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ABSTRACT
Large-scale graph analysis is becoming important with the
rise of world-wide social network services. Recently in So-
ciaLite, we proposed extensions to Datalog to efficiently and
succinctly implement graph analysis programs on sequential
machines. This paper describes novel extensions and opti-
mizations of SociaLite for parallel and distributed executions
to support large-scale graph analysis.

With distributed SociaLite, programmers simply annotate
how data are to be distributed, then the necessary commu-
nication is automatically inferred to generate parallel code
for cluster of multi-core machines. It optimizes the evalua-
tion of recursive monotone aggregate functions using a delta
stepping technique. In addition, approximate computation
is supported in SociaLite, allowing programmers to trade off
accuracy for less time and space.

We evaluated SociaLite with six core graph algorithms
used in many social network analyses. Our experiment with
64 Amazon EC2 8-core instances shows that SociaLite pro-
grams performed within a factor of two with respect to ideal
weak scaling. Compared to optimized Giraph, an open-
source alternative of Pregel, SociaLite programs are 4 to
12 times faster across benchmark algorithms, and 22 times
more succinct on average.

As a declarative query language, SociaLite, with the help
of a compiler that generates efficient parallel and approxi-
mate code, can be used easily to create many social apps
that operate on large-scale distributed graphs.

1. INTRODUCTION
With the rise of world-wide social networks, many large-

scale graph-oriented databases are now available. These
graphs are large, making it necessary for them to be pro-
cessed on large-scale distributed systems, thus raising the
question of how these algorithms are to be programmed.
MapReduce [13] demonstrated how a high-level language
that masks the complexity of distributed processing can lead
to the creation of a tremendous number of distributed ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

plications. However, social network analyses such as com-
munity detection, link prediction, shortest-paths algorithms
cannot be easily expressed in MapReduce. Pregel is one
of the most well-known languages designed in response to
these issues [27]. Inspired by the Bulk Synchronous Parallel
(BSP) computing model [36], Pregel adopts a vertex-centric
programming model. A Pregel program consists of iterations
of vertex-oriented computations; each vertex processes mes-
sages sent from a previous iteration and sends messages to
other vertices if necessary. The iterations are separated by
a global synchronization point, when the messages from the
previous iteration are passed between machines. The need
for the programmer to think in vertex-centric programming
model and manage the communication adds significant com-
plexity to the programming.

1.1 Sequential SociaLite
Many of these graph analyses can be readily expressed

in Datalog, a declarative logic programming language often
used as a query language in deductive databases [35]. Dat-
alog’s support for recursion makes the expression of graph
analysis natural; its high-level semantics makes it amenable
to parallelization and optimization. However, Datalog’s per-
formance in the past has not been competitive. For example,
the shortest paths problem was found to run over 30 times
slower using LogicBlox [24], a state-of-the-art commercial
implementation of Datalog, than a Java implementation of
the Dijkstra’s algorithm [32].

Recently, we proposed SociaLite, Datalog extensions
for efficient graph analysis on sequential machines [32].
Through annotations, the programmers can specify that re-
lations be represented with nested tables, a generalization
that enables, for example, edges be compactly represented
as adjacency lists. In addition, programmers can specify
recursive aggregate functions for efficient evaluation of re-
cursive queries. It was shown in our previous work [32] that
recursive monotone aggregate functions can be computed
efficiently using semi-naive evaluation [8]. (The definition
of monotone aggregate functions will be given in Section 5.)
We also demonstrated in [32] that these extensions can speed
up Datalog implementations significantly on a single-core
machine, delivering a performance that is comparable to
highly optimized Java programs for a set of representative
graph algorithms.

1.2 Distributed SociaLite
The analysis of large-scale graphs requires distributed ex-

ecution across a large number of machines. With its high-
level declarative semantics, SociaLite makes it possible for



an implementation that hides the low-level complexity in
distributed execution from the programmers. Building upon
the sequential SociaLite research [32], this paper presents
novel language extensions and optimizations for large-scale
graph analysis on distributed machines. The contributions
of this paper include the following.

Data distribution through sharded tables. A So-
ciaLite programmer does not have to worry about distribut-
ing the computation and managing the communication. In-
stead, he simply specifies how the data are to be decom-
posed, or sharded across the different machines. From the
data distribution, the distribution of the computation and
required communication is inferred. SociaLite automatically
manages the execution across the distributed machines, gen-
erates the message passing code, and manages the parallel
execution within each instance.

Parallel recursive aggregate function evaluation
with delta stepping. Delta stepping [28] has been shown
in the past to be effective for parallelizing the shortest paths
algorithm. By incorporating this technique in the SociaLite
compiler, delta stepping is now made available to any re-
cursive monotone aggregate functions, which is introduced
in [32] for semi-naive evaluation.

Efficient approximation via delta stepping and
Bloom filter representations. When operating on very
large-scale graphs, it might be preferable to have partial an-
swers in reduced execution time. Requiring no involvement
on the programmers’ part, SociaLite automatically returns
partial answers as it processes the Datalog rules using semi-
naive evaluation. Delta-stepping is also effective in deliver-
ing more accurate partial results. Furthermore, SociaLite
allows Bloom filters [9] to be used to represent very large
intermediate results approximately and compactly.

Experimental Evaluation. This paper validates the
proposed techniques with extensive experimental evaluation.
Experiments were performed on the largest real-life graph
available to the authors: the Friendster social graph we used
has over 120M vertices and 2.5G edges [15]. We also gener-
ated synthetic graphs up to 268M vertices for our weak scal-
ing experiments on distributed machines. We experimented
with two machine configurations: (1) a large shared memory
machine that has a total of 16 cores and 256 GB memory,
and (2) 64 Amazon EC2 cluster instances comprising a to-
tal of 512 cores. The input benchmark suite consists of 6
representative algorithms used commonly in social network
analysis, including shortest paths and PageRank [10]. We
also compared the performance of SociaLite with well-known
parallel frameworks: Pregel (using Hama [6] and Giraph [4])
as well as MapReduce (using Hadoop [5] and HaLoop [11]).

