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ABSTRACT

As peoples’ participation in social media increases, online
social identities accumulate contacts and data. We need a
mechanism for creating a succinct but contextually rich rep-
resentation of a person’s “social landscape” that would facil-
itate activities such as browsing personal social media feeds,
or sharing data with nuanced social groups.

We formulate the social topology extraction problem as
the compression of a group-tagged data set in which each
group has a significance value, into a set containing a smaller
number of overlapping and nested groups that best represent
the value of the initial data set. We present four variants of
a greedy algorithm that constructs a user’s social topology
based on egocentric, group communication data. We ana-
lyze our algorithm variants on about 2,000 personal email
accounts and 1,100 tagged Facebook photograph collections.
We find that our algorithm variants produce different topolo-
gies suitable for different purposes.

We show that our algorithm can capture 80% of the in-
put data set value with 20% and 42% of the number of
input groups for email and photographs respectively. Us-
ing edit distance as an objective metric, we also show that
our algorithm outperforms results generated by Newman’s
modularity-based clustering algorithm. We conclude that our
algorithm is appropriately designed to find significant groups
of friends from social contact data.

1. INTRODUCTION

While millions of users have accumulated large lists of
“friends” in online social networks, managing these flat lists
is challenging. A natural organizing principle is to assign
friends to different categories that can then be used for tar-
geted sharing and filtering of social content. However, ex-
isting tools such as Facebook friends lists or Gmail contact
groups require users to create these lists from scratch, mak-
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Figure 1: An example of a social topology.

ing this a tedious task that is not done by most users [20].
To address this problem, we present a novel algorithm for
compressing a user’s communication data into a compact set
of relevant groups that may be useful for the aforementioned
tasks.

1.1 Social Topology

MacLean et al. have proposed the concept of a social topol-
ogy — the structure and content of a person’s social affilia-
tions, comprising a set of overlapping and nested groups — as
a first-class structure for facilitating social-based tasks such
as data sharing or digital archive browsing [13]. We exploit
the observation that a user’s social topology is captured im-
plicitly in routine communications, photographs, and others
forms of personal data. In this paper, we present a novel algo-
rithm for generating a social topology from a user’s grouping
data, assuming a constraint on the size of a social topol-
ogy. We define group communications data as corpora in
which items may be tagged with more than one social iden-
tity; for example, email, tagged photograph collections, and
co-location data.

Figure 1 shows several defining properties of a social topol-
ogy. First, any individual in the topology may appear in sev-
eral groups. This models people who play several roles in the
user’s life, such as being both a colleague and a friend. Sec-
ond, it may contain manufactured groups — group of people
who never occur together in a single item in the original data
set. Consider a university lab whose membership changes
annually: a “core” group, such as a faculty team, might per-
sist in the group over time, but never appear uniquely in a
photograph collection. Third, social topology groups may



be nested. This captures specific subgroups within a super-
group, such as siblings within a family. Finally, a “group”
may consist of just a single individual who is sufficiently im-
portant.

We formulate the problem of deriving a social topology as
follows: given a data set d of group communications data, a
value function v which measures the significance of a group
with respect to d, and a budget of b groups, find b groups
whose aggregate value is maximized. We derive these groups
only from the data that is directly visible to the user, making
these groups ego-centric.

1.2 Contributions

The contributions of this paper include:

e A greedy algorithm for constructing social topologies
from group communications data. The algorithms make
different trade-offs and can be tuned based on the tar-
get application. Our algorithm is incorporated in a
Facebook application called GroupGenie®.

e A validation and comparison of our algorithm using two
data sets: a collection of 1,995 personal email archives
containing over 24 million sent email messages and a set
of 286,038 tagged photos from 1,099 Facebook users.

e An evaluation and comparison of social topologies con-
structed from these data sets. The evaluation includes
a comparison with Newman’s clustering algorithm us-
ing edit distances as an information-theoretic metric.

Source code for the algorithm is also publically available?.

2. RELATED WORK

There is a substantial body of work in analysis of social
data, both for global (e.g., [9, 11]) and ego-centric (e.g., [4,
7, 14]) networks. Below, we discuss and contrast prior work
with our approach.

Clustering algorithms aim to elicit communities from a
graph structure. Traditional algorithms based on hierarchical
agglomerative clustering partition the input graph, disallow-
ing node overlap between clusters [3, 17]. We find this ap-
proach unsuitable for our purposes, as one person can adopt
several social roles simultaneously.

