
Secure, Consumer-Friendly Web Authentication
and Payments with a Phone

Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam?

Computer Science Department
Stanford University
Stanford, CA 94305

{bjdodson,debangsu,dabo,lam}@cs.stanford.edu

Abstract. This paper proposes a challenge-response authentication sys-
tem for web applications called Snap2Pass that is easy to use, provides
strong security guarantees, and requires no browser extensions. The sys-
tem uses QR codes which are small two-dimensional pictures that en-
code digital data. When logging in to a site, the web server sends the
PC browser a QR code that encodes a cryptographic challenge; the user
takes a picture of the QR code with his cell phone camera which re-
sults in a cryptographic response sent to the server; the web server then
logs the PC browser in. Our user study shows that authentication using
Snap2Pass is easy to learn and considerably faster than existing one-time
password and challenge-response systems. By implementing our solution
as an OpenID provider, we have made this scheme available to over
30,000 websites that use OpenID today.
This paper also proposes Snap2Pay, an extension of Snap2Pass, to im-
prove the usability and security of online payments. Snap2Pay allows a
consumer to use one-time credit cards as well as the Verified by Visa or
Mastercard SecureCode services securely and easily with just a snap of
a QR code.

1 Introduction

This paper introduces two consumer-friendly techniques, Snap2Pass and
Snap2Pay, that leverage a mobile phone to improve the security of web logins
and web payments on a PC. They require no special hardware beyond a cell
phone with a camera. With Snap2Pass, there is no more memorization of pass-
words and the login process is faster and less error-prone than with existing
systems such as one-time passwords. With Snap2Pay, consumers no longer need
to let retailers keep their passwords because it eliminates the credit card entry
by hand. In addition, it allows users to conveniently take advantage of one-time
use credit cards for additional security.

? This research is supported in part by the NSF POMI (Programmable Open Mobile
Internet) 2020 Expedition Grant 0832820, Stanford Clean Slate Program, Deutsche
Telekom, and Google.



2 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

1.1 Authentication on the Web

Passwords are the predominant form of authentication system used by today’s
websites. It is not because the password system is secure; quite the contrary,
they are known to have many problems. Passwords are vulnerable to dictionary
attacks and can be easily phished using a spoofed web site. For example, a recent
breach at a large web site showed that close to 1% of users choose “123456” as
their password [1]. Moreover, since users tend to use the same password at many
sites, a single server compromise can result in account takeover at many other
sites. Florêncio and Herley found that a single password is typically used to
access over five sites [11]. As more sites support email addresses as a username,
this poses a significant risk–if an account is breached at one site, others are at
risk as well. The study also indicates that on the order of 0.4% of users fall
victim to a phishing attack each year. Despite these limitations passwords are
widely used.

Over the years, many enhancements have been proposed, including smart
cards, one-time password tokens (such as RSA SecurID) and challenge-response
authentication. To date, none of these have been widely adopted on the Web.

Challenge-response is a good case study. While it prevents some attacks that
defeat basic passwords, it is rarely used on the Web due to the cumbersome user
experience. For example, a system called CRYPTOCard uses a smartcard with
a screen and a keyboard where users key in the challenge and then copy the
response to the desktop. Authentication using CRYPTOCard takes far longer
than authentication using a simple password. As a result, CRYPTOCard is pri-
marily used in corporate settings where the additional hardware cost and the
extra inconvenience is acceptable.

1.2 Fast Secure Login on the Web Browser

The web has become the dominant platform for modern applications. Perhaps
the largest contribution to the web’s success as a platform is the ability for users
to visit any web page or application from a standard web browser, found on
any modern computer today, with no configuration. Simply entering a unique
name for that web application is enough to download the necessary code and
launch the application. A web application’s authentication system must support
this interaction — a user should be able to authenticate against a web applica-
tion from any available browser, with no additional configuration. In particular,
the authentication mechanism is restricted to using generic browser components
combined with information supplied by the user.

By leveraging the mobile device, our proposed Snap2Pass technique improves
security for web applications on a standard web browser, without preconfigura-
tion. The phone is always with us and switched on. It is a personal device–we do
not use others’ phones, and nobody uses our phone, except in rare circumstances.
In fact, the phone is an ideal device for keeping personal, private, information. In
other words, it serves to identify the owner, and can be used as a second-factor
authentication. Browsers on the PC, on the other hand, are not personal. We



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 3

often drift between browsers, on different PCs, at home, at work and on the
road. Since the PC has a larger screen and a big keyboard, we can make the
best of both worlds by pairing the phone as a personal device with a generic PC
browser.

At a high level, the user experience using Snap2Pass is as follows. The user
navigates his PC browser to the login page of a web site. The login page displays
a QR code containing a cryptographic challenge, among other things. The user
takes a picture of the QR code using his cell phone camera. No other user
interaction is needed to log in. Under the hood, a pre-shared secret key stored
on the phone is used to compute a response to the cryptographic challenge which
is then transmitted to the site via the cellular (or wi-fi) network. The site checks
the response and if it verifies, triggers the PC browser to successfully complete
the login process, and load secured pages. The use of both the phone and PC
provides an added security benefit, as checking the co-location of these devices
can mitigate man-in-the-middle attacks.

1.3 Secure Payment on the Web Browser

When shopping at an online retailer for the first time, the checkout page asks
users to enter all of their information (e.g. credit card number, billing address,
shipping address, etc.) before the transaction can complete. This step is gener-
ally cumbersome and can cause shopping cart abandonment. In addition, there
is some risk in sending sensitive information to a relatively unknown retailer.
Moreover, consumers are often faced with the dilemma of either letting the re-
tailer keep their credentials hence increase the risk or suffering the inconvenience
of having to enter their credit card information repeatedly.

