
ThingTalk: A Distributed Language
for a Social Internet of Things

Giovanni Campagna1 Jiwon Seo1 Michael Fischer1 Monica S. Lam1

Stanford University (USA)1

{gcampagn, jiwon, mfischer, lam}@cs.stanford.edu

Abstract
The Internet of Things has increased the number of con-
nected devices by an order of magnitude. This increase
comes with a corresponding increase in complexity, which
has led to centralized architectures that do not respect the
privacy of the users and incur high development and de-
ployment costs. We propose the Open Thing Platform as a
new distributed architecture which is built around Thing-
Talk, a new high level declarative programming language
that can express the interaction between multiple physical
devices and online services. The architecture abstracts away
the details of the communication without sacrificing privacy.
We experiment with ThingTalk in multiple domains and we
show that several applications can be written in a few lines
of code and with no need for any server infrastructure.

Categories and Subject Descriptors D.3.2 [Concurrent,
Distributed, and Parallel Languages]

1. Introduction
We are at the advent of a new era where billions of IoT de-
vices will be able to collect every bit of our daily life. Ex-
amples include phones tracking our GPS locations, fitness
devices tracking our every step, remotely query our cars to
find out where we are, thermostats that indicate whether we
are home or not, smoke alarms that detect our motion in our
bedrooms, and security cameras that watch the outside and
inside of our rooms. Also becoming widely available are
medical devices, from scales, electrocardiogram machines,
apnea monitors, etc. Medical devices not only enable indi-

[Copyright notice will appear here once ’preprint’ option is removed.]

viduals to monitor their health continuously, they can enable
lower cost and better care as doctors can tend to the patients
in need of medical attention with improved monitoring of a
large number of patients.

Today’s trend is for all data to be stored in the cloud. For
example, Facebook and Snapchat claim ownership right to
our data. Besides losing privacy, we do not have easy ac-
cess to our data which are now silo’ed in different cloud
services. Having all our data at our fingertips, and having
tools that can analyze, combine, and react to all the informa-
tion becomes even more important as more data of ourselves
become available. For example, Mint is a web service that
allows users to manage all their finances involving different
institutions in one place; however, users must entrust their
credentials and financial information the Mint.

IFTTT (IF This Then That) [If-This-Then-That] is a cen-
tralized service that accepts users credentials and makes sim-
ple connections between web services and a person’s IoT de-
vices. One of the most popular functions on IFTTT is to up-
date one’s Twitter profile if the Facebook profile is changed.
This app requires that we give our Facebook and Twitter
password to IFTTT. At this rate, will we eventually give the
credentials of all our resources to some central service?

This paper presents Open Thing Platform (OTP), a dis-
tributed system that lets users control their IoT and web re-
sources without giving their credentials to a third party. Not
only is OTP distributed and privacy preserving, it supersedes
IFTTT by allowing computation on data produced by differ-
ent devices, and enabling sharing between friends, and be-
tween friends’ resources and their IoT devices. Many useful
functions can be written in just a few lines: from updating
and monitoring one’s web accounts, home automation, per-
sonalizing social media, to multi-party interactions such as
personal information exchange, collaboration, and gamifica-
tion.

1.1 An Open Thing Platform
Our design builds upon group messaging, a concept that
has become ubiquitous on mobile devices. For example, the
WhatsApp chat app has over 900 million users, and WeChat
has over 600 million users. Common to these apps is the

thing selectionsthing objects

ThingPedia

ThingManager

ThingEngine

App using
ThingTalk

configuration

rules

@$notify

thing descriptors

ThingSystem

thing descriptions

Figure 1: The Open Thing Platform architecture

concept of a feed, a group communication channel: any mes-
sages sent to the feed are distributed to all the users in the
same feed. Users can drop in any information to share with
their groups of friends. Musubi [Dodson et al. 2012] is a
research chat app that provides end-to-end encryption, Om-
let [Omlet Chat] is a commercial open messaging platform
based on Musubi that lets users save data in a repository of
their choice. In addition, it has open APIs for the creation
of social apps: users can connect to their friends in an open
social graph, form a feed, and send/receive data from a feed.

Leveraging a privacy-preserving messaging platform like
Omlet, our proposed Open Thing Platform allows collabora-
tive programs be written in just a few lines, all without losing
any private data to a third party. We use the term thing to re-
fer to any web resource, mobile devices, or the internet of
things. Shown in Figure 1 is the architecture of our Open
Thing Platform. The interface of each thing is stored in a
crowd-sourced repository called the ThingPedia. Just like a
file system that manages our data, we propose a Thing Sys-
tem that manages our things. We expect that each user runs a
Thing System, as a proxy on his behalf, possibly on a home
server, in a cloud of his choice, or on his own phone. The
Thing System has two services: a Thing Manager that man-
ages our things and our credentials, and a Thing Engine that
runs apps on the users’ behalf.

Apps are written in a high-level distributed language
called ThingTalk, which combines information from our
things and our friends’ things to generate meaningful re-
sults. These ThingTalk applications can also be deposited in
ThingPedia, thus making them accessible publicly.

1.2 Example
Let us illustrate how the Open Thing Platform works by
way of a simple ThingTalk app. Shown in Figure 2 is
GlympseApp, an app that allows users sharing the same
feed F to continuously update each others’ locations on the
map program on their personal devices, all without losing
personal data to a third party.

GlympseApp, like any ThingTalk app, consists of a set
of rules to be run on the user’s Thing Engine. We will

GlympseAppF () {
@gps(l, t)
⇒LocationF [SELF](l);

LocationF [m](l), m ∈ F
⇒@(type=“Map”).plot(m, l);

}

Figure 2: The GlympseApp location sharing app

paraphrase each of these rules informally, the details on
the language will be discussed in Section 4. The first rule
specifies that it uses a GPS in the user’s collection of things
to periodically returns a user’s location, which is stored as
a value to the keyword Location visible to everybody in the
feed. The second rule states that any new value assigned to
the Location keyword by any members of the field, results in
calling the map interface that plots a person’s location.

