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Abstract—With the rise of social networks, large-scale graph analysis becomes increasingly important. Because SQL lacks the
expressiveness and performance needed for graph algorithms, lower-level, general-purpose languages are often used instead.
For greater ease of use and efficiency, we propose Socialite, a high-level graph query language based on Datalog. As a logic
programming language, Datalog allows many graph algorithms to be expressed succinctly. However, its performance has not
been competitive when compared to low-level languages. With SociaLite, users can provide high-level hints on the data layout
and evaluation order; they can also define recursive aggregate functions which, as long as they are meet operations, can
be evaluated incrementally and efficiently. Moreover, recursive aggregate functions make it possible to implement more graph
algorithms that cannot be implemented in Datalog.

We evaluated Socialite by running nine graph algorithms in total; eight for social network analysis (shortest paths, PageRank,
hubs and authorities, mutual neighbors, connected components, triangles, clustering coefficients, and betweenness centrality)
and one for biological network analysis (Eulerian cycles). We use two real-life social graphs, LiveJournal and Last.fm, for the
evaluation as well as one synthetic graph. The optimizations proposed in this paper speed up almost all the algorithms by 3 to
22 times. SociaLite even outperforms typical Java implementations by an average of 50% for the graph algorithms tested. When
compared to highly optimized Java implementations, SociaLite programs are an order of magnitude more succinct and easier to
write. Its performance is competitive, with only 16% overhead for the largest benchmark, and 25% overhead for the worst case
benchmark. Most importantly, being a query language, SociaLite enables many more users who are not proficient in software

engineering to perform network analysis easily and efficiently.

Index Terms—Datalog, aggregates, query languages, graph algorithms, social network analysis.

1 INTRODUCTION

In recent years, we have witnessed the rise of a large
number of online social networks, many of which have
attracted hundreds of millions of users. Embedded in these
databases of social networks is a wealth of information,
useful for a wide range of applications. Social network
analysis encompasses topics such as ranking the nodes of
a graph, community detection, link prediction, as well as
computation of general graph metrics. These analyses are
often built on top of fundamental graph algorithms such
as computing shortest paths and finding connected com-
ponents. In a recent NSF-sponsored workshop on Social
Networks and Mobility in the Cloud, many researchers ex-
pressed the need for a better computational model or query
language to eventually achieve the goal of letting consumers
express queries on their personal social graphs [1].
Datalog is an excellent candidate for achieving this
vision because of its high-level declarative semantics and
support for recursion. The high-level semantics makes pos-
sible many optimizations including parallelization and time-
bounded approximations. However, the relational represen-
tation in Datalog is not a good match for graph analysis.
Users are unable to control the data representation or the
evaluation. Consequently, the performance of Datalog is
not competitive when compared with other languages. For
this reason, developers resort to using general-purpose lan-
guages, such as Java, for social network analysis. Not only
is it more difficult to write analysis programs in general-

purpose languages, these programs cannot be parallelized
or optimized automatically.

This paper presents Socialite, an extension of Datalog
that delivers performance similar to that of highly optimized
Java programs. Our proposed extensions include data lay-
out declarations, hints of evaluation order, and recursive
aggregate functions.

1.1 Performance of Datalog Programs

Consider the example of computing shortest paths from
a source node to all other nodes in a graph. Using a
previously proposed extension of aggregate functions [2],
[3], shortest paths can be succinctly expressed in Datalog
as shown in Figure 1. Here, the first statement declares that
there is a path of length d from node 1 to node t, if there
exists an edge from node 1 to node ¢ of length d. The second
statement is a recursive statement declaring that there is a
path from node 1 to node t with length dy + ds, if there
is a path from node 1 to node s of length d; and an edge
from s to ¢ of length dy. The shortest path from node 1
to node ¢ is simply the shortest of all the paths from node
1 to node t, as expressed in the third statement. $MIN is a
pre-defined aggregate function in SocialL.ite.

While the program in Figure 1 is succinct, it fails
to terminate in the presence of cycles because the path
lengths are unbounded. Even if the data contains no cycles,
existing Datalog implementations are relatively slow, due
to unnecessary computation of sub-optimal distances, as



PATH(t, d) : — EbDGE(1,t,d). €))

PATH(t, d) : — PaTH(s,d;), EDGE(s, t, d2),
d=d; +ds. 2)

MINPATH (¢, SMIN(d)) : — PaTH(Z,d). 3)

Fig. 1. Datalog query for computing the single-source
shortest paths. The source node has node id 1.

well as inefficient data structures. We ran this shortest-paths
algorithm on LogicBlox [4], a state-of-the-art commer-
cial implementation of Datalog. For a randomly generated
acyclic graph with 100,000 nodes and 1,000,000 edges, the
algorithm required 3.4 seconds to terminate on an Intel
Xeon processor running at 2.80GHz.

In contrast, imperative programming languages provide
users full control over the execution as well as the layout.
For example, Dijkstra’s algorithm [5] computes shortest
paths in O(m + nlogn) time, where n is the number of
nodes and m is the number of edges. For the same acyclic
graph used to evaluate LogicBlox, a Java implementation
of Dijkstra’s algorithm requires less than 0.1 second. The
large performance gap with imperative languages makes
Datalog not competitive for solving fundamental graph
algorithms. More generally, join operations defined over
relational databases do not seem to be a good match for
graph algorithms. Graphs can be represented efficiently
with linked lists, as opposed to relational tables. Addition-
ally, join operations tend to generate many temporary tables
that pessimize the locality of a program.

1.2 Contributions

This paper presents the Socialite language, as well as the
design, implementation, and evaluation of the SociaLite
compiler. SociaLite is an extension of Datalog which al-
lows concise expression of graph algorithms, while giving
users some degree of control over the data layout and the
evaluation order. For example, the SociaLite version of the
shortest-paths algorithm, shown in Figure 2, terminates on
cyclic graphs and is as efficient as a Java implementation of
Dijkstra’s algorithm. We shall use this program as a running
example throughout this paper; details on this program will
be described in subsequent sections. We summarize the
contributions of this paper below.

EDGE (int src:0..10000, (int sink, int len)).
PATH (int sink:0..10000, int dist).

PATH(t,$MIN(d)) : — EDGE(],t,d); 4)
: — PaTH(s,d;), EDGE(s, t,d2),
d=dq + ds. (5)

Fig. 2. SociaLite program for computing the shortest
paths. The source node has node id 1.

Tail-nested tables. We introduce a new representation,
tail-nested tables, designed expressly for graphs. Singly

nested tables are essentially adjacency lists. Edges from
the same node s are represented by a single entry in the
top-level table (s,t), where ¢ is a table consisting of all
destination nodes. Arbitrary levels of nesting are allowed,
but only in the last column of each level. This representation
reduces both the memory usage and computation time
needed for graph traversals.

Recursive aggregate functions. SocialLite supports
recursively-defined aggregate functions. We show that
semi-naive evaluation can be applied to recursively aggre-
gate functions, if they are meet operations and that the rest
of the rules are monotonic under the partial order induced
by the meet operations. In addition, taking advantage of
the commutativity of meet operations, we can speed up the
convergence of the solution by prioritizing the evaluation.

Integration with imperative languages. Socialite is
intended to be used as a database component in a pro-
gram written in a conventional imperative programming
languages, such as Java. SociaLite queries can be embedded
in a Java program. Data is exchanged between the Java and
SociaLite programs via the input and output data structures,
which are type checked dynamically. The output tables
of the SociaLite program, whenever accessed, contain the
results of applying the culmination of queries executed so
far to the values of the input tables. The compiler uses
incremental semi-naive evaluation to eliminate unnecessary
re-evaluation of queries. In addition, Socialite can also
be extended by imperative functions. SociaLite supports a
special function predicate, which invokes a pure external
function to compute return values.

