
Navigating the Maze of Graph Analytics Frameworks
using Massive Graph Datasets

Nadathur Satish†, Narayanan Sundaram†, Mostofa Ali Patwary†,
Jiwon Seo?, Jongsoo Park†, M. Amber Hassaan‡,

Shubho Sengupta†, Zhaoming Yin§, and Pradeep Dubey‡

†Parallel Computing Lab,
Intel Labs

?Stanford University
‡Dept. of Electrical and Computer

Engineering, UT Austin
§Georgia Tech

ABSTRACT
Graph algorithms are becoming increasingly important for analyz-
ing large datasets in many fields. Real-world graph data follows
a pattern of sparsity, that is not uniform but highly skewed to-
wards a few items. Implementing graph traversal, statistics and
machine learning algorithms on such data in a scalable manner is
quite challenging. As a result, several graph analytics frameworks
(GraphLab, CombBLAS, Giraph, SociaLite and Galois among oth-
ers) have been developed each offering a solution with different
programming models and targeted at different users. Unfortunately,
the "Ninja performance gap" between optimized code and most of
these frameworks is very large (2-30X for most frameworks and up
to 560X for Giraph) for common graph algorithms, and moreover
varies widely with algorithms. This makes the end-users’ choice
of graph framework dependent not only on ease of use but also on
performance. In this work, we offer a quantitative roadmap for im-
proving the performance of all these frameworks and bridging the
"ninja gap". We first present hand-optimized baselines that get per-
formance close to hardware limits and higher than any published
performance figure for these graph algorithms. We characterize the
performance of both this native implementation as well as popular
graph frameworks on a variety of algorithms. This study helps end-
users delineate bottlenecks arising from the algorithms themselves
Vs programming model abstractions Vs the framework implemen-
tations. Further, by analyzing the system-level behavior of these
frameworks, we obtain bottlenecks that are agnostic to specific al-
gorithms. We recommend changes to alleviate these bottlenecks
(and implement some of them) and reduce the performance gap
with respect to native code. These changes will enable end-users to
choose frameworks based mostly on ease of use.

1. INTRODUCTION
The rise of big data has been predominantly driven by the need to

find relationships among large amounts of data. With the increase
in large scale datasets from social networks[34, 20], web pages[14],
bioinformatics[18] and recommendation systems[9, 7], large scale
graph processing has gone mainstream. There has been a lot of in-
terest in creating, storing and processing large graph data [35, 10].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610518.

While large scale graph data management is an important problem
to solve, this paper is concerned with large scale graph processing
(specifically, in-memory processing).

Graph algorithms are typically irregular and difficult to efficiently
implement by end-users, often severely under-utilizing system and
processor resources – unlike regular compute dominated applica-
tions such as Linpack [5]. It is thus often possible for the "Ninja
performance gap" [29] between naively written graph code and
well-tuned hand-optimized code to be multiple orders of magni-
tude. This difficulty has motivated the rise of numerous in-memory
frameworks to help improve productivity and performance on graph
computations such as GraphLab, Giraph, CombBLAS/KDT, So-
ciaLite and Galois [8, 11, 21, 26, 31]. These frameworks are aimed
at computations varying from classical graph traversal algorithms
to graph statistics calculations such as triangle counting to complex
machine learning algorithms like collaborative filtering. Currently,
there is no consensus on what the “building blocks” of graph pro-
cessing should be. Different programming frameworks use differ-
ent bases such as sparse matrix operations [11, 22], programs from
the point of view of a single vertex (vertex program) [8, 21], declar-
ative programming [30] or generic task based parallelization [26].
Further, all of the approaches differ in performance as well, and
different frameworks often perform better on different algorithms.
This makes it extremely difficult for an end-user to identify which
framework would be a good fit for the problem at hand from both
performance and productivity angles.

This work proposes to simplify the end-users’ choice by creat-
ing a roadmap to improve the performance of various graph frame-
works in order to bridge the performance gap with respect to native
code. Once that gap is bridged, we believe that all frameworks will
be feasible to use and the choice of framework then boils down to
productivity issues. In order to achieve this, it is essential to first
have the right reference point that is only limited by the hardware.
This comparison is generally missing from previous work, but it
is critical to help set reasonable performance expectations. More-
over, this study has to be done at large scale (several 10’s of nodes)
since many bottlenecks of graph algorithms do not show up until
this point. Consequently, we perform this study on both real-world
graph data (typically fitting on 1-16 nodes) e.g. [9, 20], but also on
synthetic data scaling up to 64 nodes.

The performance study in this work is intended to help us tease
out performance differences between the different frameworks as
those due to the fundamental scaling limits in the algorithms, lim-
itations of the programming model or inefficiencies in the imple-
mentation of the framework. We follow up this comparison with
an analysis of system-level metrics such as CPU utilization, mem-
ory footprint and network characteristics of each framework. This
helps identify key strengths and weaknesses of each framework in

an algorithm-agnostic way. We use this knowledge to then propose
a roadmap for performance improvements of each framework.

We wish to emphasize that this work should not be taken as intro-
ducing a new graph benchmark for ranking graph frameworks. Our
aim is to analyze the performance of existing graph frameworks and
propose changes to improve such performance to an extent where
all these frameworks are reasonably close to native code. Our con-
tributions can be summarized as follows:

• Unlike other framework comparisons, we provide native hand-
optimized implementations for all the different algorithms
under consideration. This provides a very clear and mean-
ingful reference point that shows the hardware bottlenecks of
the algorithms themselves, and exposes the gap in the other
framework implementations. Our native implementation is
also only about 2− 2.5× off the ideal performance. Our na-
tive implementation is shown to be faster than other frame-
works by 1.1 − 568× on a single node and 1.6 − 494× on
multiple nodes.

• We compare different graph frameworks that vary not just in
their implementations but in their fundamental programming
models – including vertex programming, sparse matrix op-
erations, declarative programming and task-based program-
ming. We demonstrate scaling studies on both real-world
and synthetic datasets, ranging in scale from a single node to
64 nodes and graphs of sizes up to 16 billion edges. We do
not restrict ourselves only to graph traversal algorithms, but
also include graph statistics and machine learning algorithms
such as collaborative filtering in our study. We believe our
workload mix is better representative of the types of analysis
data scientists perform on large scale graphs.

• We analyze CPU utilization, memory consumption, achieved
network bandwidth and total network transfers in order to
characterize the frameworks and algorithms better. This anal-
ysis explains much of the performance gap observed between
the frameworks and native code.

• We show quantitatively the performance gains from different
optimization techniques (use of better communication layers,
improved data structures and increased communication effi-
ciency through compression and latency hiding) used in our
native code. We provide specific recommendations to bridge
the performance gap for all frameworks. We apply some of
the recommendations to SociaLite and show that it improves
performance by about 2× for network bound algorithms.

We plan to publicly release our code and data generators for use
by the community. We believe that these along with our roadmap
will help framework developers optimize their frameworks.

2. CHOICE OF ALGORITHMS
We picked 4 different graph algorithms with varying character-

istics in terms of functionality (traversal, statistics, machine learn-
ing), data per vertex, amount and type of communication, iterative
and non-iterative etc. The list is below:

1. PageRank This is an algorithm that is used to rank web pages
according to their popularity. This algorithm calculates the prob-
ability that a random walk would end in a particular vertex of a
graph. This application computes the page rank of every vertex in
a directed graph iteratively. At every iteration t, each vertex com-
putes the following:

PRt+1(i) = r + (1− r) ∗
X

j|(j,i)∈E

PRt(j)

degree(j)
(1)

where r is the probability of a random jump (we use 0.3), E is the
set of directed edges in the graph and PRt(i) denotes the (unnor-
malized) page rank of the vertex at iteration t.

2. Breadth First Search (BFS) This is a typical graph traversal
algorithm. This algorithm performs the breadth first search of an
undirected, unweighted graph from a given start vertex and assigns
a “distance” to each vertex. The distance signifies the minimum
number of edges that need to be traversed from the starting vertex
to a particular vertex. The algorithm is typically implemented iter-
atively. One can think of the algorithm as performing the following
computation once per vertex per iteration:

Distance(i) = min
j|(j,i)∈E

Distance(j) + 1 (2)

with all the distances initialized to infinity (the starting vertex is
set to 0). In practice, this computation is only performed for all
the neighbors of a vertex after its distance has been updated. This
algorithm is part of the Graph500 benchmark [23].

3. Triangle Counting The count of the number of triangles in
a graph is part of measuring graph statistics. A triangle is formed
when two vertices are both neighbors of a common third vertex.
This algorithm counts the number of such triangles and reports
them. The algorithm works as follows: Each vertex shares its
neighborhood list with each of its neighbors. Each vertex then
checks if any of their neighbors overlap with the neighborhood
list(s) they received. With directed edges and no cycles, the to-
tal number of such overlaps gives the number of triangles in the
graph. With undirected edges, the total number of overlaps gives 3
times the number of triangles.