When a user runs GlympseApp on a feed with a group
of friends, the app interacts with the user’s designated Thing
Manager to retrieve, and configure if necessary, the user’s
thing. In this case, GlympseApp asks the Thing Manager for
an ID for a GPS device available to the user. The Thing Man-
ager consults with the open-source ThingPedia for interfaces
if it encounters new things. The rules are then installed the
Thing Engine. Thing Engine retrieves the GPS ID from the
ThingManager.

This app shows how the GPS from different users’ phones
and their maps are connected in just a couple of rules. Pro-
gramming concepts in ThingTalk greatly simplify writing
social IoT apps like this one and many others. The simplicity
opens up the possibility for ordinary people to write social
IoT apps rather than experienced engineers; this can facili-
tate many innovative apps, which can be deposited in Thing-
Pedia to be shared with other users.

1.3 Contributions
An Open Thing Platform (OTP) The Open Thing Plat-
form enables the creation of distributed apps that leverage
users’ and friends’ data, derived from a wide collection of
things, in its computation. This platform consists of Thing-
Pedia, an open repository of interfaces and apps of things.
Apps are written in ThingTalk, which are run in the users’
Thing System, consisting of the Thing Manager and Thing
Engine services.

ThingTalk ThingTalk is a language that enables a class of
useful apps be written in simple, declarative-style rules. Key
concepts responsible for the expressivity of the language in-
clude the following: On the left hand side of each rule are
triggers and conditions which, when true, cause actions on
the right hand side to be taken. APIs for external services can
be used as triggers in a rule. ThingTalk introduces a compu-
tation state represented as key-value pairs: conditions can be
placed on the key-value pairs, and assignments to these pairs
serve as additional actions. Multi-party communication ca-

pability is provided via feed-visible keywords; assignments
to such keywords automatically result in sending data to the
feed.

Experimentation of OTP We show a collection of Thing-
Talk programs that demonstrates many common day appli-
cations that can be enjoyed by many can be created in a few
lines. These apps are 1 to 6 lines long.

1.4 Paper Organization
The rest of the paper is organized as follows:

• Section 2 gives an introduction on ThingTalk and shows
a few examples of ThingTalk apps running on our system

• Section 3 introduces ThingPedia and the ThingManager
part of the ThingSystem

• Section 4 details the syntax and semantics of ThingTalk
• Section 5 discusses the design and implementation of

ThingEngine
• Section 6 contains our results from experimenting with

ThingTalk, and addresses the limitations of the OTP

2. ThingTalk Examples
This section presents some examples of ThingTalk func-
tions.

2.1 Single-Party Examples
We start by describing how ThingTalk can be used for con-
necting one’s resources. Our first example is to set the profile
picture of one’s Twitter account if the Facebook profile pic-
ture has been changed. This profile synchronization can be
expressed in a single ThingTalk rule as follows:

@facebook.profile (, , , pictureurl, , , ,)
⇒@twitter.setprofile (pictureurl);

The second example monitors the balances of a user’s
multiple bank accounts, and when the total of funds drop be-
low $500, alerts the user. This example, shown below, illus-
trates how ThingTalk can bring information from different
data sources together.

@Bank1.getbalance(b1)
⇒Balance1(b1)

@Bank2.getbalance(b2),
⇒Balance2(b2)

Balance1(b1), Balance2(b2)
⇒TotalBalance(b1 + b2);

TotalBalance(b), b < 500
⇒@$notify(“Low balance”);

In each rule, the left hand side of ⇒ consists of one or
more conditions, and the right hand has an action. A con-
dition or an action can be referring to external interfaces,
notated with an “@” sign, or keyword-value pairs, such

as TotalBalance(b) in the second example, representing the
state of the computation. A condition that refers to an ex-
ternal interface is called a trigger. Variables for the rule are
bound by matching the formal variables with the actual val-
ues in the conditions, and are subsequently used in the ac-
tions.

Running a rule on a designated ThingEngine entails first
installing the rules in the ThingEngine, then asking for the
user’s credentials if necessary. As the ThingEngine is exe-
cuted on a trusted device, the user’s privacy is honored. The
ThingEngine will execute the rules continuously or until the
result is reached according to the rule specification.

2.2 Multi-Party Example: LinkedIn at a Conference
ThingTalk enables the creation of distributed multi-party
apps that accesses resources belonging to different individu-
als.

2.2.1 Motivation
Consider the scenario of a professional conference. Despite
the presence of hundreds or even thousands of attendees, we
typically ended up talking just a handful of them, and all by
chance. In addition, of the few people we met, we would
exchange business cards, which are often lost within hours
if not minutes. What if we could exchange business cards
automatically, and perhaps even detect common interests so
we can find the right people to talk to?

Today many of us have joined the LinkedIn network and
have already created a biography on the site. We can find
out if the attendees come from, say, the same company, by
reading our LinkedIn profiles and find matches. We can rely
on LinkedIn to provide such function one day, but on the
other hand, what if we do not want to have LinkedIn track
each meeting that we attend. It is difficult for a third party to
provide such functions because:

1. the overhead of authorizing each app is onerous

2. we may not want to leak information to a third party, and

3. more significantly, LinkedIn can deny access of a 3rd
party if the latter is threatening LinkedIn’s service.

Our philosophy is that our LinkedIn record belongs to us.
Since our ThingEngine works on behalf of the user, there is
little ground that LinkedIn can stand on to deny access. Thus,
the ThingEngine of a group of participants can each fetch
the LinkedIn profiles and share among the ThingEngines;
the ThingEngines can save the LinkedIn “business cards” or
compute with it. While it may appear that a centralized ser-
vice can perform this function more efficiently, but our per-
sonal devices can dedicate much more resource and band-
width to our own computations than what a centralized ser-
vice can provide to the individuals.

