authentication token.
Provider: 1600 lines of server Java
Web: 120 lines of html, css, js
Phone: 400 lines of Android Java

6 days

Communication: From Introductions to Teleconference
weMeet A real-time mobile application for exchanging

profiles with a group (Figure 7(d)).
Android: 1600 lines of Java
iOS: 1200 lines Objective-C

2 days

weScribble A cross-platform collaborative whiteboard Android: 1400 lines of Java
Web: 400 lines html, css, js
iOS: 700 lines Objective-C

3 days total

weTalk Real-time voice with optimized network traffic. Android: 850 lines of Java 7 days

Figure 6: A selection of applications we have built using Junction

Application Development Experience
The applications illustrate how various features can be
combined in different ways to achieve the desired ef-
fects. Except for weBluff, PocketTanks, and weTalk,
all the applications run across different platforms. The
weTube, wePix, weHold’Em applications can use a large
screen display for communal display of information;
Snap2Pass interacts with the web applications on the
PC. WeTube, wePix, weMeet, and weScribble run on
both the Android and iOS mobile platforms. In addi-
tion, WeScribble is available on the iPad and as a web
application runnable on any PC, since it is interesting
in a non-mobile setting as well.

weMeet, weTunes, wePix, and PocketTanks make use
of Props to manage application state; weBluff, we-
Hold’em, PocketSchool, and Snap2Pay/Snap2Pass is
implemented directly with simple message passing.
Snap2Pass and Snap2Pay require an explicit call to the
QR code scanner, while the remaining activities can
rely on the activity director for session management.
This variety suggests that the features are general and
useful for many different applications. Junction is not
designed for low-latency, high-bandwidth interactions.
To understand its limitation, PocketTanks and weTalk
were written to evaluate the latency and bandwidth
supported by Junction.

The weHold’em and weBluff applications bring out an
important complication in the implementation of dis-
tributed multi-party games, where there are no trusted
third-parties that executes part of the application logic.

How do we ensure that no cheating takes place on
the end user devices? Our implementation of the we-
Bluff game uses an adoption of commitment-based cryp-
tographic techniques to implement verifiably fair dice
rolls [2]. The details of the algorithm are beyond the
scope of this paper. Similarly we can use distributed
card shuffling techniques for weHold’em [17].

Figure 6 shows the number of lines of code written for
each platform and the amount of time taken. Notably,
the weHold’Em poker game was developed alongside
the original Junction development, and so it took much
longer to complete. Similarly, weTalk was developed
in tandem with the associated OpenFlow support. We
note that Junction programs are succinct and can be
developed quickly, thus illustrating how Junction makes
it easy to write peer-to-peer activities.

Application Usability Experience
We conducted a small user study with 3 groups of 4, 5,
and 7 college students. Users were invited to use the we-
Tunes and wePix applications in a casual environment
and were then surveyed about their experience. Details
of the trial are beyond the scope of this paper, due to
space constraints. Suffice to say that users in general
liked the applications. The response to the weTunes So-
cial Playlist app was particularly positive. Comments
such as “love it” and “easy to get a playlist with songs
everyone likes” were common. The applications per-
formed reliably, and we did not receive any complaints
about latency. Note that for these trials, sessions were
hosted at our dedicated XMPP switchboard at open-



Figure 8: The PocketSchool educational game.

junction.org.

Micro-Benchmarking of Switchboards
The Junction abstraction provides applications a choice
of switchboards. Our first performance analysis is
to characterize the different switchboards with micro-
benchmarks to measure the message round-trip time
(RTT). The round-trip time includes the time a mes-
sage propagates through the Junction API on the client
machine, across the network, back to the client machine
and back through the Junction software layer. The av-
erage RTTs and the standard errors in the following
figures are taken over 100 messages. The local switch-
boards used in the following experiment were hosted on
a Linux PC with an AMD P920 1.6G Quad-Core pro-
cessor and 4G memory. Switchboards hosted locally are
connected to their participants on an isolated LAN.
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Figure 9: Message size vs. RTT (1 participant)