We can apply the same basic technique used in Snap2Pass to submit the
credit card number with just a snap of a QR code. There is no need for manual
entry of credit card information, and consequently no need to let the web site
retain credit card information. In addition, we can provide added security by
combining this approach with one-time use credit card numbers.

1.4 Contributions

This paper makes the following contributions:

Snap2Pass: A consumer-friendly challenge-response authentication
system. This technique is easy to use, requiring users to only take a picture
of the QR code with a camera on their cell phones. The website displays a
QR code that embeds a challenge. The cell phone sends the response to the
challenge directly to the web server.

OpenID implementation. We have implemented a custom OpenID provider
that uses Snap2Pass, and a mobile client for the Android environment. This
provider can be used immediately to log onto over 30,000 existing websites
that use OpenID today [22]. We demonstrate that our techniques can be
implemented today with minimal changes to legacy services. No changes are
required on browsers.



4 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

Snap2Pay: Secure online payments. We combine Snap2Pass with one-time
credit card numbers to obtain a payment system providing some user privacy
from online merchants. The Snap2Pass concept can also be used to improve
the security and usability of the Verified by Visa or Mastercard SecureCode
services.

User Study. Our user studies suggest that Snap2Pass is easy to use and is
preferred to existing mechanisms like RSA SecureID and CRYPTOCard.

The Snap2 technology. Snap2 is a general technique based on the ability to
create quickly a secure three-way connection between a server, a PC browser
and a phone. The browser connects to the server with a web page visit, which
is then connected to the phone via a QR code that embeds a session key.
This enables a server to engage in secure sessions with the browser and the
phone simultaneously. The server acts as a secure message router between
the phone and the browser.

1.5 Paper Organization

Section 2 presents the threats addressed by this paper. Section 3 describes the
core Snap2Pass algorithm based on both symmetric keys and public/private
keys. Next, Section 4 describes how accounts for multiple web sites are managed.
We describe how we simplify OpenID sign-on by extending it with Snap2Pass.
Section 5 shows how the Snap2Pass concept can be extended to improve the
experience and security of online payments. Sections 6 and 7 present some ex-
tensions and a security analysis, respectively. We describe our implementation as
an OpenID provider in Section 8 and the results of our user study in Section 9.
Section 10 presents related work and Section 11 concludes.

2 Threat model

Snap2Pass is an authentication system designed for ease of use while providing
stronger security than traditional passwords or one-time passwords. Our design
is intended to protect against the following types of adversaries:

– Phishing. Phishing targets users who ignore the information presented in the
browser address bar. A phishing attacker sets up a spoof of a banking site and
tries to fool the user into authenticating at the spoofed site. Furthermore, we
allow for online phishing where the phishing site plays a man-in-the-middle be-
tween the real banking site and the user. The phisher can wait for authentica-
tion to complete and then hijack the session. One-time-password systems, such
as SecurID over SSL, cannot defend against online phishing. With Snap2Pass
this attack is considerably harder, as discussed in Section 7.2.

– Network attacker. We allow the attacker to passively eavesdrop on any network
traffic. Moreover, we allow for a wide class of active network attackers discussed
in Section 7.

– Phone theft. Snap2Pass enables quick revocation in case of phone theft.



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 5

Snap2Pass does not provide security against malware on the user’s machine.
Indeed, a sophisticated transaction generator could, in principle, execute trans-
actions on the user’s behalf once authentication completes. A good example is
the stealthy transaction generator described by Jackson et. al [12]. Similarly,
Snap2Pass does not protect against malware on the phone itself.

3 The Snap2Pass System

We now present the core algorithms in the Snap2Pass system. Recall that
challenge-response authentication comes in two flavors. The first is a system
based on symmetric cryptography. It uses little CPU power and generates very
short messages, however it requires that the server possess the user’s secret au-
thentication key. As a result, the user must maintain a different secret key for
each server where she has an account. The second is a system based on public-key
cryptography. It requires considerably more CPU power to generate responses
to challenges, but the server only keeps the user’s public-key. Consequently, the
same user secret key can be used to authenticate with many servers.

We describe both challenge-response systems as implemented in Snap2Pass.
We present the basic work flow, including account creation, login, and revocation.

3.1 Symmetric key Challenge Response Authentication

In a symmetric key based challenge-response system, the client(s) and web server
communicate using a pre-shared secret key. Our implementation uses a key
length of 128 bits. This key is used in the HMAC-SHA1 algorithm to compute
responses to server-issued challenges. The challenges are 128-bit length nonces
embedded in a QR code, while the responses are 160 bits long and are sent over
the wireless network.

3.1.1 Account Creation The account creation web page invites a new user to
submit a username. Upon receiving an acceptable username, the server gener-
ates a shared secret for the account and then sends a QR code to the web page
encoding the account information. The user launches the Snap2Pass application
on the phone and selects the “Set Account” button to activate the camera, con-
sume and decode the QR code. The web site then confirms that the account was
created successfully. To avoid adding spurious entries in the provider’s database,
it should require a user login to complete the creation process.

Figure 2 shows the Snap2Pass application running on the Android phone.
We create a QR code representing a created account by encoding the following
contents:

{ protocol: "V3",

provider: "goodbank.com",

respondTo: "https://login.goodbank.com/response",

username: "mr_rich",

secret: "2934bab43cd29f23a9ea"

}



6 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

Fig. 1. A sequence diagram for creating an account in Snap2Pass.

Fig. 2. The mobile client running on Android. (a) The home screen, with a single
button to log in and with “Set Account” accessible as a menu entry. (b), scanning into
a browser session. (c), confirmation of a login.

Note that this process eliminates the need for a user to create and remember a
password, which is not just cumbersome but extremely insecure as discussed in Sec-
tion 1. As a matter of fact, it is not even necessary for the user to have a friendly user
name; however it is important for the sake of addressing and reassuring the user that
the website recognizes him.