LinkedInAppF () {
@linkedin.profile (name, co, , , , , ,)
⇒CompanyF [SELF](name, co); (R1)

CompanyF [SELF](, co), CompanyF [m](name, co), m ∈ F
⇒NewColleague(name, co); (R2)

NewColleague(name, co)
⇒Colleagues(Append(Colleagues, (name, co))); (R3)

NewColleague(name, co)
⇒@$notify(name); (R4)

}

Figure 3: The LinkedIn business card sharing app

Figure 4: A possible scenario through the installation and
use of the Weight Competition app. On the left, we see how
the app is installed through the Omlet drawer. On the right,
new results are produced as a message on the feed

2.2.2 ThingTalk Code
Shown in Figure 3 is the LinkedIn app for a given feed F
written in ThingTalk. A multi-party ThingTalk app is param-
eterized by a feed. A feed consists of a unique identifier and
a set of members. By joining a feed, a user is opting into
sharing the capabilities of their resources with their friends.
Shared keyword-value pairs are denoted with the subscript
F . Every value stored into such keywords are shared across
all the members in the feed. Individual’s entry can be ac-
cessed by the member operator, denoted as []. A special key-
word SELF allows us to refer to our own entry.

In this example, each user collects information about
where he works. This information is shared to everybody in
the feed. Once a colleague is identified, this information is
inserted into a globally visible state and triggers a notifica-
tion.

Putting it together In Figure 4 we see a screenshot of
a group chat in Omlet. The user can choose any of the

available ThingTalk apps from the drawer, and start them
inside the current feed.

Other users then can opt in to the app by clicking on
the invitation, and once everybody joins in the app starts in
everybody’s ThingEngine.

3. Representing Things
This section discusses how thing interfaces are specified
in ThingPedia, and how a ThingManager manages a user’s
things in consultation with ThingPedia.

3.1 ThingPedia
ThingPedia is a crowd-sourced repository of thing defini-
tions as well as ThingTalk apps. Thing definitions are mostly
likely to be contributed by device manufacturers and web
service providers. We imagine that technically savvy in-
dividuals will create the ThingTalk apps. Consumers will
browse the ThingTalk apps in ThingPedia, like how they
browse Apple App Store or Google Play Store, and down-
load apps to their ThingEngine. Apps can be suggested
based on the things the user owns.

3.2 Thing Classes
In ThingPedia is a repository of open-sourced thing class
definitions. A thing class is a specification for things with
the same interfaces. For example, LinkedIn is a thing class,
each LinkedIn account is an instance. A class can also be a
product model, such as the “lg-webos2-tv”, as things from
the same model must share the same interfaces.

A rule can refer to an object of interest by (1) a global
name, such as LinkedIn.com, (2) a class name such as “lg-
webos2-tv”, or (3) by attribute-pair values. For example,
there may be many models of GPS devices, but they all
return a location. Thus, “type=GPS” refers to any nearby
device with GPS capabilities. All the components of a thing
class are described below:

Class name. The name of the class.

Name. A optional global name that can be used in rules to
refer to this thing.

Attributes. An optional list of keyword-value pairs. A
class definition may include attributes that apply to
all instances, such as the device type. Users can also
provide additional attribute-value pairs, such as condi-
tion=“broken”, location=“home” or purpose=“school”.

Class Fields. These fields specify the properties of the spe-
cific instance of a thing. Every instance has an ThingID
field. For online accounts, the ThingID is typically the
account holder’s user name or account number. For local
home automation and home entertainment, the ThingID
is like to be the BSSID of the home WiFi plus the local
IP address or the Ethernet address of the device. Typical
additional fields include credentials associated with the
account.

Constructor method, to be invoked when an instance is
configured to initialize the instance.

APIs and their implementations, each of which can be
either a trigger or an action. Each API is invoked on an
instance and thus have access to the ID fields.

For example, a LinkedIn is a thing class, each LinkedIn
account is an instance. The ThingPedia entry for LinkedIn
has the following information:

Class name: LinkedIn
Name: linkedin.
Class definition: ThingID corresponds to the LinkedIn

account. It has an addition field, OAuth, to hold the OAuth
token for the account.

Constructor: Calls the LinkedIn login API which presents
the users with a login screen to obtain the user’s ID and
OAuth token.

APIs: The following are two example implementations.

• @linkedin.profile (id, name, headline, co, . . .) This is
a trigger that returns the user’s profile whenever it is
changed. It is implemented by polling the user’s LinkedIn
account once a day. Information returned includes the
id, full name, headline, company, specialty and profile
picture fields.

• @linkedin.share (update) This is an action entry point to
post a new update. It takes a JSON object and calls the
appropriate LinkedIn API.

3.3 ThingManager
A ThingManager manages the service to discover, create,
and manage a user’s thing on his behalf. We refer to an in-
stance of a thing as a ThingObject, and every instance has a
unique ThingID assigned by the Thing Manager. The Thing-
Manager keeps a persistent directory of all the registered
things.

As discussed above, a thing in a rule can be described
by its ID directly, a global name like @LinkedIn, or by
attribute-value pairs, such as “type=GPS”, or “location=home”.
The ThingManager returns the ThingObject associated to the
description if one exists, otherwise it performs the following
steps.

1. Resolve the ThingObject for a given thing descriptor.
If the thing descriptor uses a global name, such as
@linkedIn, then its class is fetched from ThingPedia by
name. Otherwise, ThingManager performs a local dis-
covery for all nearby devices using a discovery protocol
such as UPnP [UPnP Device Architecture – Part 1: UPnP
Device Architecture Version 1.0] or AllJoyn [AllJoyn
Framework] or manually from an interaction with the
user. For each new thing discovered, it matches the de-
scriptor from the class definition retrieved from Thing-
Pedia.

<function> := <name> '(' <params> ')'
'' <body> ''

<params> := | <param> | <params> ',' <param>
<param> := <name> ':' <type>
<body> := <rules>
<var-decls> := <var-decl> | <var-decls> <var-decl>
<var-decl> := <name> ':' <type>
<rules> := | <rule> | <rules> <rule>
<rule> := <thing-invocation>

| <thing-invocation> ',' <conds>
'=>' <action> ';'

<conds> := <cond> | <conds> ',' <cond>
<varlist> := '(' names ')'
<names> := | <name> | <names> <name>
<cond> := <keyword> <ownership>? <varlist> |

<function-invocation> |
<name> in F

<function-invocation> := '$' <varlist>
<thing-invocation> := '@' <thing> '.' <name> <varlist>
<thing> := <name> | '(' <attr-values> ')'
<attr-values> := <attr-value> |

<attr-values> ',' <attr-value>
<attr-value> := <name> '=' <string>
<action> := <thing-invocation> |

<keyword> <ownership>? <varlist>
<keyword> := <private-keyword> | <shared-keyword>
<private-keyword> := <name>
<shared-keyword> := <name>F
<ownership> := '[' (<name> | SELF) ']'

Figure 5: The BNF (Backus-Naur Form) of ThingTalk func-
tion declaration.

