
Micro-Interactions
with NFC-Enabled Mobile Phones

Ben Dodson Monica S. Lam

Computer Science Department
Stanford University

CA 94305
{bjdodson,lam}@cs.stanford.edu

Abstract. This paper coins the term micro-interactions to refer to the
class of small exchanges between devices that occur almost instanta-
neously. For example, a mobile payment using near-field communication
(NFC) is a micro-interaction. The arrival of NFC on smart phones makes
possible a wide array of applications using micro-interactions, from shar-
ing photos between a phone and a TV to checking a car into a valet
parking service by touching two phones.
This paper addresses the challenge of how to create intuitive, frictionless
micro-interactions that require no pre-configuration for a large class of
applications. We deliver a consistent tap-and-share interface for many
forms of micro-interactions through several concepts. We propose inter-
action manifests as universal descriptors of multi-party, cross-platform
applications. Zero-click overheads are made possible by automatically us-
ing the foreground application as the context for the micro-interactions.
We extend the concept of connection handovers to allow NFC-enabled
applications to run unmodified on devices lacking NFC. We also show
how these abstractions make it easy to create a variety of applications.
All the application and library code is available as open source.
We demonstrate that by focusing on micro-interactions, our mobile
phones can provide a single focal point that enables sharing of our digi-
tal identity, assets, applications, and personality with friends (with their
mobile phones) as well as the larger-screen PCs and TVs all around us.

1 INTRODUCTION

The smart phone, being powerful, personal, always with us, always-online, is
changing our everyday life. It will eventually hold the key to our identities, ac-
cess rights to digital assets, personal communications, photos, media, etc. In a
sense, the smart phone is an extension of our digital self. As such, there are many
applications where we wish to share our digital personality on the phone with
other people’s phones around us, as well as with our surrounding devices. In
many cases, we are sharing very small amounts of information, such as a phone
number. People would not bother automating such interactions unless the over-
head is kept to a minimum. We refer to such interactions as micro-interactions;
they will not be used unless they are as frictionless as micropayments.

2 Ben Dodson Monica S. Lam

1.1 Near-Field Communication

Micropayment is poised to be widely enabled on the smart phone. It is imple-
mented using Near-Field Communication (NFC). NFC is a radio technology that
supports transactions at distances of a few centimeters. During a transaction,
one party can be completely inactive, drawing power inductively from the ac-
tive party. Even the active party draws little power and can be left on all the
time with minimal effect on the phone’s overall power draw. Also, the nearness
of NFC transactions creates the possibility of using proximity as context and
triggering an appropriate action almost instantaneously.

NFC, in the form factor of a credit card, has been used widely in Japan, Hong
Kong, and other parts of the world for many years: for public transportation,
vending machines, and convenience stores. Standards have also been created for
“smart posters” [5]; posters, signs, and magazine pages can possess cheap, em-
bedded data tags that contain information such as details of museum exhibits,
transportation schedules, discount coupons, movie clips, or links to e-commerce
sites. A third important use of NFC is for making long-lasting connections be-
tween electronic devices—simply touching the devices together will configure
them to connect over a longer-range protocol such as Bluetooth or Wi-Fi.

Availability of NFC on smart phones presents an exciting opportunity. The
ubiquity of mobile phones means that most consumers in the future will have
access to this technology. The programmability means that many applications
can be developed to handle the context of an NFC interaction. NFC allows our
phones to easily communicate directly, without requiring a third-party server.
The effortless connection of NFC opens up many opportunities for phones to
enhance our physical social encounters.

1.2 Micro-Interactions on the Phone

The concept of device-to-device micro-interactions has been explored by many
researchers [10, 14, 19, 26]. This paper explores specifically the new opportunities
of micro-interactions as offered by the smart phone. How do we frictionlessly
share the digital personality we have acquired on the phone with devices around
us? How do we frictionlessly invite others to participate in applications we are
running currently on our phone?

Consider sending a text message from a mobile phone. We may find ourselves
near computers with keyboards and wish we could type on the keyboard instead
of on the phone. Writing an SMS is a short-lived task, and so any setup (such as
Bluetooth pairing) or added complexity will affect our willingness to adopt such
a workflow. The tear-down must also be trivial— we do not want to permanently
pair our PC’s keyboard with the phone.

As an example, we have developed an application called TapBoard based
on the ideas we present in this paper. With TapBoard, the user simply touches
the phone with an NFC tag on the keyboard of a PC (a micro-interaction),
the PC will bring up a webpage with a simple text box, as shown in Fig. 1.
Any text typed in the text box shows up on the phone instantaneously. Closing

Micro-Interactions with NFC-Enabled Mobile Phones 3

the webpage disassociates the phone from the PC. The NFC tag on the PC
simply contains the information that enables the phone to connect to the PC,
e.g. through Bluetooth, without user intervention.

Fig. 1. Using TapBoard to enter mobile text.

Critically, the interaction occurs without requiring even a keypress. The UI
is presented on the PC without the user searching for an application to launch,
and the application does not hijack the user’s PC usage in a permanent way.
Even slightly increasing the difficulty of running the application such as accessing
it from the application list or delays in loading the program may result in an
experience that doesn’t justify the gain in usability.