Instead of using a user-supplied password, our scheme allows the web server to
generate a random key as a shared secret between the web site and the user. The
shared secret is presented in a QR code and saved on the phone’s password manager



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 7

once scanned. The user can present it for subsequent logins without needing to know
its value.

The QR code also specifies the endpoint where the phone will send responses to
challenges as part of the login procedure. A sequence diagram showing the account
creation protocol is shown in Figure 1.

In principle, account creation can be done entirely on the phone, without the need
for an interaction between the PC and the phone. We chose not to use this approach in
Snap2Pass since during account creation the user is often required to supply account
details such as a physical address, email address, etc. Typing all this information on
the phone can be cumbersome. Instead, with Snap2Pass the user enters all account
details on the PC and uses a QR code to move the corresponding credentials to the
phone.

3.1.2 Account Login On the login page, a website displays a QR code and asks
the user to snap the picture with his phone’s camera to log in. The page should also
provide an alternative login method in case the user’s phone is not available.

The QR code on the login page, unique per session, encodes a random challenge
nonce to be used in the symmetric challenge-response authentication. This is generally
presented within the context of an SSL session between the browser and the web server.
An example of the contents contained in a challenge QR code shown at the time of
login:

{ protocol: "V3",

provider: "goodbank.com",

challenge: "59b239ab129ec93f1a"

}

Fig. 3. A sequence diagram for logging in to a web application using Snap2Pass.



8 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

By binding the challenge nonce to the browser session, the server ensures that only
one browser session can make use of its authorization.

To log in, the user launches the mobile Snap2Pass application and selects “Log
In”. By using the phone’s camera, the application consumes the challenge QR code
and extracts the challenge within. The application finds a shared secret key and re-
sponse endpoint that match the provider name and desired user account. It computes a
response comprising of the HMAC-SHA1 hash of the entire challenge message using the
pre-shared secret as key and sends it to the response endpoint, as well as the original
challenge and account identifier. The provider verifies this response and, if successful,
the browser session is authenticated with the appropriate account. An example of a
response message is shown below:

{ protocol: "V3",

challenge: "59b239ab129ec93f1a",

response: "14432nafdrwe2443af",

username: "mr_rich"

}

The challenge and response flows occur within SSL sessions. A sequence diagram
showing the login protocol is shown in Figure 3.

3.2 Public-key Based Challenge Response Authentication

Key proliferation is a prevalent problem with a challenge response system that utilizes
symmetric keys. The user needs to negotiate and manage a shared secret with each web
site he visits. We describe a public-key based challenge response systems to combat
this problem.

Instead of using symmetric keys, the Snap2Pass mobile application can generate
private/public key pair for the user upon installation (and on-demand). The account
creation step is modified such that the user presents his public key to the web site
instead of having the site generate a secret. The challenge process proceeds as before.
The Snap2Pass application generates a response by signing the challenge with the
private key. The web server verifies the response by matching it against the user’s
public key. The user’s public key can be used across all the sites that he wishes to sign
in at.

There is an alternative solution to the key proliferation problem in symmetric chal-
lenge systems. The user can take advantage of a Snap2Pass-enabled OpenID provider
and benefit from OpenID’s single sign-on properties across multiple web sites. Thus,
the user’s Snap2Pass application needs to maintain a single shared secret between the
user and his OpenID provider. The number of keys is limited to the number of OpenID
providers he uses. He may even use the same private/public key pair across his OpenID
providers enabling Snap2Pass to maintain fewer keys.

Note that this protocol requires no certificate authority (CA) infrastructure. Client
certificates are entirely avoided in either solution, while the first solution also avoids
a CA. The OpenID-based solution is a centralized component necessary to enable
Snap2Pass use with unmodified websites while mitigating the key proliferation problem.
The OpenID provider may use a CA; our scheme interoperates with this design but
does not require it. Phone loss and recovery scenarios are address in Section 7.



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 9

4 Supporting Multiple Websites

Section 3 describes the core Snap2Pass algorithm for logging onto one website. We now
describe how we use a single mobile Snap2Pass client to log onto multiple websites,
potentially with multiple personas. We also describe how by leveraging OpenID, we can
enable the adoption of this technology immediately across a large number of existing
websites.

4.1 Independent Accounts

In practice, we wish to carry only one Snap2Pass client on our phone to log onto mul-
tiple websites. The Snap2Pass client maintains a mapping from providers to accounts.
It may also maintain multiple accounts per provider, allowing the user to select their
desired identity during a login attempt. The response message from the phone to the
web site contains the user’s identity that is logging in along with the corresponding
cryptographic response.

To minimize the risk of phishing when extending Snap2Pass to multiple sites, we
associate a recognizable image with each web site, obtained at account creation time.
The image is displayed on the phone during login, as illustrated in Figure 2(c).

4.2 OpenID

We have implemented Snap2Pass as a custom OpenID provider. Many web sites today
have adopted the use of OpenID, enabling single sign-on using their OpenID credentials.
The key advantage is that all of the websites that support OpenID, known as relying
parties, can enable Snap2Pass based login without requiring any code changes on their
end. The user’s credentials reside with an OpenID provider that uses Snap2Pass. We
used Snap2Pass to log into several websites supporting the standard, including: Slash-
dot, ProductWiki, ccMixter, and LiveJournal. Upon typing in an OpenID account
name to the web site of a relying party, the web page automatically redirects the user
to the login page of the OpenID provider. In this case, our OpenID provider presents
the user with the Snap2Pass QR code, and the login process proceeds as described in
Section 3. Once the login process completes, the OpenID provider signals the result to
the relying party web site.

4.3 OpenPass Integrates Snap2Pass into OpenID

A benefit of Snap2Pass is its simple user interaction — a user no longer needs to type
in any credentials at a participating website. Unfortunately, the first step of an OpenID
login is to type in the user’s OpenID address, so they may log in using their chosen
identity provider. This defeats our goal of logging in with a single snap.