2. ThingManager invokes the Constructor method from
the ThingClass. For example, @facebook requires the
user’s Facebook credentials to be instantiated. The cre-
ated ThingObject instance is stored in the directory for
later lookup.

4. The ThingTalk Language
A ThingTalk function is parameterized by a feed, consisting
of a unique identifier and a set of member ThingEngines on
which the code is to be run. If no feed is specified, it runs on
the user’s own ThingEngine in an unnamed feed.

Figure 5 shows the syntax for ThingTalk functions in
BNF (Backus-Naur Form). Each function consists of a set of
rules of the form, c1, c2, . . .⇒a: the left hand side consists
of a set of conditions and the right hand side is the action
to be taken. When executed, these rules are inserted into the
ThingEngine; whenever the conditions on the left hand side
are satisfied, the action on the right hand side is taken. This
repeats until the function terminates.

All “things” in the system are prefixed by the “@” sym-
bol, all other predicates refer to the computation state. We
discuss the computation state first, then invocations of the
thing interfaces.

4.1 Computation State
The state of the computation of each ThingEngine is rep-
resented by a set of keyword value pairs. The scoping of
keyword value pairs is defined as follows:

Feed accessible. A keyword subscripted by a feed F , keyF
indicates that this value is visible by the ThingTalk func-
tion running on all the member ThingEngines in feed F .
A feed keyword has a member operator []; for example,
locationF [m], refers to the value of keyword location in
m’s ThingEngine. A special keyword SELF allows us to
refer to our own entry.

Local. All other keywords are simple local keywords acces-
sible by only the function on the same ThingEngine.

Computation State Rules The left-hand-side is a set of
conditions on the state of the computation, as defined by
the keyword value pairs. Formal variables in the rule are
bound to the actual values corresponding to the key-value
pairs. A condition key(v) says that variable v is bound to the
value of the keyword key. Unification is applied if the same
variable is used in multiple conditions. Additional predicates
such as arithmetic operations and function calls are allowed.
Condition evaluation should have no side effects. An action,
key(v), says that the keyword key is assigned the value v.

The left hand side is executed whenever any of the inputs
are changed; if the condition is satisfied, then the right hand
side action is taken.

Pure pre-defined functions are all denoted by a “$” char-
acter preceding the function name. The pre-defined func-
tions have input parameters and output parameters; the in-
put parameters must be bound to values by other keywords
or functions. The functions are considered to be true if there
exist output values for given inputs.

4.2 Things and Their Interfaces
Each interface in a Thing Class must be declared to be either
a trigger or an action; triggers can appear only on the left
hand side of a rule, and an action can appear only on the
right hand side. The left hand side of a rule can have at most
one thing invocation. While additional conditions may be
placed on the result of a thing trigger, changes to any of the
parameters in the condition will not initiate the execution of
the rule. If the condition is true, then the action on the right
hand side is taken.

As discussed in Section 3.2, things can be indirectly se-
lected by their attributes. For example @(type = “TV”, lo-
cation = “livingroom”) refers to the TV(s) located in living
room. If the left hand side refers to a trigger by attributes, as
long as there is one match, the rule will fire. If the right hand
side refers to an action by attributes, the action is taken on
all the actions that match.

John Doe's engine

@linkedin.profile

CompanyF[SELF]

 R1

NewColleague

 R2

CompanyF

 F

Colleagues

 R3

@$notify

 R4

 R2,F

Figure 6: The data dependency graph generated for the
LinkedIn app in Figure 3, when run on John’s ThingEngine

5. Design and Implementation of
ThingEngine

When a ThingTalk app is run, it first consults with the Thing-
Manager to bind the thing descriptions with a user’s things
as discussed in Section 3.3. It then invokes the ThingEngine,
passing to it the rules ad the parameters. The ThingEngine
returns a unique identifier, which the app can use to kill the
rules.

5.1 Executing a ThingTalk App
The ThingEngine takes the following steps in running a
ThingTalk app.

1. Compile the parameterized ThingTalk function, insert
the code in the persistent App directory, and reserve the
keyword space.

2. Create the dynamic mapping from the thing description
to the thing instance by consulting with the ThingMan-
ager.

3. Compute a dependence graph of all triggers, actions and
keyword updates.

4. The event loop starts processing events from the triggers,
evaluates each edge in the dependence graph until con-
vergence.

5.2 Data dependence graph
The data dependence graph has a node for every trigger,
every action and every keyword that is named in a rule.
Each rule corresponds to an edge in the graph that links the

rule’s left hand side to its right hand side, and as such there
are no incoming edges on nodes that represent triggers, or
outgoing edges from nodes that represent actions (because
these cannot be nominated on the opposite side of a rule).
Figure 6 shows the dependence graph of the LinkedIn app in
Figure 3.

A new value in any keyword node propagates down to
its children, by evaluating each outgoing edge, and chang-
ing the value of the keyword node pointed to by the edge.
Edges are evaluated in arbitrary order until there are no more
changes to be applied to values of the keywords.

Calls to the triggers from the thing interface code will
cause a trigger node to be have a new value, and will cause
evaluation of the edges outgoing from it. Conversely, a new
value on an action node will cause a call to the corresponding
thing interface.

5.3 Feed accessible keywords
In the case of feed-accessible keywords, the data dependence
graph constructed by the engine is augmented by splitting
each feed accessible keywords into a SELF and a portion that
is a proxy for the data on the remote engines. The edge that
points to the proxy node is the edge tagged with the feed F .

Evaluating an edge tagged with F going from a node to
a node in a different engine causes the originating engine to
send a message with the new data over the feed. Similarly,
an incoming edge tagged with F signals to the engine that it
should expect incoming messages with the new value of the
node source of the incoming edge.