Comparison with other languages. We show that
SociaLite subsumes two well-known Datalog extensions:
choice-least and choice-most operators [6] for expressing
greedy algorithms and monotonic aggregate functions [7].
In addition, we show that SociaL.ite is strictly more expres-
sive than Pregel, a well-known graph analysis language.

User-guided execution order. The order in which a
graph is traversed can have a dramatic effect on the perfor-
mance of a graph algorithm. For example, it is useful to visit
a directed acyclic graph in topological order, so that a node
is visited only after all its predecessors have been visited.
SociaLite enables users to hint at an efficient evaluation
order, by referencing a sorted column in the database that
contains nodes in the order to be visited.

Evaluation of SociaLite. All the optimizations presented
in the system have been implemented in a Socialite com-
piler. We show that a large collection of popular graph
algorithms can be expressed succinctly in SociaLite, includ-
ing PageRank, hubs and authorities, clustering coefficients,
as well as Eulerian cycle, an important algorithm used in
DNA sequence assembly. Our experiments are performed
on two real-life data sets, the LiveJournal social network,
consisting of 4.8M nodes and 69M edges, and Last.fm,
consisting of 1.8M nodes and 6.4M edges, as well as
one synthetic graph, consisting of 2M nodes and 4M
edges. Across the spectrum of graph algorithms, SocialLite
programs outperform initial implementations in Java, and
are also within 25% of their highly optimized Java counter-



parts. This demonstrates that users of SocialLite can enjoy
the conciseness and ease of programming of a high-level
language, with a tolerable degradation in performance.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2
describes our layout optimizations. Section 3 explains re-
cursive aggregate functions and how they can be evaluated
incrementally. Then, Section 4 describes the integration
with imperative languages, and Section 5 compares So-
ciaLite with other Datalog extensions and a graph analysis
language, Pregel. In Section 6, we explain how users can
specify a desired evaluation order, and in Section 7 we
evaluate the performance of Socialite. Related work is
reviewed in Section 8 and we conclude in Section 9.

2 DATA REPRESENTATION

In traditional Datalog implementations, data is stored in
relational tables, which are inefficient when it comes to
graph algorithms. In this section, we present the data rep-
resentation used in Socialite and demonstrate how graph
analysis is supported by fast join operations with this
representation.

2.1 Data as Indices

A simple but highly effective technique used in imperative
programming is to number data items sequentially and
use the number as an index into an array. We make this
representation choice available to a SociaLite programmer
by introducing the concept of a data range. A range is
simply a lower and an upper bound on the values of a
field, and the bounds can be run-time constants.

Consider the single-source shortest-paths example in
Figure 2. The first two statements in the program declare
two relations: EDGE contains the source node, destination
node and edge length for all edges in the graph, while PATH
contains the length of the shortest path to each node in the
graph. All data are represented as integers. The declaration
indicates that the relations EDGE and PATH are to be indexed
by the src and sink fields, respectively, both ranging from
0 to 10,000.

Our compiler uses the range as a hint to optimize the
column to be represented by array indices. Coupled with the
notion of tail-nested tables introduced below, the compiler
can simply allocate an array with as many entries as the
given range, allowing it to be indexed directly by the value
of the index.

2.2 Tail-Nested Tables

In conventional Datalog implementations or relational
database systems, data are stored in a two-dimensional
table of rows and columns. A column-oriented table stores
the values in the same column contiguously, while a row-
oriented table stores entire records (rows) one after another.
To store information such as edges in a graph, the source
nodes of edges must be repeatedly stored.

Graphs in imperative programming are frequently rep-
resented as an adjacency list, which can compactly store
edges of a graph, or any list of properties associated with
a node. Not only does this representation save space, the
program is more efficient because a single test suffices
to compare the source node of all the edges in the same
adjacency list.

We introduce the notion of a tail-nested table as a
generalization of the adjacency list and a form of denormal-
ization. The last column of a table may contain pointers to
two-dimensional tables, whose last columns can themselves
expand into other tail-nested tables. The nesting is indicated
by parentheses in the table declarations. For example,

R((type)ci, - .., (type)cn, —1,
(<type>cn1,17 LR <type>cn1,n2717
(<type>cﬂ1,nz,la ceey <type>cn1,n2,ﬂ3))>

declares a relation R with 3 nested tables where n,n2,n3
are the number of columns in each level.

The EDGE array in Figure 2 is declared as a tail-nested
table, with the last column being a table containing two
columns. Thus, EDGE is represented by a table of 10,001
rows, indexed by src. It has only one column containing
pointers to a two-dimensional array; each row of the array
stores a sink node and the length of the edge from source
to sink. Note that the PATH table is not nested. The second
column, dist, is applied to the $MIN aggregate function, so
it can only have one value. Therefore, the compiler can just
dedicate one entry to one value of the sink node, and use
the sink node as an index into the array.

2.3 Join operations

Let us now discuss how we accommodate tail-nested tables
in nested loop joins and hashed loop joins. Nested loop joins
are implemented by nesting the iteration of columns being
joined. To iterate down the column of a tail-nested table,
we simply nest the iterations of the columns’ parent tables,
from the outermost to the innermost tables. Observe that if
the column being joined is not in the leaf tail-nested table,
then each element visited may correspond to many more
entries; a single test on the element suffices to deternine if
the corresponding tuples are matching tuples. Therein lies
the advantage of this scheme.

In hashed loop joins, values of a column are hashed, so
that we can directly look up the entries containing a value
of interest. To support hashed loop joins for columns in
nested tables, they each include a pointer back to its parent
table and the record index for each nested table. In this
way, from an entry in the column of a nested table, we can
easily locate the record in the parent table(s) holding the
record.

3 RECURSIVE AGGREGATE FUNCTIONS

As illustrated by the shortest-paths algorithm example in
Section 1, it is important that Datalog be extended with the
capability to quickly eliminate unnecessary tuples so that



faster convergence is achieved. To that end, SociaLite sup-
ports recursive aggregate functions, which help to express
many graph analyses on social networks.

3.1 Syntax and Semantics

In Socialite, aggregate functions are expressed as an ar-
gument in a head predicate. Each rule can have multiple
bodies, that are logically disjunctive; i.e., the aggregate
function is applied to all the terms matching on the right.
The aggregate function is recursive if the head predicate is
used as a body predicate as well.

For example, the shortest-paths algorithm shown in
Figure 2 is specified with the help of a recursive $MIN
aggregate function. Each evaluation of the rule returns the
minimum of all the distances d for a particular destination
node ¢. The distances d computed in the rule body are
grouped by the node ¢, then the $MIN aggregate function
is applied to find the minimum distance. In this example,
rule 4 states the base case where the distances of the
neighbor nodes of the source node are simply the lengths
of the edges. Rule 5 recursively seeks the minimum of
distances to all nodes by adding the length of an edge to
the minimum paths already found.

This example demonstrates how recursive aggregate
functions improves the ability of SociaLite to express graph
algorithms. Without recursive aggregation, the program in
Figure 1 first generates all the possible paths before finding
the minimum. It does not terminate in the presence of
cycles as the path lengths are unbounded. With recursive
aggregation, the Socialite program specifies that only the
minimum paths are of interest, thus eliminating cycles from
consideration.

The immediate consequence operator [8], denoted as T},
for Datalog program P is extended for a Socialite program
with recursive aggregate functions. Suppose we have a
SociaLite rule with recursive aggregate function Fi, ..., Fj,
having m bodies as follows.