1.3 Contributions

This paper makes the following contributions:

1. We present a large number of scenarios where micro-interactions on the
phone can be used in our daily life. We show that there are three major
kinds of peer-to-peer micro-interactions: phone to phone, phone to another
interactive device like a PC, phone to a passive device like a TV.

2. While inspired by NFC, the usage of micro-interactions we envision goes well
beyond what can be implemented directly with NFC. We are able to deliver
a consistent “tap and share” interface for many forms of micro-interactions
with several novel concepts. Interaction manifests and the Junction appli-
cation platform enable the sharing of not just data but decentralized multi-
party applications across different platforms. Zero-click overheads are made
possible by automatically using the foreground application as the context for
the micro-interaction. Finally, connection handovers allow sharing across de-
vices without NFC radios and for supporting continued interactions beyond
the first touch.

3. All the abstractions presented in this paper are embodied in the publicly
available Junction application framework and several libraries (EasyNFC,

4 Ben Dodson Monica S. Lam

LegacyNFC, and DesktopNFC). We have written a wide collection of appli-
cations (data sharing, keyboard sharing, remote presentation, and a multi-
party poker game) using the libraries. Our experience suggests that the ab-
stractions are powerful in simplifying the development of micro-interactions.

2 USES OF P2P MICRO-INTERACTIONS

Although micro-interactions are simplifying only small tasks, their wide appli-
cability can have a major impact on our daily life. We imagine in the future,
a child will instinctively touch his phone with different devices if he wants to
share whatever he is doing to that device. Let us first describe some everyday
scenarios with micro-interactions, then show how they can be organized as three
major use cases.

2.1 Scenarios

We illustrate with scenarios below how pervasive micro-interactions can become,
at home, in the work place, and when we are out and about. Several of the follow-
ing scenarios are reminiscent of Mark Weiser’s vision of ubiquitous computing,
made possible by the NFC-equipped smart phones of today [25].

At home. Consider the mundane task of turning on the alarm on the phone
before turning in every night. With micro-interactions, we can simply put the
phone on our bedside table and it enters into “night mode,” silencing our non-
critical notifications such as when we receive emails.

A digital photo frame can now be set by simply touching the frame with a
phone. If the phone is showing a picture, that picture gets on the frame; if the
phone is showing a contact, our contact gets permission to remotely set photos
on that frame.

In the living room, our phone turns into a digital remote by touching the
phone to the remote. We can then change channels with the phone by browsing
or searching or even using voice control. We can also browse for multimedia files
on our phone and send them to the TV by touching the remote again, and use
our online services like Netflix and Amazon to stream purchased content to our
TV.

We can track our workout routine on our phone, to see a graphical repre-
sentation of our progress. Bringing our phone near a scale picks up our weight
and other vitals (kept privately on our device!), and touching our phone to our
sports watch transfers the duration of our last run.

At the office. On our way to the office, we touch our phone to our car’s center
console to personalize the driving experience. It synchronizes our downloaded
music and favorite radio stations and adjusts the car seat to our preference. We
can also set our navigation device’s destination by opening our phone’s appoint-
ment book and again touching it to the console.

Micro-Interactions with NFC-Enabled Mobile Phones 5

Suppose next we visit a company. To get a guest badge, we open the invitation
from our host on our phone and touch it to the kiosk at the receptionist’s desk
to share who we are and with whom we are meeting. As we wait to meet our
host, an email comes in that requires a lengthy reply. There is a guest computer
nearby, and we touch our phone to it to borrow its keyboard.

If we are giving a presentation at a meeting, we touch our phone to the
conference room’s projector to bring up our presentation. The phone acts as
a controller for the talk. Touching our phone to other computers in the room
brings up the presentation on those devices as well. We can also touch our phone
to attendees’ phones in the room to give them a copy of our slides.

Out and about. Suppose we want to use valet parking at a restaurant. We
hand over the keys to our car, and touch a kiosk to get a digital version of our
valet ticket. We send the kiosk a picture of our face so they can recognize us
when we return. We “check in” at the restaurant by touching our phone to the
hostess’s station. When we’re done eating, we pay for the lunch using our phone,
and the receipt is automatically stored in our device. Our phone knows if we are
on a business trip, and automatically forwards the receipt for reimbursement.
Heading back, we say “get the car” to our phone, and the valet is notified that
we’re on our way back, so the car is ready when we return.

Suppose next we wish to go to a party on public transportation. We touch
our phone to a sign at the bus stop to get the schedule of when the next bus
is coming. If the wait is too long, one click lets us call a cab. At the party,
we touch our phone to a sticker at the door to check in. We can see a list of
everyone else who’s checked in and get their contact information. There’s also a
TV playing music and showing photos. Because we’ve checked in, we can choose
music to play from our personal collection. And until we “check out”, the photos
we capture are sent to the running slideshow instantly.

2.2 Kinds of Micro-interactions

All the micro-interactions described above can be categorized according to the
relationships of the interacting parties.