5.4 State persistence and recovery
At any time, the current state of all enabled ThingTalk func-
tions and their parameters, and the state of named keywords,
including the current state of the feed accessible keyword
portions that the engine does not own, is stored by the engine
on disk, which allows it to be resilient in face of crashes or
unreliable networking.

Additionally, the engine can spontaneously request a re-
fresh of the cached data from all other members of a feed,
which updates the engine view of the feed accessible key-
word state. This refresh is always automatically requested
when the engine first joins a feed, when a new app is in-
stalled, when the engine starts and when network connectiv-
ity is reestablished.

5.5 Implementation
We implemented the ThingSystem using a long running
nodejs application, with a platform adaptation layer that
allows it to run on Android as well as a generic server or
a shared cloud service.

The data dependence graph is realized by registering a
callback for each rule that is invoked on every change to a
keyword and on any invocation from triggers.

Feed-accessible keywords are implemented by main-
taining a local persistent list of subscriptions, that record

whether a message should be sent to a given engine in re-
sponse to a local change to a keyword.

Messaging is implemented using the Omlet messaging
platform [Omlet Chat], which provides the primitives of
sending and receiving data from a feed.

6. Experimentation
In this section, we present a selection of sample apps to il-
lustrate the various functionalities provided by ThingTalk.
Figures 7 and 8 show a summary of the single-party and
multi-party apps, respectively. As we see from this figure,
a small number of rules are needed to automate a large
variety of tasks. Single-party apps range from simple util-
ities to financial monitoring, home automation, and per-
sonalized entertainment. Multi-party examples include com-
pelling data sharing, gamification, and collaboration apps.
These tasks may be event driven, timed, one-shot or contin-
uous. These apps web accounts that contain financial data,
location, weight, and intellectual property such as our slides.
With the help of the thing class definitions in ThingPedia, all
these apps can be written no more than 6 rules in ThingTalk.

6.1 Single-Party Functions
We now discuss the details of our single-party ThingTalk
functions. These apps are closest to recipes in IFTTT, we
will highlight the differences between ThingTalk and IFTTT
in the discussion. Note that IFTTT does not have a language,
and users input all the information by filling out forms on the
web page.

Keep your profile pic updated One of the most popular
recipes on IFTTT is synchronizing user profiles, such as
changing a user’s Twitter account profile whenever the Face-
book account changes. The following ThingTalk rule does
the profile photo synchronization:

@facebook.profile (, , , profileUrl, , , ,)
⇒@twitter.setprofile (profileUrl);

The Facebook service is represented by @facebook thing;
it provides a profile interface that is triggered when the user’s
profile information changes. The above rule specifies that
the rule is only interested in profileUrl changes; other fields
are denoted with underscores indicating that they are not
needed. On the action part of the rule, @twitter represents
the Twitter service; it has setprofile interface that updates
the users Twitter profile picture with the given URL.

To monitor profile picture changes and to update it,
IFTTT requires its users to give their Facebook and Twit-
ter login credentials to IFTTT. Applications in ThingTalk do
not require giving up one’s login credentials; the applica-
tion runs on one’s own ThingEngine, that securely stores
one’s credential information whether the engine runs on
one’s home server or in the cloud.

Video recommendation from social feeds One’s social
feeds such as Twitter have plenty of online video streams.

App Purpose Category When Things Private
data

of rules

Facebook to Twitter Update Twitter profile
when Facebook profile
changes

Common
digital task

Event
triggered

Facebook,
Twitter

Account
credentials

1

Bank Monitor user’s multiple
bank accounts

Financial
monitoring

Continuous Bank Financial 3

Twitter to TV Pipe recommended videos
from Twitter to the TV

Personalized
entertainment

One-shot TV,
Twitter

Account
credentials

1

Heatpad Turn on/off heatpad at
specified time

Home
automation

Timed Heatpad 2

Figure 7: Sample Single-Party Applications in ThingTalk

App Purpose Category When Things Private
data

of rules

GlympseApp Share locations, draw map Data sharing Continuous GPS Location 2
LinkedIn Find colleagues in a group Collaboration Event

triggered
LinkedIn Account

credentials
4

RaceApp Determine winner in a race Gamification Continuous GPS Location 2
Weight Competition Track weight in a weight-

loss competition
Gamification Continuous Scale Weight 6

Slides Share slides remotely on
TVs

Collaboration Event
triggered

TVs Slides 2

Figure 8: Sample Multi-party Applications in ThingTalk

Since friends (and followers) often share common interests,
these videos appearing on social feeds capture the user’s
interest very well. Suggesting videos based on one’s social
feeds can be a simple yet very useful application.

Here we implement the app that suggests YouTube videos
based on one’s Twitter feeds. There is one rule in the app
that looks for YouTube URLs from your Twitter feeds and
add those URLs to the user’s TV.

@twitter.gettweets(, url,),
$Contains(url, “http://www.youtube.com”),

⇒@(type=“TV”, location=“livingroom”).enqueue(url);

@twitter.gettweets() is triggered when there is a new tweet
in one’s feed; the rule says that it is only interested in tweets
with urls. When triggered, the condition in the rule tests if
the URL points to a YouTube video using the pre-defined
function ($Contains); if so, the URL is enqueued into your
living room TV’s watch list. This example illustrates how we
can connect our web resources to our IoT devices.

Turn on Heat Pad at Night A simple but useful class of
IoT applications is home automation. As an example, the
following code shows how we can automatically turn a heat
pad on and off at a given time in two ThingTalk rules:

@$at(“3:00”) ⇒@(type=“heatpad”).on();
@$at(“6:30”) ⇒@(type=“heatpad”).off();

The first rule is triggered at 3:00am in the morning; it se-
lects all your things that have “heatpad” type and invokes
their on() interface. Similarly, the second rule turns off your
heatpad(s) at 6:30am.

For this application, we used heat pads [Parklon Iris
Warm Water Mat] that support remote control via the XMPP
protocol [Extensible Messaging and Presence Protocol
XMPP]. The “type=heatpad” attributes were given to the
heatpads nearby at configuration time. This app is used by
one of the authors of this paper in his daily life.