P(xlv vy Ty Fl(yl), EE3) Fk(yk)): *Ql(xb vy Ty Y1, 7yk)7

: _Qm(‘rh ey Ty Y1, "'7yk)-

Let I be a set of tuples satisfying predicates Qq, ..., Q,,;
then T, (I) for the above rule yields

{(@1s ey @i, 215 oy 20) |2i=Fi(8y,) A
Syi:{yi|v(xl7 s Ty Y1, 7yk) € I}}

The arguments zi, ..., z,, in predicate P are referred as
group-by parameters for the aggregate functions Fi, ..., Fj.
Note that the above definition of 7}, can be easily extended
for a rule having multiple predicates in its bodies.

3.2 Greatest Fixed-Point Semantics

Definition 1: An operation is a meet operation if it is
idempotent, commutative, and associative. A meet opera-
tion defines a semi-lattice; it induces a partial order C over
a domain, such that the result of the operation for any two

elements is the greatest lower bound of the elements with
respect to L.

For example, minimum and maximum are meet opera-
tions; the induced partial orders are < and >, respectively.
Summation, in contrast, is not a meet operation since it is
not idempotent. Note that meet operations can be extended
to operate on a set of elements through repeated application;
since meet operations are associative, the order of the
application does not matter.

Recursive aggregate functions in a SociaLite program are
required to be meet operations for the program to have a
well-defined fixed-point semantics. A Socialite program
is stratified by its recursive aggregate functions, such that
all the operations in recursive rules in a stratum must be
monotone under the partial orders of the recursive aggregate
functions. If a stratum contains multiple recursive aggregate
functions, the aggregate functions must be monotone to
one another in the recursion; otherwise, the program is not
considered as stratifiable. The following theorem gives a
fixed point semantics to a stratified SocialLite program.

Theorem 1: Consider a stratum P with recursive aggre-
gate functions in a stratified Socialite program. Suppose
that the immediate consequence operator 7}, denoted as h,
is decomposed into g and f, such that g is the function that
applies the aggregate functions to each set of tuples grouped
by the group-by parameters, and function f represents the
rest of operations in P. If g is a meet operation, inducing
a partial order C, and f is monotone under C, then there
exists a unique greatest fixed point R* such that

) R* = h(R*) = (go f)(R")

2) R C R* for all R such that R = h(R).
Furthermore, iterative evaluation of Socialite rules will
yield the greatest fixed-point solution R* if it converges.

Proof: If f is monotone under ¢, then h is also
monotone under g, which implies the existence of a unique
greatest fixed-point solution [9]. Let h* denote 4 applica-
tions of h. It follows from the monotonicity of h that
R (0) T hi=1(0) under g. () is the top element in the semi-
lattice, thus is greater than any other elements.)

If the meet-semilattice defined by ¢ is finite, then there
must be a finite k£ such that

0 2 h(0) 2 h%0) 3 ... 2 hF(0) = KH1(0)

h¥() is an inductive fixed-point solution. Using mathemat-
ical induction, we can show that the inductive fixed point
is greater than any other fixed point under g as long as f is
monotone. Therefore, the inductive fixed point 1*(()) from
iterative evaluation is the greatest fixed-point solution. []
The monotonicity of f under ¢ is required for the
existence of a unique greatest fixed-point solution. If f is
not monotone, the inductive fixed point might be different
from the greatest fixed point. Since the iterative evaluation
may reach a solution that is lower than the greatest fixed-
point solution, it may converge to a suboptimal solution.
With its fixed point semantics, recursive aggregate func-
tions subsume other Datalog extensions, such as the mono-



tonic aggregate functions proposed by Ross and Sagiv [7].
This is discussed in Section 5.

A meet operation has a symmetric dual operation, called
a join operation [9]. Like a meet operation, a join operation
is idempotent, commutative, and associative; it defines a
semi-lattice, inducing a partial order _J, such that the result
of the operation for any two elements is the least upper
bound of the elements.

Theorem 1 can be simply restated for a join opera-
tion, which would define least fixed point semantics and
subsumes the traditional least fixed point semantics of
Datalog. Function g for a Datalog program corresponds to
the union operation, and the induced partial order is the
subset relation; then the Theorem explains the least fixed
point semantics of Datalog.

3.3 Semi-Naive Evaluation

Semi-naive evaluation is an optimization critical to the
efficient execution of recursive Datalog rules. It avoids
redundant computation by joining only subgoals in the body
of each rule with at least one new answer produced in
the previous iteration. The final result is the union of all
the results obtained in the iterative evaluation. Semi-naive
evaluation can be extended to recursive aggregate functions
if they are meet operations.

Consider a stratum P of a stratified SociaLite program,
and its transformation P’ for the semi-naive evaluaton. For
each rule in P, we add new delta rules to P’ by replacing
each intentional predicate in the rule body with a delta
predicate that corresponds to the updated facts at previous
iteration.

Algorithm 1: Semi-naive evaluation of recursive aggre-
gate functions.

Input: A stratum P of a Socialite program and its
transformation P’ with delta rules. Function ¢ and f for P,
as they are defined in Theorem 1. Function f is required
to be distributive as well as monotone. Function f’ that
extends f for the evaluation of the delta rules in P’; f takes
an additional parameter which represents updated facts at
previous iteration.

Output: Returns the greatest fixed-point solution for P.

Method:

Ro “— @
Ry« g(f(Ro) U Ro)
Ay Ry,i1
do
14 1+1
Ri < g(f'(Ri—1,Ai—1) UR;_1)
A« R, — R;_4
while Ai 7é @
return R; [ |

As an example, the shortest-paths algorithm in Figure 2

can be expressed as h = g o f, where

F(R) = {(t, d)|EpcE(L, £, d)V

computes the new path lengths by adding one more edge
to the minimum paths found so far.

Q(R) = {<t’min(t7d1)63d1>|<ta d> € R}

finds the minimum path for each destination node. Since
minimum is a meet operation, we can apply Algorithm 1
to this program.

Ai = {<t>d>|<t7d> € R’L A (d 7é d1|<t7d1> S Rifl)}

represents all the newly found shortest paths. Clearly, there
is no value in applying f to paths that were already found
in R;_q, thus

Ri = g(f(Ri—1,Ai—1) UR;—1) = g(f(Ri—1)) = h(Ri—1)

This means that the semi-naive evaluation in Algorithm 1
yields the same result as naive evaluation for the shortest-
paths program.

Theorem 2: Algorithm 1 yields the same greatest fixed
point as that returned with naive evaluation.

Proof: We use mathematical induction to show that

R; = h*((). We use h; to simply denote hi(()).
Basis: Ry = g (f (Ro) U Ro) = go f(0) = h'(D)
Inductive step: Assuming Ry = h¥(()) for all k < i,

Riy1=g(f" (Ri, Ai) URy)

=g (f" (hishi —hi—1) U hy)

=g (f (hiyhi —hi—1)Ugo f(hi—1))

=g (f' (hi,hi — hi—1) U f(hi=1)) (6)
=g (f (hiyhi = hi—1) U f" (hi=1, hi—1)) @)
=g (f (h; Uhi—1,(hi — hi—1) Uh;_1)) (®)
=g (f (h; Uhi—1,h;))

=g (f" (hishi)) €)
=g (f (h:)) = H"TH(D)

Line 6 is true because ¢ is a meet operation, and line 7
is true because f’ is equivalent to f if R;_; is used in
place of A; ;. Line 8 follows from f being distributive,
and line 9 from g o f’ as well as h being monotone. [

The theorem can be extended for a program with multiple
recursive aggregate functions. We denote a program with n
aggregate functions as h,oh,_10...0hy, where h; = g;o f;
for all ¢ < n, such that g; and f; satisfy the same conditions
as above. Then, following steps similar to those in the above
proof, we can see that semi-naive evaluation gives the same
results as naive evaluation for the program with n recursive
aggregations.