All the algorithms scale well on the large shared memory
machine and track the ideal weak scaling curve within a fac-
tor of two on the distributed machines. Our comparison with
optimized Giraph (which showed fastest performance among
the compared frameworks) shows that our implementation
is significantly faster, while the length of the SociaLite pro-
grams is only 5% of that of Giraph. Finally, preliminary ex-
periments with our proposed approximate evaluation tech-
niques suggest they are effective in reducing the execution
time by trading off a small amount of accuracy.

1.3 Paper Organization
Section 2 first summarizes the sequential SociaLite lan-

guage [32], and introduces extensions in distributed So-

ciaLite. Section 3 describes the data distribution in So-
ciaLite. In Section 4, parallel rule execution is described.
Section 5 explains how recursive aggregate functions are
evaluated in parallel with delta-stepping algorithm, and Sec-
tion 6 describes SociaLite’s support of approximate compu-
tation. We evaluate the performance and scalability of So-
ciaLite in Section 7. Related work is reviewed in Section 8
and we conclude in Section 9.

2. AN OVERVIEW OF SOCIALITE
Single-source shortest paths is a fundamental graph algo-

rithm used in various graph analyses such as link predic-
tion [22] and betweenness centrality [14]. We will use this
algorithm as a running example to explain the Datalog ex-
tensions in sequential and parallel SociaLite.

2.1 A Datalog Program
The single-source shortest paths problem can be expressed

succinctly in three rules of Datalog as shown in Figure 1(a).
Rule (1) says that distance of a path to the source node
with id 1 is 0. Rule (2) says that if there is a path from
the source node to node s with distance d1, and an edge
from s to t of length d2, then there is a path to node t with
distance d = d1+d2. Rule (3) finds the paths with minimum
distances.

While this Datalog program is succinct, it is inefficient
and cannot handle cyclic graphs. The program wastes much
of its execution time, because it first finds all the possible
paths with different distances before computing the shortest
paths. The program might not even terminate if there are
cycles in the input graph.

(a) Datalog:

Path(t, d) : − t = 1, d = 0.0. (1)

Path(t, d) : − Path(s, d1),Edge(s, t, d2), d=d1+d2. (2)

MinPath(t, d) : − Path(t, $Min(d)). (3)

(b) Sequential SociaLite:

Edge (int s:0..9999, (int t, double dist)).
Path (int t :0..9999, double dist).

Path(t, $Min(d)) : − t = 1, d = 0.0; (4)

: − Path(s, d1),Edge(s, t, d2), d=d1+d2. (5)

(c) Parallel SociaLite:

Edge [int s:0..9999] ((int t, double dist)).
Path [int t:0..9999] (double dist).

Path[t]($Min(d)) : − t = 1, d = 0.0; (6)

: − Path[s](d1),Edge[s](t, d2), d=d1+d2.(7)

Figure 1: Single-source shortest paths in (a) Data-
log, (b) Sequential SociaLite, (c) Parallel SociaLite.
Source node has node id 1.

2.2 Sequential SociaLite Extensions
The sequential version of SociaLite in [32] has two exten-

sions over Datalog: tail-nested tables and recursive aggregate
functions. Due to space constraints, we will only provide
a high-level summary of the extensions using the shortest-
paths example; details can be found in [32]. Figure 1(b)
shows the shortest paths program written in sequential So-
ciaLite.



Tail-nested tables. Graphs are often represented as ad-
jacency lists in imperative programs and not relational ta-
bles for efficiency. Sequential SociaLite gives user control
over the representation by way of layout annotations, so
that data structures like edges can be represented efficiently
as adjacency lists. In this example, the relation Edge is
represented as a table with source s in the first column; all
edges sharing the same source s are stored in a table, con-
sisting of two columns t (sink) and dist. These tables can be
tail-nested; that is the last column of each table can itself
be represented as a table. This representation reduces both
the memory usage and computation time needed for graph
traversals.

Recursive aggregate functions. Sequential SociaLite
supports recursive aggregate functions, where an aggregate
function like $Min can depend on itself. In this example,
Path has two clauses. Rule 4 is the base case where the
source node is defined to have path length 0; Rule 5 is the
inductive step that says the shortest path length to a sink
t is the minimum of d1 + d2 over all neighboring nodes s,
where d1 is the minimum path length reaching s and d2 is
the length of the edge from s to t.

More formally, the rules of the form
P(x1, ..., xn, F (z)) : − Q1(x1, ..., xn, z);

. . .
: − Qm(x1, ..., xn, z).

yields

{(x1, ..., xn, z)|z = F (z′), ∀1≤k≤mQk(x1, ..., xn, z
′)}

The recursive aggregate construct in this example makes
clear to SociaLite that it is not necessary to compute all the
possible paths, as long as the minimum can be found. This
principle lets SociaLite compute the shortest paths even in
the presence of cycles; this is also the same basic principle
that leads to the Dijkstra’s shortest-paths algorithm where
computations involving the shortest paths are prioritized.
Whereas the Datalog program in Figure 1(a) is a description
of the Bellman-Ford algorithm, the sequential SociaLite ver-
sion shown in Figure 1(b) can be optimized to run with the
performance of Dijkstra’s algorithm, providing a dramatic
performance improvement. This algorithmic transformation
is incorporated into the SociaLite compiler and made avail-
able to all recursive aggregate functions that are monotone.

2.3 Parallel SociaLite Extensions
Parallel SociaLite asks programmers to indicate how the

data are to be partitioned across the distributed machines.
It introduces a location operator ([]) to be applied to the first
column of a data declaration. As illustrated in Figure 1(c),
parallel SociaLite is very similar to sequential SociaLite.