Multi-party (e.g. phone to phone). The interacting devices belong to
different individuals; either or both of the parties may wish to initiate an in-
teraction. A user may want to share the document or application he is viewing
or running with a friend. He can simply touch his friend’s phone to share that
context. Or, a user may wish to interact with a person and then decide on the
information shared later. Upon tapping the phones together, either or both users
can then launch an interaction based on a menu of possibilities then displayed,
filtered to show applications that support peer-to-peer. The flexibility of either
choosing the applications or the participants first allows the users to interact
naturally depending on the context. Finally, we like to emphasize that it is not
necessary for the receiving party to have pre-installed the code for the interac-
tion. We can download the code on the fly, requiring no intervention other than

6 Ben Dodson Monica S. Lam

possibly an approval to download; this reduces the friction of interaction and
helps the software go viral.

Self across interactive devices (e.g. phone to a PC). We now consider
interactions running on multiple devices, each with their own input and output
capabilities, but controlled by the same person. This kind of interaction is grow-
ing with the smart phones playing a more significant role in our life. We are
spending more time and storing more information on the phone, but the phone
is limited in its processing, input and output capabilities.

In this use case, it is the same person who decides on the interaction of
interest. He may wish to have the PC assist with a task on the phone (e.g. to
borrow the use of the PC keyboard for text entry), or to have the phone assist
the PC (e.g. to ask the password manager on the phone to log the user into a
web page using a challenge-response protocol). In either case, the user performs
the same action by touching the PC with the phone, the contexts of the devices
will be shared. The device with a sharable context is the initiator. Because the
same person is controlling both ends, confirmations to accept invitations are
unnecessary. The mode of operation is the same regardless of whether the user
owns the PC since no setup is necessary.

We also envision in the future that we may wish to pair the phone with the
PC for the entire duration the PC is used. Micro-interactions lead to long-lasting
sessions, in which resources can be used across each device. Such usage patterns
have been explored previously, for example using platform composition [14].

Remote control (e.g. phone to a TV or a car). This last use case refers
to the control of other devices through a phone. Just like all the other cases, the
micro-interaction may be initiated on either device. The user may wish to enlist
another device to perform a task running on the phone. An example would be
displaying a photo on the TV. Here, the phone is the initiator. Or, the device we
wish to control may provide the context. For example, a driver may simply tap
his phone on the car, the car will provide the context and request the driver’s
preference of music selection and seat setting. A device like a TV may have many
possible modes of interactions, so it may wish to display a menu so that the user
can pick the interaction of interest.

3 Protocols for Micro-Interactions

Simple interactions must be made as frictionless as possible, otherwise users will
simply not be bothered. Take for example the simple task of running a collabo-
rative whiteboard between two phones. First, the application must be available
on both devices. If someone wants to run the whiteboard with another person,
but the application is not yet installed, the friction involved in finding and down-
loading the application may overwhelm the benefits of running it. Second, the
two users must join each other in a shared whiteboard session. Again, any in-
vestment beyond a few seconds in setting up the session may be too much for
the users.

Micro-Interactions with NFC-Enabled Mobile Phones 7

We would like to enable a “tap to share” experience for such collaborative
applications. To minimize the setup overhead, we introduce protocols to address
each of these aspects in collaboration:

– “first packet” delivery, to establish device communication
– code discovery and execution, and
– long-lasting multi-party runtime.

The micro-interaction enabled by combining these ideas is fast and intuitive:
To run a whiteboard with a friend, the user simply launches the whiteboard pro-
gram, while his friend turns on his device. They touch phones and the friend’s
phone tells him that he does not have the whiteboard application, prompting him
to install it. He confirms, the application downloads and launches, joining the
first user for an interactive session. If the friend already has the whiteboard ap-
plication installed, the interactive session comes up in a couple of seconds, faster
than it takes to even select the program from the list of available applications.

3.1 NDEF Exchange as “First-Packet” Delivery

Our user interactions are inspired by the NFC communication pattern as im-
plemented in the Android OS’s Gingerbread release [7]. Here, the P2P model
restricts users to the exchange of an NDEF message in each direction. To ensure
a fast interaction, application data is made available to the underlying operating
system in advance of two devices interacting physically, and messages are reacted
to with an asynchronous callback. An NDEF exchange can be contrasted to the
HTTP or OBEX protocols, which provide a request/response interaction model.
The lack of response during the NDEF exchange is especially important for NFC
as we can program both active devices such as phones and passive devices such
as stickers in a uniform way.

The NDEF data format is well-suited for this style of interaction. Each mes-
sage is a compact representation of some well-defined payload. The type may be
well known, such as a URI or MIME type, or of a type specially designed for
some application.

3.2 Interaction Manifest for Cross-Platform Code Discovery

We define a simple data format called an interaction manifest that specifies the
application to be run on the remote device. Our goal is to support platforms
of any type (phone, PC, TV, etc.), thus the interaction manifest is defined as a
MIME type consisting of one or more platform-specific application specifications.
Each entry includes:

– A platform identifier, such as “Android”, “iOS”, or ’‘Web”.
– A platform-specific application reference, uniquely identifying programs that

are both installed on the phone or available online.
– An instance-specific application argument.