3.4 Optimizations

Taking advantage of the high-level semantics of SociaLite,
we have developed several optimizations for evaluating
recursive aggregate functions, as described below.
Prioritized evaluation. For recursive aggregate func-
tions that are meet operations, we can speed up convergence
by leveraging commutativity. We store new results from
the evaluation of aggregate functions in a priority queue,
so that the lowest values in the semi-lattices are processed

((s,d1) € R NEDGE(s,t,d2) ANd=dy +da)} first. This optimization when applied to the shortest-paths



program in Figure 2 yields Dijkstra’s shortest-paths algo-
rithm.

Pipelining. This optimization improves data locality by
interleaving rule evaluation, instead of evaluating one state-
ment in its entirety before the next. If rule Rs depends
on rule Ry, pipelining applies Ry to the new intermediate
results obtained from R;, without waiting for all the results
of R; to finish. While pipelining is not specific to aggre-
gate functions, it is particularly useful for recursive and
distributive aggregate functions whose bodies have multiple
parts. This enables prioritization across statements, which
can translate to significant improvement.

4 INTEGRATION WITH IMPERATIVE LAN-

GUAGES

Intended to be used as a database query language in
applications written in conventional languages, SociaLite
is integrated into imperative programming languages in
two ways. First, Socialite queries can be embedded into
imperative programs. Typically the imperative programs
will prepare the input, write into the database and invoke
queries on the database to compute the answers. Second,
SociaLite can be extended with pure function predicates,
written in imperative languages.

We use Java in this section as an example of an imper-
ative language, but it can be applied to other imperative
languages as well.

4.1 Embedding SocialLite

A SociaLite database is defined as a Java class SociaLit-
eDB. A Java program specifies a SociaLite program through
the invocation of a series of run method. The Java program
interfaces with the Socialite database via input and output
tables. The method getTable binds SociaLite tables to Java
tables (Figure 3).

The Table class, whose instance corresponds to a So-
ciaLite table, is defined as a set of fuples. Through methods
in the Table class, Java programs can read from and write
data into the SociaLite table (Figure 4). The setTupleClass
method specifies the type of the tuples, so the types can
be checked by the Socialite database dynamically. The
insert method adds a tuple to the table and the read method
applies a visitor method to every tuple in the SociaLite
table. Additionally, the table can be cleared via the clear
method, so that the database can be used on different sets
of inputs.

Method
run (query)
getTable (table)

Description

Execute the given query

Return the Java representation of
the given Socialite table

Fig. 3. Methods in SocialiteDB class

An example of a Java program with a SociaLite database
is shown in Figure 5.

Method
setTupleClass (cls)

Description

Set the tuple class that defines
the types of tuples in the table
Insert the tuple into the table
Read the tuples in the table and
pass them to the visitor class
Clear the tuples in the table

insert (tuple)
read(visitor)

clear ()

Fig. 4. Methods in Table class

1) This program first creates a new Socialite database
instance, declares EDGE table having two columns, src
and target, with the latter represented as a nested table.

2) The SociaLite EDGE table is bound to the Java edge
table with the getTable method. The nested struc-
ture in the Socialite program is oblivious to the
Java program. Here the Java program simply declares
an Edge as a table of EdgeTuple objects, each of
which has two integers. With the method invocation
edge.setTupleClass(EdgeTuple.class), the Java type for
edge is checked against the declaration in SocialL.ite,
and an exception is thrown if the types do not match
at run time. In this example, an edge with src 0 and
target 1 is inserted into the edge table.

3) A SociaLite query is executed; the query declares that
if there is an edge from node s to ¢, then there exists
a reverse edge from node ¢ to s. After the execution,
the EDGE table represents an undirected graph.

4) The result in the edge table is then read with a callback
method visit applied to every tuple in the edge table.

// 1. create a SocialiteDB with Edge table
SocialiteDB db=new SocialiteDB();
db.run ("Edge (int src, (int target)).");
// 2. insert a tuple into the Edge table
class EdgeTuple extends Tuple {

int src; int target;
}
Table edge = db.getTable ("Edge");
edge.setTupleClass (EdgeTuple.class);
EdgeTuple t = new EdgeTuple();
t.src= 0; t.target = 1;
edge.insert (t);
// 3. run a Socialite query
db.run ("Edge (t,s) :— Edge(s,t).");

// 4. print tuples in the Edge table
edge.read(
new TupleVisitor () {

public boolean visit (Tuple _t) {
EdgeTuple t=(EdgeTuple)_t;
println(t.src+"->"+t.target);
return true;
}
)i

Fig. 5. Java program calling SocialLite

All the queries made to the Socialite database are
cumulative. Each invocation inserts an additional Social.ite
declaration or rule to the accumulated set of rules. Each
time a query is run, the database applies all the rules



accumulated so far to the values inserted into the tables.
If a table has been “cleared”, then its contains only those
values inserted subsequent to the “clear” operation.

The Socialite compiler applies incremental semi-naive
evaluation to minimize re-evaluations across runs. Nor-
mally, the evaluation of a query can simply be applied to all
the results accumulated so far until convergence. However,
if a clear operation has been invoked on table ¢ since the
last run, all results dependent on ¢ are also cleared before
running the queries.

4.2 Extending Socialite

Socialite can be extended with pure functions written
in conventional programming languages, with the help of
function predicates. A function predicate is expressed as
(v1,...,Um) = $f(a1,...,a,), where f is the name of
an external pure function with n input parameters and m
returned values. All the input variables ai,...,a, must
be bound to non-function predicates or in return variables
of preceding function predicates. Also, the return variables
v1,...,0,; Must not appear as input parameters or return
variables of preceding predicates. If a function predicate
is used in recursive rules involving an aggregate function,
the external function must be monotonic with respect to
the aggregate function to ensure the existence of a greatest
fixed-point solution.

5 COMPARISON WITH OTHER LANGUAGES

This section describes how SociaLite subsumes two impor-
tant Datalog extensions for graph algorithms: the choice
operators and monotonic aggregate functions. By showing
how a Pregel execution can be specified in two Socialite
rules, we prove that SocialLite subsumes Pregel as well.

5.1

Greedy algorithms, where optimization heuristics are used
locally to approximate globally optimal solutions, are im-
portant and prevalent. The inability of Datalog in expressing
greedy algorithms has prompted the proposal of new Data-
log extensions called the greedy choice operators [6], [10].
These operators, choice-least and choice-most, are them-
selves derived from the choice operator [11], [12] proposed
to add non-determinism to Datalog. The choice operator
chooses a tuple nondeterministically in its evaluation, thus
allowing exponential search to be expressed simply. More
formally, a subgoal of the form cHOICE((X), (Y)) in a rule
states that the set of all tuples derived from the rule must
follow the functional dependency X — Y. The arguments
X and Y are vectors of variables, where X optionally can
be an empty vector.

The choice-least and choice-most operators introduce
the use of a heuristic function for choosing a tu-
ple among possible candidates. A subgoal of the form
cHOICE-LEAST((X), (Y)) in a rule states that the set of
all tuples derived from the rule must follow the func-
tional dependency X — Y, and that Y has the least

Greedy Algorithms Using Choice Operators

cost among all the possible candidates. CHOICE-MOST is
defined analogously. The introduction of CHOICE-LEAST
and CHOICE-MOST eliminates the backtracking necessary to
simulate a non-deterministic algorithm, turning it into a
greedy algorithm.