Ntriangles =
X

i,j,k,i<j<k

Eij ∧ Ejk ∧ Eik (3)

where Eij denotes the presence of an (undirected) edge between
vertex i and vertex j.

4. Collaborative Filtering This is a machine learning algorithm
that estimates how a given user would rate an item given an in-
complete set of (user, item) ratings. The matrix-centric and graph-
centric views of the problem are shown in Figure 1. Given a ratings
matrix R, the goal is to find non-negative factors P and Q that
are low-dimensional dense matrices. In a graph centric view, R
corresponds to edge weights of a bipartite graph and P and Q cor-
respond to vertex properties.

N
0 0 q0p0

Q

Nitems

rs

K

1 1

0

q1

p0

p1

R

()

P≈
qv

N
us
er

2 2 q2p2
(u,v) pu

u v

... ...

Ruvp qu v

... ...

pu qv

(a) (b)(a) (b)

Figure 1: Collaborative filtering (a) Matrix (b) Graph

Collaborative filtering is typically accomplished using incom-
plete matrix factorization with regularization to avoid overfitting
[19]. The problem can be expressed mathematically as follows:

min
p,q

X
(u,v)∈R

(Ruv − pT
u qv)2 + λp||pu||2 + λq||qv||2 (4)

Algorithm Graph type Vertex Edge Message size Vertex
property access pattern (Bytes/edge) active?

PageRank Directed, unweighted edges Double (pagerank) Streaming Constant (8) All iterations
Breadth First Search Undirected, unweighted edges Int (distance) Random Constant (4) Some iterations

Collaborative Filtering Bipartite graph; Undirected, weighted edges Array of Doubles (pu or qv) Streaming Constant (8K) All iterations
Triangle Counting Directed, unweighted edges Long (Ntriangles) Streaming Variable (0-106) Non-iterative

Table 1: Diversity in the characteristics of chosen graph algorithms.

where u & v are indices over users and items respectively, Ruv

is the rating of the uth user for the vth item, pu&qv are dense
vectors of length K corresponding to each user and item, respec-
tively. This matrix factorization is typically done iteratively using
Stochastic Gradient Descent (SGD) or Gradient Descent (GD). For
SGD, each iteration consists of performing the following operation
for all ratings in a random order:

euv = Ruv − pT
u qv (5)

p∗
u = pu + γt[euvqv − λppu] (6)

q∗
v = qv + γt[euvpu − λqqv] (7)

(pu,qv) = (p∗
u,q∗

v) (8)

where γt is the step size for the tth iteration (typically, γt = γ0s
t

and s is the step size reduction factor 0 < s ≤ 1). GD performs
similar operations but updates all the pu and qv once per iteration
instead of once per rating.

We implement all these algorithms on all the graph frameworks
that we use for comparison, except for those available publicly (de-
tails in Section 3).

2.1 Challenges
The chosen graph algorithms vary widely in their characteristics

and correspondingly, their implementations stress different aspects
of the hardware system. Table 1 shows the characteristics of the
different graph algorithms. The message passing characteristics are
based on that of a vertex programming implementation. There are
differences from the structure and properties of the graph itself, ver-
tex properties, access patterns, message sizes, and whether vertices
are active in all iterations.

The implications of these characteristics are discussed in Section
3 for those algorithms. For example, Triangle counting and Collab-
orative filtering have total message sizes that are much larger than
that of the graph itself, necessitating modifications for Giraph.

We now discuss the graph frameworks considered and how the
algorithms map to them.

3. CHOICE OF FRAMEWORKS
The wide variety in graph algorithms that need to be imple-

mented has necessitated the creation of a variety of graph frame-
works. There is clearly no consensus on even what programming
model gives the best productivity-performance trade-off. In this pa-
per, we consider the following popular graph frameworks - GraphLab,
CombBLAS, SociaLite, Galois and Giraph. In addition, we also in-
clude hand-optimized code for the algorithms. Each of these frame-
works are described below.

GraphLab [21] is a graph framework that provides a sequential,
shared memory abstraction for running graph algorithms written
as “vertex programs”. GraphLab works by letting vertices in a
graph read incoming messages, update the values and send mes-
sages asynchronously. GraphLab partitions the graph in a 1-D fash-
ion (vertex partitioning). All graph algorithms must be expressed
as a program running on a vertex, which can access its own value
as well as that of its edges and neighboring vertices. The runtime
takes care of scheduling, messaging and synchronization.

The Combinatorial BLAS [11] is an extensible distributed-memory
parallel graph library offering a small but powerful set of linear al-
gebra primitives specifically targeting graph analytics. CombBLAS
treats graphs as sparse matrices and partitions the non-zeros of the
matrix (edges in the graph) across nodes. As such, this is the only
framework that supports an edge-based partitioning of the graph
(also referred to as 2-D partitioning in the paper). Graph com-
putations are expressed as operations among sparse matrices and
vectors using arbitrary user-defined semirings.

SociaLite [30, 31] is based on Datalog, a declarative language
that can express various graph algorithms succinctly due to its bet-
ter support for recursive queries compared to SQL [32]. In So-
ciaLite, the graph and its meta data is stored in tables, and declara-
tive rules are written to implement graph algorithms. SociaLite ta-
bles are horizontally partitioned, or sharded, to support parallelism.
Users can specify how they want to shard a table at table declaration
time, and the runtime partitions and distributes the tables accord-
ingly. SociaLite only supports 1-D partitioning.

Giraph[8] is an iterative graph processing system that runs on
top of Hadoop framework. Computation proceeds as a sequence of
iterations, called supersteps in a bulk synchronous (BSP) fashion.
Initially, every vertex is active. In each superstep each active ver-
tex invokes a Compute method provided by the user. The Compute
method: (1) receives messages sent to the vertex in the previous
superstep, (2) computes using the messages, and the vertex and
outgoing edge values, which may result in modifications to the val-
ues, and (3) may send messages to other vertices. The Compute
method does not have direct access to the values of other vertices
and their outgoing edges. Inter-vertex communication occurs by
sending messages. Computation halts if all vertices have voted to
halt and there are no messages in flight. Giraph partitions the ver-
tices in a 1-D fashion (vertex partitioning).

Since graph computations can be very irregular (little locality,
varying amount of work per iteration etc.), Galois [26], a frame-
work developed for handling irregular computations can also be
used for graph processing. Galois is a work-item based paralleliza-
tion framework that can handle graph computations (and other ir-
regular problems as well). It provides a rich programming model
with coordinated and autonomous scheduling, and with and with-
out application-defined priorities. Galois provides its own sched-
ulers and scalable data structures, but does not impose a particular
partitioning scheme which may be edge or vertex based depending
on how the computation is expressed in the framework.

Other than the explained differences, a major differentiator of
the frameworks is the communication layer between different hard-
ware nodes. Our native implementation and CombBLAS use MPI,
whereas GraphLab and SociaLite use sockets. Giraph uses a net-
work I/O library (netty), while Galois does not have a multi node
implementation as yet.

Table 2 shows a high-level comparison between the different
frameworks under consideration in this paper.

3.1 Example - PageRank
We explain the differences in programming model between the

frameworks with a small example and see how Pagerank can be
implemented in all the frameworks.

Framework Programming Multi node Lang- Graph Communication
model usage Partitioning layer

Native N/A Yes C/C++ N/A MPI
GraphLab Vertex Yes C++ 1-D Sockets

CombBLAS Sparse matrix Yes C++ 2-D MPI
SociaLite Datalog Yes Java 1-D Sockets

Galois Task-based No C/C++ N/A N/A
Giraph Vertex Yes Java 1-D Netty

Table 2: High level comparison of the graph frameworks

1

0 3

2

Figure 2: An example directed graph with 4 vertices

Let us begin by finding the most optimal way to execute pager-
ank. We refer to this hand-optimized version of the algorithm as
native implementation. We observe that pagerank computation as
given by equation (1) performs one multiply-add operation per edge.
Representing the graph in a Compressed-Sparse Row (CSR) for-
mat [15], an efficient way of storing sparse matrix (graph) as adja-
cency list, allows for the edges to be stored as a single, contiguous
array. This allows all the accesses to the edge array to be regu-
lar and improves the memory bandwidth utilization through hard-
ware prefetching. Since each vertex has to access the pagerank val-
ues of all the vertices with incoming edges, we store the incoming
edges in CSR format (not outgoing as would generally be the case).
For the multi node setup, the graph is partitioned in a 1-D fashion
i.e. partitioning the vertices (along with corresponding in-edges)
among the nodes so that each node has roughly the same number
of edges. Each node calculates the local updates and packages the
pagerank values to be sent to the other nodes. These messages are
then used to calculate the remote updates. More details on the op-
timizations in pagerank are given in Section 6.