To address this issue we use a modified version of challenge-response. Now, the
relying party is charged with creating the challenge. The phone sends its response to
this challenge to a pre-configured identity provider, which then notifies the relying
party of the transaction.

OpenPass works as follows:

– When a user visits an OpenPass-enabled website (relying party), it generates and
displays a QR code containing a challenge created by this relying party, as well as
an endpoint for handling responses.



10 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

– The phone computes the response to the embedded challenge and sends it to the
user’s pre-configured identity provider. The message also contains the reliant party’s
response endpoint.

– The provider, possessing the user’s shared secret, verifies the response and notifies the
relying party using the given endpoint. It also forwards the username and challenge
associated with the authentication attempt.

– Finally, as in OpenID, the relying party verifies a token with the identity provider,
using a shared secret. If the authentication is successful and this token is valid, the
relying party notifies the user’s browser of a successful login. The user’s browser
asynchronously waits for this response, and a page refresh completes the authenti-
cation.

5 Payments

With Snap2Pass, we use the private storage of a mobile phone to create a secure web
authentication experience. We can generalize the technique to improve our browsing
experience in other ways.

5.1 Snap2Pay

A generalization of Snap2Pass can help with both usability and security of online
payments. The system, called Snap2Pay, functions as a digital wallet on the phone
and interacts with the web site using QR codes. We first describe the user experience
assuming the Snap2Pay application already has the user’s payment information. We
later explain how to automatically populate the phone with this data.

When making payments with Snap2Pay, the phone automatically contacts the
user’s bank and requests a one-time credit card number specific to the current retailer.
This greatly reduces the risk of giving out the credit card number to an unknown
retailer. Moreover, it enhances user privacy since it is more difficult for the retailer to
track the user via credit card numbers. Combining this with other private browsing
mechanisms, such as TorButton, gives the user a convenient way to shop online in
private.

One-time credit card numbers greatly reduce the risks involved in giving a credit
card number to an unknown retailer. While one-time credit card numbers were intro-
duced some time ago, they have had limited use primarily due to the manual labor
required to generate them. With Snap2Pay, one-time credit card numbers are built in
and generated automatically by the system. As a result, the system is highly effective
for interacting with small retailers or other questionable sites on the Internet.

Using Snap2Pay the checkout process works as follows:

– When the user’s PC browser arrives at the retailer’s checkout page, the page dis-
plays a QR code encoding transaction details, in addition to normal shopping cart
information. The QR code encodes a response channel URL.

– Instead of manually entering personal information at the standard checkout page, the
user can simply snap a picture of the QR code via her Snap2Pay phone application.

– Once the QR code is snapped the user is asked to confirm the transaction on the
phone. Next, the phone securely obtains a one-time credit card number from the
user’s bank specific to that retailer.



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 11

– Next, the phone contacts the response channel URL on the retailer’s site, and pro-
vides one-time payment information.

– The retailer completes the transaction, and redirects the user’s PC browser to the
transaction completed page.

The Snap2Pay checkout process requires the user to a) snap a picture of the check-
out QR code and b) confirm the transaction on the phone. No other action is required.
The main reason for doing this on the phone (as opposed to in the browser) is mobil-
ity: the user’s payment data is available to use on any computer and any browser. No
special hardware or software is required on the PC.

Fig. 4. A mockup of Snap2Pay in an ecommerce checkout page.

To complete the discussion of Snap2Pay, we explain how to populate the phone
with the user’s payment data. Past experience with digital wallets (e.g. Microsoft’s
Digital Wallet) suggests users do not take the time to enter their payment information
into the wallet. Instead, with Snap2Pay, every time the user manually enters credit
card information at an online retailer, the retailer displays a QR code containing that
data. The user can simply snap the QR code to bootstrap the Snap2Pay database.
Future transactions can use this data as explained above. We believe this process will
make adoption much easier, but this can only be verified through a massive user study
with the support of many online retailers.

5.2 Verified by Visa

Verified by Visa [25] and Mastercard SecureCode [14] are, in effect, single sign-on
services run by Visa and Mastercard that let merchants obtain user confirmation on
requested transactions. When the user visits a merchant’s checkout page, the browser
is redirected to the user’s bank where the user is asked to confirm the transaction with
a password. The browser is then redirected back to the merchant where the transaction
completes, provided a valid confirmation token is supplied by the bank. The resulting
transaction is considered a “card present” transaction which is a strong incentive for
merchants to adopt this system. This architecture is highly vulnerable to phishing and
received much criticism [18].



12 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

Combining Snap2Pass with Snap2Pay can help improve the usability and security
of Verified by Visa and Mastercard SecureCode. The mechanism is similar to how we
integrate Snap2Pass with OpenID, as discussed in Section 4.2 and works as follows:

– In addition to standard transaction details, the merchant’s checkout page includes
a QR code that encodes the transaction amount plus a random challenge for a
challenge-response protocol. The challenge also uniquely identifies the merchant.

– The user snaps the QR code with the Snap2Pass application and approves the trans-
action on the phone. The phone then sends a message to the user’s bank containing
the transaction amount, the random challenge from the merchant, and the response
to that challenge (computed using the user’s secret key stored on the phone). The
message also includes account information such as the user’s credit card number.
Note that Snap2Pass is pre-configured at account setup to only send this message
to the user’s bank and nowhere else.

– The bank checks that the challenge from the merchant and the response from the
phone, both contained in the message from the phone, are valid; namely, that the
response from the phone is a valid response for the challenge. If so, it uses a merchant
response channel URL (a well-known endpoint) to send to the merchant the Verified
by Visa confirmation token, which includes the random challenge contained in the
message from the phone in addition to the standard fields.