Datalog programs with greedy choice operators can be
implemented in SocialLite, with the help of the recursive
aggregate functions, as follows. Given a Datalog program
with a choice-least operator of the following form,

P : — Q,cHOICE((X1), (Y1)), ..., cHOICE((X;), (V3)),
cHoICE-LEAST((X) , (C)),

where Q is the conjunction of all the goals in the rule, X,
X1, Y7, ... X,, Y, denotes vectors of variables, and C' is
the cost, a single variable ranging over an ordered domain.
Note that CHOICE operators here do not induce any non-
determinism, because the CHOICE-LEAST operator ensures
deterministic evaluation through the greedy selection; the
CHOICE operators simply make an arbitrary selection among
candidate tuples that yield the minimum cost value. Here
is the equivalent SociaLite program for the above program:

R(X,$MIN(C)) : — Q.
P1(Xy,$CHoice(Y1)) : — Q,R(X,C).

P, (X, $CHOICE(Y])) : — Q,R(X, ).
P —Q,Pi(X1,V1),..., P(X;,Y;), R(X,C).

where $CHOICE is a recursive aggregate function whose
partial order depends on the evaluation order, such that an
element evaluated prior is considered smaller than an ele-
ment evaluated posterior. Note that it is trivial to implement
$CHOICE; it always returns the first tuple found to satisfy
the subgoal. $CHOICE enforces functional dependency from
its group-by parameters to its argument. Datalog programs
with choice-most operator can be implemented with the
function $MAXx analogously.

5.2 Monotonic Aggregate Functions

Monotonic aggregate functions, proposed by Ross and Sa-
giv [7], are another well-known Datalog extension for graph
algorithms. Ross and Sagiv define aggregate functions as
monotonic if adding more elements to the multi-set being
operated upon can only increase (or decrease) the value of
the function. For example, according to Ross and Sagiv,
both maximum and summation are monotonic aggregate
functions. Note that in our terminology, maximum is mono-
tonic but not summation. Summation is not idempotent,
which means that adding incremental values to a partial sum
without removing duplicates will yield the wrong answer.

Because of their definition of monotonic functions, Ross
and Sagiv impose an addition constraint on their monotonic
aggregate functions before they can be used recursively.
Namely, each cost argument (variable to be aggregated)
must be functionally dependent on the rest of the tuple. This
restriction means that there cannot be two tuples that differ
only in the cost argument. With this restriction, removing
all duplicates before applying the aggregate function will



eliminate the double-counting problem. Unfortunately, such
a formulation is too restrictive to be useful. For example,
our shortest-paths algorithm shown in Figure 2 would fall
outside their formulation.

Note that any aggregate function satisfying Ross and
Sagiv’s restriction is also a meet operation. Functional de-
pendency guarantees idempotency trivially. Thus, recursive
aggregate functions are a strict generalization of monotonic
aggregate functions.

5.3 Comparison with Pregel

Pregel [13] is a well-known graph analysis framework
developed at Google. A Pregel program is vertex-centric;
in each iteration of the computation, a local operation is
performed on a vertex based on the data received in the
previous iteration and messages are sent to neighboring
vertices. When all the messages reach their destination, the
next iteration begins.

The Pregel execution model can be succinctly expressed
in SociaLite. The ith iteration of a Pregel computation can
be written with the following two rules:

STATE(s, i + 1, $AccuML(m,v)) : — STATE(S,1,v),
MsG(s,i,m).
: — STATE(s,i + 1,v), EDGE(s, t),

m = $COMPUTEMSG(v, t).

MsaG(t,i + 1,m)

The first rule updates the state of vertex s in iteration ¢+1
based on its value v and new messages received in iteration
1, using the aggregate function $AccuML. The second rule
uses $COMPUTEMSG to create messages for its neighboring
vertices t in the next iteration. This shows that SociaLite
is more expressive than Pregel.

6 ORDERING

SociaLite lets users control the order in which the graphs
are traversed by declaring sorted data columns and in-
cluding these columns in Socialite rules as a hint to the
execution order.

6.1

The SociaLite programmer can declare that a column in a
table is to be sorted by writing

R(({type) f1, (type) f2, . -

This syntax is familiar to programmers well versed in SQL.
Note that in the case where the declared column belongs to
a nested table, the scope of the ordering is confined within
that nested table.

Ordering Specification

.) orderby f;[asc|desc], . . .

6.2 Evaluation Ordering

When a sorted column is included in a Datalog rule, it
indicates to the compiler that the rows are to be evaluated
in the order specified. Suppose we wish to count the number
of shortest paths leading to any node from a single source,
a step in finding betweenness centrality [14]:

Dists(int d) : orderby d
DisTs(d) D=
PATHCOUNT(n, $SUM(c))

sp(_,d,.).
SOURCE(n),c = 1;
: — Dists(d), SP(n,d, p),
PATHCOUNT(p, ¢).

Fig. 6. Ordering of evaluation in SociaLite.

PATHCOUNT(n, $SUM(¢)) : — SOURCE(n), ¢ = 1;
: —SP(n, d, p), PATHCOUNT(p, ¢).

The predicate SP(n,d,p) is true if the shortest path
from the source node to node n has length d and the
immediate predecessor on the shortest path is node p.
PATHCOUNT(n, ¢) is true if ¢ shortest paths reach node n.
The base case is that the path count of the source node is
1; the path count of a node n is simply the sum of the
path counts of all its predecessors along the shortest paths
leading to n.

Notice that the second rule is recursively dependent on
PATHCOUNT. Since $SuM in the rule head is not a meet
operation (because it is not idempotent), the recursion here
indicates that whenever the PATHCOUNT changes for a node,
we have to reevaluate the PATHCOUNT for all the successors
along the shortest paths. If the evaluation is ordered such
that many reevaluations are required, it may incur a large
performance penalty.

We note that the shortest paths from a single source to
all nodes form an acyclic graph. We can compute the path
count just once per node if we order the summations such
that each node is visited in the order of its distance from
the source node. We can accomplish this by including a
sorted column with the right ordering in the SociaL.ite rule,
as shown in Figure 6.

Notice that the correctness of the Socialite rule is
independent of the execution order. The user provides a hint
regarding the desired execution order, but the compiler is
free to ignore the desired order if it sees fit. For example, if
a SociaLite program is to be executed on a parallel machine,
then it may be desirable to relax a request for sequential
execution ordering.

6.3 Condition Folding

Our compiler takes advantage of the sorted columns to
speed up computations predicated on the values of the data.
Consider a statement such as:

Bar(int a, int b) : sortedby b

Foo(a,b) :— BaRr(a,b),b>10.

We can use binary search to find the smallest value of b
that is greater than 10, and return the rest of the tuples with
no further comparisons.



7 EXPERIMENTS

In this section, we present an evaluation of our SociaLite
compiler. We start by comparing SociaLite to other Datalog
engines, using the shortest-paths algorithm, and establish
that our baseline implementation is competitive. We then
evaluate the compiler with seven core graph analysis rou-
tines and a complete algorithm for computing betweenness
centrality. Finally, we experiment with using SociaLite to
find Eulerian cycles, an important algorithm in bioinfor-
matics for DNA assembly.

7.1 Comparison of Datalog Engines

To evaluate how SociaLite compares with state-of-the-art
Datalog engines, we experimented with three representative
systems: Overlog [15], IRIS [16], and LogicBlox version
3.7.10 [4]. Overlog is a research prototype designed to
explore the use of declarative specification in networks,
IRIS is an open-source Datalog engine, and LogicBlox is
a commercial system.