The declaration Path[int t](double dist) specifies that
Path is a relation with two columns and that the table is
horizontally partitioned, or sharded. Suppose the target sys-
tem has 10 machines, then paths for nodes whose ID is less
than 1000 are placed on machine 0; those between 1000 and
1999 are placed on machine 1, and so on. In this case since
both Path and Edge are similarly declared, the path to node
n shares the same machine as edges originating from node
n.

For the sake of readability, any mention of a sharded col-
umn in a rule is also enclosed with the location operator ([]).
In this example, the sharded columns of both Path and Edge

are joined together, requiring no data movement. However,
since the result of the join operation is to be stored in a

possibly different location, depending on the value of t (the
destination of the edge), data transfers may be necessary.

3. DATA DISTRIBUTION IN SOCIALITE
This section presents the concept of sharding and how

the compiler automatically distributes the computation and
generates the necessary communication for a distributed ma-
chine with the help of programmer-supplied sharding speci-
fications.

3.1 Range-based and hash-based shards
Shards, each containing a number of rows, are placed on

different machines in a distributed system. The location
operator([]) can only be applied to the first column of a
relation; the value of the first column in a relation dictates
where the relation is located. We refer to the value of the
first column in a sharded relation as the shard key. We
define a function ShardLoc(r, x) which returns the machine
number based on the value of the shard key x in relation r.

There are two kinds of sharding: range-based and hash-
based. If the first column of a sharded array has a range,
then the range is divided up into consecutive subranges and
evenly distributed across the machines. Suppose the shard
key in relation r has range l..u, then

ShardLoc(r, x) =

⌊
x− l⌈
u−l+1

n

⌉⌋
where n is the number of machines in this system. If no
range is given, we use a standard hash function to map the
shard key to a machine location; the range of the hashed
values is also evenly distributed across all the machines.

The location operator is also used in rule specifications
to make it apparent to the programmer where the operands
and results are placed.

3.2 Distribution of Computation
Distributed SociaLite makes it easy for users to control the

communication pattern without having to write the tedious
message passing code. Without loss of generality, consider
a join operation with two operands, such as

Bar[int x:0..9999](int z).
Baz[int z:0..9999](int y).
Foo[int x:0..9999](int y).

Foo[x](y) : − Bar[x](z),Baz[z](y). (8)

Rule 8 specifies that data Bar[x](z) are to be transferred
to a machine with ID ShardLoc(Baz, z), where the join op-
eration with Baz[z](y) is performed. The result from the
join operation is then transferred back to a machine with
ID ShardLoc(Foo, x).

The goal of this compiler is to let the programmer easily
control the parallel execution; using the location operator
and re-ordering join operations in a rule body, programmers
can easily experiment with different communication patterns
without affecting the correctness of a program. For example,
Rule 8 could have been written as:

Foo[x](y) : − Baz[z](y),Bar[x](z). (9)

Rule 9 will require broadcasting the table Baz to all the
machines. Whether this performs better depends on the
relative sizes of the tables, which is a property that users
typically have some understanding of. It is potentially pos-
sible to auto-tune the computation dynamically based on



the sizes of the data, but such optimizations are outside the
scope of this paper.

3.3 Batching the Messages
The SociaLite compiler batches the communication so

that data intended for each destination is placed in its own
table and sent when enough tuples are stored. For simplicity,
the compiler rewrites the rules so that all the computation
is performed on local data, and communication is necessary
only for sending the result to the right machine.

For example, the compiler will rewrite Rule 8 as:

Bar′[int l:0..9999](int x, int z).

Bar
′[z](x, z) : − Bar[x](z). (10)

Foo[x](z) : − Bar
′[z](x, z),Baz[z](y). (11)

Rule 10 distributes all the relations of Bar on each ma-
chine into a sharded relation Bar′. Each shard des-
tined for a different machine, i.e. ShardLoc(Bar′, z) 6=
ShardLoc(Bar, x), is sent to the appropriate machine in one
message. The results from Rule 11 are similarly sharded and
distributed to the corresponding machine.

4. PARALLEL EXECUTION ENGINE
Sequential Datalog programs have a simple execution

model. If a Datalog program is stratifiable, i.e. there are
no negation operations within a recursive cycle, there is a
unique greatest fix point solution to its rules. We assume
that all our input programs are stratifiable, and that the
rules are broken up into a sequence of strata such that all
negations are applied to results produced from a previous
stratum. Each stratum can be executed in sequence, and
rules in each stratum can be repeatedly applied until no
changes are observed in order to reach the greatest fix point
solution. Semi-naive evaluation is a well-known and impor-
tant evaluation optimization technique. It is not necessary
to evaluate the rules with the entire solution result over and
over again; because the join operations are monotone with
respect to the semi-lattice of the solution space, we need only
to incrementally compute with the new solutions discovered
along the way [32].

Datalog, hence SociaLite, operates on a relation at a time,
exposing plenty of opportunities for parallelism by virtue of
the size of the data sets. In addition, the functional aspect
of the language makes it easy for parallelism to be exploited
across rules as well. At a high level, all the machines need
to do are to participate in the semi-naive evaluation of the
rules until the fix point solution is reached.

Our target machine is assumed to be a network of ma-
chines, each of which may have multiple cores. The So-
ciaLite runtime handles these two levels of parallelism effi-
ciently by using message passing across distributed machines
and lock-based synchronization across cores on each shared-
memory machine.

4.1 Distributed System Architecture
The SociaLite parallel engine consists of a master machine

which interprets the Datalog rules and issues work to a col-
lection of slave machines (Figure 2). For large scale opera-
tions that involve many machines for a substantial amount of
time, it is also important that intermediate work be check
pointed occasionally and restorable as needed. We use a
fault-tolerant distributed file system [17] for the check point-
ing. If one or more workers fail, the intermediate states are

restored from the latest checkpoint and the evaluation is
resumed from that point.

������

Slave

Slave

Slave

Distributed File System

Checkpointing Resuming

Figure 2: Distributed System Architecture of So-
ciaLite.