– The merchant verifies the token from the bank and also verifies that the challenge
in the token is the challenge that the merchant supplied in the QR code — this
verification is needed to ensure that the phone answered the correct challenge. If all
is valid, the merchant completes the transaction and transitions the browser from
the checkout page to the transaction completed page.

Using this approach the random challenge is provided by the merchant (in the QR
code), but is verified by the bank. The improved user experience is very simple: snap a
picture of the QR code on the checkout page, confirm the transaction on the phone, and
wait for the transaction to complete. Nothing needs to be typed in and no confusing
redirections take place.

Since the user never supplies a credential to the merchant, this approach prevents
offline phishing by a malicious merchant. Online phishing, discussed in Section 6.1, is
still possible, but our geolocation-based defense described in that section applies here
too.

6 Extensions

We now discuss several extensions to Snap2Pass to improve its security and to cope
with the scenarios when the user forgets his phone, or forgets to log out.

6.1 Active Man in the Middle

The basic Snap2Pass system does not prevent an active man in the middle attack such
as online phishing. In an online phishing attack, the attacker creates a spoofed web site
that constantly scrapes the target web site. The phisher lures users to the spoofed site
and uses their responses to immediately login to their account at the target site. Once
in, the phisher can take any action on the user’s account. This attack easily defeats
one-time password mechanisms and many phishing toolkits now work this way [8].



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 13

We minimize this attack vector by using geolocation information of the phone
relative to the user’s PC. Recall that in Snap2Pass the target web site communicates
with the user’s PC and with the user’s phone. In normal use, the two are in close
proximity. In an online phishing attack, the site communicates with the phishing server
and the user’s phone. The two are very likely to be far apart. Thus, the web site can
use geolocation information to test if the two IP addresses it is seeing are in close
proximity. If so, it allows the connection and if not it rejects it. Thus, for the phisher
to succeed he must identify a victim user’s location, find a compromised host close to
the victim and place the phishing server there. While not impossible, in most phishing
settings, this will be quite challenging for the phisher. Importantly, the phone’s location
measurement is not known to the web browser.

The above example works well when both the cell phone and user’s PC operate
are addressable, such as on wifi or wired networks. Commercial systems such as Max-
Mind [15] offer geolocation databases claiming over 90 percent accuracy for resolving
IP addresses to city locations. However, the cell phone is often not addressable, oper-
ating from the cellular provider’s data network with an external gateway IP address.
Cell phone IP addresses change frequently, and geographically diverse locations may
operate under the same IP ranges. For example, a test user’s Palo Alto, CA location
resolved to one of T-Mobile’s gateway IP addresses in Seattle, WA. The user’s phone
aids the geolocation system by providing GPS or cell tower ID data at transaction
time. Furthermore, a complimentary approach involves exploiting application latency
measurements to disambiguate cities operating under the same IP address range within
a cellular data network [3].

We also may not have to rely on the IP network to determine the phone’s location
— most modern platforms can provide applications with relatively accurate location
information. We expect the phone to cooperate with the authentication provider.

Another safeguard against the man in the middle is to require that sensitive trans-
actions be verified on the mobile device. Here, the attacker gains access to the user’s
account and attempts to make a malicious transaction. The web site only allows this
transaction to complete with confirmation from the phone, which the man in the mid-
dle cannot access. Using phones for transaction confirmation was previously studied in
other projects [24, 12] and nicely complements Snap2Pass.

6.2 Alternative Logins

Although users will typically have their phones with them, an additional login method
allows users with missing phones to gain entry to a webpage. This backup login method
is treated as a password reset request. That is, to login without a phone requires solving
a Captcha [6], responding to a selection of security questions, and retrieving a link sent
to a primary email address.

In some cases, a user’s phone may not have network connectivity, but is still avail-
able. Here, the phone displays a truncated version of the HMAC response, which the
user enters directly into the webpage to complete the authentication.

6.3 Signing Out

It is difficult for a web site to know if a user has walked away from an authenticated
session [23]. With Snap2Pass we can use the phone as a proximity sensor, powered by
the device’s location sensors or accelerometers. For example, when the phone detects



14 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

motion above a threshold after authentication on the PC completes, it notifies the
site. The site can then require re-authentication for subsequent requests. Thus, upon
leaving an internet café, the user’s session is immediately terminated. For web users
on a moving train, the site may request one re-authentication and subsequently ignore
motion notifications from the phone for the duration of the session.

More generally, with Snap2Pass a user can manually log out of all of her active
sessions from her mobile phone, without returning to the abandoned terminal.

7 Security Analysis

We describe a number of attacks on the system and how they are addressed. Through-
out the section, we assume that the login process and the subsequent session on the
PC are served over SSL so that basic session hijacking (i.e. the attacker waits for
authentication to complete and then hijacks the session) is not possible.

We first observe that with Snap2Pass, unlike passwords, a compromise at one web
site does not affect the user’s account at other sites. To see why, recall that in the
symmetric scheme, Snap2Pass maintains a different shared secret with each site. In the
public-key scheme, the site never stores the phone’s secret key. Thus, in neither case
does a compromise of one site affect another.

It is also worth noting that since the user never types in their password, Snap2Pass
protects users against present day keylogging malware installed on the user’s PC. Nev-
ertheless, more sophisticated malware on the user’s PC (e.g. [12]) can defeat Snap2Pass.

7.1 Offline Phishing

An offline phishing attack refers to a phisher who sets up a static spoofed web site
and then waits for users to authenticate at the site. The term “offline” refers to the
fact that the phisher scrapes the target web site’s login page offline. For sites using
password authentication, an offline phisher obtains a list of username/password that
can be sold to others. We note that users who fall victim to this attack typically ignore
information displayed in the address bar [9]. Consequently, the SSL lock icon or the
extended validation colors in the address bar do not prevent this attack.