Let us see how the page rank algorithm maps to vertex program-
ming. In this model, we write a program that executes on a single
vertex. This program can only access “local” data i.e. informa-
tion about the vertices and edges that are directly connected to a
given vertex. An example of vertex program (in pseudocode) is
provided in Algorithm 1. The exact semantics of how the mes-
sages are packed and received, how much local data can be ac-
cessed, global reductions etc. vary across different implementa-
tions. GraphLab [21] and Giraph [8] are both examples of this
approach to graph processing.

Algorithm 1: Vertex program for one iteration of page rank

begin
PR←− r
for msg ∈ incoming messages do

PR←− PR + (1− r) ∗msg

Send PR
degree

to all outgoing edges

Another distinct approach to processing large graphs is to treat
them as sparse matrices - an approach embodied in frameworks
like CombBLAS[11]. The computations in a single iteration of
PageRank can be expressed in matrix form as follows:

pt+1 = r1 + (1− r)AT p̃t (9)

where A =

0BB@
0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

1CCA (for the graph in Figure 2), pt is the

vector of all the page rank values at iteration t, p̃t(i) = pt(i)
d(i)

, d is
the vector of vertex out-degrees and 1 is a vector of all 1’s.

In SociaLite, pagerank computation is expressed as following:

RANK[n](t + 1, $SUM(v)) :- v = r

:- INEDGE[n](s), RANK[s](t, v0), OUTDEG[s](d), v =
(1− r)v0

d
.

, where the PageRank value of a vertex n at iteration t + 1 in the
rule head (RANK[n](t + 1, $SUM(v)) is declared as the summation
of the constant term in the first rule, and the normalized PageRank
values from neighbor vertices at iteration t in the second rule. The
incoming edge table, INEDGE, stores vertices in its first column and
neighboring vertices in its second column. INEDGE is declared as a
tail-nested table [30], effectively implementing a CSR format used
in the native implementation and CombBLAS. Another version of
PageRank is implemented from the perspective of a vertex that dis-
tributes its PageRank value to its neighboring vertices, which is
expressed as following:

RANK[n](t + 1, $SUM(v)) :- v = r;

:- RANK[s](t, v0), OUTEDGE[s](n), OUTDEG[s](d), v =
(1− r)v0

d
.

In this implementation, all join operations in the rule body are
locally computed, and there is only a single data transfer for the
RANK table update in the rule head. Compared to the previous ver-
sion, there is one less data transfer, reducing communication over-
heads. In terms of lock overhead, since we cannot determine which
shard of RANK will be updated, locks must be held for every up-
date. Hence, the first version is optimized for a single multi-core
machine, while the second is optimized for distributed machines.

The pagerank implementation in Galois is very similar to that of
GraphLab or Giraph i.e. the parallelization is over vertices. Each
work item in Galois is a vertex program for updating its pagerank.
Since Galois runs on only a single node with a shared memory
abstraction, each task has access to all of the program’s data.

3.2 Mapping Algorithms to Frameworks
As mentioned earlier, the pagerank algorithm can be expressed

in a variety of frameworks. In a similar fashion, we also describe
the implementations of the other algorithms here:

Breadth First Search: Vertex programs are straight-forward to
write for this algorithm. Algorithm 2 shows the pseudocode of BFS
implementation. All distances are initialized to infinity (except the
starting vertex, which is initialized to 0). The iterations continue
until there are no updates to distances.

Algorithm 2: Vertex program for one iteration of BFS.

begin
for msg ∈ incoming messages do

Distance←− min(Distance, msg + 1)

Send Distance to all outgoing edges

CombBLAS implementation performs matrix-vector multiplica-
tion in every iteration. For example, in order to do traverse the
graph from both vertices 0 and 1 in Figure 2, we only have to do

the following operation

v = AT s =

0BB@
0 0 0 0
1 0 0 0
1 1 0 0
0 1 1 0

1CCA
0BB@

1
1
0
0

1CCA =

0BB@
0
1
2
1

1CCA (10)

where s is the vector of starting vertices. The positions of non-zeros
in v indicates the next set of vertices to be explored.

Native implementation follows the approach explained in [28].
Optimizations performed are described in Section 6.

SociaLite’s BFS is implemented as a recursive rule as following:

BFS(t, $MIN(d)) :- t = SRC, d = 0

:- BFS(s, d0), EDGE(s, t), d = d0 + 1.

The first rule handles the source node, and the second rule recur-
sively follows the neighboring vertices. The details of how this rule
is evaluated is explained in [31].

A pseudocode of our BFS implementation in Galois is given in
Algorithm 3. We used the bulk-synchronous parallel executor pro-
vided by Galois, which maintains the work lists for each level be-
hind the scenes, and processes each level in parallel.

Algorithm 3: Galois program for Breadth First Search.

begin
Graph G
src.level = 0
worklist[0] = src
i←− 0
while NOT worklist[i].empty() do

foreach (n : worklist[i]) in parallel do
for dst: G.neighbors(n) do

if dst.level ==∞ then
dst.level←− n.level + 1
worklist[i+1].add(dst)

i←− i+1

Triangle counting: In the native implementation, we calculate
the neighborhood set of every vertex and send the set to all its
neighbors. Then, every vertex computes the intersection of the re-
ceived sets with their set of neighbors. The sum of all such inter-
sections gives the number of triangles in the graph. Optimizations
are possible depending on the data structure used to hold this neigh-
borhood set (details in Section 6).

The implementation is logically straight-forward with vertex pro-
gramming. GraphLab follows a similar template to that of native
code. Giraph, on the other hand, has a memory problem when run-
ning on large graphs as the total size of all messages is O(

PV
i=1 d(i)2)

where d(i) is the degree of vertex i. To reduce the total size of
messages, the neighborhood set distribution is done in phases (Sec-
tion 6.1.3).

CombBLAS implements triangle counting as the count of the
non-zeros that are present in common positions in both A and A2.
A2 gives the number of distinct paths of length 2 from vertex i
to vertex j. A triangle exists if there is both an edge and a path
of length 2 between two vertices. For the example in Figure 2,

A2 =

0BB@
0 0 1 2
0 0 0 1
0 0 0 0
0 0 0 0

1CCA, nnz(A ∩A2) = 2.

Triangle counting in SociaLite is a three-way join operation:

TRIANGLE(0, $INC(1)) : −EDGE(x, y), EDGE(y, z), EDGE(x, z).

Triangle counting is implemented in Galois (Algorithm 4) by
computing set-intersection of neighbors of a node with neighbors
of neighbors. We sort the adjacency list of each node by node-id,
which allows computing set-intersections in linear time.

Algorithm 4: Galois program for Triangle counting.

begin
Graph G
numTriangles = 0
foreach (Node n: G) in parallel do

S1 = { m in G.neighbors(n) | m > n }
for (m in S1) do

S2 = { p in G.neighbors(m) | p > m }
numTriangles←− numTriangles + |S1 ∩ S2|

Collaborative Filtering: Native implementation follows the Stochas-
tic Gradient Descent (SGD) parallelization described in [16]. We
process edges in a random order and update data corresponding to
both vertices (p and q in equations (5), (6), and (7)). Partition-
ing is done so that all updates are local within a single iteration
and data sharing happens between iterations. For n processors, the
ratings matrix is divided into n2 2-D chunks. Each iteration in-
volves n sub-steps where a subset of the updates (on n chunks)
are applied [16]. SGD is however, hard if not impossible to imple-
ment in most of the other frameworks because of the need for data
constancy within iterations. Any data written may not be globally
visible right away (especially if the writes are to a remote vertex).
Hence, we fall back to Gradient Descent, which does away with
processing edges in a random order and requires only an aggregate
update from all of the edges. In short, instead of updating edges
one at a time, we perform the following computation:

p∗
u = pu + γt

X
v|(u,v)∈E

[Ruvqv − (pT
u qv)qv − λppu] (11)

q∗
v = qv + γt

X
u|(u,v)∈E

[Ruvpu − (pT
u qv)pu − λqqv] (12)

In CombBLAS, a single GD iteration consists of K matrix-vector
multiplications where K is the size of the hidden dimension (length
of p or q). The matrix-vector multiplications arise from the terms
Ruvpu and Ruvqv . Other operations can be written as data paral-
lel operations on dense vectors. Since CombBLAS does not allow
matrices with dimension < number of processors, multiplication
with the p matrix has to be performed in K steps instead of as a
single sparse-matrix-dense-matrix multiplication.