The master compiles the SociaLite program into a de-
pendence graph, where each node corresponds to a join op-
eration and each edge represents a data dependence. Af-
ter finding the strongly connected components, the master
organizes all the nodes within a stratum into epochs. Re-
cursive strongly connected components are each placed into
their own epoch and non-recursive rules can be combined
into epochs with the constraint that dependences across the
epochs form an acyclic graph. The master then visits the
epoch graph in a topological order and instructs the slaves
to work on an epoch at a time. Applying semi-naive evalua-
tion, each slave node repeatedly executes the rules upon the
arrival of communication from other nodes and updates the
internal tables or sends messages to remote nodes as needed.

The following protocol is used to detect when the slaves
have quiesced, signifying the completion of an epoch:

1. slaves report its idle status to the master along with
a timestamp if there are no more rules to execute and
no more data to send. A message is considered sent
only when the receiver acknowledges the receipt of the
data.

2. Upon receiving an idle status from all the slaves, the
master confirms with each slave that it is still idle with
the same last reported timestamp. This process is
repeated until confirmations from each slave are re-
ceived.

4.2 Multiple Cores
To support parallelism within a shared memory machine,

the sharding hints provided for distributed processing are
used to define coarse-grain locks on the data tables in each
machine. Each sharded table is further subsharded, with
each subshard protected by its own lock. A shard is sub-
sharded 32n ways, where n is the number of cores supported
on the machine. SociaLite breaks up tasks into units that
operate on a subshard at a time and are placed in a dynamic
task queue.

Each machine has a manager responsible for accepting
epoch assignments, reporting and confirming idle status
with the master, accepting inputs, placing the correspond-
ing tasks on the work queue, and sending data intended for
other machines. Each worker fetches tasks from the work
queue, performs the task and updates the resulting data ta-
bles.



We have developed two optimizations to minimize the syn-
chronization overhead:

1. Non-recursive epochs are further broken down into
sub-epochs whose rules are totally independent of each
other. Synchronization is necessary only to enforce
mutual exclusion between result update operations.

2. No synchronization is necessary if the updated shard
is guaranteed to be accessed by only one worker. Con-
sider Rule 8 for example. Since tables Bar and Foo

are sharded using the same criteria, each shard in the
Foo table is accessed by only one worker as illustrated
in Figure 3. The figure shows the evaluation of Rule 8
in a 3-core processor with 3 subshards. The color of
the rows/shards indicates that they are accessed by
the core with the same color. Different cores write to
different subshards, so no synchronization is needed,
leading to faster performance.

∏⋈

Bar Baz Foo

Worker 1

Worker 2

Worker 3

Figure 3: Parallel Evaluation of Rule 8, Foo [x](y) :-
Bar [x](z), Baz [z](y).

5. PARALLELIZING RECURSIVE AG-
GREGATE FUNCTIONS

As noted above, semi-naive evaluation is an important
optimization to eliminate redundant evaluation in Datalog.
Semi-naive evaluation can also be applied to some aggregate
functions, such as the minimum operation. We keep track
of the current minimum value, and we can simply update it
with a lower value if one is discovered in the course of the
semi-naive evaluation process. Note that this does not work
for summation unless we know that the new contribution
has not already been accounted for in the running total.
The main distinction between the two is that minimum is
a meet operator (i.e. it is idempotent, commutative, and
associative), and summation is not.

More formally, semi-naive evaluation can be used to com-
pute the greatest fix point of a Datalog program with an
aggregate function g if g is a meet operator and the rest of
the program is monotone with respect to the partial oder de-
fined by g [32]. In short, we refer to such aggregate functions
as monotone.

For monotone aggregate functions, the sequential So-
ciaLite compiler uses a priority queue to keep track of all the
newly created tuples to be evaluated. By operating on the
lowest values (with respect to the semi-lattice of solutions),
the solution converges quickly to the greatest fix point, yield-
ing a behavior similar to that of Dijkstra’s shortest-paths
algorithm.

It is not suitable for distributed SociaLite to use a pri-
ority queue, as it will serialize the evaluation of aggregate

functions. Meyer and Sanders introduced a technique called
delta stepping that has shown to be effective in comput-
ing shortest paths for large-scale graphs [28]. Madduri and
Bader have shown that the parallel implementation of the
delta-stepping algorithm gives near linear speedup on Cray
MTA-2 [26]. We have generalized this technique and incor-
porated it into our SociaLite Parallelizing Compiler.

5.1 Delta Stepping
Dijkstra’s algorithm can be considered as a series of re-

laxations. It initializes all tentative distances from a single
source to∞. Starting with the source node, each relaxation
step picks the node with the shortest, newly found distance
from the source to update the distances for its immediate
neighbors. The algorithm is serial because relaxation is ap-
plied to only one node at a time.

Delta stepping eliminates the serialization by relaxing
multiple nodes in each delta step. The algorithm is param-
eterized by the delta value, ∆. It is an iterative algorithm
where each step i targets all the nodes whose shortest dis-
tance from the source is between (i−1)×∆ and i×∆. This
step is repeated until all the minimum paths are found.

Furthermore, each delta step i is separated into two sub-
steps. The first is an iterative step that applies relaxation
to all the light edges, edges shorter than ∆. The resulting
distance may be within length i×∆, thus adding more nodes
to be relaxed. The second applies relaxation to all the heavy
edges, edges no shorter than ∆. This second step needs not
be repeated because the updated distances are guaranteed
to exceed the range considered in the current step.

Note that as ∆ approaches zero, the algorithm becomes
identical to Dijkstra’s. In other words, this technique ex-
pands the number of paths that can be evaluated at a time,
thus allowing for more parallelism.

5.2 Delta Stepping in SociaLite
SociaLite only optimizes linear recursions involving ag-

gregate functions which the programmer have declared as
monotone. It uses heuristics to statically determine the
equivalent of light and heavy edges in the recursive Dat-
alog rules. Then it samples the variables contributing to
the new aggregate value, the edge length in this case, and
chooses a 20% percentile value as the threshold separating
light from heavy values. Where the heuristics fail in identi-
fying the contributing parameters, delta stepping is simply
run without distinguishing between light and heavy edges.