Snap2Pass clearly prevents offline phishing since the phisher does not obtain a
credential that can be used or sold. In fact, the offline phisher gets nothing since the
phone sends its response directly to the target web site. Recall that during account
creation Snap2Pass records the target web site’s address on the phone. During login,
it sends the response to that address. Consequently, the offline phisher will never see
the response.

7.2 Online Phishing

Online phishing is an example of an active man in the middle discussed in Section 6.1.
The end result of the attack is that the phisher’s browser is logged into the user’s
account at the target site. As in the offline phishing case, we cannot rely on security
indicators in the browser chrome to alert the user to this attack. In Section 6.1, we
discussed how Snap2Pass uses geolocation to defend against this attack.

It is also worth noting that this attack is easily defeated using a PC browser exten-
sion. The extension would retrieve the SSL session key used in the connection to the



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 15

web site (i.e. the phishing site) and embed a hash of this key in the QR code (if the
connection is in the clear the data field would be empty) along with the extension’s
digital signature on the hash. The phone would verify the signature and then send
the hash to the real site along with its response to the challenge. The web site would
now see that the browser’s SSL session key (used to communicate with the frontend
of the phishing server) is different from its own SSL key (used to communicate with
the backend of the phishing server) and would conclude that a man in the middle is
interfering with the connection. The reason for the extension’s signature on the hashed
key is to ensure that the phisher cannot inject its own QR code onto the page with
the “correct” key in it. An alternative to a digital signature is to place the QR code
containing the hashed key in the browser chrome (e.g. in the address bar) where the
phisher cannot overwrite it with its own data.

7.3 Phone Theft and Key Revocation

If a phone is lost or stolen, that phone can potentially be used to impersonate the user
at all websites where the user has an account. Snap2Pass mitigates this issue in two
ways.

Firstly, the Snap2Pass application can require the user to authenticate to the
phone before the application can be used. Rather than implement an unlock feature
in Snap2Pass we rely on the phone’s locking mechanism for this purpose. Users who
worry about device theft can configure their phones to require a pass code before appli-
cations like Snap2Pass can be launched. This forces a thief to first override the phone’s
locking mechanism. Moreover, several phone vendors provide a remote kill feature that
destroys data on the phone in case it is lost or stolen.

Secondly, when a phone is lost, users can easily revoke the Snap2Pass credentials
on the phone by visiting web sites where they have an account and resetting their
Snap2Pass credentials at those sites. This results in a new keying material generated
for the user thus invalidating the secrets on the lost phone.

8 Implementation

Our implementation of Snap2Pass includes server-side code, called a provider, and a
mobile client. The provider and the client provide a reference implementation for the
server and client ends of the Snap2Pass protocol, respectively.

8.1 Provider

The provider is implemented as a custom OpenID provider and offers server-side chal-
lenge/response functionality as described above. OpenID is a popular protocol for
federated identity management and single sign-on. With the addition of this layer of
indirection, we enable tens of thousands of existing OpenID consumer web sites to use
Snap2Pass without requiring modification of their server-side login protocols.

The provider implementation makes use of the Joid open source project, and is writ-
ten in Java. It is loosely coupled to Joid; thus it can be plugged into other standard
OpenID providers. The custom provider consists of a symmetric-key based challenge
response system, account management and a web portal. The challenge response mod-
ules are written in Java using built-in cryptography libraries. It includes modules for



16 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

symmetric key generation, and HMAC-based challenge/response creation and verifi-
cation. The account management modules manage user accounts, provide persistence
and include a cache for fast lookup of incoming responses.

The web portal adds QR code features to the OpenID provider. It includes custom
registration and login pages, implemented as Java Server Pages (JSP) to support the
Snap2Pass account creation and login protocol. On completion of the login protocol,
the web portal integrates with the provider backend to signal the result using the
OpenID protocol. This enables existing OpenID consumer sites to support Snap2Pass
with no code changes. The provider module has approximately 1,600 source lines of
code (SLOC).

8.2 Mobile Client

The mobile client is written in Java for the Android environment. It implements the
client-side Snap2Pass protocol, and offers functionality for credential management and
symmetric key challenge/response computation. We use Android’s SharedPreferences
API to store and manage credentials retrieved from the provider. In a production
implementation, the credentials are managed using a secure credential manager. The
login module uses built-in APIs to compute responses to challenges. We use Android’s
intent system and the ZXing project to scan and consume QR codes. For improved
security, the scanning functionality will be embedded directly in the application. The
mobile client has approximately 400 SLOC.

8.3 Multi-party Connectivity

Our Snap2 applications involve multiple devices interacting to perform a common task.
We make use of the Junction [10] platform for device pairing and messaging in a multi-
party session.

In both Snap2Pass and Snap2Pay, the session contains agents representing a server,
a mobile device, and a web page. The server instantiates a Junction session, generating
a unique session identifier. The server then passes the identifier to the web page, which
then executes Javascript code to join the session. The web page also encodes this session
identifier in a QR code. After scanning the QR code, the mobile client joins the session
and begins the transaction.

With Junction, messaging occurs asynchronously. Junction uses XMPP for its mes-
saging infrastructure, with the BOSH extension [27] supporting messaging to standard
web clients.

9 Experimental Results

We compare our implementation against existing secure authentication mechanisms.
Our goal is to provide a system that is more consumer-friendly than what is currently
available without negatively affecting security.

9.1 Using QR Codes

We presented our approach to new users to gauge their reaction. Our subjects ranged
from savvy smartphone users to those who are considerably less technical.



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 17

We found that the UI design for pinpointing a QR code is important. The visual
feedback on the phone’s screen was helpful in guiding the user to a successful login.
Sometimes, a user would believe a code was recognized by the software before it was
actually able to locate it, causing some confusion during early attempts. Subsequent
uses were much faster and free of this confusion. Usually two or three sample trials
were enough for the user to become comfortable with the system. Most users, including
the non-technical, agree that the approach is “very simple” and usable. Several even
found it fun to use.