Palla et al. present an algorithm that discovers overlapping
communities in global, unweighted networks [18]. Commu-
nities are generated in a bottom-up fashion from k-cliques.
Taking a different approach, Banerjee et al. introduce “model
based clustering”, a probabilistic graphical model for infer-
ring overlapping clustering [2]. Huberman et al. extract over-
lapping social clusters by running an edge betweenness clus-
tering algorithm several times, starting from a network where
an unweighted edge exists between 2 people if 5 or more
messages were exchanged between them [23]. Lancichinetti
et al. present another method for detecting overlapping and
hierarchical structure in complex networks [10].

There are three major differences between our work and
the above algorithms. First, these algorithms make the as-
sumption that the global structure of the network is available.
Second, many of them are evaluated on networks formed by
publicly available information, while we evaluate our algo-
rithm on personal data, where there may be different patterns

"http://mobisocial.stanford.edu/groupgenie
2https://github.com/mobisocial /groupgenie-algo/

of group formation. Third, the input model of the graph is
reduced to edges between individuals, ignoring the fact that
the input data was grouped in the first place.

Visualization and interface techniques such as Con-
tactMap [24], Vizster [8] and LinkedIn InMaps [12] help users
view and organize their social networks. Previously pub-
lished work by MacLean et al. describes an algorithm to de-
rive overlapping and hierarchical groups, and an interface to
edit those groups [13]. This algorithm required the use of sev-
eral parameter settings and was evaluated in a smaller study
involving email data sets of 19 users; moreover it does not
seamlessly handle individuals. In contrast, the work reported
in this paper presents an algorithm with better accuracy, and
has been evaluated on a larger scale on multiple data sets.

Association rule mining is a technique for finding re-
lated item sets in a corpus, given a specific seed [1]. Roth et
al. present a group-finding algorithm for Gmail in which the
goal is to complete the group as accurately as possible given
an initial seed [19]. Like us, they assume that communica-
tions reflect implicit social structure, and use communication
frequency as a proxy for tie strength. They develop an in-
teractions rank metric that gives an ordering over unique re-
cipient groups, allocating points according to communication
frequency, recency, and direction. However, seed-based ap-
proaches are generally inadequate for the purposes of helping
users construct a social topology; for example, Gmail users
cannot access the set of probable groups or use them for other
purposes. As a result, the algorithm does not directly create
a summary of the input groups.

Graph summarization techniques are often applied to
the problem of web graph compression. A small portion of
graph summarization research focuses specifically on reduc-
ing the size and complexity of network data. Tian et al.
present two approaches: SNAP, for lossless compression and
k-SNAP, for lossy compression [22]. Taking an information-
theoretic approach, Navlakha et al. employ the minimum de-
scription length (MDL) principle to produce a graph sum-
mary and a list of “corrections”, allowing for both compres-
sion and perfect reconstruction of the input graph. The graph
may be optionally reduced if lossy compression can be per-
mitted [15]. The same authors employ this method to obtain
rich but manageable summaries of protein interaction net-
works [16].

3. ALGORITHM

Our goal is to derive a user’s social topology, consisting of
potentially overlapping and nested groups of friends, from a
corpus of a user’s group communication. Our algorithm is
parameterized to find the most significant given number of
groups.

3.1 Problem Statement

We define a social topology to be a set of unique, poten-
tially overlapping and nested groups, each of which has some
value, and each of which is comprised of members drawn from
the user’s global set of friends. Permitting nested groups
lends increased granularity to the topology, while permit-
ting overlapping groups allows us to represent people who
play multiple roles in the subject’s life. Intuitively, the value
of a group reflects the proportion of information that the
user chooses to share with it, and we consider groups with a
higher information share to be more important than others.
We generate social topologies from a single user’s ego-centric



grouping data such as email records or tagged Facebook pho-
tographs.

Ego-centric group communication datasets already contain
a natural social topology: the unique groups that occur to-
gether on items in the data set. Each of these groups can
be assigned some appropriate valuation. For example for a
user’s collection of sent email, the natural social topology
would be the unique recipient sets in the data set, and the
value of each recipient set might be a function of its size and
the number of messages on which it appears. Therefore our
task of social topology construction is a task of compression,
in which we want to reduce the natural social topology into a
manageable size, while maximizing its value. We may need to
combine groups in various ways, as well as drop groups from
the topology altogether, if needed. Our problem formulation
requires that each group in the original social topology be
represented by at most one group in the compressed topol-
ogy.