None of the other Datalog engines support recursive ag-
gregate functions. We added nonrecursive aggregate func-
tions, which are supported by Overlog and LogicBlox, to
IRIS in a straightforward manner for the sake of compari-
son. Without recursive aggregation, our choice of a graph
algorithm benchmark was limited. To approximate graph
analyses as closely as possible, we selected the shortest-
paths program in Figure 1 as the benchmark and ran it on
an acyclic graph, since it would not terminate otherwise.
Note that the LogicBlox Datalog engine warns users that
the program may not terminate. Since real-world graphs
often contain cycles, a randomly generated acyclic graph
with 100,000 nodes and 1,000,000 edges was used as input
to all the programs. We authored the programs for Overlog
and IRIS ourselves; the program for LogicBlox was written
with the help of a LogicBlox expert.

We ran the shortest-paths algorithm on a machine with
an Intel Xeon processor running at 2.80GHz. Figure 7
compares the execution times of all the four Datalog
engines, including SociaLite. LogicBlox ran in 3.4 seconds,
which is significantly faster than Overlog and IRIS. In
comparison, SocialLite executed in 2.6 seconds, showing
that our baseline system is competitive. With the data layout
optimizations described in Section 2, the program ran in
1.2 seconds. Had we written the Socialite program using
recursive aggregate functions, as shown in Figure 2, the
performance achieved with all the optimizations described
in this paper would be 0.1 seconds, which is similar to the
performance of Dijkstra’s algorithm in Java.

7.2 Graph Algorithms

Our experimentation with different graph algorithms began
with a survey of the literature on social network analyses.
Common graph algorithms include computing the impor-
tance of vertices, community detection, and other general
graph metrics [14], [17], [18]. We selected seven represen-
tative graph analysis routines, three of which operate on
directed graphs:

[ Programs | Exec Time(sec) |
Overlog 24.9
IRIS 12.0
LogicBlox 34
SociaLite 2.6
SociaLite (with layout opt) 1.2
SociaLite (plus recursive min) 0.1
Java (Dijkstra’s algorithm) 0.1

Fig. 7. Comparing the execution time of the shortest-
paths program on representative Datalog engines.

Shortest Paths: Find shortest paths from a source node
to all other nodes in a graph.

PageRank: PageRank [19] is a link analysis algorithm
(used for web page ranking) which computes the
importance of nodes in a graph.

Hubs and Authorities: Hyperlink-Induced Topic Search
(HITS) [20] is another link analysis algorithm that
computes the importance of nodes in a graph.

The rest of the benchmarks operate on undirected graphs.
Note that an undirected edge is typically represented by a
pair of unidirectional edges.

Mutual Neighbors: Find all common neighbors of a pair
of nodes.

Connected Components: Find all connected components
in a graph. A connected component is a subgraph in
which every pair of nodes is connected by at least one
path, and no node in the component is connected to
any node outside the component.

Triangles: Find all triangles (i.e., cliques of size three) in
a graph.

Clustering Coefficients: We compute the local clustering
coefficient of each node, which is a measure of how
well a node’s neighbors are connected with each other.

7.3 Socialite Programs

All the benchmarks in this study can be succinctly ex-
pressed in SociaLite. Whereas SociaLite programs for the
benchmarks range from 4 to 17 lines, with a total of 60
lines; Java programs for these algorithms with comparable
performance range from 77 to 161 lines of code, with a
total of 704 lines (Figure 8). Socialite programs are an
order of magnitude more succinct than Java programs and
are correspondingly easier to write. (More details on these
Java programs will be presented in Section 7.6.)

7.4 Overall Performance

We used two real-world graphs for our experiments, since
the first three benchmarks need a directed graph, and the
rest need an undirected graph. Our first graph was extracted
from LiveJournal, a website that enables individuals to
keep a journal and read friends’ journals [21]. Our Live-
Journal dataset is a directed graph with 4,847,571 nodes
and 68,993,773 edges. Our second graph was extracted
from Last.fm. a social music website that connects users
with similar musical tastes [22]. The Last.fm dataset is



SociaLite Programs |

Unoptimized (row) | Unoptimized (column) |

Optimized | Speedup (over column)

Shortest Paths 37.9 35.2 6.6 53
PageRank 554 24.1 19.2 1.3
Hubs and Authorities 114.5 93.5 30.9 3.0
Mutual Neighbors 7.7 5.1 1.5 34
Connected Components 25.9 18.7 1.3 14.4
Triangles 158.1 106.1 4.8 22.1
Clustering Coefficients 353.7 245.8 15.4 15.9

Fig. 9. Execution times of unoptimized and optimized SocialLite programs (in seconds).

Hand-optimized SociaLite
Java

Shortest Paths 161 4
PageRank 92 8
Hubs and Authorities 104 17
Mutual Neighbors 77 6
Connected Components 103 9
Triangles 83 6
Clustering Coefficients 84 10
Total [ 704 60

Fig. 8. Number of non-commented lines of code for op-
timized Java programs and their equivalent SocialLite
programs.

an undirected graph consisting of 1,768,195 nodes and
6,428,807 edges.

All applications were executed on the entire data set,
except for Mutual Neighbors. Since finding mutual neigh-
bors for all pairs of nodes in the Last.fm graph is expensive,
the algorithm was instead evaluated on 2,500,000 randomly
selected node pairs. We executed the directed graph algo-
rithms on a machine with an Intel Xeon processor running
at 2.80GHz and 32GB memory, and the undirected graph
algorithms on a machine with an Intel Core2 processor
running at 2.66GHz and 3GB memory.

To evaluate the optimizations proposed in this paper,
we compared fully optimized SociaLite programs with
non-optimized Socialite programs. We also compared the
performances of two Socialite variants, one using row-
oriented tables and one using column-oriented tables. Note
that the row-oriented tables are implemented as arrays of
references pointing to tuples in the tables; the column-
oriented tables store each column in an array. Our ex-
perimental results are shown in Figure 9. The execution
times of the unoptimized graph algorithms range from 8
seconds to 354 seconds for the row-oriented implementa-
tion. The column-oriented implementation runs up to two
times faster. Since the column-oriented implementation is
consistently better than the row-oriented counterpart, we
use the column version as the baseline of comparison in
the rest of our experiments.

The experimental results show that our optimizations
deliver a dramatic improvement for all the programs, even
over the column-oriented implementation. In particular, all
programs finished under 31 seconds. The speedup observed
ranged from 1.3 times for simpler algorithms like Pager-
ank and up to 22.1 times for Triangles. Across all the

programs, optimized SociaLite outperformed the column-
oriented implementation optimizations by a harmonic mean
of 4.0 times.

7.5 Analysis of the Optimizations

Our next set of experiments evaluates the contribution of
the different optimizations proposed in this paper.

7.5.1 Data Layout Optimizations

nll

o
Hubs and Mutual  Connected Triangles

Shortest ~ PageRank
Authorities Neighbors Components

Clustering

Paths Coefficients

Fig. 10. Speedup due to tail-nested tables and data
indexing over column-orientation, with other optimiza-
tions applied.

Because the data layout interacts with all optimizations,
we wished to isolate the effect of data layout optimizations.
We obtained two measurements: (1) the performance with
all optimizations, and (2) the performance with all but
data layout optimizations, and column-oriented relational
tables being used. The speedup of the former to the latter
measures the effect of data layout in the presence of
all the optimizations (Figure 10). We see that the data
layout optimization provides a considerable improvement
across the board, with the speedup over column orientation
ranging from 1.3 to 3.5. The reasons for the speedup are
easier to explain when we observe the results of the next
experiment.