The amount of time required for the software to locate the barcode is important
for the system’s usability. We compared the user experience for the same application
across three hardware platforms: the HTC G1, the Motorola Droid, and the HTC
Nexus One. As the platform’s power increased, the scanning process became noticeably
quicker, improving overall user experience. We did not experiment with other barcode
formats or software solutions — scanning QR codes with the ZXing application proved
sufficiently usable.

9.2 Comparing Authentication Techniques

We wanted to gauge both the usability and perceived security of Snap2Pass as com-
pared to other authentication methods. We ran a user study across 30 users of different
backgrounds. 17 of our users were students, and the remaining worked at a technology
company. 15 of our users were female; 16 of our users had a technical background.

Our study compared two web authentication methods enhanced with a cell phone
— Snap2Pass, and a system much like RSA SecurID. With the SecurID system, partic-
ipants used a mobile application to retrieve six randomly generated digits. They were
told that, in deployment, this number would be synchronized between the phone and
the authentication server. To log in to a web page, then, the participant entered his or
her username, password, and this six-digit string.

We demonstrated the two systems to each user once before having them try for
themselves, twice each. We then had them fill out a short survey about their experience.

To determine the perceived security of authentication systems, we asked how safe
they would feel using a given system with their primary bank, from 1 (not safe at
all) to 10 (completely safe). As a baseline, we asked about using a standard user-
name/password scheme. The average score was 5.9. We then asked about SecurID and
Snap2Pass; SecurID came out slightly better than Snap2Pass— 7.7 as compared to
7.3. Both were perceived to be noticeably more secure than username/passwords.

Of Snap2Pass, one user writes, “It was really cool. Felt very secure, like something
out of a James Bond movie.” She also agreed that SecurID felt secure, “but entering
another field was very tedious, and I imagine would be pretty rough to have to do
frequently.”

To evaluate the usability of each system, we first asked how easily users found
learning each system, on a scale from 1 (very difficult) to 10 (trivial). We found that
users had no trouble learning either system; Snap2Pass was given an average of 9.2,
and SecurID a 9.1. We then asked how they found repeated logins with each system,
from 1 (very tedious) to 10 (very easy). Here, Snap2Pass fared better than SecurID —
8.5 as compared to 6.9. A user who was skeptical of the system’s security commented
that “Snap2Pass does not seem to be safe but given the fact that it’s SO easy to use,
I will be happy to use it as main login method.”

Next, we asked how a participant would feel about using each system in practice.
For the two systems, participants were asked, assuming they had a capable phone, if



18 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

they would prefer to use each system with their primary bank as compared to user-
name/passwords. They were given three choices: “I would not want to use this system,”
“I would use this system only if my bank made me,” and “I would prefer to use this
system.” The resulting numbers are:

Snap2Pass SecurID

prefer the system over pwds: 15 13
would only use if required: 11 12
would prefer passwords: 4 5

Finally, we asked participants how they would feel about using a Snap2Pass-like
system for making purchases on the web; in such a system, a user would point their
phone at their shopping cart’s checkout page to complete the transaction, without
typing in billing information. We posed this question to 22 participants, and 13 indi-
cated they would prefer such a system to entering billing details; 2 would do so only if
required by their bank, and the remaining 7 would not want to use such a system.

By far, the most common concern with both demonstrated systems was an unavail-
able or stolen phone. Indeed, a system in deployment must be robust to such incidents,
as we discuss in Sections 6.2 and 7.3 respectively. Many users also stressed that they
would only trust the security of Snap2Pass with suitable on-phone security. A partici-
pant writes, “(I am) concerned about phone security. I love the idea of using my phone
to store/share personal info, but I do not trust the current security on my phone.”
Another says, “I feel that if someone stole your phone, they could easily gain access
with this technology to whatever password protected account you have.” For a system
in deployment, this concern must be suitably addressed.

10 Related Work

Using cell phone for authenticating people is an old idea. Wu et al. [26] and Oprea et
al. [19] use phones to help establish a secure session on an insecure device. Snap2Pass
addresses a different threat scenario where the user is contacting a remote server on
his own PC. Our threat model is very common and is simpler than in [26, 19] which
enables us to design a more efficient solution that is easier for the user.

Phoolproof [20] is designed as an anti-phishing authentication mechanism. With
Phoolproof, Parno et al. require custom software on the PC as well as a bluetooth
connection. Snap2Pass in contrast, requires no modification to the PC and provides
security using information available on smartphones that was not available at the time
Phoolproof was designed.

Aloul and Zahidi discuss the use of one time passwords generated on a mobile phone
for use with ATMs [2]. By using modern smart phones, we are able to provide a system
that is easier to use without compromising security. Cobos et al. also demonstrate how
modern smart phones can be used for web authentication. [7]

Bellovin et al. [4] propose EKE, a protocol for shared key exchange, which has been
refined further. In contrast, we rely on QR codes over SSL to transfer the shared secret
between the PC browser and the phone to manage account credentials.

Mccune et al. [17] have previously combined phone cameras and two dimensional
barcodes for transmitting public keys from one device to another. Other clever ap-
proaches to device pairing use the accelerometer for generating a shared key [16, 13]
or for proving proximity [5].



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 19

In Snap2Pass and Snap2Pay, we present a novel system and applications that are
based on using a visual communication channel, to present and transfer a challenge
from one device to another. More importantly, the visual channel contains a reference
to a communication endpoint that the mobile device uses to respond to the challenge.
The combined effect is that the act of scanning a barcode becomes a user interaction
with the site hosting that barcode.