8 Ben Dodson Monica S. Lam

– An optional device modality, to support different application code for different
device types.

The interpretation of an interaction manifest depends on the state of the
remote device. If the remote device has a foreground application, it gets priority
access to the interaction manifest. In the interaction manifest received comes
from the same application, it acts according to the application argument pro-
vided. If it comes from a different application, it may still be able to understand
the message if the applications are compatible. If there is no foreground appli-
cation, or if the foreground application does not understand the message, the
operating system handles the application manifest by launching the specified
application. If the application is not already installed, the application for the
appropriate platform will first be downloaded, with user confirmation.

For the whiteboard example, the application creates an application manifest
that specifies where the source of the whiteboard application is located; the
application manifest is presented to the remote device via NFC whenever two
phones touch. Upon receiving the manifest, the remote operating system will
launch the whiteboard application, after code download when necessary, if it is
not already running.

3.3 Junction for Long-Lasting Application Sessions

Having the phones run the same application is the first step, how are they joined
to the same session? For this, we use the Junction platform.

We have developed a platform called Junction as a way of maintaining a
real-time application session across devices [8]. Junction applications can be
contrasted to server-client programs. Under the server-client model, all devices
connect to a central server, which manages the application’s runtime and assets.
Instead, Junction moves all application logic onto the end-devices.

Junction makes use of a communication hub called a switchboard. The
switchboard does nothing but route messages to the devices in an application
session. The session can be thought of as a chatroom in which all participants see
all messages, and the server does nothing other than route messages to clients.

A session is represented uniquely with a URI. The URI encodes a unique
session identifier as well as the switchboard’s address. This URI acts as a capa-
bility for joining the application session, and is the application argument we use
in the interaction manifest.

Junction is an abstraction and supports many implementations. For example,
a session may be run through an XMPP chat server, locally over TCP/IP, or
across phones using Bluetooth. Here, one phone acts as a hub, routing messages
to other phones over Bluetooth sockets. Using Bluetooth, an application is run
entirely locally, without any additional infrastructure.

Micro-Interactions with NFC-Enabled Mobile Phones 9

4 CONTEXT SHARING

Tapping two programmable devices together creates a symmetric relationship,
as each may try to provoke a response on the other device. This is very different
from the familiar request-and-respond protocol where there is only one initiator.
In this section, we discuss how two phones interact upon touching each other,
with the assumption that both phones are NFC-enabled. We will relax this
assumption in the next section as we show how to add NFC capabilities to
legacy devices like PCs and TVs.

4.1 Context-Rich Interactions

We say that a device is context-rich if it is running a foreground application
that wishes to share its context with a remote device. Otherwise, the device
is context-bare. Because of the small display size, a smart phone has only one
foreground application, which is the application whose interface is occupying the
screen real estate. On a PC, the application with the cursor is the foreground
application. The foreground application on the context-rich device registers an
interaction manifest with the operating system, which is presented to the remote
device whenever the phones touch.

The most straightforward combination is when a context-rich device touches
a context-bare device, the former simply shares its context with the latter. In
our earlier example, the phone that initiated the whiteboard application is the
context-rich device. Touching it with a context-bare phone simply passes the
whiteboard’s interaction manifest to the latter. Consider, as a second exam-
ple, a secure login application on the PC that uses the phone for challenge-
response authentication. When the login application is in the foreground, the
PC is context-rich, presenting to the phone an interaction manifest for authen-
tication. The phone can then invoke its login application by simply tapping it
to the PC.

If two context-rich devices come in contact, the respective interaction man-
ifests are sent to the foreground applications, which may decide independently
whether or not a received message is of interest, ignoring it otherwise. As an ex-
ample, consider a device running a jukebox application (exposing its interaction
manifest), and another browsing media files (exposing a file or link). The interac-
tion results in the media file being sent to the jukebox, which opens the content,
and a reference to the jukebox application made available to the browsing device,
which ignores the message.

As a special case, consider two context-rich devices running the same ap-
plication. We can easily establish a connection between the two devices for a
long-lasting session, run over Bluetooth, Junction, or some other means. Each
application indicates the connection information over which it can be reached.
Because the exchange is symmetric, the devices must decide on which single
session to use. They can come to an agreement by following a protocol based on
the information they both have as a result of the exchange. For example, they
can each generate a random number and agree to use the address given by the

10 Ben Dodson Monica S. Lam

device who generated the smaller value, as outlined in the Connection Handover
framework [5].

4.2 Context-Bare Interactions

When two context-bare devices touch, each device defaults to sharing its han-
dover addresses and device type (e.g. TV, PC, phone). The handover address
provides an address the device can be contacted subsequently. It also uniquely
identifies the device and can be used as a contextual cue. A device, upon receiv-
ing a handover address, may wish to present on its screen a menu of applications
relevant to the device type of the second party. For example, we are likely to
play a phone-to-phone game with another phone, but not with a TV. Most ap-
plications on our phone are not designed for multi-party use, and so even a basic
filtering algorithm provides a meaningful context-aware application menu. We
can also suggest recently used applications between us and the remote device,
associating applications with either the device type or identity, which has been
shown to be a useful contextual cue [21].