7.5.2 Effects of Individual Optimizations

We discovered through experimentation that all optimiza-
tions are mostly independent of each other, except for the
data layout. This allowed us to understand the contribution
of each optimization by simply compounding them one
after the other. We ran a series of experiments where we
measured the performance of the benchmarks as we added
one optimization at a time (Figure 11). The baseline of
this experiment was obtained using no optimizations and



a column-oriented layout. We then added optimizations in
the following order:

1) nested tables and data indexing,

2) prioritization in aggregate functions,
3) pipelining, and

4) conditional folding.

25
Condition Folding
E Pipelining
20
¥l Prioritization

[ Nested table

W Baseline

Speedup

0
iu%i-

Hubs and Mutual  Connected
Authorities Neighbors Components

Shortest
Paths

PageRank Triangles  Clustering

Coefficients

Fig. 11. Speedups from optimizations. Baseline is
SocialLite with column orientation.

We observe that data layout optimizations on their own
have limited improvement, except for Hubs and Authorities
and Mutual Neighbors. The reason for the improvement
is that the representation of edges is more compact, and
we can iterate through the edges of the same source node
without testing the source node for each edge. Comparison
with Figure 10 shows that data layout optimizations make
all the other optimizations more effective.

Both Shortest Paths and Connected Components use the
$MIN aggregate function and can therefore benefit from the
prioritization optimization. For Shortest Paths, the use of
a priority queue provides a large speedup, transforming
it from a Bellman-Ford algorithm to Dijkstra’s algorithm.
For Connected Components, the priority queue allows the
lowest-ranked component ID to propagate quickly through
the connected nodes. In both cases, we observe more than
a 5-fold speedup. For Connected Components, pipelining
increases the speedup 14-fold. The reason for this tremen-
dous improvement is that the two parts of the recursive
definition of Connected Components are pipelined. If the
base definition is run to completion before the recursive
computation, the priority queue is filled with component
ID values that are rendered obsolete almost immediately.
Hence for Connected Components, prioritization together
with pipelined evaluation provides a large performance
improvement. Finally, both Triangles and Clustering Co-
efficients benefit from condition folding; this optimization
returns a significant speedup when coupled with data layout
optimizations.

7.6 Comparison with Java Implementations

To understand the difference between programming in
Datalog and imperative programming languages like Java,
we asked a colleague who is well versed in both graph
analysis and Java to write the same graph analysis routines
in Java.

35

 Java (Opt)
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Fig. 12. Performance of optimized Social.ite programs
and optimized Java programs relative to initial imple-
mentation in Java.

The first implementation of the algorithms in Java is
significantly faster than the unoptimized Datalog programs.
However, with the optimizations proposed in this paper,
our SociaLite programs surpassed the performance of the
first implementations in Java. As shown in Figure 12,
SociaLite is faster than the first implementation in 6 out
of the 7 cases, with speedup ranging from 1.25 to almost
3 times. The harmonic mean in speedup for Socialite
over unoptimized Java for all the programs is 1.52. Note
that the original shortest-paths algorithm in Java did not
finish within a reasonable amount of time; we improved
the implementation by substituting the priority queue in the
standard Java library with a custom priority queue. Even
with this improvement, it is more than 50% slower than
the SociaLite program.

Conceptually, it is always possible to duplicate the
performance obtained with Socialite in a Java program;
after all, our compiler translates Socialite into a Java
program. We asked our Java programmer to optimize
his Java programs using the concepts in our SocialLite
compiler. With considerably more effort, the programmer
created optimized Java versions that perform similarly as
the SociaLite counterparts, with a harmonic speed up of
1.51 over the unoptimized Java versions.

As shown in Figure 8, the code size of SociaLite pro-
grams is much smaller than that of the optimized Java
programs. The ratio of the Java to SociaLite code size has
a harmonic mean of 11.1. Whereas it took a few minutes
to implement the SociaLite programs; it took a few hours
for the Java programs. The complexity of the optimizations
makes it much harder to get the code to run correctly.

7.7 Betweenness Centrality

Besides the seven core algorithms, we also experimented
with using SociaLite to implement a full application,
betweenness centrality [14]. Betweenness centrality is a



Comparison [ Java | SociaLite

Development time for 10 0.1
Shortest Paths (hours)

Total development time (hours) 12 0.4
Lines of code 258 21
Execution time (hours) 1.8 2.1

Fig. 13. Betweenness Centrality: Java vs SociaLite

popular network analysis metric for the importance of a
node in a graph. The betweenness centrality of a node v is

defined to be Z 75t(v)

sFEVFEL
shortest paths from s to ¢ passing through v and o, is the

total number of shortest paths from s to ¢.

We implemented Brandes’s algorithm [23], which is
the fastest known algorithm for computing betweenness
centrality. The algorithm is an iterative process. Each itera-
tion begins with a single-source shortest-paths computation
from a source node, followed by path counting (which
visits all nodes in increasing order of their distances from
the source). It ends with computing the fraction of paths
passing through each node, which requires visiting all nodes
in the opposite order (e.g., decreasing order of distance
from the source). Note that we have already shown how we
can control the order of evaluation for finding path counts in
Figure 6. Similarly, we can reverse the order of evaluation
by sorting distances in decreasing order.

We used the Last.fm graph for this experiment. It is too
expensive to compute centrality exactly for this large graph,
as it requires finding the shortest paths from all nodes.
Instead, we computed an approximate centrality by running
the shortest paths algorithm from 1,000 randomly selected
nodes.

To understand how SociaLite compares with an impera-
tive programming language, one author of this paper wrote
the code in Socialite and the other in Java. Figure 13
compares the two implementations. The SociaLite version
took about 24 minutes from start to finish. The Java
version took about 12 hours, 10 of which were spent in
optimizing the shortest-paths algorithm. The program size
of the SociaLite version is much smaller than that of the
Java version: the Socialite version uses 21 lines, whereas
the Java program requires 258 lines.

The SociaLite implementation is slower than the Java
version, but by only 16%. Around 6% of the overhead is
due to the overhead of computing ordering hints; the Java
version is faster because it determines the ordering as the
shortest paths are found. The rest of the slowdown can be
attributed to the computation of the shortest paths. Overall,
this experiment shows that programming in SociaLite is
simpler and faster than coding in Java and the performance
overhead is tolerable.

, where o (v) is the number of
Ost

7.8 Eulerian Cycles

Bioinformatics is another interesting application domain
for SociaLite, since it also requires analyses of net-
works, such as the protein interaction networks [24]. Of

great importance in this domain is DNA sequence assem-
bly, which infers full-length (unknown) DNA sequences
from experimentally-obtained short fragments of DNA se-
quences. A core routine used is the creation of a De Bruijn
graph [25] from the genome sequence fragments [26]. In
a k-dimensional De Bruijn graph, the edges of the graph
are unique genome subsequences of a given length k within
the fragments, and the nodes of the graph represent genome
subsequences of length k-1 within the fragments. Thus, two
nodes in the graph are connected if the suffix of a node is an
exact match of length k-2 of the prefix of another node [26].
The Eulerian cycle in such a graph represents the original
DNA sequence [26].

To find the Eulerian cycle in the De Bruijn graph,
Hierholzer’s algorithm can be used, which follows a trail
of edges from a node having unvisited edges until returning
to the starting node; this is repeated until all the edges are
visited [27].