Our SociaLite runtime system uses the same delta-
stepping algorithm as described in Section 5.1 in paralleliz-
ing recursive monotone aggregate functions. The updated
tuples are stored in prioritized buckets according to the
values of the results, where the priority order is inferred
from the partial order defined by the monotone aggregate
function. We adopt a combination of coarse and fine-grain
bucketing scheme to handle the cross-machine and intra-
machine levels of parallelism. On a shared memory machine
where the tasks are dynamically scheduled to balance the
load across cores and synchronization overhead is low, fine-
grain bucketing is desired. With longer network latency and
static partitioning across machines, coarser-grain bucketing
with larger ∆ values is a better choice.

This optimization shows off the power of SociaLite as a
high-level language. The user only has to annotate how
the data are distributed and whether the recursive aggre-



gate functions are monotone. The compiler automatically
takes care of the distribution of computation, the commu-
nication, as well as bringing to bear algorithmic transforms
like delta stepping. This is particularly significant consider-
ing the complexity of writing and debugging parallel code.

6. APPROXIMATE COMPUTATION
The social graphs today are so large that it may not be

computationally feasible to perform even innocent-looking
queries. Take, for example, the question of the size of one’s
online social network. The average distance of any two Face-
book users is found to be only 4.7 in May 2011 [34]. It
was also found that 99.91% of Facebook users were inter-
connected, forming a large connected component [34]. It
is thus computationally expensive even to compute one’s
friends of friends let alone all the people we can reach tran-
sitively through friendships.

It is therefore important that we can compute the results
in an approximate fashion. The high-level semantics of So-
ciaLite makes it relatively easy to implement approxima-
tions automatically.

6.1 Early Termination
Consider the simple example of querying for one’s friends

of friends. The size of results varies considerably depending
on the person asking the query. While 10% of the users
have less than 10 friends in Facebook, the average number
of friends is 190, and 10% have over 500 friends [34]. So
an average friends-of-friends list would have 36,000 entries,
with the size ranging from very small to over 100,000 entries.
Not only would it be expensive to create all these results for
all users, it is also a waste of resources if the users intend to
peruse the list manually. In addition, for the sake of a faster
response, it might be desirable to provide partial results to
the user instead of waiting until all the results are available.

The semi-naive evaluation of SociaLite rules supports ap-
proximate computation trivially. Approximation is achieved
by simply terminating each epoch of the execution before
the fix point is reached. Results can be presented to the end
users as they are generated. In the case of recursive mono-
tone aggregate functions, delta-stepping based prioritization
not only speeds up the computation, it also improves the
quality of the approximation greatly. Typically, the quality
improves quickly at the start, and the marginal improve-
ment slows down as time goes on. Empirical evidence of
this trend is shown in Section 7.

6.2 Bloom-Filter Based Approximation
It has been well known that one’s friends of friends net-

work is important in how one finds new information [18].
However, due to small-world characteristics of social net-
works, the size of one’s friends of friends network may
be very large; hence, it may not be feasible to perform
friends-of-friends queries efficiently. However, if the friends-
of-friends subgraph is just an intermediate result used to
answer further queries that have a small answer, such as the
number of friends of friends that have a certain attribute
(Figure 4), we can approximate this answer quite accurately
and quickly by using Bloom filters [9].

We introduce the use of Bloom filter as a means to provide
a quick approximation to the case where the final result may
be relatively small, but the intermediate results are large.
An important operation in semi-naive evaluation is to find

Foaf(n, f2) : − Friend(n, f),Friend(f, f2). (12)
FoafSum(n, $Sum(a)) : − Foaf(n, f2),Attr(f2, a). (13)

Figure 4: A SociaLite Program Computing Local
Aggregation

the difference between the result of a rule application from
the results obtained so far. If the result accumulated so
far is large, this can be very expensive both in terms of
computation time and memory consumption.

A Bloom filter is a space-efficient probabilistic data struc-
ture for testing set membership. A Bloom filter is a bit ar-
ray, all set to zero initially. Insertion of an element involves
setting k locations in the array according to the results of
applying k hash functions to the element. To test for mem-
bership, one needs only to check if those k positions hashed
to by an element are 1. Thus, false positives are possible but
not false negatives. That is, the Bloom filter may indicate
that a member is in the set while it is not, but vice versa
is not possible. The chance of false positives increases with
the size of the set represented. It is not possible to remove
elements from a set represented by a Bloom filter, nor is it
possible to enumerate the elements in the set efficiently.

When intermediate sets get too large to be represented
exactly, we can use a Bloom filter to represent them com-
pactly. It is efficient to check if newly generated tuples are
already included in the Bloom filter. There is a possibility
that an element is erroneously reported to be in the set when
it is not. However, if we have to approximate anyway be-
cause of the cost, the use of Bloom filter will let us generate
approximate results in a shorter amount of time in the end.

The use of Bloom filter as an intermediate representation
is coupled with pipelined evaluation of the relevant SociaLite
rules, since it is not possible in general to enumerate the re-
sults in a Bloom filter. (Pipelined evaluation was introduced
to execute SociaLite rules in lock step to improve temporal
locality [32].) In the example in Figure 4, each member
of the second column of the Foaf table is represented as
a Bloom filter. Rules 12 and 13 are pipelined so that as
new friends-of-a-friend are found in rule 12, the tuples are
pipelined to rule 13 to compute the sum of an attribute.

7. EVALUATION
We have a fully working SociaLite compiler and runtime

system that automatically translates the SociaLite code to
Java code for a distributed system of multi-core machines.
Here we present five sets of experimental results. We evalu-
ated a set of core graph analyses on a large multi-core ma-
chine as well as 64 Amazon EC2 instances. We also com-
pared four parallel/distributed frameworks (Hama [6], Gi-
raph [4], Hadoop [5], and HaLoop [11]) using the shortest-
paths algorithm. Then we compared SociaLite with Giraph
that showed the fastest performance among the four frame-
works. Finally, we present some preliminary experiments
with our approximate evaluation optimizations.