Whether or not to require user confirmation during an interaction depends
on the device and situation. For example, direct input to applications running
on a TV is cumbersome, and so our applications and multimedia run on a TV
without confirmation. If security is of concern, the device can maintain a whitelist
of devices that are allowed to open content. The “auto-answering” of our TV can
make the difference between a compelling and unappealing end-user experience.

4.3 Labeling Arbitrary Objects with Contexts

We can also write out a context on an NFC tag and label any object or location
with that tag. Consider the example we described earlier where we wish to set
our phone to “night mode” when we go to bed. We can do so by launching the
night mode application and writing the context that launches the application on
an NFC tag by simply touching the phone to the tag. We then stick the tag on
our nightstand, allowing us to simply place our phone over the tag to turn on
night mode.

5 CONNECTION HANDOVER

As we discussed above, there are many compelling reasons for connecting our
phone to other programmable devices like the PC, TV, and even the car. We
wish to enable the “tap and run” experience of NFC without requiring the
expense and effort of integrating an NFC radio into each device. We can easily
add micro-interaction capabilities to existing networked devices with the help of
a passive NFC tag, which can be purchased for about $1 a piece or for 20 cents
in bulk. Furthermore, two devices without NFC radios can also share easily with
the assistance of an active NFC device. Moreover, an application written to use
NFC can support connection handover with non-NFC equipped devices without
modification.

Micro-Interactions with NFC-Enabled Mobile Phones 11

5.1 Handover Service

We add the NDEF exchange protocol to devices lacking NFC by running a
simple listening service on the device. The service can be run on a PC, TV, or
phone, with the exchange occurring over a Bluetooth or TCP/IP socket. The
data exchanged between applications is the same as what would be exchanged
over NFC.

Similar to HTTP redirects on the web, supporting connection handover re-
quests does not require any changes in the application. The underlying platform
detects the handover message, follows the handover protocol, and passes on the
NDEF message to the application.

Bluetooth and TCP/IP can be interacted with at greater distances than
NFC, so we must focus on the security and privacy of the handover exchange
(although NFC too requires security considerations [6]). A first step is to deac-
tivate the service when not in use. On a mobile phone, we turn off the service
when the phone’s screen is off, which also helps conserve battery. To prevent
eavesdropping, we use public key cryptography to secure the message exchange.
We can also use a whitelist to limit the devices that are allowed to interact with
a service to prevent unwanted access.

5.2 Labeling the Devices

We associate a passive NFC tag with a supporting device. The tag can be affixed
to the device, as we have done with a Nexus One phone in Fig. 2(a), or placed
in a representative location, such as on a television remote control.

Fig. 2. The NDEF exchange handover protocol for devices lacking an NFC radio.
(a), a connection handover sticker on a Nexus One. (b), the NDEF exchange handover
protocol.

The tag stores the connection information for the NDEF exchange service,
which must somehow be written. In our desktop and mobile applications, a

12 Ben Dodson Monica S. Lam

link allows the user to retrieve a QR code encoding the service details. Our
application allows another device with an NFC radio and a camera to scan the
QR code, convert the contents to NDEF, and write it to the tag.

5.3 Protocol

When an active NFC device scans a passive tag, it typically sends the contents
to the foreground application. However, if the tag is an NDEF exchange han-
dover request, the platform preempts the normal workflow, running the NDEF
exchange handover protocol depicted in Fig. 2(b). The device establishes a con-
nection over TCP/IP or Bluetooth, initiating the bidirectional NDEF exchange
and handling the newly received NDEF message as if it had come directly from
a tag or active device.

5.4 Information Transfer

We have seen how we can use a phone with NFC to interact with non-NFC
devices. Using this technique, we can use our phone as a means of passing data
between two devices lacking NFC, for example sending a multimedia file from a
PC to a TV. We simply “pick up” the content from the first device with a touch,
and “drop” it to a target device with a second touch. This is an intuitive way to
transfer anonymous content [2]. The user does not need to start any application
prior to “picking up” the content–in our system, the default handler of NDEF
messages can be used to copy and paste content across devices.

For large files, we do not have to transfer the content to the phone when
copying across devices. We simply transfer a pointer to the content and let
the receiving device download it directly over Bluetooth, HTTP, or some other
protocol.

We can also use the NDEF exchange protocol across devices without any
NFC involvement and without modifying application code. We can write out the
interaction manifest in a QR code, which can then scanned by a remote device.
Since scanning a QR code can be cumbersome, our application also allows a user
to recall previously used endpoints quickly.

6 IMPLEMENTATION

To explore the development and user experience of micro-interactions, we have
developed an NFC abstraction layer for Android, an NDEF exchange handover
service for Android and PC, and several applications.

6.1 NDEF Exchange Handover Request

Our NDEF exchange handover request was designed using the guidelines of the
NFC Forum’s Connection Handover specification [5], a general-purpose frame-
work for setting up connections that run beyond the NFC radio. We use the
static request mechanism of the profile.