The first experiment measures the RTT of a single par-
ticipant sending messages of different sizes (Figure 9).
The results show that all the local switchboards, ex-
cept for IRC, can handle messages up to 1KBytes with
a RTT of less than 10 ms for 1 participant. The light-
weight Pocket Switchboard is faster than XMPP (Open-
Fire) on a PC because it is customized for Junction;
this difference is especially important for mobile de-
vices. The comparison between running the Pocket
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Figure 10: Number of participants vs. RTT (10-byte message
size

Switchboard on the phone (a Nexus One) and a PC
illustrates the performance difference of the two de-
vices. Going remote to an externally hosted XMPP
server (open.junction.org hosted at Amazon S3) results
in a RTT close to 100 ms. This illustrates how using a
local service, even on a mobile device, can deliver better
latency.

IRC (InspireIRCD) has a RTT of about 300 ms even
when hosted locally. IRC servers are intended to be
used as chat servers with human clients and as such
contain flood-protection features designed to prevent
users from spamming a channel. These restrictions limit
the speed that a message may propagate through the
server. Furthermore, the slowdown of messages beyond
512 bytes, as shown in Figure 9, is due to a 512 byte
size limit imposed by IRC. Our Junction library breaks
long messages into 512-byte ones for IRC. Note that de-
spite the poor comparison with other switchboards, IRC
is still suitable for social applications that can tolerate
high latencies. For example, we found the weScribble
application usable even when connected to a public IRC
server hosted at chat.freenode.net.

The second experiment shows the RTT of messages sent
by one party to different numbers of participants (Fig-
ure 10). We see that both IRC and remote XMPP de-
liver the same performance for up to 500 participants,
since the overhead in these cases is dominated by factors
other than server performance. All other implemen-
tations slow down as more participants connect, since
Junction requires messages to be routed to all the par-
ties. Nonetheless, even the Pocket Switchboard on a
mobile device can serve 100 users with the same latency
as an XMPP server on a WAN to 100 users. From the
figure, we see that a local server on a PC has no prob-
lems scaling to 500 users.

Applications with High Bit/Packet rate
We use weTalk to evaluate the ability of Junction
to hand over heavy-duty communications, such as



voice/video streaming, to the underlying OpenFlow
network for better performance. We show that weTalk
outperforms Skype, the state-of-the-art peer-to-peer
multimedia application, for conference calls of three or
more parties due to the ability to multicast inside the
network.
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Figure 11: The transmission ratio between the initiator and the
participants

For Skype to support conferencing, the call initiator
serves as the relay for other parties. The transmission
bitrate of the host increases linearly with the number
of participants. This is not good news for the ini-
tiator, since it will consume a lot of bandwidth and
power, which are both scarce resources especially on
mobile devices. Figure 11 compares the ratio of trans-
mission bitrate between the call initiator and the other
participants. It shows that the call initiator on Junc-
tion/OpenFlow transmits no more data than others,
while the initiator in Skype needs to transmit twice as
much data as others in a three-way conference call.

Junction/OpenFlow delegates the traffic multicasting
to the underlying network and no device needs to act
as a relay for others. This is particularly important
in pure phone-to-phone settings because of the limited
battery life and bandwidth available to a phone. Fur-
thermore, by eliminating the relay node, the round-trip
delay between a pair of phones decreased by half in our
experiment setup. The decrease in delay can improve
the user experience, especially for multimedia activities.