7.1 Benchmark Algorithms
For our evaluation, we use six core graph analyses that

have been shown to be useful for a wide range of problems
such as community detection, link prediction, and other gen-
eral graph metrics [14, 22, 31]. The first two operate on
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(b) PageRank
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(c) Mutual Neighbors
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(d) Connected Components
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(e) Triangles
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(f) Clustering Coefficients

Figure 5: Speed up on a multi-core machine with 16 cores.

directed graphs and the rest work on undirected graphs.
Edges in the latter are generally represented as a pair of
unidirectional edges.

Shortest Paths: Find shortest paths from a source ver-
tex to all other vertices in the graph. This is used in many
analyses including betweenness centrality [14].

PageRank: PageRank [10] is a link analysis algorithm
that computes the importance of vertices in a graph.

Mutual Neighbors: Find all vertices that are common
neighbors of a pair of vertices. This algorithm is typically
used for link prediction [22].

Connected Components: Find all connected compo-
nents in a graph. A connected component is a maximal
connected subgraph in which every pair of vertices is con-
nected by at least one path.

Triangles: Counts all triangles (i.e., cliques of size three)
in a graph. Triangles serve as a graph metric as well as the
basis of analysis algorithms such as the clique percolation
algorithm [31].

Clustering Coefficients: A graph metric that measures
connectivity of a graph. Local clustering coefficient and net-
work clustering coefficient are computed. The former shows
how connected the neighbors of a vertex are. The latter is
the average of the local clustering coefficients of all vertices.

All benchmark algorithms are executed on the entire data
set, except for Mutual Neighbors, which is evaluated on se-
lected pairs of vertices (the number of pairs is set to be
same as the number of vertices in a given graph). In Con-
nected Components, we used an algorithm that broadcasts
its identity from each vertex, and a receiving vertex takes
a minimum value, which represents the identity of the com-
ponent.

7.2 Multi-Core Parallelization
Our first experiment is to evaluate the effectiveness of

SociaLite on a multi-core machine with a large memory. The

machine we use is a dual-socket Intel Xeon E5-2670 with
Sandy Bridge micro-architecture with 256GB memory. Each
socket has 8 cores with 20 MB LLC (last-level cache), hence
in total the machine has 16 cores. For this experiment, we
use as input the social graph from Friendster, the largest
real-world social graph available to us. Consisting of 120M
vertices and 2.5G edges [15], about an eighth the size of the
largest existing social graph, the Friendster graph fits in the
memory of a target machine.

We show the execution time and speed up for each appli-
cation in Figure 5. We first note some of these algorithms
take a long time to execute on a single core. Both Con-
nected Components and Mutual Neighbors take about 100
seconds, which is about the time to perform a small num-
ber of operations per vertex in the graph. Next, Shortest
Paths, PageRank, and Triangles take 18, 68, 225 minutes,
respectively. Finally, Clustering Coefficients takes about 11
hours to complete. Clearly, all these algorithms, especially
the latter four, could benefit from faster execution.

All but the Shortest Paths program are data-parallel al-
gorithms, and they all scale nearly linearly up to 16 cores.
The strategy of sharding the data arrays locally and using
a dynamic scheduler appears to balance the load well across
the cores, resulting in nearly perfect speedup.

Shortest Paths is much harder to parallelize effectively be-
cause of the data dependences in the program. The speed
up starts out behaving almost linearly and gradually set-
tling to a speed up of about 10 for 16 cores. As described
in Section 5, delta stepping is used in evaluating the Short-
est Paths problem. The amount of parallelism available in
each delta step varies according to the characteristics of the
graph. Although the speed up is not perfect, the reduction
of execution time from over 18 minutes to under 2 minutes
makes a significant difference to the practicality of comput-
ing shortest paths.
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(f) Clustering Coefficients

Figure 6: Weak scaling of SociaLite and Giraph programs (Input graphs for 2, 4, 8, 16, 32, 64 instances have
8M, 17M, 34M, 67M, 134M, and 268M vertices, respectively.)

7.3 Parallelization On a Distributed Machine
As data sizes scale up, it is necessary to run the analy-

sis on distributed machines, for both increased memory and
computational power. Our experiment is performed on 64
Amazon EC2 High-Performance Cluster (HPC) instances.
The HPC instances are dedicated machines as opposed to
typical EC2 instances which are virtual machines. The in-
stances are connected via a 10 Gigabit Ethernet network,
and each instance has a dual socket Intel Xeon X5570 and
23GB of memory. Each X5570 processor has 4 cores, hence
a single machine has 8 cores; in total the 64 instances have
512 cores. Out of the 23GB memory, 18GB is given to So-
ciaLite slave nodes; the rest is used by the distributed file
system. Out of the 8 cores, we dedicated 6 cores for compu-
tation (using 6 computation threads), and 2 cores for net-
work communication.

With distributed machines, we are interested mainly in
weak scaling [19], the ability to use more machines to handle
larger data sets. For uniformity across data sets of different
sizes, we generate synthetic graphs as inputs to our graph
analyses, using the RMAT algorithm [12]. Using the Graph
500 graph-generator [33], we generated six graphs of 8.4M,
16.8M, 33.6M, 67.1M, 134.2M, and 268.4M vertices, all hav-
ing sixteen edges per vertex on average. We double the input
size for each doubling of machine instances to keep the data
per instance to be constant for the weak scaling experiment.

The ideal weak scaling graphs for the benchmarks and
the performance of the SociaLite implementations, up to 64
instances, are shown in Figure 6.

As PageRank, Mutual Neighbors, Connected Components
are linear algorithms, the weak scaling graph is simply flat.
For shortest paths, delta stepping for a graph with random
edge weights is linear for all but degenerate cases [28]. For
the sake of comparison, we note that the ideal scaling graph
of the Bellman-Ford algorithm is O(p), where p is the num-
ber of instances if the number of edges is O(n).