Micro-Interactions with NFC-Enabled Mobile Phones 13

6.2 EasyNFC library for Android

We have developed a library for NFC interactions on top of Android’s core imple-
mentation, called EasyNFC. The library supports the NDEF exchange handover
here described. To enable connection handover, the developer must request In-
ternet or Bluetooth permission in their application, but the handover is invisible
otherwise. EasyNFC also lets developers create a Bluetooth socket between de-
vices easily. A developer simply implements the OnBluetoothConnected interface,
with a callback triggered after establishing a Bluetooth connection.

6.3 LegacyNFC service for Android

The LegacyNFC application provides basic NDEF exchange functionality for
Android phones that do not have an NFC radio. The application consists of
a background service that runs whenever the screen is turned on. It listens
over Bluetooth or TCP/IP for an NDEF exchange initiated by a peer, and also
prepares local NDEF messages from applications, set using Android’s system of
Intents.

LegacyNFC can display the device’s NDEF exchange endpoint information
as a QR code. The QR code can be used to send messages immediately or stored
by a remote phone for later use. The endpoint information can also be written
to an NFC tag, supporting the fast NFC micro-interaction we discussed. An
NFC-enabled phone can touch this sticker and initiate an NDEF exchange using
the specified endpoint information.

When the user is running an application that uses the EasyNFC library, an
icon appears in their notification bar. This UI element is created by LegacyNFC,
requiring no extra work for the application developer. It allows the user to share
their current application with other devices using NDEF exchange. The user
can share the application via “QuickTap”, following a stored NDEF exchange
address, or by scanning a QR code. We envision other contextually-driven means
of device selection.

6.4 DesktopNFC service for PCs and TVs

DesktopNFC is similar in nature to LegacyNFC, but is designed for use on
PCs and TVs. The implementation is written in Java, and can support NDEF
exchanges over both TCP/IP and Bluetooth. DesktopNFC has a console that
allows basic functionality such as posting a URL or small file for use in an
exchange. The daemon reacts to received NDEF messages automatically for
content types deemed “safe”, such as URLs and M3U playlist files. Otherwise,
the user is prompted to manually handle the message. DesktopNFC can be run
on a settop box attached to a TV. It interacts with a web browser running full
screen, so content consumes the device when received.

14 Ben Dodson Monica S. Lam

7 APPLICATIONS

We have implemented a collection of different applications to explore the different
use cases presented in this paper.

7.1 TapBoard

As discussed earlier, TapBoard allows a PC’s keyboard to be used to enter text
on a mobile phone (Fig. 1). Touching the phone to a PC opens a text box that is
shared across devices. Using a PC’s keyboard not only allows for faster typing,
but also lets users copy and paste text from the PC to a phone with ease. This
application relies on a connection handover since the PC does not have NFC
natively and Junction for maintaining the long-lasting session. Since there is no
remote software to install as the PC software is contained in a web page, we
simply share a URL rather than an interaction manifest.

7.2 PocketSlides

A previously explored theme of micro-interactions is for a slideshow setup with
minimal effort [13]. PocketSlides is our implementation that runs between a
phone and a display. A user opens the presentation on her phone and sends this
context to the display, as shown in Fig. 3. The display is written in HTML and
listens for controls using Junction. When the display opens, the phone turns
into a remote control to manage the display. The slideshow can be opened on
any number of displays, with synchronized visualization. As with TapBoard, we
share the display as a URL directly.

Fig. 3. A PocketSlides slideshow run between a phone and a display.

Micro-Interactions with NFC-Enabled Mobile Phones 15

7.3 Hot Potato

Hot Potato is our mobile application for sharing multimedia over NDEF ex-
change. We hook into Android’s “send” intent to allow the sharing of files and
links from existing applications. For large files, we use a handover to HTTP or
Bluetooth rather than relying on NFC. With Hot Potato, we can send files to
other friends’ mobile devices, open multimedia directly on a TV, or quickly send
a file to a PC.

Hot Potato also has a “copy and paste” feature that supports picking up a
file from one device and sending it to another. For large files, we can copy and
paste a reference to the file, and transfer the data over a direct link. Fig. 4 shows
how we can display a picture on our phone to a TV by touching an NFC-tagged
remote control.

Fig. 4. Pushing multimedia to a remote display after touching a phone to a TV remote
control.

7.4 weHold’Em

WeHold’Em is a game of poker played between phones and a TV. The game
is built using Junction and installed on an Android phone. Touching phones
together invites more players to the game, downloading the code if necessary.
Touching the phone to a TV brings up the display, showing poker chips and
community cards, as shown in Fig. 5. The TV’s code is written in Javascript
and HTML. Here, we make heavy use of the interaction manifest to specify
where to download the mobile client and the software to run on the TV.

7.5 Musubi Exchange

Musubi is a social network run between phones. With a tap, users can exchange
personas, including name, picture, contact information, as well as a public key
for communication. The contacts enable the participants to engage in further

16 Ben Dodson Monica S. Lam

Fig. 5. A game of poker played between phones and a TV.

activities such as sharing photos or running applications such as a collaborative
whiteboard or playlist. Musubi’s exchange uses the interaction manifest with the
hopes of making the application experience more viral.

Application Description Primitives

TapBoard Use a desktop’s keyboard to enter text
on a mobile phone, entered in a simple
text box application.