With vertex programming, GD involves aggregating information
from all neighbors and sending the updated vector at the end of the
iteration. The total size of all the messages sent in a single iteration
is O(KE) which is quite large for Giraph. Hence, message passing
happens in phases so that only 1/s vertices have to send messages
in a given superstep. Thus, s supersteps correspond to a single
gradient descent iteration.

SociaLite stores the length-K vectors for users and items in sep-
arate tables. These tables are joined together with the rating table to
compute errors and to update user and item vectors. Since this join
operation incurs large communication, it is helpful to transfer the
tables to target machines in the beginning of each iteration, so that
the rest of the computations do not involve any communication.

Galois is the only framework that implements SGD (not just GD)
in a fashion similar to that of the native implementation. This is
possible because of 2 reasons (1) since partitioning is flexible with
Galois, we can apply the n2 uniform 2D chunk partitioning (2)
since Galois is running only on a single node, it can maintain glob-
ally consistent state after any update without much performance
degradation. Each work-item in Galois performs the SGD update
on a single edge (u, v) i.e. it updates both pu and qv .

We note that SGD has much better convergence characteristics
than Gradient Descent. For the Netflix dataset, given a fixed con-
vergence criterion, SGD converges in about 40x fewer iterations
than GD. Of course, like all machine learning algorithms, both
SGD and GD have parameters to choose that affect convergence
(learning rate, step size reduction and so forth). We did do a coarse
sweep over these parameters to obtain best convergence.

4. EXPERIMENTAL SETUP
We now describe our experimental setup with details about our

frameworks, data sets used and our experimental platform.

4.1 Choice of Datasets
We use a mix of both real-world datasets and data generators

for synthetic data in our experiments. Both classes of datasets ide-
ally follow a power law (Zipf law) distribution. For the pagerank
and triangle counting problems we use directed graphs, whereas for
BFS and Collaborating Filtering we use undirected graphs. Collab-
orative Filtering requires edge-weighted, bipartite graphs that rep-
resents the ratings matrix.

4.1.1 Real world Datasets

Dataset # Vertices # Edges Brief Description
Facebook [34] 2,937,612 41,919,708 Facebook user interaction graph
Wikipedia [14] 3,566,908 84,751,827 Wikipedia Link graph

LiveJournal [14] 4,847,571 85,702,475 LiveJournal follower graph
Netflix [9] 480,189 users 99,072,112 Netflix Prize

17,770 movies ratings
Twitter [20] 61,578,415 1,468,365,182 Twitter follower graph

Yahoo Music [7] 1,000,990 users 252,800,275 Yahoo! KDDCup 2011
624,961 items ratings music ratings

Synthetic 536,870,912 8,589,926,431 Described in
Graph500 [23] Section 4

Synthetic 63,367,472 users 16,742,847,256 Described in
Collaborative 1,342,176 items ratings Section 4

Filtering

Table 3: Real World and largest synthetic datasets

Table 3 provides details on the real-world datasets we used. The
Facebook, Wikipedia, Livejournal and Twitter graphs were used to
run Pagerank, BFS and Triangle Counting, while the Netflix and
Yahoo Music datasets were used to run Collaborative Filtering.

The major issue with the real world datasets is primarily their
small size. While these datasets are useful for algorithmic ex-
ploration, they are not really scalable to multiple nodes. In par-
ticular, the Facebook, Wikipedia, Livejournal and Netflix datasets
were small enough to fit on a single machine. We do have two
large real-world datasets - Twitter and Yahoo music. These were
run on 4 nodes except for Triangle Counting on Twitter, which re-
quired 16 nodes to complete in a reasonable amount of time. Even
though the twitter graph itself can fit in fewer nodes, as mentioned
in Section 3, the total message size is much larger than the graph
and needs more resources. To provide a sense of the size of these
datasets, the largest dataset, Twitter, is just over 30 GB in size.
Although we do have a few large examples, developing data gen-
erators that can produce synthetic data that is representative of real
world workloads is essential to study scalability.

4.1.2 Synthetic Data Generation
We derive our synthetic data generators from Graph500 RMAT

data generators [23]. We generate data to scale the graphs up to 64
nodes. To give a sense on size of the synthetic graphs, a large scale
64 node run for Pagerank and BFS processes over 8 Billion edges.
We now describe how we use the Graph500 generator to generate
both directed graphs and ratings matrices for our applications.

We use the default RMAT parameters (A = 0.57, B = C = 0.19)
used for Graph500 to generate undirected graphs. The RMAT gen-
erator only generates a list of edges (with possible duplicates). For
Pagerank, we assign a direction to all the edges generated. For BFS,
depending on the framework used we either provide it undirected
edges or provide 2 edges in both directions for each generated edge.
For triangle counting, we use slightly different RMAT parameters
(A = 0.45, B = C = 0.15) to reduce the number of triangles in the
graph. We then assign a direction to edges going from the vertex
with smaller id to one with larger id to avoid cycles. This is done
to make the implementations efficient on all frameworks.

In order to generate large rating matrices, we wrote a rating ma-
trix generator that follows the power-law distribution of the Netflix
data set. In order to achieve this, we start with graphs generated by
the Graph500 graph generator. Through experimentation, we found
that RMAT parameters of A = 0.40 and B = C = 0.22 generates
degree distributions whose tail is reasonably close to that of the
Netflix dataset. Finally, we post-processed the graphs to remove
all vertices with degree < 5 from the graph. This yielded graphs
that closely follow the degree distributions of the Netflix data set.
In order to convert these Graph500 graphs into bipartite graphs of
Nusers×Nmovies (items are named movies in case of Netflix data),
we first chunk the columns of the Graph500 matrix into chunks of
size Nmovies. We then “fold” the matrix by performing a logical
“or” of these chunks.

Given that the power law distribution is what differentiates a
real-world dataset, we believe our data generator is much more rep-
resentative of real collaborative filtering workloads as opposed to
other data generators such as that by [16]. [16] generates data by
sampling uniformly matching the expected number of non-zeros
overall but not as a power law distribution.

For our experiments, we generate synthetic data of up to 16 Bil-
lion ratings for 64 million users × 800K movies. For scaling, we
generate about 256 million ratings per node, or 16 Billion ratings
for 64 nodes.

4.2 Framework versions
We used GraphLab v2.2 [3] for this comparison. We used the

CombBLAS v1.3 code from [1]. We obtained the SociaLite code
with additional optimizations over the results in [30] from the au-
thors. For Giraph, we used release 1.1.0 from [8]. Finally, we
obtained Galois v 2.2.0 from [2].

We implemented all the algorithms on these frameworks wher-
ever a public version did not exist.

4.3 Experimental Platform
We run the benchmarks1 on an Intel® Xeon® 2 CPU E5-2697

based system. Each node has 64 GB of DRAM, and has 24 cores
supporting 2-way Simultaneous Multi-Threading each running at
2.7 GHz. The nodes are connected with an Mellanox Infiniband
1

Software and workloads used in performance tests may have been optimized for performance only on Intel micro-
processors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated pur-
chases, including the performance of that product when combined with other products. For more information go to
http://www.intel.com/performance
2

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

0.1

1

10

ti
o
n
 (
se
co
n
d
s)

Native Combblas Graphlab

Socialite Giraph Galois

0.01

0.1

Li
ve
jo
u
rn
al

Fa
ce
b
o
o
k

W
ik
ip
ed

ia

Sy
n
th
et
ic

Ti
m
e
 p
e
r
it
e
ra
t

(a) PageRank

10

100

e
 (
se
co
n
d
s)

Native Combblas Graphlab

Socialite Giraph Galois

0

1

Li
ve
jo
u
rn
al

Fa
ce
b
o
o
k

W
ik
ip
ed

ia

Sy
n
th
et
icO
ve
ra
ll
ti
m
e

(b) Breadth-First Search

10

100

1000

at
io
n
 (
se
co
n
d
s)

Native Combblas Graphlab

Socialite Giraph Galois

1

10

N
et
fl
ix

Sy
n
th
et
ic

Ti
m
e
 p
e
r
it
e
ra

(c) Collaborative Filtering

10

100

1000

10000

e
 (
se
co
n
d
s)

Native Combblas Graphlab

Socialite Giraph Galois

0.1

1

Li
ve
jo
u
rn
al

Fa
ce
b
o
o
k

W
ik
ip
ed

ia

Sy
n
th
et
icO
ve
ra
ll
Ti
m

(d) Triangle counting

Figure 3: Performance results for different algorithms on real-world and synthetic graphs that are small enough to run on a single node. The y-axis
represents runtime (in log-scale), therefore lower numbers are better.