Shortest Paths, PageRank, Mutual Neighbors, and Con-
nected Components all share the same communication pat-
tern. Namely, communication is necessary for each edge
whose source and destination are on different machines.
Given O(n) edges, the communication volume is O

(
p−1
p
· n
)

where p is the number of machines. The amount of com-
munication grows from n/2, 3n/4, . . ., to n asymptotically.
Thus, the time of execution grows with an increased number
of instances, more so at the beginning, and settles at twice
the time needed with ideal weak scaling.

Note that for Shortest Paths, the SociaLite program runs
significantly faster than the Bellman Ford algorithm. This
is notable because the programmer is essentially writing a
Bellman Ford algorithm and SociaLite automatically turns
this into a delta-stepping algorithm. This illustrates the
advantage of using a high-level language with an optimizing
compiler.

In Triangles, for each edge (x, y) ∈ E, we need to check
if any of the neighbors of x is connected to y. Using binary
search, the number of memory operations for Triangles is

thus O
(∑

〈x,y〉∈E dx log(dy)
)

, where dx is the degree of the

vertex x. For RMAT graphs with a power-law degree dis-
tribution, the summation is experimentally measured to be

O(n
3
2 ). The complexity of Clustering Coefficients is essen-

tially the same as Triangles, thus the weak scaling for both

algorithms is O(p
1
2 ).

The communication volume of Triangles and Clustering

Coefficients is O
(

p−1
p

∑
〈x,y〉∈E dx

)
, where p is the number

of machines, E is the set of edges, and dx is the degree of
the vertex x. For RMAT graphs, we determine empirically

that the volume is close to O(n
3
2 ). This suggests that the

communication volume increases faster than the weak scal-
ing for the algorithms (O(p

1
2 )). In our experimental result,

both Triangles and Clustering Coefficients track the weak



scaling curve up to 16 nodes and start to deviate subse-
quently, as the communication volume increases relatively
faster, hence the network bandwidth becomes bottleneck in
the performance.

7.4 Comparison with Other Frameworks
To evaluate how distributed SociaLite compares with

other parallel frameworks, we perform two experiments. The
first is to compare the performance of a number of common
frameworks in executing Shortest Paths, one of the more
challenging graph algorithms. We then take the one found
to have the best performance and compare its performance
for all the benchmarks with that of SociaLite.

7.4.1 Comparison of Existing Parallel Frameworks
MapReduce and Pregel are two of the most popular large-

scale distributed frameworks. Because we have no access to
these proprietary systems, we performed our experiments
on open-source implementations of these execution mod-
els: Hadoop and HaLoop for the MapReduce programming
model, and Hama and Giraph for the Pregel-like vertex-
centric programming model. Note that Hadoop and Giraph
are actively used in Facebook and Yahoo!.

Shortest Paths for Hama and Giraph is implemented as
described in the paper on Pregel [27]; each vertex iterates
over messages from neighbors to update its current distance,
and the vertex sends its neighbors their potential distance
values. To our surprise, our first implementation in Hama
and Giraph ran more than two orders of magnitude slower
than the SociaLite version on a single machine. Upon close
examination, we found that the Shortest Paths program
has very large memory footprints in both Hama and Gi-
raph. Specifically, they store primitive type values as boxed
objects, incurring significant penalty on performance and
memory usage. We reimplemented several data structures
of Hama and Giraph so as to store the primitive types di-
rectly. This optimization proved to be very effective; for
example, on a graph with 131K vertices and 1M edges, op-
timized Shortest Paths in Hama took only 5 seconds, while
an unoptimized version took more than 30 seconds.

It required considerably more effort to implement Shortest
Paths in MapReduce model than Pregel. Our implementa-
tion takes weighted edge list and a distance value of a vertex
as input to a mapper, and the reducer receives vertex ID and
its distances to compute the minimum distance for the ver-
tex. We iterate the map/reduce tasks multiple times. The
Hadoop version requires another map/reduce stage between
the iterations to determine if a fix point is reached, whereas
in HaLoop the fix point is detected by its built-in support
that compares the reducer outputs of the current iteration
with the cached ones from the previous iteration.

Figure 7 compares the execution times of Shortest Paths
in the four frameworks. The Hama and Giraph programs
are implemented with the optimizations described earlier.
We can see that the optimized Giraph version is signifi-
cantly faster than other implementations, 2 to 4 times faster
than the Hama version, and 20 to 30 times faster than the
Hadoop/HaLoop versions.

The program sizes are more or less the same – they are
around 200 lines of code (253 for Hama, 232 for Giraph, 215
for Hadoop, and 185 for HaLoop). If we include the effort
for the optimizations in Hama and Giraph, the programming

complexity in the four frameworks was, in our experience,
more or less the same.

# Instances Opt. Hama Opt. Giraph Hadoop HaLoop

2 20.5 (min.) 8.3 230.8 183.7
4 25.0 8.9 259.9 208.2
8 33.7 8.9 275.2 220.2

16 42.5 9.9 290.9 235.1

Figure 7: Comparison of the execution times (in
minutes) of Shortest Paths on EC2 instances with
graphs having 8M, 17M, 34M, and 67M vertices.

7.4.2 Comparison with Optimized Giraph
We selected optimized Giraph for the full comparison with

SociaLite since it showed the fastest performance in execut-
ing Shortest Paths. Hereafter, we simply refer to the opti-
mized Giraph as Giraph. All the benchmarks described in
Section 7.1 are implemented in Giraph. We found that it
was nontrivial to implement Triangles and Clustering Coef-
ficients in Giraph as they cannot be easily expressed using
the message passing abstraction. As shown in Figure 8, So-
ciaLite programs are 11 to 58 times more succinct compared
to the Giraph programs, on average 22 times succinct. If
the number of lines of code is indicative of the programming
complexity, then it is much easier to write these analyses in
SociaLite than in Giraph.