Depending on the objective, there are different trade-offs
in generating a social topology. For example, we may wish
to create a social topology that includes mostly core persons
from different facets of our lives. Alternatively, we may wish
to create a social topology containing as many related people
as possible. In order to accommodate such diverse objectives,
we introduce the notion of a value function that evaluates the
value of each group in the generated social topology based
on its mapping from the original one.

The social topology compression problem is thus defined
as follows. Given

e a set of friends F,

e a natural social topology S consisting of unique groups
g C F, where the value function vg(g) denotes the sig-
nificance of the group g,

e a size b which is our budget, or number of groups re-
quired in the final topology,

e a value function v(g,r), where g is the representative
for a set of groups r C S.

find a social topology S’ and a representation map R, map-
ping each g € S’ to a non-overlapping set in S, such that
> ges V(g R(g)) is maximized.

3.2 The Sharing Value Metric

Our value function is based on a model of information shar-
ing and over-sharing. Intuitively, if group g in the original
social topology maps to group ¢’ in the final social topology,
the value is high if ¢’ has the same members and low if ¢’ has
many additional members. The ratio between the number of
common elements to the size of g determines the fraction of
the positive contribution of g’s value to g’. For each friend
in ¢’ and not in g, information from g is over-shared. Since
different uses of social topologies may desire different over-
sharing penalties, we allow the algorithm be parameterized
with a penalty weighting function w(f, g) that determines the
penalty to be applied to each unit of over-sharing with friend
f not in group g. We thus define a value function based on
information sharing as
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where w(f,g) is the over-sharing penalty to be applied to
friend f for group g.

One possible penalty weighting function is a simple con-
stant, i.e.,

w(f,g)=C

If C' is 0, there is no penalty for over-sharing; if C is 1,
every person that a data item is overshared with costs as
much as the value contributed by a person who was in the
original group that the item was shared with.

A more sophisticated approach is to use a weighting func-
tion that depends on the relationship between the original
group and the friends an item was over-shared with. Friends
who are not in the original group g, but participate with
members in group g in other groups, should have a lower
sharing penalty. Let P(f|f’) denote the conditional proba-
bility of not finding f in groups containing f’. Then we can
define a function for the over-sharing penalty weight as
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3.3 A Greedy Algorithm

We define a set of permissible actions, called moves, that
may be taken on groups in a social topology. All moves re-
duce the social topology size by 1 and reduce the value of
the topology according to its error function. Starting with
the natural social topology, our algorithm greedily picks the
move that maximizes the value of the resulting social topol-
ogy until the topology is reduced to the desired size b.

We define the initial representation mapping R to simply
map each group g to itself; if g is a group in the original topol-
ogy, v(g,{g9}) = vo(g). The moves and their error functions
are defined below.

e DISCARD. Discard a group from the topology, thus los-
ing the group’s entire value.

Ebpiscarp (g,7) = v (g,7)

e MERGE. Merge two groups to create a union that in-
herits the combined value, appropriately penalized to
account for their membership mismatch. The over-
sharing penalty built into the value metric ensures that
the most closely related groups have the lowest error.

Evgrce (91,71, 92,72) = v (g1,71) +
v (g2,m2) — v (91U g2,m1 UT2)

e INTERSECT. Intersect two groups to capture the impor-
tance of a shared subset.

Einrersecr (91,71, 92,72) = v (g1,71) +
v (g2,m2) — v (91N g2,m1 UT2)

e TRANSFER. Transfer the representation of a second
group to the first group; the second group is discarded,
but its value is partially transferred to the first, taking
into account the over-sharing penalty.

Erransrer (91,71, 92,72) = v (g1,71) +

v (g2,7m2) —v (91,71 UT2)

3.4 An Approximate Algorithm

In the algorithm above, each group’s value is defined in
terms of the values of the original groups they represent.
To simplify the algorithm, we adopt the model where each



member in a derived group contributes equally to the group’s
value. We can thus approximate the value of a derived group
with a single quantity and compute the error term for each
move based on the approximate value of its operands. The
approximate value function is defined as

5 — 'Uo(g), ifge S,
vlg) = { T(g1) +0(g2) — Em(g1,92), if g =m(g1,92)

where m(g1,g2) is the result of applying move m to g1 and
g2. (Unary moves like discard are similarly defined.) Since in
this model, the value of a group is considered uniformly dis-
tributed across all its members, the over-sharing error simply
depends on the ratio of additional people getting the infor-
mation to the size of the group. The error functions are thus
analogously defined as:

Episcarp(g) = 0(g)
Enierce(g1, 92) =
Yoo Totw (Fo1Uge) +
Zf691*92 /_U\(gg;\)w (f,91Ug2)
v v
EixtERSECT (91, 92) = Z (1) + Z (52)

f€g1—9g2 |gl| f€g2—9g1 |92|

Erransrer(91,92) =
v(g2) v(g2)
Zf691*92 \922\ w(f,g1 ng)+zf€g2*91 \922\

The experimental results presented in this paper are based
on this approximate algorithm, as summarized in Algorithm
1.

Algorithm 1 compressTopology(S)

Input Initial topology S = {g:},

a set of unique groups and values 7(g;).
Input A budget b, the size of the final topology.
Output S, the final topology

while |S| > b do
g* < m(g1,g2) where m is the lowest loss move Vg € S
v(g™) «— v(g1) +0(g2) — Em(g1,92)
S—8S+g9"—g1— g

end while

4. EXPERIMENTAL EVALUATION

We have evaluated different versions of our algorithm on
2 types of datasets, one using personal email archives, and
another using Facebook photo tags.

4.1 Email

Our email dataset is comprised of email headers from 1,995
users’ personal email archives, totaling over 24 million sent
email messages. The dataset, provided by Xobni Inc., was
collected from a subset of users of their Xobni Cloud service.
The data we received was fully anonymized; all personally-
identifiable information had been removed. Most of these
users connected to Xobni via Outlook, so we estimate that
much of the email activity may be work related. Figure 2
outlines statistical properties of the corpus. We restrict our

| | Messages | People | Groups | Group Size |

Lower Q. 2038 329 373 1
Median 6640 738 1104 1
Upper Q. 14684 1422 2451 1
Max 159697 20813 24306 2825
Mean 11521 1109.5 1814.9 1.5
Std Dev 15205.1 1328.6 2231.4 2.3

| Total | 24228571 | 2213486 | 3816668 | 35781399 |

Figure 2: Summary of the 1,995-person email data
set.

| | Photos | People | Groups | Group Size |

Lower Q. 31 28 19 1
Median 106 62 54 2
Upper Q. 325 130 142 3
Max 3062 594 1050 111
Mean 260.3 90.9 109.6 2.4
Std Dev 392.2 88.8 143.7 2.8

| Total [ 286038 | 99910 [ 120457 | 682126 |

Figure 3: Summary of the 1,099-person photo data
set.

algorithm input to sent email only, noting that this is a more
accurate signal for social importance, as sending an email in-
curs a cost on the user, whereas receiving one does not [13].
This also has the advantage of excluding spammers and ad-
vertisers. We see some startling anomalies in the data set,
such as an individual who sent as many as 160,000 messages,
and a message addressed to 2,826 recipients! Note that the
majority of messages are sent to only one person.

4.2 Tagged Photos

Just as emails capture co-occurrence of recipients on mails,
tagged photographs capture physical co-occurrence of sub-
jects. Given the fact that photo sharing is one of the most
popular forms of online social activity, tagged photographs
are an excellent source of social topology data. To evaluate
our algorithm on tagged photos, we have developed Group-
Genie, a Facebook application that allows Facebook users to
infer their social topology from their tagged photo data.

GroupGenie users have found the social groupings sug-
gested to them by our algorithm helpful for both data shar-
ing and communication tasks, and for a certain degree of
personal self-reflection. An informal pilot study of about 30
users aged 17-19 found that the groups suggested to them
were good enough, with a few minor edits, to publish to
their profile pages as Facebook Featured Friends [6]. Some
found it useful to use their groups in Facebook Chat [5] to
do group-wide chats.

At the time of this writing, 1,099 Facebook users have used
GroupGenie. Most of these users discovered GroupGenie
through friends, and from a press article about an earlier
version of this work [21], suggesting strong interest among
Facebook users in tools to help them create groups.