FDR interconnect. The cluster runs on the Red Hat Enterprise
Linux Server OS release 6.4. We use a mix of OpenMP directives
to parallelize within the node and MPI code to parallelize across
nodes in native code. We use the Intel® C++ Composer XE 2013
SP1 Compiler3 and the Intel® MPI library to compile the code.
GraphLab uses a similar combination of OpenMP and MPI for best
performance. CombBLAS runs best as a pure MPI program. We
use multiple MPI processes per node to take advantage of the mul-
tiple cores within the node. Moreover, CombBLAS requires the
total number of processes to be a square (due to their 2D partition-
ing approach). Hence we use 36 MPI processes per node to run on
the 48 hardware threads; and we further run on a square number of
nodes (1, 2, 4, 9, 16, 36 and 64 nodes). SociaLite uses Java threads
and processes for parallelism. Giraph uses the Hadoop framework
for parallelism (we run 4 workers per node). Finally, Galois is a
single node framework and uses OpenMP for parallelism.

5. RESULTS

5.1 Native implementation bottlenecks
Since different graph frameworks have their programming mod-

els with different implementation trade-offs, it is hard to directly
compare these frameworks with respect to each other without a
clear reference point. As explained in Section 1, we provide a well-
optimized native implementation of these algorithms for both sin-
gle and multi node systems. Since the native code is optimized, it
is easy to see which aspects of the system are stressed by a partic-
ular algorithm. Table 4 provides data on the achieved limits of the
native implementations on a single node and 4 nodes system.

Algorithm Single Node 4 Nodes
H/W limitation Efficiency H/W limitation Efficiency

PageRank Memory BW 78 GBps (92%) Network BW 2.3 GBps (42%)
BFS Memory BW 64 GBps (74%) Memory BW 54 GBps (63%)

Coll. Filtering Memory BW 47 GBps (54%) Memory BW 35 GBps (41%)
Triangle Count. Memory BW 45 GBps (52%) Network BW 2.2 GBps (40%)

Table 4: Efficiency achieved by native implementations of different
algorithms on single and 4 nodes.

We find that on both single and multi node implementations, the
algorithm performance is dependent on either memory or network
bandwidth. The efficiencies are generally within 2-2.5X off the

3
Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are

not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other opti-
mizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors
not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel micro-
processors. Certain optimizations not specific to Intel micro-architecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice revision #20110804

ideal results. Given the diversity of bottlenecks within the 4 al-
gorithms, and also between single and multiple node implementa-
tions, we expect that it would be difficult for any one framework to
excel at all scales in terms performance and productivity.

5.2 Single node results
We now show the results of running the Pagerank, BFS, Collab-

orative Filtering and Triangle Counting algorithms on the Comb-
BLAS, GraphLab, SociaLite, Giraph and Galois frameworks.

In the following, we only compare time taken per iteration on
various frameworks for Collaborative Filtering and Pagerank. As
described in Section 3, the native code for Collaborative Filtering
implements Stochastic Gradient Descent which converges much
faster than the Gradient Descent implementation in other frame-
works. However, we do not see much difference in performance
per iteration between Stochastic Gradient Descent and Gradient
Descent in native code. Hence we compare time/iteration here to
separate out the fact that the frameworks are not expressive enough
to express SGD from other potential performance differences. Sim-
ilarly, some Pagerank implementations differ in whether early con-
vergence is detected for the algorithm, and hence we report time
per iteration to normalize for this.

Algorithm CombBLAS GraphLab SociaLite Giraph Galois
PageRank 1.9 3.6 2.0 39.0 1.2

BFS 2.5 9.3 7.3 567.8 1.1
Coll. Filtering 3.5 5.1 5.8 54.4 1.1

Triangle Count. 33.9 3.2 4.7 484.3 2.5

Table 5: Summary of performance differences for single node bench-
marks on different frameworks for our applications. Each entry is a
slowdown factor from native code, hence lower numbers indicate bet-
ter performance.

Figures 3(a), 3(b) and 3(d) show the results of running Pager-
ank, BFS, and Triangle Counting respectively on the real-world
Livejournal, Facebook and Wikipedia datasets described in Sec-
tion 4.1 on our frameworks. We also show the results of running
a synthetic scale-free RMAT graph (obtained using the Graph500
data generator). Figure 3(c) shows the performance of our frame-
works on the Netflix [9] dataset, as well as synthetically generated
collaborative filtering dataset. For convenience, we also present the
geometric mean of this data across datasets in Table 5. This table
shows the slowdowns of each framework w.r.t. native code.

We see the following key inferences: (1) Native code, as ex-
pected, delivers best performance as it is optimized for the underly-
ing architecture. (2) Galois performs better than other frameworks,

and is close to native performance (geometric mean of 1.1-1.2X
for pagerank, BFS and collaborative filtering, and 2.5X for triangle
counting). (3) Giraph, on the other hand, is 2-3 orders of magnitude
slower than native code (4) CombBLAS and GraphLab perform
well on average. CombBLAS is very good for all algorithms except
for Triangle Counting, where it ran out of memory for real-world
inputs while computing the A2 matrix product. This is an express-
ibility problem in CombBLAS. GraphLab is 3-9X off from native
code, but performs reasonably consistently across algorithms. (5)
SociaLite performance is typically comparable to GraphLab (some-
times slightly better and sometimes slightly worse).

Finally, note that the trends on the synthetic dataset are in line
with real-world data, showing that our synthetic generators are ef-
fective in modeling real-world data.

5.3 Multi node results
We first show our scaling results of our frameworks on multiple

nodes. A major reason for using multiple nodes to process graph
data is to store the data in memory across the nodes. Hence a com-
mon use case is weak-scaling, where the data per node is kept con-
stant (and hence total data set size increases with number of nodes).
If we obtain perfect performance scaling, then the runtime should
be constant as we increase node count and data set size. In this
study, we include CombBLAS, GraphLab, SociaLite and Giraph
frameworks. Galois is currently only a single node framework and
we hence do not include results here.

Figures 4(a), 4(b), 4(c) and 4(d) show the results of multi node
runs on synthetically generated data sets for our benchmarks. The
data sizes are chosen so that all frameworks could complete without
running out of memory. Figure 5 shows the corresponding perfor-
mance results for larger real-world graphs. We run each algorithm
using one large dataset – we use the Twitter dataset [20] for Pager-
ank, BFS and Triangle Counting and the Yahoo Music KDDCup
dataset 2011 dataset for Collaborative Filtering [7].

Algorithm CombBLAS GraphLab SociaLite Giraph
PageRank 2.5 12.1 7.9 74.4

BFS 7.1 29.5 18.9 494.3
Coll. Filtering 3.5 7.1 7.0 87.9

Triangle Count. 13.1 3.6 1.5 54.4

Table 6: Summary of performance differences for multi node bench-
marks on different frameworks for our applications. Each entry is a
slowdown factor, hence lower numbers indicate better performance.

As a convenient summary of performance, Table 6 shows the
geometric mean of the performance differences between our frame-
works combining real-world and synthetic datasets at different scales.
The table shows performance slowdowns of different frameworks
for specific algorithms compared to the native code for that algo-
rithm – hence lower numbers are better.

We note the following trends in our multi-node results. (1) There
is wide variability in our multi node results; as an example, na-
tive code performs anywhere between 2X to more than 560X better
than other frameworks on multi node runs (still up to 30X discount-
ing Giraph runtimes). (2) Giraph performs worse by far than other
frameworks and is frequently 2-3 orders magnitude off from na-
tive performance. (3) CombBLAS is competitive for Pagerank (ge-
omean of 2.5X native performance), BFS (7.1X off native) and Col-
laborative Filtering (3.5X off native). However, it performs poorly
on Triangle Counting due to extra computations performed as a re-
sult of framework expressibility issues. CombBLAS also runs out
of memory for the Twitter data set and hence this data point is not
plotted. (4) GraphLab performs well for Triangle Counting, due
to data structure optimizations performed for this case, namely the

1

10

100

at
io
n
 (s
e
co
n
d
s)

Pagerank (Weak scaling, 128M edges/node)

Native Combblas Graphlab Socialite Giraph

0.1

1

1 2 4 8 16 32 64

Ti
m
e
 p
e
r
it
e
ra

Number of nodes

(a) PageRank

10

100

1000

ti
m
e
 (
se
co
n
d
s)

BFS (Weak scaling, 128M undirected edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64

O
ve
ra
ll

Number of nodes

(b) Breadth-First Search

100

1000

10000

at
io
n
 (s
e
co
n
d
s)

Collaborative Filtering (Weak scaling, 250 M edges/node)

Native Combblas Graphlab Socialite Giraph

1

10

1 2 4 8 16 32 64

T
im

e
 p
e
r
it
e
ra

Number of nodes

(c) Collaborative Filtering

10

100

1000

m
e
 (
se
co
n
d
s)

Triangle Counting (Weak scaling, 32M edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64O
ve
ra
ll
Ti
m

Number of nodes

(d) Triangle Counting

Figure 4: Performance results for different algorithms on large scale
synthetic graphs. The y-axis represents runtime in log-scale. We per-
form weak-scaling, where the amount of graph data per node is kept
constant, (a) 128 M edges/node for pagerank, (b) 128 M edges/node for
BFS, (c) 256M ratings/node for SGD, and (d) 32M edges/node for tri-
angle counting. Horizontal lines represent perfect scaling.