While this app does relatively simple tasks, it is still
surprising how succinct it is to write this in ThingTalk. To
understand its power of abstraction, let us look at similar
apps in IFTTT. These IFTTT apps [IFTTT Recipe: at sunset,
turn on your lights; IFTTT Recipe: Every day at given time,
turn the lights on] turn your lights on at a specific time or at
sunset.

In IFTTT, you cannot describe actions for a group of
things that have common attributes, such as types; so you
must write separate apps to control the lights of different
brands (e.g. one for Philips Hue lights and another for WeMo
lights). Moreover, IFTTT does not have the notion of func-
tions that group related rules together. so you cannot orga-
nize the rules that are conceptually related. This is a nui-

sance not only for programmers, but also the users. Most im-
portantly, ThingTalk enables computation using results from
different triggers, as illustrated in the banking balance exam-
ple in Section 2.1.

6.2 Multi-Party Programs
Racing with Friends The RaceApp, shown in Figure 9,
illustrates how we can easily gamify our daily routine, such
as meeting up with our friends, in ThingTalk. This app shares
the GPS locations among friends in a feed and declares a
winner if a user’s location is close enough to the destination.
Note that if a group of friends use both GlympseApp, shown
in Figure 2, and the RaceApp together, the ThingEngine
will automatically detect the commonality and only one such
measurement needs to be taken.

RaceAppF (dest: Location) {
¬ ArrivedF [SELF](),
@gps(l,t),
$distance(l, dest) <= 50m
⇒ArrivedF [SELF](t)

ArrivedF [m](t),m ∈ F
⇒@$return(ArgMin(ArrivedF))

}

Figure 9: Racing with Friends

Weight Competition Among Friends Competition among
friends can make solo activities, such as losing weight, into
social activities. Gamification has been shown to be effective
in helping one achieve his goal as well as enjoy the process
of it. RunKeeper [RunKeeper] or Endomondo [Endomondo]
are examples of commercial apps that keep track of one’s
running and share (or compare) it with friends.

ThingTalk makes it possible to write a weight competi-
tion among friends in just a few rules. Shown in Figure 10
is the WeightCompetition function in ThingTalk, parameter-
ized by the feed F and stopTime, which indicates the end
time of the competition. This function continuously moni-
tors the weight of the people on feed F , using the measure-
ments received directly from their scales. The winner at any
one time is the person who has lost the largest percentage of
his weight.

The function has six rules. Rule R1 reads the weight mea-
surement from a user’s scale and assign it to the Weight
keyword. Rule R2 is triggered with the first weight mea-
surement in the competition, the InitialWeight keyword is
update and its value is shared with everybody in the feed.
Rule R3 is triggered with every weight measurement to com-
pute the ratio of weight lost. The Loss keyword values are
also shared in the feed. Rule R4 finds the one with the max-
imum weight loss, and rule R5 notifies who the winners are.
The last rule R6 is triggered at the given stopTime and re-

turns the winners. This example illustrates how the use of
the feed abstraction makes sharing trivial.

WeightCompetitionF (stopTime: Time) {
@(type=“scale”).measure(w)
⇒Weight(w); (R1)

Weight(w), ¬ InitialWeightF [SELF]()
⇒InitialWeightF [SELF](w); (R2)

InitialWeightF [SELF](w1), Weight(w2)
⇒LossF [SELF]((w1 − w2)/w2); (R3)

LossF [m](l),m ∈ F
⇒Winners(ArgMax(LossF)); (R4)

Winners(w)
⇒@$notify(Winners); (R5)

@time(stopTime)
⇒@$return(Winners); (R6)

}

Figure 10: The WeightCompetition App.

Displaying and sharing content between devices In this
last example, we show how a ThingTalk can be used to
enable collaboration using a multitude of IoT devices. Let’s
consider WebEx, one of the most popular applications that
lets us share our desktop with remote audiences. The typical
use of WebEx is to show and advance slides as one gives a
presentation. The setup involves sending the session identity
and passwords to all the participants. More importantly, the
information shared is all uploaded to a third party, who also
charges a nontrivial amount for the service.

The Slides function, shown in Figure 11, allows a group
of friends in a feed to share slides in a collaborative fashion
and have their pictures be displayed on their own big-screen
TVs. Here, any of the participants can submit pictures to the
app, as shown in rule R1. Rule R2 says that if any of the
participants has a TV configured among his collection of
things, then the pictures are automatically shown there as
well.

This example illustrates that many centralized services
can be provided in a distributed manner using our Open
Thing Platform. First and foremost, the data shared are kept
private. Second, if we wish to work with the same group of
people all the time, and possibly using different apps, we
only have to set up a feed once. This avoids the overhead
of setting up sessions for each instance of collaboration.
Finally, our examples show how easy it is to create new
social apps. Our Open Platform can promote the creation of
a wide collection of small and large collaborative software.

7. Related Work
7.1 Internet of Things
Commercial Internet of Thing Platforms SmartThings
[Samsung SmartTthings], Vera [Vera Smarter Home Con-
trol] and Parse [par] are commercial services that allow de-
velopers to write Internet of Things enabled apps using a

SlidesF () {
@$input(url)
⇒SharedSlidesF [SELF](url); (R1)

SharedSlidesF [m](url), m ∈ F
⇒@(type=“tv”).show(url); (R2)

}

Figure 11: Sharing Slides collaboratively across TVs.

Figure 12: Images are sent from mobile phones to a big-
screen TV.

traditional programming language and a set of APIs. Smart-
Things and Vera operate primarily in the context of home
automation, while Parse is mostly used for social network-
ing and analytics. Apps developed using SmartThings and
Parse run on their cloud and interact all the devices that the
user has configured.

Amazon IoT [Amazon Web Services IoT] extends on
the SmartThings and Parse architecture with a declarative
programming language, based on a dialect of SQL.

Declarative Internet of Thing Platforms DNS (Declara-
tive Sensor Network) [Chu et al. 2007] is a Datalog adapta-
tion to describe the operation of multiple Internet of Things
enabled devices with a declarative language. Their systems
models sensors and actuators, but does not model shared
state, and as such does not extend directly in the social con-
text.