With the help of the recursive aggregate function
$CHOICE defined in Section 5.1, we can use Social.ite
to implement the Hierholzer’s algorithm, as shown in
Figure 14. This program is executed repeatedly, with each
round excluding edges that have already been visited, until
there are no edges left. Rule 10 states that there is a path
from node S to node ¢ found at time L, if there is an edge
from S to ¢ and the edge is not already in the trail. In
the first iteration S is an arbitrary node and L is 1; in
subsequent iterations, S is a node, with unvisited edges,
that was visited at time L — 1. To handle the negation in
the predicate !PATH(s,_,t), inflationary semantics [28] is
assumed, which checks if a fact exists at the time when
the negation is evaluated. In short, Rule 10 states that the
first edge found for the trail is the edge from node S to .
The function $CHoICE enforces the functional dependency
(s,l) — t, ensuring that only a single edge is selected at
a time. Rule 11 recursively states that if there is a path to
node s found at time [y, and there is an edge from s to t,
then there is a path from s to ¢ found at /; + 1 as long as
the edge is not already part of the trail.

PATH(s, [, $CHOICE(t)) : — s=S,I=L, EDGE(s, t),
IPaTH(s, _, t);
i — PaTH(_, l1,8),l =11 + 1,
EDGE(s, t), |PATH(s, _, t)(11)

(10)

Fig. 14. A step in Hierholzer’s algorithm for finding an
Eulerian cycle in SocialLite.

As we did with the betweenness centrality application,
one author of this paper implemented the algorithm in
SociaLite and the other in Java. Figure 15 compares the
two implementations on an input graph with 2M nodes and
4M edges. The input graph is synthesized by augmenting
randomly generated cycles. We run the two programs on a
Intel Core2 processor running at 2.66GHz.

The performance overhead of Socialite compared to



Comparison [ Java | SociaLite

Development time (hours) 4.5 0.3
Lines of code 105 16
Execution time (seconds) 2.8 3.5

Fig. 15. Eulerian Cycle: Java vs Socialite

Java implementation is 25%. The majority of the overhead
comes from having to iterate over the nodes to find a
starting node with unvisited edges at the beginning of
each iteration. While the overhead observed is higher than
previous benchmarks, the Hierholzer algorithm has a short
running time. The key takeaway is that recursive aggregate
functions can be used to express calculations for which
Datalog is unsuitable, thus making it possible for the
whole algorithm to be expressed quickly and succinctly in
SociaLite.

8 RELATED WORK

Extending the semantics of Datalog. Various attempts
have been made in the past to allow incremental analysis
of aggregate functions in Datalog [29], [30]. Ganguly et
al. showed how a non-recursive minimum or maximum
function can be rewritten with a set of recursive rules
involving negation, and proved that incremental analysis
will yield the same result [29].

In Section 3 we described in detail the two well-known
Datalog extensions: Datalog for greedy algorithms and Dat-
alog with monotonic aggregate functions. In short, recursive
aggregate functions in SociaLite extends Datalog with more
expressive power than the two extensions.

Recently, Mazuran et al. proposed Datalog’® that ex-
tends Datalog with frequency support goals, which allow
counting the distinct occurrences satisfying given goals in
rules. With the frequency support goals inside recursive
rules, Datalog’® can express large classes of algorithms
that cannot be expressed in Datalog. The counting operation
in Datalog’® is a meet operation; the domain of the
operation is {S,n}, where S is a set of tuples satisfying
a given goal, and n is the number of distinct elements
in S. For any two elements {S1,n1} and {Sa,n2}, the
greatest lower bound by the counting operation is simply
{51 U S2,n3} where ng is the number of distinct elements
in S1US,. (XXX: maybe too verbose.. we might not need to
go into the details...) Since the counting operation is a meet
operation, the frequency support goals can be implemented
as recursive aggregate functions in SociaLite; hence any
algorithm in Datalog!™® can be rewritten with recursive
aggregate functions in SociaLite.

The semantics of the function predicates in SocialL.ite is
similar to the previously proposed external predicates [31].

Other Datalog research. Recently Datalog research has
been revived in many domains including security [32],
programming analysis [33], and network/distributed sys-
tems [34], [35]. Datalog is used in the domain of network
and distributed systems to implement, for example, network
protocols like distributed consensus. Datalog engines for
those domains are extended with features for network

programming. Dedalus, for example, has incorporated the
notion of time as a language primitive, which helps reason-
ing with distributed states [36].

In contrast, SociaLite has different goals. It aims to make
graph analysis easy and efficient. The extensions of So-
ciaLite are designed and implemented to help programmers
write efficient analysis programs easily.

Data layout. Various projects in the past have explored
nested data structures. NESL is a data-parallel program-
ming language with nested data structures [37]. Nested data
structures are also used in object-oriented databases [38].
More recently, nested structures have been adopted in Pig
Latin, a high-level language that allows users to supply an
imperative program that is similar to a SQL query execution
plan [39]. The language then translates the plan into map-
reduce operations. In contrast, nested tables in SociaLite
are strictly layout hints. The SociaLite rules are oblivious
to the nesting in the representation. Users can treat elements
in a nested table just like data in any other columns.

Graph analysis. A number of query languages have been
proposed for graph databases, including GraphLog [40] and
GOQL [41]. These query languages support functionalities
that are useful for graph analysis, such as subgraph match-
ing and node traversal. SocialLite is as expressive as, if
not more, than these query languages, with its recursive
aggregate functions and user-defined functions.

In terms of distributed frameworks for graph analysis,
the popular MapReduce model does not support graph
analysis very well [1], so a number of languages have been
proposed to simplify the processing of large-scale graphs
in parallel. HalLoop provides programming support to it-
erate map-reduce operations until they converge [42]. We
showed in Section 5 how SocialLite is more expressive than
Pregel, a vertex-centric framework for distributed graph
analysis [13]. Parallelization of SociaLite while promising,
due to its high-level language semantics, is outside the
scope of this paper.

9 CONCLUSION

Database languages are powerful as they enable non-
expert programmers to formulate queries quickly to ex-
tract value out of the vast amount of information stored
in databases. With the rise of social networks, we have
huge databases that require graph analysis. Analysis of
these large databases is not readily addressed by standard
database languages like SQL. Datalog, with its support for
recursion, is a better match. However, current implemen-
tations of Datalog are significantly slower than programs
written in conventional languages.

Our proposed language, Socialite, is based on Data-
log and thus can succinctly express a variety of graph
algorithms in just a few lines of code. SociaLite supports
recursive aggregate functions, which greatly improve the
language’s expressiveness. More importantly, the conve-
nience of our high-level query language comes with a
relatively small overhead. Semi-naive evaluation and pri-
oritized computation can be applied to recursive aggregate



functions that are meet operations. The integration with
imperative languages enables wider class of applications
to be implemented in SocialLite. Another important feature
of SociaLite is user-specified hints for data layout, which
allow the SociaLite compiler to optimize the data structures.

In our evaluation of graph algorithms in SociaLite, we
found that the optimizations proposed sped up almost all
of the applications by 3 to 22-fold. The average speedups
of SociaLite programs over unoptimized SociaLite and the
initial implementations in Java are 4.0 and 1.5 times, re-
spectively. SociaLite is 11.1 times more succinct on average
when compared to Java implementations of comparable
performance. The SociaLite implementation of between-
ness centrality is slower than the highly optimized Java
version by just 16%, but it took 12 hours to write the
Java application instead of half an hour. For Eulerian cycle
algorithm, an important algorithm in bioinformatics, the
SociaLite implementation is 25% slower than the optimized
Java program, which is within a reasonable range, consid-
ering the development time of 4.5 hours compared to just
15 minutes for SocialLite.

The most important contribution of SociaL.ite is that, as
a query language, it makes efficient graph analysis queries
accessible to users who are not proficient in software
engineering.
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