96746.8

10

100

1000

m
e
 (
in
 s
e
co
n
d
s)

Native Combblas Graphlab Socialite Giraph

1

Pagerank
(Twitter, 4 nodes)

BFS (Twitter, 4
nodes)

Collaborative Filt.
(Yahoo Music, 4

nodes)

Triangle Count.
(Twitter, 16
nodes)

Ti
m

Figure 5: Performance results for large real world graphs run on mul-
tiple nodes. We show the results of running (in log-scale) Pagerank,
BFS and Triangle Counting on a subset of Twitter [20], and Collabora-
tive Filtering on the Yahoo Music KDDCup dataset [7]

cuckoo hash data structure that allows for a fast union of neighbor
lists, which is the primary operation in the algorithm. (5) GraphLab
performance drops off significantly for multi node runs (especially
for Pagerank) due to network bottlenecks. (6) SociaLite perfor-
mance is typically between GraphLab and CombBLAS, except for
Triangle Counting, where it performs best among our frameworks.
It also shows more stable performance for different scales than
GraphLab. (7) Native performance is relatively stable on various
benchmarks. The performance noticeably drops for Collaborative
Filtering where network traffic increases with number of nodes, and
the algorithm gradually becomes more network limited. (8) Finally,
the trends we see in real-world data are broadly similar to those
for synthetic data. In particular, CombBLAS performs best among
non-native frameworks for three of the four algorithms - Pagerank,
BFS and Collaborative Filtering, while SociaLite performs best for
Triangle Counting.

Given the various performance issues we see in the frameworks,
we next delve deeper into other metrics beside runtime to gain more
insights into the frameworks.

5.4 Framework Analysis
We did further investigation of CPU utilization, memory foot-

print and network traffic to narrow down the reasons for the ob-
served performance trends. We use the sar/sysstat monitoring tools [4]
available in Linux to measure these. These results are summarized
in Figure 6. We briefly describe our key findings in this section,
and defer a detailed reasoning on what can be done to address these
problems to Section 6.

Memory footprint: First, note that our dataset sizes chosen are
such that the memory footprint of one or more frameworks (usually
Giraph) is more than 50% of total memory – hence we cannot in-
crease dataset sizes per node. The memory footprint is usually not
due to just the input graph size, but due to the large intermediate
data structures, e.g. message buffers that need to be kept. It is possi-
ble to avoid buffering entire messages at once (e.g. GraphLab) and
hence improve this behavior of Giraph as discussed in Section 6.
Large memory footprints are also seen in CombBLAS (Triangle
Counting), where the problem is framework expressibility.

CPU utilization: The CPU utilization of various frameworks is
high when it is not I/O or network limited. Giraph has especially
low CPU utilization across the board. This is because memory lim-
itations restrict the number of workers that can be assigned to a
single node to 4 (even though the number of cores per node is 24).
Each worker requires more memory and we cannot add more work-
ers within our memory limit. This limits the utilization to 4/24 ∼
16%. Our native code is network limited for Triangle Counting
(unlike CombBLAS and GraphLab which are memory bandwidth

bound) and has relatively low CPU utilization. Pagerank is limited
by network traffic for all the frameworks as well.

Peak Network Transfer Rate: The peak network transfer rate
when running different algorithms is relatively stable for a given
framework, and is dependent mostly on the communication layer
used. Note that Giraph has the lowest peak traffic rate of less
than 0.5 GigaBytes per second (GBps), and CombBLAS and Na-
tive code the highest of over 5 GBps. Although SociaLite and
GraphLab use similar communication layers, SociaLite achieves
about twice the peak rate of GraphLab (discussion in Section 6). In
fact, the currently available SociaLite code (from the authors) does
indeed have low transfer rates, and we were able to improve this
behavior substantially using network traffic analysis, which is an
important contribution of this paper.

Data volumes: The amount of data transferred varies consider-
ably based on algorithm (as shown in Figure 6), as well as platform
(depending on compression schemes and data structures used). We
show the latter impact in Section 6.

These measurements are very useful for predicting the slow-
downs we see with graph frameworks compared to native imple-
mentation. For example, we look at only the measured network
parameters for pagerank to estimate performance differences (net-
work bytes sent/peak network bandwidth) from Figure 6. We can
estimate that the frameworks would be 1.75, 9.8, 5.6, 32.7× slower
than native code (assuming all network transfers happen at the peak
measured rate). Even this rough estimation is within a factor of 2.5
of observed performance differences (Table 6). Similar analysis
can be done for other algorithms as well. Bandwidth bound code
will need to estimate the number of reads/writes and scale it with
the memory footprint.

In the next section, we will discuss optimizations that we per-
form in native code, show examples of how such optimizations are
also useful in other frameworks and describe our key recommenda-
tions for other frameworks as well.

6. DISCUSSION
In this section, we discuss the various optimization techniques

used to improve the performance of our native code. We then
present recommendations on how the frameworks can be optimized
to achieve native code level performance.

6.1 Native implementations

6.1.1 Key optimization techniques
The key features for performance and scalability that our native

code uses are listed below. Note that not all techniques have been
applied or are applicable to every algorithm. However, we maxi-
mize the use of these techniques to obtain best possible native code.

Data structures: Careful selection of data structure can ben-
efit performance significantly. For example, algorithms like BFS
and Triangle Counting can take advantage of bit-vectors instead of
other data structures for constant time lookups while minimizing
cache misses. In our native BFS and Triangle Counting code, this
results in a benefit of slightly over 2X. GraphLab keeps a cuckoo-
hash data structure in Triangle Counting for the same reason, result-
ing an efficient code that runs at only 2-3X off native performance.

Data Compression: In many cases, the data communicated among
nodes is the id’s of destination vertices of the edges traversed. Such
data has been observed to be compressible using techniques like
bit-vectors and delta coding [28]. For BFS and Pagerank, this re-
sults in a net benefit of about 3.2 and 2.2X respectively (and a cor-
responding reduction of bytes transferred in Figure 6). GraphLab
and CombBLAS perform a limited form of compression that takes

20

40

60

80

100

Native Combblas Graphlab

Socalite Giraph

0

20

C
P
U

u
ti
liz
at
io
n

Pe
ak
 n
et
w
o
rk

B
W

M
em

o
ry

fo
o
tp
ri
n
t

N
et
w
o
rk

b
yt
es
 s
en

t

(a) PageRank

20

40

60

80

100

Native Combblas Graphlab

Socalite Giraph

0

20

C
P
U

u
ti
liz
at
io
n

Pe
ak
 n
et
w
o
rk

B
W

M
em

o
ry

fo
o
tp
ri
n
t

N
et
w
o
rk

b
yt
es
 s
en
t

(b) Breadth-First Search

20

40

60

80

100

Native Combblas Graphlab

Socalite Giraph

0

20

C
P
U

u
ti
liz
at
io
n

P
ea
k
n
et
w
o
rk

B
W

M
em

o
ry

fo
o
tp
ri
n
t

N
et
w
o
rk

b
yt
es
 s
en

t

(c) Collaborative Filtering

20

40

60

80

100

Native Combblas Graphlab

Socalite Giraph

0

20

C
P
U

u
ti
liz
at
io
n

P
ea
k
n
et
w
o
rk

B
W

M
em

o
ry

fo
o
tp
ri
n
t

N
et
w
o
rk

b
yt
e
s
se
n
t

(d) Triangle Counting

Figure 6: Performance metrics including CPU utilization, peak achieved network bandwidth, memory footprint and bytes sent over the network
for a 4-node run of our benchmarks. Metrics are normalized so that a value of 100 on the y-axis corresponds to (1) 100% CPU utilization, (2) 5.5
GB/s/node peak network BW (network limit) (3) 64 GB of memory/node (memory capacity) and (4) bytes sent by Giraph/node for each algorithm (1.4
GB/node for pagerank, 0.73 GB/node for BFS, 37.4 GB/node for Collaborative Filtering and 13.0 GB/node for Triangle Counting). Higher numbers
are better for CPU utilization and peak network traffic while lower numbers are better for memory footprint and network bytes sent.

advantage of local reductions to avoid repeated communication of
the same vertex data to different target vertices in the same node.