Figure 3 provides summary statistics of the tagged pho-
tograph corpus. Note that the owner of the Facebook ac-
count, if present, is excluded from the input groups. There



are distinct differences between this data set and the email
data set in terms of group density. In particular, the average
group size in a photograph is 2.4, compared to the aver-
age number of recipients on an email, which is 1.5. More-
over, more than half of the photographs are tagged with at
least 2 people excluding the user; in contrast, a majority of
emails involve only one other person excluding the user. On
the other hand, tagged photograph collections are typically
smaller than email collections, presumably due to the larger
effort required to take, upload and annotate photographs.

5. ANALYSIS OF EMAIL DATASET

We run our experiment on four variants of our algorithm:

DISCARD. Considers only discard moves. This straw-man
version simply reports the top b initial valued groups
for a given budget b.

MERGE. Considers discards and merges, with a simple fixed
penalty weight of 0.5.

COND-MERGE. Considers discards and merges, with a con-
ditional probability metric for sharing penalty.

COND-ALL. Considers all moves, with a conditional proba-
bility metric for sharing penalty.

We define the initial value, or significance, of each input
group g as vo(g) = min(|g|, sizeT hreshold) x msgCount(g).
Intuitively, this captures the proportion of the corpus repre-
sented by g. The parameter sizel hreshold prevents large
groups, which are often once-off mailing lists, from being
awarded excessively large initial values. Empirically, we set
sizeT hreshold = 20.

5.1 Algorithm Illustration

To provide insight into our algorithm, we first present its
behavior on one user’s data. As shown in Figure 4, all algo-
rithm variants capture a significant fraction of the value with
a small percentage of groups, with DISCARD, COND-MERGE,
MERGE, and COND-ALL in increasing order of value captured
for a given topology size. DISCARD allows no over-sharing; its
sharing penalty is effectively co. COND-MERGE allows sharing
mainly among those who are already sharing other messages.
Next is MERGE, with a fixed penalty weight of 0.5, the algo-
rithm is allowed to perform more merging.
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Figure 4: Social topologies for a representative data
set.

COND-ALL has the highest compression ratio, though it ac-
tually discourages sharing in the final topology. Because the
value of one group can be transferred to another with a shar-
ing penalty, COND-ALL tends to identify the super individuals

and groups that may play different roles in a user’s interac-
tion. Consider, for example, a secretary who is carbon-copied
on all work-related emails. The secretary can amass a very
large value as partial credit is transferred to him as low-
frequency groups are dropped.

5.1.1 Aggregate Behavior

We glean additional insight about our algorithm’s behavior
by analyzing the frequency of the move types aggregated over
the entire email data set. Figure 5 shows move frequency
plotted against normalized algorithm progress.
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Figure 5: Algorithm behavior over the email corpus.

We see that in MERGE and COND-MERGE, there are dis-
tinctive alternating phases of merges and discards. The pe-
riodicity reduces over time with merges dominating at the
beginning and discards dominating near the end. As the al-
gorithm takes the move with the minimum value reduction,
the periodicity results from the fact that there are many ini-
tial groups with values 1, 2, and so forth. Many discards of
groups of value 1 kick in as the minimum drop in the algo-
rithm reaches 1. Since the merged groups no longer have in-
tegral values, the choice between discards and merges become
more irregular. Near the end of the algorithm, the remaining
groups are distinct enough that merging them would incur
a higher penalty than discarding them, thus we see many
discards near the end. COND-MERGE is similar to MERGE, ex-
cept that MERGE performs more unions since it has a lower
sharing penalty.

COND-ALL has two more moves than MERGE: intersects



and transfers. Almost all the intersect moves occur between
supersets and subsets. In such cases, intersects produce the
same topology as discards of the larger group, but the smaller
group now accumulates more value due to the transfer of
value. Including this move favors the creation of smaller
groups and helps identify the core people in each group. Sim-
ilarly, transfer moves also create pressure to produce smaller
groups, since values can be transferred from one group to
another. Together, intersect and transfer moves reduce the
number of merges.

5.2 Value Concentration

Figure 6 plots the median fraction of summary groups that
capture a given fraction of value.
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Figure 6: The values of social topologies obtained for
the email corpus.

We see from the summary in Figure 7 that 50% of the
value can be captured by 7% or less number of groups. If
we are willing to tolerate some over-sharing, we can com-
press the social topology further. MERGE needs only 23%
of the groups versus DISCARD’s 34% to capture 80% of the
value. COND-MERGE only supports merging of closely related
friends, causing the need of slightly more groups. As dis-
cussed above, since COND-ALL allows the value of a group to
be transferred to another, without having to include all mem-
bers of the group, COND-ALL achieves the best value with the
smallest number of groups. To reach 80%, COND-ALL needs
a social topology whose size is less than 20% of the original.

| | DISCARD | MERGE | COND-MERGE | COND-ALL |

0.5 0.07 0.04 0.05 0.03
0.6 0.13 0.08 0.09 0.05
0.7 0.21 0.13 0.16 0.10
0.8 0.34 0.23 0.27 0.19

Figure 7: Fraction of groups needed to achieve a
given fraction of the value.