In [21], Pierce et al. explore the possible uses of pairing a mobile with a PC,
presenting several useful utilities. Their model uses a centrally managed account to
discover services, as opposed to our ad-hoc pairing technique.

11 Conclusions

We described Snap2Pass, an easy-to-use authentication system that defeats many of
the attacks on traditional password schemes on the Web. Snap2Pass is implemented
as a custom OpenID provider, thereby immediately enabling usage on the tens of
thousands of websites that accept OpenID-based authentication, without any server-
side code changes. We have extended the OpenID protocol so that the user can simply
snap a QR code presented by a relying party without having to enter user credentials
on the login page.

We also presented Snap2Pay, which allows consumers to use one-time credit card
numbers with just a snap of a QR code. One-time credit card numbers are useful
for reducing the risk of interacting with small retailers or questionable sites on the
Internet. Snap2Pay eliminates the manual labor involved, which has so far limited the
adoption of the technique. Similarly, Verified by Visa and Mastercard SecureCode are
single sign-on services which have not been adopted because they are highly vulnerable
to phishing. We showed in this paper how the Snap2Pass technology improves both
their usability and security.

Our user studies show that the system is fast to use and easy to learn. Even without
much experience with smartphones, users can easily use Snap2Pass after seeing it done
only once. The comparison with RSA tokens indicates that users tend to perceive more
cumbersome techniques to be more secure; however, users care more about ease of use
than security. Snap2Pass has the advantage that it is both secure and easy to use.

Snap2Pass can be used in an off-the-shelf PC browser with no modifications, and
works well with all popular browsers today. We have an open-source implementation
of Snap2Pass at http://mobisocial.stanford.edu/snap2pass.

References

1. T. I. A. D. C. (ADC). Consumer password worst practices, 2009. www.imperva.

com/download.asp?id=239.
2. F. Aloul and S. Zahidi. Two factor authentication using mobile phones. In Proceed-

ings of the IEEE International Conference on Computer Systems and Applications,
pages 641–644, 2009.

3. M. Balakrishnan, I. Mohomed, and V. Ramasubramanian. Where’s that phone?:
geolocating IP addresses on 3G networks. In Proceedings of the Internet Measure-
ment Conference, pages 294–300, 2009.



20 Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam

4. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 72–84, 1992.

5. Bump technologies. bumptechnologies.com.
6. Captcha. www.captcha.net.
7. J. J. L. Cobos and P. C. D. L. Hoz. Method and system for authenticating a

user by means of a mobile device, 2009. http://www.faqs.org/patents/app/

20100070759#ixzz1I2B7XBwM.
8. M. Cova, C. Kruegel, and G. Vigna. There is no free phish: An analysis of “free”

and live phishing kits. In Proceedings of the 2nd Usenix Workshop on Offensive
Technologies ’08, pages 1–8, 2008.

9. R. Dhamija, D. Tygar, and M. Hearst. Why phishing works. In Proceedings of ACM
CHI 2006 Conference on Human Factors in Computing Systems, pages 581–590,
2006.

10. B. Dodson, C. Nguyen, T.-Y. Huang, and M. S. Lam. Junction: a decentralized
platform for ad hoc mobile social applications, 2010. mobisocial.stanford.edu.

11. D. Florencio and C. Herley. A large-scale study of web password habits. In Pro-
ceedings of the 16th International Conference on World Wide Web, pages 657–666,
2007.

12. C. Jackson, D. Boneh, and J. Mitchell. Transaction generators: Root kits for the
web. In Proceedings of the 2nd USENIX Workshop on Hot Topics in Security,
2007.

13. D. Kirovski, M. Sinclair, and D. Wilson. The martini synch. Technical report,
Microsoft Research Technical Report, MSR-TR-2007-123, 2007.

14. Mastercard securecode. www.mastercard.com/securecode.
15. Maxmind. maxmind.com.
16. R. Mayrhofer and H. Gellersen. Shake well before use: Authentication based on ac-

celerometer data. In Proceedings of the 5th International Conference on Pervasive
Computing, volume 4480 of LNCS, pages 144–161, 2007.

17. J. M. Mccune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using camera
phones for human-verifiable authentication. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 110–124, 2005.

18. S. Murdoch and R. Anderson. Verified by visa and mastercard securecode: or, how
not to design authentication. In Proceedings of the 14th International Conference
on Financial Cryptography and Data Security (FC’10), pages 336–342, 2010.

19. A. Oprea, D. Balfanz, G. Durfee, and D. Smetters. Securing a remote terminal
application with a mobile trusted device. In Proceedings of the 2004 Annual Com-
puter Security Applications Conference, pages 438–447, 2004.

20. B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing prevention. In Proceedings
of the 10th International Conference on Financial Cryptography and Data Security
(FC’06), pages 1–19, 2006.

21. J. S. Pierce and J. Nichols. An infrastructure for extending applications’ user
experiences across multiple personal devices. In Proceedings of the 21st Annual
ACM Symposium on User Interface Software and Technology, pages 101–110, 2008.

22. M. V. Rafter. A breakout year for openid, 2009. technology.inc.com/security/
articles/200902/openID.html.

23. B. Schneier. Unauthentication, 2009. www.schneier.com/blog/archives/2009/

09/unauthenticatio.html.
24. D. Steeves. Securing online transactions with a trusted digital identity. First TIPPI

(Trustworthy Interfaces for Passwords and Personal Informaton) Workshop, 2005.
crypto.stanford.edu/TIPPI/first/program.html.



Secure, Consumer-Friendly Web Authentication and Payments with a Phone 21

25. Verified by visa. www.visa.com/verified.
26. M. Wu, S. Garfinkel, and R. Miller. Secure web authentication with mobile phones.

In DIMACS Workshop on Usable Privacy and Security Software, 2004.
27. XEP-0206: XMPP over BOSH. xmpp.org/extensions/xep-0206.html.