Putting it All Together
As shown in Figure 12, most of the social applications
have little requirement on bandwidth and latency and
can be run on all but the OpenFlow switchboard. For
example, the Pocket Switchboard is good for local inter-
actions, XMPP for large-scale deployments, and public
IRC service to support remote participation without re-
quiring servers. PocketSchool, designed for third-world
education, is best run completely on mobile devices us-
ing the Pocket Switchboard. PocketTanks, a mobile
real-time game, will not run well on public IRC because

Application Pocket XMPP IRC OpenFlow
weMeet, wePix,
weTube, weBluff,
weHold’em,
weScribble

X X X

PocketSchool X
PocketTanks X X
Snap2Pass,
Snap2Pay

X

weTalk X

Figure 12: Suitability of switchboards.

of the anti-spamming measures built into the protocol.
Snap2Pass and Snap2Pay are business applications used
in web pages to enhance security with mobile phones,
so XMPP is appropriate. Finally, weTalk can be opti-
mized by implementing the switchboard on OpenFlow.

RELATED WORK
There are many existing systems for enabling multi-
party communication. UPnP and DLNA [26, 5] are
well-established standards for connecting services, typi-
cally on a LAN. They focus on the development of fixed
networked services, such as printers and media servers
and consumers, as compared to our focus on complete
applications running across devices.

Systems such as the iRoom project demonstrate the
utility of bringing devices together for new forms of
collaboration [8]. Want, Lyons et al. extend this idea
and explore composable computing in depth [28, 14],
creating a framework for developing collaborative sys-
tems. Their Composition Framework handles device
discovery and messaging across devices using an array
of wireless technologies. Devices run services and ca-
pabilities that can be composed to accomplish various
tasks. In contrast, our primary focus is on helping de-
velopers create complete multi-party applications across
several devices.

With Obje, Edwards et al. explore how devices can par-
ticipate in recombinant computing [7]. Here, devices
(discovered over a LAN) expose a set of supported ser-
vices that can interact with other applications on the
network. The work focuses on ad-hoc interoperability
between devices and services that were not originally
designed to work together. Again, our focus is to pro-
vide a platform with which cohesive applications can
be spread across multiple devices. We assume that all
components of the application are being developed in
concert, and streamline their development.

Pierce et al. use XMPP to exchange information across
multiple devices of a user and provide functionality
that spans personal devices [21]. They attach a list
of personal devices to centrally managed user accounts.
Whenever a personal device joins the network, it can
be discovered by other devices that belong to the same
user. Junction focuses on ad hoc activities, as compared
to managing services across a user’s devices.

Pering et al. uses RFID tags to configure the devices for



co-operative tasks [20]. To perform a particular task, a
device should scan the coresponding RFID tag, which
stores the configuration for the specific task. By scan-
ning in the RFID readings, mobile devices can under-
stand what application they should launch and where
they should go meetup with other devices. Similarly,
researchers have explored using physical interactions
to allow quick device associations. They make use of
the sensors on devices and start the pairing process
by bumping them [11, 3], shaking them [15], and by
touching them together [10]. These interactions lend
themselves well to the Junction protocol, which further
defines how the devices can run a joint activity and how
simplifies how developers can write them. Bump™ [3]
also provides an API for cross-device messaging, but
requires cloud-based infrastructure to support the task.

CONCLUSION
Today there are relatively few multi-party applications
in the appstore of mobile devices, and they predomi-
nantly use the server-client architecture. Because peer-
to-peer applications are easier to deploy and more scal-
able, we believe that making them easier to write and
use can help propel multi-party applications into the
mainstream. Peer-to-peer applications also have better
privacy characteristics.

We isolated many of the common burdens of creating
such applications, including peer discovery, application
discovery, code management, runtime connectivity, and
showed that they can be simplified with the Junction
protocol and framework. The key idea is that any-
one can participate in a multi-party session provided he
knows the session’s unique Junction URI, which identi-
fies not where the code is run, but where and how the
switchboard is located.

Our experimental results show that many compelling
applications in multimedia sharing, communication,
games and even education can be supported with this
model. A small user study suggests that the single-click
launch of applications seems suitable for ad hoc social
applications. The applications, while relatively easier
to write, can be highly optimized for different scenarios
by using the variety of switchboards that are included
in the framework. We have released our Android, iOS,
and web libraries as open source projects, available on
openjunction.org.
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