5.3 Small Social Topologies

Since many users in our corpus have over 1,000 groups,
even 10% of groups might be overwhelming for the user to
review. How much value can be captured by a few tens of
groups? Figure 8 shows the median of the values captured
for the fixed size social topologies and Figure 9 tabulates the
values for topologies with 10, 25, and 50 groups. We find
that the top 10 groups capture 24-34% of the value and the
top 50 groups capture 44-57%, depending on the algorithm
variant used.

0.7
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Figure 8: Values of small social topologies.

Our algorithm treats singletons the same as any other
groups, allowing us to rank individuals uniformly against
groups. However, certain applications may not need to be
concerned with singletons. For example, a tool that helps
users name groups only needs to show non-singleton groups,
since individuals already have a name. We thus show the
number of non-singletons in Figure 9 for reference. The ma-
jority of the top groups in email turn out, not surprisingly,
to be singletons. As the allowance for over-sharing grows
from COND-ALL, COND-MERGE, to MERGE, the number of non-
singleton groups increases slightly. Thus for applications that
work with only non-singletons, just 2-4 groups are needed to
reach 24-34% of the value and 8-11 groups reach 35-47%.

| | DISCARD | MERGE | COND-MERGE | COND-ALL |
10 [ 024 (2) | 0.28 (4) 026 (3) ] 034 (3)
25 [ 0.35 (8) | 0.40 (11) 0.38 (10) | 0.47 (8)
50 | 0.44 (21) | 0.51 (25) 0.49 (24) | 0.57 (18)

Figure 9: Values of social topologies with selected
sizes. Non-singleton groups are shown in parenthe-
ses.

[ | DISCARD | MERGE | COND-MERGE | COND-ALL |

Non-singleton 21 25 24 18
New groups 0 14 6 0
Group size 2.6 6.1 3.5 2.5
People 60 162 84 71
Roles/person 2.0 1.8 1.9 1.6

Figure 10: Properties of social topologies of size 50.

Which version of the algorithm should an application use?
The different variants produce different topologies. Figure 10
shows additional properties of social topologies of size 50. It
is clear from the figure that MERGE generates the largest so-
cial topology, followed by COND-MERGE. Perusal of the au-
thors’ own social topologies suggests that MERGE can create
somewhat noisy groups consisting of people who are only pe-
ripherally related. Social topologies created by COND-MERGE
are fairly coherent, and are the recommended choice for gen-
erating groups from social network data. On the other hand,
COND-ALL is suitable for distilling key members of each group.
We observe that no new groups are created for the COND-ALL
case; since there is heavy traffic within the core groups, it is
highly likely that there is at least one message sent to the
entire core group.



5.4 Significant Groups

For applications without a fixed budget, it is useful to re-
port to the user only the significant groups of his or her
topology. Showing too many groups can bore the user, while
showing too few might miss important groups. We can lever-
age our valuation framework to choose the appropriate num-
ber of groups to present. The average value of a group in
the input data set serves as a baseline for the importance of
a group. To identify groups that stand out above the aver-
age, we can simply display groups with value greater than
one standard deviation above the average value of the input
data. We can alter the algorithm to stop when the error
for a move exceeds this threshold. As shown in Figure 11,
the median of 11 groups was directly identifiable from the
input data set (DISCARD); COND-ALL and COND-MERGE iden-
tify a median of 15 significant groups for the email data sets
and MERGE identifies 14. These numbers appear to be quite
reasonable in practice.
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Figure 11: The cumulative distribution of the num-
ber of significant groups in the email corpus.

6. ANALYSIS OF PHOTOS

We analyzed the four variants of the greedy algorithm de-
scribed in the previous section for Facebook photo tags. All
plots shown represent the median observed in the data set.