Phone-to-PC context transfer;
Junction for long-lasting P2P
sessions.

PocketSlides A slideshow presentation controlled by
a mobile phone and displayed on a TV
or projector.

Slideshow persisted on phone;
Junction for long-lasting ses-
sions.

Hot Potato Send files, links, and text from a phone
to another phone, pc, or TV using
NDEF exchange.

Android hooks via “send” in-
tent; auto-answer on TV de-
vices; handover for large files.

weHold’Em A game of poker played between mobile
phones and a TV. Phones are used as
player controllers and the TV is a com-
munal display.

Interaction manifest for cross-
device and cross-platform sup-
port; Junction for long-lasting
session.

Musubi
Exchange

Touch phones to exchange profile infor-
mation for a social network, including
name, contact information, and public
key.

Interaction manifest for viral
bootstrapping.

Fig. 6. Applications featuring micro-interactions.

7.6 Summary

While many of these applications described above are not new, they were all
built using the framework described in this paper. As such, we demonstrate
that the framework is general enough to support a wide variety of applications.

Micro-Interactions with NFC-Enabled Mobile Phones 17

Each primitive is reused in several applications. Furthermore, our development
experience suggests that it is relatively easy to develop such applications.

These applications do not require any pre-configuration, unlike other tech-
nologies like Bluetooth pairing. There are no buttons to click or words to type
in, except occasionally the user has to approve a software download.

8 RELATED WORK

The proliferation of our digital devices has drawn much attention to how we
can use these devices in concert [12]. Many technologies have been created to
support cross-device interactions, offering different solutions at each level of the
stack [18]. Research has also shown that users frequently employ cross-device
habits, and that the amount of configuration involved can drastically affect the
usability of the system [3]. Data privacy is also a source of concern for many,
which our applications embody using NFC and Junction in their runtimes.

Devices can be composed in a number of ways. For example, platform compo-
sition allows devices to share resources at the platform level [14], activity-based
computing revolves applications around high-level tasks [1, 4], and devices can
be organized around a single owner [15]. Our focus on micro-interactions creates
ad-hoc compositions in an instant, with context inferred from the interactions
themselves.

The difficulties associated with pairing devices has been the focus of much
research [9, 17, 20, 23]. Micro-interactions require a pairing and service discov-
ery process that is essentially instantaneous. The popular Bump service for the
Android and iPhone platforms connects two users by mapping accelerometer
readings and other environmental data on a cloud-based service [22]. All data is
exchanged through this service. A major benefit of our NFC and NDEF exchange
handover techniques is the interactions run purely locally, avoiding privacy con-
cerns and also providing a faster, more robust user experience. Bump also must
be run in the foreground, taking over the phone’s UI, while NFC runs in the
background, “behind the screen.”

Using RFID and QR codes as a way to bridge the physical and digital worlds
has been explored at length, and in particular, using a phone as the point of
interaction [11, 13, 24]. In particular, the Elope system uses an RFID tag to set
up a connection and also initiate an action associated with that tag. Instead, we
use the tag as a contextual cue for determining which application to invoke, and
combine it with the context derived from the phone itself.

9 Conclusions

As smart phones are fast becoming a part of our digital self, we believe that
micro-interactions on our smart phones will have a significantly impact on our
daily life. This paper shows how we can provide a consistent “tap-and-share”
interface beyond what is natively supported by NFC.

18 Ben Dodson Monica S. Lam

This paper presents three useful ideas for developing micro-interactions.
First, we propose interaction manifest as a universal descriptor of a multi-party
application that can be run across multiple platforms. This concise descriptor
can be embedded in an NDEF message, which can be transmitted either with
NFC or other medium to enable remote participation. The Junction application
platform facilitates the development of decentralized multi-party applications,
by providing support for invitations, download of software, as well as a messaging
service through local or remote switchboards. Finally, the concept of connection
handover for NDEF exchange allows NFC-enabled applications to run on devices
lacking NFC, unmodified. Our experience shows that these primitives make writ-
ing compelling micro-interactions easy and the resulting applications are simple
and intuitive to use.

It is exciting that NFC is now available on the latest smart phones for which
a healthy ecosystem of third-party applications already exists. We believe that
the abstractions contributed by this paper will help promote the development
of useful micro-interactions in the market place, and we have made all of the
software discussed available as ppen source to help reach that goal. With the pre-
diction that one in five smartphones worldwide will be NFC capable by 2014 [16],
the vision of having many consumers using micro-interactions regularly, without
even thinking about it, may soon become a reality.

10 Acknowledgments

We would like to thank Aemon Cannon, Chanh Nguyen, T. J. Purtell, and Ian
Vo for their help in developing the applications described in this paper. This
research is supported in part by the NSF POMI (Programmable Open Mobile
Internet) 2020 Expedition Grant 0832820, NSF grant CCF-0964173, Stanford
Clean Slate Program, and Stanford MobiSocial Computing Laboratory.

References

1. E. Bardram. Activity-based computing: support for mobility and collaboration in
ubiquitous computing. Personal Ubiquitous Comput., 9:312–322, September 2005.