Overlap of Computation and Communication: Overlap of
computation and communication is possible for many applications
where an entire message need not be received before computation
can start on the portion of the message that has been received. This
allows for hiding the latency of communication with useful com-
putation, and has been shown to improve performance of various
optimized implementations [28]. Native code for BFS, pagerank
and Triangle Counting all benefit between 1.2-2X. Apart from la-
tency hiding, overlapping communication and computation allows
for blocking of a very large message into multiple smaller ones,
leading to lower memory footprint for buffer storage. This opti-
mization specifically helps Triangle Counting, and both GraphLab
and native codes perform this, leading to low memory footprints.

Message passing mechanisms: Using the right underlying mes-
sage passing mechanisms can boost performance significantly. The
native code uses MPI message passing [6] to drive the underlying
fabric (FDR InfiniBand network in our case) for high bandwidth
and low latency communication among the nodes. Although it is
possible to implement message passing using other techniques such
as TCP sockets using IP over IB [33], this suffers from between
2.5-3X lower bandwidth than MPI code, as observed in case of
GraphLab. However, if it not possible to use MPI, we observe that
multiple sockets between a pair of nodes regains up to 2X of this
performance, as in SociaLite.

Partitioning schemes: Most frameworks running on multiple
nodes support partitioning the graph among the nodes in such a
way that nodes either own a subset of vertices (Giraph, SociaLite)
or in a 2D fashion where they store a subset of edges (CombBLAS).
GraphLab performs a more advanced partitioning scheme where
some nodes with large degree are duplicated in multiple nodes to
avoid problems of load imbalance during computation. In line with
observations in recent research [25], 2D partitioning as in Comb-
BLAS or advanced 1D partitioning such as GraphLab gives better
load balancing, leading to better performance and scalability.

6.1.2 Impact of the optimization techniques
We now look at each algorithm and discuss the optimizations

having high impact on each (we do not describe all optimizations
due to space limits). Figure 7 shows the impact of various per-
formance optimizations on native code for Pagerank and BFS. The
main optimizations come from software prefetch instructions that
help hide the long latency of irregular memory accesses and mes-

0

4

8

12

16

20

S/
W

et
ch
in
g

re
ss
io
n

m
p
. a
n
d

. ru
ct
u
re

p
t. S/
W

et
ch
in
g

re
ss
io
n

m
p
. a
n
d

.

Sp
e
e
d
u
p

S
P
re
fe

+
C
o
m
p

+
O
ve
rl
ap

 c
o
m

co
m
m
.

D
at
a
st
r

o
p S

P
re
fe

+
C
o
m
p

+
O
ve
rl
ap

 c
o
m

co
m
m
.

Pagerank BFS

Figure 7: Effect of optimizations performed on native implementa-
tions of Pagerank and BFS.

sage optimizations (compressing message containing edges to be
sent to other nodes and overlapping computation with communi-
cation). For BFS, additional optimization was to use bit-vectors
(a data structure optimization) to compactly maintain the list of al-
ready visited vertices [12, 28]. For Triangle counting, the same data
structure optimization (bit vectors), for quick constant time lookups
to identify common neighbors of different vertices, gave a speedup
of around 2.2X.

For Collaborative filtering, the key optimizations revolve around
efficient parallelization of Stochastic Gradient Descent. We adopt
the diagonal parallelization technique used in Gemulla et al. [16] to
parallelize SGD both within and across nodes without using locks.

6.1.3 Testcase: Improving SociaLite and Giraph
We select SociaLite and Giraph to demonstrate the possible per-

formance improvement of the frameworks using the analysis in
Section 5.4 and depth of understanding of the optimization tech-
niques.

SociaLite: We first observed that the code corresponding to pub-
lished SociaLite results (obtained from the authors) exhibited poor
peak network performance of about 0.5 GBps (like Giraph does to-
day) since it uses sockets for communication. Although changing
SociaLite to use MPI would have been ideal, it is much difficult
due to language and other issues. However, using multiple sock-
ets to communicate between two workers allows for much higher
peak bandwidths (of close to 2 GBps). This, along with minor
optimizations such as merging communication data for batch pro-
cessing, and using custom memory allocators to minimize garbage

collection time (these had minor impacts on performance), allowed
SociaLite results to improve by 1.6-2.4X for network limited al-
gorithms (Pagerank and Triangle Counting). Table 7 presents the
old and new SociaLite performance for a 4-node setup for these
benchmarks. The results in this paper correspond to the optimized
version of SociaLite.

Algorithm Before After Speedup
PageRank 4.6 1.9 2.4

Triangle Counting 7.6 4.9 1.6

Table 7: Summary of performance speedups for SociaLite on per-
forming network optimizations. Results are for 4 nodes.

Giraph: One major problem in Giraph is that it tries to buffer all
outgoing messages in memory before sending any messages (due to
its bulk synchronous model). This leads to high memory consump-
tion especially for Triangle Counting which can run out of memory
for the data set sizes we use in this work. The native code deals
with this problem by breaking up this large message into multiple
smaller messages and using computation-communication overlap
as described previously. We perform a conceptually similar opti-
mization at the Giraph code level by breaking up each superstep
(iteration) into 100 smaller supersteps, and processing 1% of all
vertices at each smaller superstep. This results in much smaller
memory footprint (since only 1% messages are created at any time),
at the cost of finer grained synchronization. It was only using this
optimization that we were able to run Triangle Counting to run on
Giraph. A similar optimization was also used in Collaborative Fil-
tering to reduce memory footprint.

6.2 Roadmap for framework improvements
Based on our experience in optimizing native code as well as

some frameworks as described in the previous section, we present
recommendations for bridging the performance gap of all the frame-
works w.r.t. native code. It is however, to be noted that some per-
formance differences between frameworks come from the program-
ming abstractions themselves, and we note these wherever possible.

CombBLAS: CombBLAS incorporates many of our optimiza-
tions, and is hence one of the best performing frameworks. For
Pagerank and Collaborative Filtering, it is already within 4× of na-
tive performance. CombBLAS needs to use data structures such as
bitvectors for compression in order to improve BFS performance.
Triangle counting performance is limited by CombBLAS’ program-
ming abstraction and techniques to perform inter-operation op-
timization (combine A2 computation with intersection with A,
thereby also achieving overlap of computation and communication)
can make it more efficient.

GraphLab: GraphLab is mainly limited by network bandwidth.
It achieves only 20-25% of what the network hardware provides.
We believe this 4 − 5× gap can be minimized by incorporating
MPI, or at least by using multiple sockets between pairs of nodes
as in SociaLite. Additionally, data compression, prefetching and
overlapping computation and communication can also help perfor-
mance. Incorporating these changes should allow GraphLab to be
within 5× of native performance.

Giraph: Giraph does not have most of our optimizations, and
hence performs worst among all frameworks. The most serious
impediment to performance is poor network utilization (< 10%).
Boosting network bandwidth by 10x should make Giraph very com-
petitive with other frameworks. Techniques like data compres-
sion (bitvectors) and overlapping computation and communication
should also help. Performance will also improve if we can run more
workers per node, thereby improving CPU utilization. This would

require addressing the high memory consumption of each worker.
Techniques to reduce message buffer sizes (e.g. avoiding dupli-
cated communication across nodes if multiple targets are present in
the same node) are necessary to achieve this.

SociaLite: SociaLite performs best among all frameworks for
multi-node triangle counting (within 2× of native) but its perfor-
mance for other algorithms is mostly limited by network bandwidth
(though it achieves better network BW than Giraph and GraphLab).
Even after improvements, the network BW is still about 3 − 4×
lower than hardware peak. Fixing this along with the use of data
compression (for BFS) will help SociaLite to achieve performance
within 5× of native performance.

Galois: The Galois framework, although limited to single-node,
does implement optimizations such as prefetching, and as such is
one of the best performing single-node frameworks.

Our observations above and in Section 5 should help the end
users of the frameworks make informed choices about which frame-
works to use. Our analysis should also help framework developers
with guidance on what factors limit their performance and are im-
portant to optimize for.

7. RELATED WORK
The list of graph frameworks developed in recent years to tackle

large scale problems is too long to be listed. Some distributed
graph frameworks that we have not studied in this paper include
GPS[27], GraphX[35], etc. In addition to these, others have imple-
mented graph workloads on generic distributed frameworks such
as Hadoop, YARN, Stratosphere etc. [17]. Our choice was moti-
vated mainly by a need to explore a variety of programming models
and not just different implementations of the same programming
model. Most common graph programming models are based on
vertex-programming and there have been other efforts comparing
the differences between various runtime implementations of that
model [17, 24]. We briefly distinguish our contributions from these.