6.1 Value Concentration

We observed the same overall trends with the photo data
set as we saw in the previous section. In Figure 12, the
fractional value curve climbs less steeply than in Figure 6,
suggesting higher diversity in the photo data set compared
to email. Figure 13 shows that COND-ALL requires only 15%
of the groups to capture 50% of the value, and 42% to capture
80% of the value.
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Figure 12: The values of social topologies obtained
for the photo corpus.

| | DISCARD | MERGE | COND-MERGE | COND-ALL |

0.5 0.26 0.15 0.17 0.15
0.6 0.35 0.21 0.24 0.21
0.7 0.46 0.29 0.33 0.29
0.8 0.60 0.41 0.45 0.42

Figure 13: Fraction of groups needed to achieve given
fraction of the value for photos.

One observed difference from email is that all variants
other than DISCARD have almost identical curves. This sug-
gests that the photo data set may be capturing tighter friend-
ships since the trend of core friends tracked by the COND-ALL
variant is similar to the MERGE variant which tends to create
groups including more peripheral relationships.

From Figure 13, we see that DISCARD needs 26% of the
groups to capture 50% of the value, whereas COND-ALL needs
only 15%. That is, COND-ALL is better than DISCARD at
compressing the social topology by a factor of 1.7. COND-ALL
has compression improvement of 1.4 to 1.7 times for photos
over DISCARD; it has an improvement of 1.8 to 2.6 for email.

6.2 Small Social Topologies
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Figure 14: Values of small social topologies derived
from photos.

If we wish to help users create Facebook friends lists to
avoid over-sharing, it is important that we do not overwhelm
them with too many groups. Even though a higher fraction
of groups is needed than email, since photos are a smaller
data set, the value is captured by a relatively small number
of groups. Figure 14 shows the median of all values obtained
for group sizes up to 100, and Figure 15 shows a few sam-
ples of the data. For example, with just 10 groups, 60% of
value is captured by the COND-ALL algorithm, compared to
34% for the email data set. We see that the percentage of
non-singleton groups is much higher, reflecting the fact that
photo-taking is a gregarious activity, unlike email which often

| | DISCARD | MERGE | COND-MERGE | COND-ALL |
10 ] 042 (8) ] 0.62 (9) 055 (8)] 0.60 (7)
25 | 0.60 (21) | 0.77 (21) 0.72 (21) | 0.76 (18)
50 | 0.70 (42) | 0.85 (41) 0.80 (42) | 0.84 (37)

Figure 15: Values of photo-based social topologies
with selected sizes. Non-singleton groups are shown
in parentheses



involves correspondence with only one other person.

More characteristics of social topologies with 25 groups are
shown in Figure 16. Note that the number of non-singleton
groups included here are determined more by the data set
than the algorithm. In this case, even the COND-ALL variant
has a couple of new groups; it is harder to take a photo of
a cohesive but broad group, whereas it is common to write
at least one message to it. The median of the average group
size is much higher across the board. MERGE still derives
larger groups and includes more people, but not substantially
more. The results show that people on average play about
two roles, confirming the importance of our unique ability to
find overlapping groups.

| | DISCARD | MERGE | COND-MERGE | COND-ALL

Non-singletons 21 21 21 18
New groups 0 11 4 1
Group size 4.5 6.9 4.8 2.9
People 54 90 64 57
Roles/person 2.1 2.0 1.9 1.8

Figure 16: Properties of social topologies of size 25
from photos.

6.3 Significant Groups

Photo tagging data shows a distinctly lower number of sig-
nificant groups than the email data set. In Figure 17 we see
that the photo data set has a median of 7 significant groups.
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Figure 17: The cumulative distribution of the num-
ber of significant groups for the photo corpus.

7. EVALUATION BY EDIT DISTANCE

We now compare our algorithm variants with Newman’s
fast greedy clustering algorithm [17], which is a commonly
used algorithm for discovering communities in social graphs.
For this purpose, we used the implementation of Newman’s
algorithm in the igraph package of R. Unlike our algorithm,
Newman’s algorithm partitions the nodes in the graph into
clusters via optimization of a modularity metric. As a neutral
objective function, we select edit distance, an information-
theoretic metric that is not a direct objective for either our
algorithm or Newman’s.

The edit distance between two words is defined as the min-
imum number of character alterations required to modify one
of the words until it is equivalent to the second. We employ
a modified version of edit distance for group communication
data. The edit distance for a collection of communications C'

given a social topology S is

EditDistance(S,C) = Z minges [cU s| — |eN s|
ceC

Intuitively, this metric captures the minimum number of
insertions and deletions needed to specify the participants for
each communication given a topology. The edit distance for
each group is the number of members added and subtracted
from its closest matching group in the topology. The sum of
such edits defines the edit distance of a topology with respect
to a set of groups. The largest possible edit distance is simply
the sum of the sizes of the input groups.