2. Richard A. Bolt. “put-that-there:” voice and gesture at the graphics interface.
In Proceedings of the 7th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’80, pages 262–270, New York, NY, USA, 1980. ACM.

3. David Dearman and Jeffery S. Pierce. It’s on my other computer!: computing with
multiple devices. In Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, CHI ’08, pages 767–776, New York, NY,
USA, 2008. ACM.

4. W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, and Trevor F. Smith.
Experiences with recombinant computing: Exploring ad hoc interoperability in
evolving digital networks. ACM Trans. Comput.-Hum. Interact., 16(1):1–44, 2009.

5. NFC Forum. Nfc forum technical specifications, 2010. www.nfc-forum.org/specs/
spec_list.

Micro-Interactions with NFC-Enabled Mobile Phones 19

6. Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markantonakis.
Practical nfc peer-to-peer relay attack using mobile phones. In Proceedings of the
6th international conference on Radio frequency identification: security and privacy
issues, RFIDSec’10, pages 35–49, Berlin, Heidelberg, 2010. Springer-Verlag.

7. Google. Near field communication, 2011. developer.android.com/guide/topics/
nfc/index.html#p2p.

8. Junction. openjunction.org.
9. Rene Mayrhofer and Hans Gellersen. Shake well before use: Intuitive and secure

pairing of mobile devices. IEEE Transactions on Mobile Computing, 8:792–806,
2009.

10. Dan R. Olsen, S. Travis Nielsen, and David Parslow. Join and capture: A model
for nomadic interaction. In In Proceedings of 14th Annual ACM Symposium on
User Interface Software and Technology, pages 131–140. Press, 2001.

11. Eamonn O’Neill, Peter Thompson, Stavros Garzonis, and Andrew Warr. Reach
out and touch: using nfc and 2d barcodes for service discovery and interaction
with mobile devices. In Proceedings of the 5th international conference on Perva-
sive computing, PERVASIVE’07, pages 19–36, Berlin, Heidelberg, 2007. Springer-
Verlag.

12. Antti Oulasvirta and Lauri Sumari. Mobile kits and laptop trays: managing mul-
tiple devices in mobile information work. In Proceedings of the SIGCHI conference
on Human factors in computing systems, CHI ’07, pages 1127–1136, New York,
NY, USA, 2007. ACM.

13. Trevor Pering, Rafael Ballagas, and Roy Want. Spontaneous marriages of mobile
devices and interactive spaces. Commun. ACM, 48(9):53–59, 2005.

14. Trevor Pering, Roy Want, Barbara Rosario, Shivani Sud, and Kent Lyons. En-
abling pervasive collaboration with platform composition. In Proceedings of the
7th International Conference on Pervasive Computing, Pervasive ’09, pages 184–
201, Berlin, Heidelberg, 2009. Springer-Verlag.

15. Jeffrey S. Pierce and Jeffrey Nichols. An infrastructure for extending applications’
user experiences across multiple personal devices. In Proceedings of the 21st annual
ACM symposium on User interface software and technology, UIST ’08, pages 101–
110, New York, NY, USA, 2008. ACM.

16. Juniper Research. 1 in 5 Smartphones will have NFC by 2014, 2011. http://www.
msnbc.msn.com/id/42584660/ns/business-press_releases/.

17. Nitesh Saxena, Md. Borhan Uddin, and Jonathan Voris. Universal device pairing
using an auxiliary device. In Proceedings of the 4th symposium on Usable privacy
and security, SOUPS ’08, pages 56–67, New York, NY, USA, 2008. ACM.

18. Bill N. Schilit and Uttam Sengupta. Device ensembles. Computer, 37:56–64, De-
cember 2004.

19. Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, and Hans Gellersen. Phonetouch:
a technique for direct phone interaction on surfaces. In Proceedings of the 23nd
annual ACM symposium on User interface software and technology, UIST ’10,
pages 13–16, New York, NY, USA, 2010. ACM.

20. Frank Stajano and Ross J. Anderson. The resurrecting duckling: Security issues
for ad-hoc wireless networks. In Proceedings of the 7th International Workshop on
Security Protocols, pages 172–194, London, UK, 2000. Springer-Verlag.

21. John C. Tang, James Lin, Jeffrey Pierce, Steve Whittaker, and Clemens Drews.
Recent shortcuts: using recent interactions to support shared activities. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, CHI
’07, pages 1263–1272, New York, NY, USA, 2007. ACM.

20 Ben Dodson Monica S. Lam

22. Bump Technologies. bu.mp.
23. Ersin Uzun, Kristiina Karvonen, and N. Asokan. Usability analysis of secure pairing

methods. Technical report, In Usable Security (USEC, 2007.
24. Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison. Bridging

physical and virtual worlds with electronic tags, 1999.
25. Mark Weiser. The computer for the 21st century. Scientific American, 265(3):66–

75, September 1991.
26. Andrew D. Wilson and Raman Sarin. Bluetable: connecting wireless mobile devices

on interactive surfaces using vision-based handshaking. In Proceedings of Graphics
Interface 2007, GI ’07, pages 119–125, New York, NY, USA, 2007. ACM.