Graph Partitioning System (GPS) [27] uses a vertex program-
ming model with Long Adjacency List Partitioning (LALP) i.e.
vertex partitioning except for the large degree vertices which are
split among multiple nodes. [27] showed that GPS with LALP
achieves a 12X performance improvement compared to Giraph,
putting it at a performance level comparable to that of the frame-
works studied (but much slower than native code).

GraphX [35] is a graph framework built on top of Spark [36]
and uses vertex programming. [35] showed that GraphX is about
7X slower than GraphLab for pagerank (including file read). This
would put GraphX at the slower end of the spectrum of frameworks
considered in this paper.

In addition to above mentioned graph frameworks, there have
also been other graph framework comparison efforts in literature.
[17] looks at a number of graph algorithms and frameworks. It is
quite limited in the types of graph frameworks that are considered
(all frameworks are either generic, non-graph specific ones or ver-
tex programming based). While our goal is not to produce a graph
benchmark, we do share algorithms with [17] including Pagerank
and BFS. Also, we include a hand-optimized native implementation
(close to hardware limits) which puts the runtime differences be-
tween other frameworks in better perspective, something no other
graph comparison effort has done to the best of our knowledge.

[13] shows Pagerank running on a large cluster at about 20 mil-
lion edges/sec/node with Giraph. In contrast, our Giraph imple-
mentation achieves about 9 million edges/sec/node and the differ-
ence can be attributed to precision (we use double precision), mem-
ory size (they are able to fit much larger graphs in a single node) and
improved CPU utilization achieved with more memory and more

workers per node. In contrast, our native implementation processes
around 640 million edges/sec/node.

[24] looks at a variety of vertex programming frameworks but at
a lower level (Bulk synchronous vs autonomous, scheduling poli-
cies etc.). Their work is useful in order to understand and improve
the implementations of vertex programming models, whereas our
work has different goals. We consider a wider variety of frame-
works and our work is more interested in answering the more gen-
eral productivity-vs-performance question for graph analytics.

In short, our goal is not to come up with a new graph processing
benchmark or propose a new graph framework, but to analyze ex-
isting approaches better to find out where they fall short especially
when used for more general machine learning problems on graphs
(such as collaborative filtering) with a native, hand-optimized im-
plementation as a reference point.

8. CONCLUSION
In this paper, we aim at reducing the performance gap between

optimized hand-coded implementations and popular graph frame-
works for a set of graph algorithms. To this end, we first developed
native implementations that are only limited by the hardware and
showed that there is a 2-30X performance gap between native code
and most frameworks (up to 560X on Giraph). Using a set of per-
formance metrics, we analyzed the behavior of various frameworks
and the causes of the performance gap between native and frame-
work code. We use our understanding of optimization techniques
from native code and our analysis to propose a set of recommended
changes for each framework to bridge the Ninja gap. These rec-
ommendations will enable different frameworks to be made com-
petitive with respect to performance, thus simplifying the choice of
framework for the end user.

9. REFERENCES
[1] Combinatorial Blas v 1.3. http://gauss.cs.ucsb.

edu/~aydin/CombBLAS/html/.
[2] Galois v 2.2.0. http://iss.ices.utexas.edu/?p=

projects/galois/download.
[3] Graphlab v 2.2. http://graphlab.org.
[4] sar Manual Page. http://pagesperso-orange.fr/

sebastien.godard/man_sar.html.
[5] The Linpack Benchmark.

http://www.top500.org/project/linpack/.
[6] The Message Passing Interface (MPI) standard. http:

//www.mcs.anl.gov/research/projects/mpi/.
[7] Yahoo! - Movie, Music, and Images Ratings Data Sets.

http://webscope.sandbox.yahoo.com/catalog.php?datatype=r.
[8] Apache giraph. http://giraph.apache.org/, 2013.
[9] J. Bennett and S. Lanning. The Netflix Prize. In KDD Cup

and Workshop at ACM SIGKDD, 2007.
[10] N. Bronson, Z. Amsden, et al. Tao: Facebookś distributed

data store for the social graph. In USENIX ATC, 2013.
[11] A. Buluc and J. R. Gilbert. The combinatorial blas: design,

implementation, and applications. HPCA’11, 25(4):496–509.
[12] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey. Fast

and efficient graph traversal algorithm for cpus: Maximizing
single-node efficiency. In IPDPS, pages 378–389, 2012.

[13] A. Ching. Scaling apache giraph to a trillion edges. www.
facebook.com/notes/facebook-engineering/
scaling-apache-giraph-to-a-trillion-edges/
10151617006153920, 2013.

[14] T. Davis. The University of Florida Sparse Matrix
Collection. http://www.cise.ufl.edu/research/sparse/matrices.

[15] J. Dongarra. Compressed Row Storage.
http://web.eecs.utk.edu/~dongarra/
etemplates/node373.html.

[16] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent. In ACM SIGKDD, pages 69–77, 2011.

[17] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella,
and T. L. Willke. Towards benchmarking graph-processing
platforms. In Poster at Supercomputing, 2013.

[18] T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel.
Discovering regulatory and signalling circuits in molecular
interaction networks. Bioinformatics, 18(1):233–240, 2002.

[19] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer,
42(8):30–37, 2009.

[20] H. Kwak, C. Lee, H. Park, and S. B. Moon. What is twitter, a
social network or a news media? In WWW, pages 591–600,
2010.

[21] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A new parallel framework for
machine learning. In UAI, July 2010.

[22] T. Mattson, D. Bader, et al. Standards for graph algorithm
primitives. In HPEC, pages 1–2, 2014.

[23] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang.
Introducing the graph 500. Cray User’s Group (CUG), 2010.

[24] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In Proc. SOSP, 2013.

[25] M. M. A. Patwary, R. H. Bisseling, and F. Manne. Parallel
greedy graph matching using an edge partitioning approach.
In ICFP Workshops at HLPP’10, pages 45–54. ACM, 2010.

[26] K. Pingali, D. Nguyen, M. Kulkarni, et al. The tao of
parallelism in algorithms. In PLDI, pages 12–25, New York,
NY, USA, 2011. ACM.

[27] S. Salihoglu and J. Widom. Gps: A graph processing system.
In Scientific and Statistical Database Management. Stanford
InfoLab, July 2013.

[28] N. Satish, C. Kim, J. Chhugani, and P. Dubey. Large-scale
energy-efficient graph traversal: a path to efficient
data-intensive supercomputing. In SC, pages 1–11, 2012.

[29] N. Satish, C. Kim, J. Chhugani, P. Dubey, et al. Can
Traditional Programming Bridge the Ninja Performance Gap
for Parallel Applications? In ISCA’12, pages 440–451, 2012.

[30] J. Seo, S. Guo, , and M. S. Lam. SociaLite: Datalog
extensions for efficient social network analysis. ICDE’13,
pages 278–289, 2013.

[31] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed sociaLite:
A datalog-based language for large-scale graph analysis.
Proceedings of the VLDB Endowment, 6(14), 2013.

[32] J. D. Ullman. Principles of database and knowledge-base
systems, volume ii. 1989.

[33] K. V. IP over InfiniBand (IPoIB) architecture. RFC 4392.
[34] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y.

Zhao. User interactions in social networks and their
implications. In EuroSys, pages 205–218, 2009.

[35] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
Graphx: a resilient distributed graph system on spark. In
GRADES, page 2, 2013.

[36] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
USENIX Hot Cloud, pages 10–10, 2010.

http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/
http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/
http://iss.ices.utexas.edu/?p=projects/galois/download
http://iss.ices.utexas.edu/?p=projects/galois/download
http://graphlab.org
http://pagesperso-orange.fr/sebastien.godard/man_sar.html
http://pagesperso-orange.fr/sebastien.godard/man_sar.html
http://www.top500.org/project/linpack/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
http://web.eecs.utk.edu/~dongarra/etemplates/node373.html
http://web.eecs.utk.edu/~dongarra/etemplates/node373.html

	Introduction
	Choice of algorithms
	Challenges

	Choice of frameworks
	Example - PageRank
	Mapping Algorithms to Frameworks

	Experimental Setup
	Choice of Datasets
	Real world Datasets
	Synthetic Data Generation

	Framework versions
	Experimental Platform

	Results
	Native implementation bottlenecks
	Single node results
	Multi node results
	Framework Analysis

	Discussion
	Native implementations
	Key optimization techniques
	Impact of the optimization techniques
	Testcase: Improving SociaLite and Giraph

	Roadmap for framework improvements

	Related Work
	Conclusion
	References