We performed an experiment where we compute the edit
distances for both the email and photo data sets using New-
man’s algorithm and the four variants of our algorithm. Each
sent message and each tagged photo is treated as one unit of
communication. We simply treat all the clusters generated
by Newman'’s algorithm as the social topology for a user. As
shown in Figure 18, the ratios of the minimum edit distance
to the maximum edit distance (the total size of all the input
groups) are similar for the two types of data, with the medi-
ans being 0.93 and 0.84 for email and photos, respectively.

| | Group Size | # Groups | Edit Distance Ratio |

Email 1 118 0.93
Photos 3 6 0.84

Figure 18: Median group parameters and edit dis-
tance ratios for Newman clustering.
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Figure 19: Comparison of the EditDistance metric
across all 4 algorithm variants for the (a) email cor-
pus and (b) photo corpus.

For our social topology algorithm, edit-distance ratios ob-
tained is a function of the number of groups in the social
topology. The medians of the edit-distance ratios are thus
plotted in Figure 19. The results show that our algorithm
outperforms Newman clustering in minimizing edit-distance



ratios. All variants of our algorithm beat the clustering algo-
rithm with just 4 groups for email and 3 groups for photos.
There is a significant difference in edit-distance ratios be-
tween the email and photo datasets. 10 groups generated by
COND-ALL yield median ratios of 0.81 and 0.56 for emails and
photos respectively; 25 groups yield ratios of 0.74 and 0.38.

Edit-distance ratios do not differ significantly between so-
cial topology algorithm variants, but we note that MERGE
produces a worse edit-distance ratio than DISCARD. Given
that MERGE uses a penalty weight of 0.5 for over-sharing
whereas the penalty of a deletion for edit distances is 1, this
makes sense. The goal of MERGE is find related people and
not to optimize edit distance. Similarly, it is not expected
for Newman’s algorithm to produce small edit-distance ratios
either. We performed this comparison mainly to illustrate
how our algorithm is different from standard clustering algo-
rithms. Our algorithm aims to identify the significant, possi-
bly overlapping, groups where individuals may play multiple
roles.

8. CONCLUSION

Unlike most other social network analysis algorithms that
detect groups from global network data, our algorithm helps
individuals automatically identify and use their social groups
by analyzing their online social actions.

We formulated the social topology extraction problem as
the compression of a natural social topology, where initial
groups are labeled with their significance value, to a desired
size according to a metric function that biases the compo-
sition of desired groups. We proposed a simple greedy al-
gorithm derived from this value metric. Our algorithm can
be used to produce the best representation of a social topol-
ogy for a given size budget, though it can also automatically
determine the number of significant groups a user has.

We have made publicly available two applications based
on our algorithm to help users define friends groups and
lists based on email and photo tags®. We are encouraged by
the enthusiasm expressed by our users; the applications have
been well received and it appears that the results are good
enough to be interesting to many users. Our algorithm and
source code are publicly available, and can be downloaded at
the above URL.

We have performed an analysis of our algorithm over ap-
proximately 2,000 email archives and 1,100 photo collections,
the latter collected by our Facebook application. We show
that our algorithm is significantly different from the popular
Newman’s clustering algorithm for community detection. Us-
ing edit distances as an information-theoretic metric, we see
that even a tiny topology consisting of 4 groups for email and
3 groups for Facebook produces significantly smaller edit dis-
tance ratios than Newman’s algorithm. Our algorithm, with
its ability to find nested and overlapping sets, is designed to
find significant groups of friends from social data.

We found that both the email and photo corpus are highly
amenable to compression, allowing our algorithm to produce
social topologies that capture much of the value in the in-
put set with a small percentage of groups. We show that
the algorithm can capture 80% of the value with 20% and
42% of the groups for email and photos, respectively. More
excitingly, we found that there are less than 15 significant
groups in our email communications and 7 groups in pho-

3http://mobisocial.stanford.edu/groupgenie

tos for half of the population in our experiment. The results
demonstrate the ability of our algorithm to distill out a small
number of groups from thousands of emails and hundreds of
photos. It also offers insight into people’s social relationships
as captured by their online activities.
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