7.2 Social sharing and automation systems
Commercial chat services Multiple commercial chat ser-
vices exist, such as Facebook Messenger, Snapchat, Line and
WeChat.

WeChat in particular has a system and a set of APIs that
allow trusted developers to build social applications that are
executed by all users of a chat. This is used as a gaming
platform, by delivery services and for banking.

The main difference between the Open Thing Platform
and these existing systems is that they rely on a central ser-
vice that observes and controls all the user traffic, while the
OTP operates atop a distributed and privacy sensitive mes-
saging system that is agnostic to the data being delivered.

Web automation services IFTTT [If-This-Then-That] is a
web automation service that allows users to create rules
which can be triggered by events and in turn cause actions to
occur.

Fundamentally, like IFTTT, the ThingEngine is a rule
execution engine. However the ThingEngine evolves from
IFTTT in its ability to maintain state across multiple rule
executions, and in the ability to specify complex conditions
that span multiple triggers.

Additionally, IFTTT is a centralized services, while the
Open Thing Platform is built in a distributed fashion, and
there is no data leak unless the user explicitly shares it.

Cloudwork [CloudWork Cloud Business App Integra-
tions] and Zapier [zap] are also web automation services,
but they focus on social web and online business application
and cloud storages, rather than IoT devices.

Publish/subscribe systems Publish/subscribe [Eugster et al.
2003] is a well established paradigm used to synchronize a
copy of a dynamic resource between multiple interested par-
ties. Common publish/subscribe systems use content filters
that are evaluated on a central server, and do not use the
filters to address routing of the messages.

Contrail [Stuedi 2011] is a publish/subscribe system for
social media that provides user privacy by evaluating the
subscription filter only on the edge nodes and using end to
end encryption. We extend on their work by decoupling the
messaging infrastructure from the data sharing part, and by
providing a declarative language to express the data interests
of the multiple parties.

Poster [Tryfonopoulos et al. 2015] is another distributed
publish/subscribe system that allows for multiple users to
share dynamic data. They only focus on the synchronization
aspect of the accessing the data, and as such they require a
complex mechanism of distributed filtering, while we rely
on multiple executable high level apps running on each node
only transmitting relevant data. We also sidestep the issue of
distributing the messages by building on an existing messag-
ing system.

7.3 Rule based systems
Active Database Systems Active database systems support
active rules that are automatically executed if given condi-
tions are satisfied [Chakravarthy et al. 1994; Widom 1996;
Gehani and Jagadish 1991]. The rules consists of three parts:
event, condition, and action. Event describes what causes the
rule to be triggered; typically events are relational data oper-
ations (insertion/deletion/update), database operations (such
as transaction begin/end), or temporal events. Once a rule
is triggered, conditions are checked to determine the execu-
tion of the action. Conditions are predicates on the data in
the tables. Actions in active rules are either data manipula-
tion operations or database operations (such as drop a table
or abort the transaction). The ThingTalk rules are different
from the active rules; they are designed to help writing so-

cial IoT applications and support necessary primitives, such
as member operator or feeds as first class object.

Datalog Datalog is a declarative programming language
for deductive databases. Initially introduced for logic pro-
gramming, Datalog has gained popularity recently in many
other areas including programming analysis [Whaley and
Lam 2004], network systems [Alvaro et al. 2010; Loo et al.
2009], modular robotics [Ashley-Rollman et al. 2009], as
well as large-scale graph analytics [Seo et al. 2013a,b]. Dat-
alog programs consist of declarative rules. The high-level
semantics of Datalog rules simplify writing programs in the
aforementioned areas. ThingTalk apps have declarative rules
that have some resemblance to Datalog rules; the rules have
dependencies and updates are propagated through the rules.
However, ThingTalk rules are more expressive than Data-
log rules because ThingTalk rules are powered by ThingSys-
tem services such as ThingManager, Messaging Layer, and
ThingEngine; they can interact with many real-world things
and enable a wide range of social IoT apps.

Tuple Spaces A tuple space is a programming language
and paradigm for parallel processing [Gelernter and Car-
riero 1992; Carriero et al. 1994]. In this language is sup-
ported tuple spaces, which is a virtual, associative, logically-
shared memory. A tuple space contains tuples, an ordered se-
quence of data. Multiple processes can concurrently access
the tuples in the space that match a certain pattern. This is
also referred as the blackboard model of computation. Key-
words in ThingTalk are conceptually similar to tuple spaces.
However, the context where the model is applied is very dif-
ferent. In ThingTalk we use the model to coordinate the com-
munications among one’s (and others) digital resources and
implement social IoT apps.

8. Conclusions
This paper presents the Open Thing Platform (OTP) which
shifts the computational paradigm from centralized services
to distribute execution. Just like how PCs replace main-
frames for personal computing, we believe the era of billions
of mobile and IoT devices will disrupt the current trend of
centralized proprietary services that own our personal data
in different silos.

Our proposed OTP allows users to bring all their data to-
gether, either stored in our myriad of web accounts or gen-
erated by our personal internet of things. We can connect
these resources together and automate many of the previ-
ously manual tasks. More importantly, our Open Thing Plat-
form enables peers to share information and devices, without
an intermediate who sees all the transactions. (Note that it is
trivial to add encryption to data shared in a feed if the under-
lying messaging layer’s protection of privacy is questioned.)

The distributed computing model of OTP requires indi-
viduals to have a ThingSystem service running on their be-
half. Just like everybody has a FileSystem that manages our

files on a device, we believe that it is natural that we have a
ThingSystem that manages all our resources. All the exam-
ples we showed in this paper can be served by just running a
ThingSystem on our mobile devices.

The ThingTalk language is succinct and expressive, mak-
ing it possible to write a large variety of apps in just a few
lines. The key ideas in ThingTalk include:

• The use of large building blocks, which are interfaces to
web services and the internet of things, enables complex
tasks to be described succinctly.

• An open-source crowd-sourced ThingPedia enables the
collaboration of device makers and developers to create
a common repository of interface codes and ThingTalk
apps. Such a web service can also encourage the stan-
dardization of interfaces, because new devices are incen-
tivized to use the interface used in popular devices with
similar functions.

• The use of the feed abstraction makes it easy to write
distributed code. Developers only have to specify that
certain keywords are common to the feed, the system
automatically generates the necessary messaging code.

Just like how MapReduce has a great impact on parallel
computing by making it accessible to a larger audience,
ThingTalk enables many more developers to create social
and cross-device apps.

The Open Thing Platform also makes it convenient for
users:

• The ThingManager lets users configure their devices
once and use them in a wide range of applications. Also
the ability to refer to devices with attributes makes it easy
for users to use different brands.

• A group of friends needs to set up a feed only once,
and they can reuse the feeds across many different apps
without any further setups.

In conclusion, the major advantages of OTP include pro-
tection of privacy, scalability through distributed computing,
and the ability to compute with data gathered from a wide
disparate resources owned by different individuals. In addi-
tion, the succinctness and expressiveness of ThingTalk, as
well as the convenience offered to users, can lead to a prolif-
eration of social, collaborative applications.

References
URL https://parse.com.

URL https://zapier.com.

AllJoyn Framework. URL https://allseenalliance.
org/framework.

P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein,
and R. C. Sears. Boom analytics: Exploring data-centric, declar-
ative programming for the cloud. In EuroSys, pages 223–236,
2010.

Amazon Web Services IoT. URL https://aws.amazon.
com/iot/.

M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D.
Campbell. A language for large ensembles of independently
executing nodes. In ICLP, pages 265–280, 2009.

N. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman.
The linda® alternative to message-passing systems. Parallel
Computing, 20(4):633–655, 1994.

S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. Kim. Com-
posite events for active databases: Semantics, contexts and de-
tection. In Proceedings of VLDB ’94, pages 606–617, 1994.

D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation of
a declarative sensor network system. In Proceedings of the 5th
International Conference on Embedded Networked Sensor Sys-
tems, SenSys ’07, pages 175–188, 2007. ISBN 978-1-59593-
763-6. doi: 10.1145/1322263.1322281.

CloudWork Cloud Business App Integrations. URL https://
cloudwork.com.

B. Dodson, I. Vo, T. Purtell, A. Cannon, and M. S. Lam. Musubi:
disintermediated interactive social feeds for mobile devices. In
Proceedings of the 21st international conference on World Wide
Web, pages 211–220. ACM, 2012.

Endomondo. https://www.endomondo.com/.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec.
The many faces of publish/subscribe. ACM Computing Surveys
(CSUR), 35(2):114–131, 2003.

Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120, RFC Editor.

N. H. Gehani and H. V. Jagadish. Ode as an active database:
Constraints and triggers. In Proceedings of VLDB ’91, pages
327–336, 1991.

D. Gelernter and N. Carriero. Coordination languages and their
significance. Commun. ACM, 35(2):96–107, 1992.

If-This-Then-That. URL http://ifttt.com.

IFTTT Recipe: at sunset, turn on your lights.
https://ifttt.com/recipes/94447.

IFTTT Recipe: Every day at given time, turn the lights on.
https://ifttt.com/recipes/105700.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declar-
ative networking. Commun. ACM, 52(11):87–95, 2009.

Omlet Chat. URL http://omlet.me.

Parklon Iris Warm Water Mat. URL http://www.
amazon.com/Parklon-Iris-Warm-Water-Mat/
dp/8995691026.

RunKeeper. https://runkeeper.com/.

Samsung SmartTthings. URL http://www.smartthings.
com.

J. Seo, S. Guo, and M. S. Lam. SociaLite: Datalog extensions for
efficient social network analysis. In Proceedings of ICDE ’13,
pages 278–289, 2013a.

J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed sociaLite: A
datalog-based language for large-scale graph analysis. PVLDB,
6(14):1906–1917, 2013b.

P. Stuedi. Contrail: Enabling decentralized social networks on
smartphones. Computer Science Journal, 7049:41–60, 2011.

C. Tryfonopoulos, P. Raftopoulou, V. Setty, and A. Xiros. Towards
content-based publish/subscribe for distributed social networks.
In Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, DEBS ’15, pages 340–343,
2015. ISBN 978-1-4503-3286-6. doi: 10.1145/2675743.
2776770.

UPnP Device Architecture – Part 1: UPnP Device Architecture
Version 1.0. ISO/IEC 29341-1:2011.

Vera Smarter Home Control. URL http://getvera.com.

J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analyses using binary decision diagrams. In PLDI, pages
131–144, 2004.

J. Widom. The starburst active database rule system. IEEE Trans.
Knowl. Data Eng., 8(4):583–595, 1996.

https://parse.com
https://zapier.com
https://allseenalliance.org/framework
https://allseenalliance.org/framework
https://aws.amazon.com/iot/
https://aws.amazon.com/iot/
http://dx.doi.org/10.1145/1322263.1322281
https://cloudwork.com
https://cloudwork.com
http://ifttt.com
http://omlet.me
http://www.amazon.com/Parklon-Iris-Warm-Water-Mat/dp/8995691026
http://www.amazon.com/Parklon-Iris-Warm-Water-Mat/dp/8995691026
http://www.amazon.com/Parklon-Iris-Warm-Water-Mat/dp/8995691026
http://www.smartthings.com
http://www.smartthings.com
http://dx.doi.org/10.1145/2675743.2776770
http://dx.doi.org/10.1145/2675743.2776770
http://getvera.com

	Introduction
	An Open Thing Platform
	Example
	Contributions
	Paper Organization

	ThingTalk Examples
	Single-Party Examples
	Multi-Party Example: LinkedIn at a Conference
	Motivation
	ThingTalk Code

	Representing Things
	ThingPedia
	Thing Classes
	ThingManager

	The ThingTalk Language
	Computation State
	Things and Their Interfaces

	Design and Implementation of ThingEngine
	Executing a ThingTalk App
	Data dependence graph
	Feed accessible keywords
	State persistence and recovery
	Implementation

	Experimentation
	Single-Party Functions
	Multi-Party Programs

	Related Work
	Internet of Things
	Social sharing and automation systems
	Rule based systems

	Conclusions