Giraph SociaLite Ratio

Shortest Paths 232 4 58
PageRank 146 13 11
Mutual Neighbors 169 6 28
Connected Components 122 9 13
Triangles 181 4 45
Clustering Coefficients 218 12 18

Total 1,068 48 22

Figure 8: Number of non-commented lines of code
for Giraph and SociaLite programs, and the ratio of
the size of Giraph programs over that of SociaLite
programs.

Figure 6 compares the execution times of SociaLite and
Giraph programs on 2 to 64 instances. Similarly as in So-
ciaLite programs, we dedicated 6 cores for computations in
Giraph programs; the rest 2 cores are used for network com-
munication.

For two of the benchmarks (PageRank, Connected Com-
ponents), SociaLite programs performed almost an order
of magnitude faster than Giraph counterparts across all
the machine configurations. For Shortest Paths and Mu-
tual Neighbors, SociaLite programs performed significantly
faster although not an order of magnitude faster.

Note that the Giraph programs for Triangles and Clus-
tering Coefficients ran out of memory, so no results are re-
ported. The Shortest Paths program also failed similarly
when run on the largest graph with 64 instances. Because of
the way they adopted the Bulk Synchronous Parallel (BSP)
model in Giraph (and Pregel), each machine must have
enough physical memory to buffer all the messages from one
iteration so as to process them in the next. This memory
requirement turned out to exceed the memory capacity in



the case of Triangles, Clustering Coefficients, and the largest
configuration for Shortest Paths.

7.5 Approximate Evaluation
In this section, we present some empirical evidence to

show that our proposed approximate computation tech-
niques can provide a good tradeoff between time and ac-
curacy. The experiments described here are performed on
the LiveJournal social graph [23], which has 4.8M vertices
and 68.9M edges, running on an Intel Xeon E5-2640 having
6 cores with 80GB memory.

7.5.1 Early Termination with Delta Stepping
Single-source shortest paths, used in important graph

analyses like betweenness centrality [14] and link predic-
tion [22] are quite expensive, as seen from Figure 5. The
cost for computing shortest paths for just one source is sub-
stantial, taking over 100 seconds on a single machine on a
relatively small graph compared to the typical social graphs
in Facebook or Google. Imagine now that we have to per-
form this computation for every user of interest!

On the LiveJournal data, we applied the shortest-paths
algorithm to 100 randomly selected source vertices with and
without delta stepping. We found that the execution time
ranges from 9.3 to 15.9 seconds, taking an average of 12.3
seconds, without delta stepping. With delta stepping, the
executing time ranges from 4.1 to 7.6 seconds, with an aver-
age of 5.1 seconds. Delta stepping improves the performance
by an average of 2.4 times.

What if we cannot devote an average of 5.1 seconds to
each user? Thanks to semi-naive evaluation, we can just
read off the answer derived so far at any given instant as an
approximate solution. For the shortest paths problem, we
measure accuracy as the fraction of the number of vertices
whose path lengths are found to be within 10% of the op-
timal. For each of the 100 trials, we ran the shortest paths
algorithm for different lengths of time and measured the ac-
curacy of the results obtained. The tradeoffs between time
and accuracy for each of these trials, with and without delta
stepping, are shown in Figure 9. The red, bold line shown
in the graph represents the average across the 100 different
sources. Note that all the execution times are normalized;
the graph plots the accuracy attained with different frac-
tions of the time needed to compute the perfect answer.

We see distinctly that the graph without delta stepping
is concave, whereas the graph with delta stepping is convex.
By iterating over the shorter paths first in delta stepping,
accuracy improves quickly at the beginning; also less effort is
wasted, resulting in a faster total execution time. With delta
stepping, it takes less than 30% of the computation time for
80% of the vertices to get within 10% of the optimal; it takes
90% of the computation without delta stepping to achieve
the same accuracy. Accounting for the absolute differences
in execution time, delta stepping takes on average just 1.5
seconds to provide the same answer as the algorithm without
delta stepping in 11.1 seconds. This represents a speedup
of 7.4 times. This suggests that delta stepping is useful for
both full and approximate answer calculations for recursive
monotone aggregate functions.

7.5.2 Bloom-Filter Based Approximation
For the sake of testing the effectiveness of the Bloom filter,

we also ran the friends-of-friends query shown in Figure 4 on

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

A
cc

u
ra

cy
 

Relative Execution Time 

(a) Without Delta Stepping

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

A
cc

u
ra

cy
 

Relative Execution Time 

(b) With Delta Stepping

Figure 9: Accuracy and computation time tradeoffs
of Shortest Paths Program. The red, bold line shows
the average of all the 100 executions.

the LiveJournal data. Without approximation, the program
required 26 GB of memory to process a graph with 4.8M
vertices and 68.9M edges, as shown in Figure 10. With
the use of a Scalable Bloom filter [1] to represent the Foaf

table, the program required only 3 GB of memory, and it ran
32.8% faster than the exact execution. With approximation,
it is possible to miss the contribution of some friends of
friends, hence the results may be smaller than the exact
answers. We found that the answers for 92.5% of the vertices
in the graph have less than 10% errors when the Bloom
Filter initially uses 5.5 bits per element. At least for this
example, the tradeoff between speed and accuracy appears
to be worthwhile.

Exact Approximate Comparison

Exec Time (Min.) 28.9 19.4 32.8% faster
Memory Usage (GB) 26.0 3.0 11.5% usage
Accuracy (5 10% error) 100.0% 92.5%

Figure 10: Effect of Bloom Filter on Execution Time
and Accuracy for the Program in Figure 4

7.6 Discussion
Our experiments show that SociaLite is succinct and de-

livers high performance on both parallel and distributed ma-
chines. In our experience, students in one of our research
projects found the syntax of SociaLite foreign initially. How-
ever, because SociaLite allows recursive graph relationships
be expressed naturally and directly, the students learned
quickly and implemented many queries with little difficulty.
To write multi-threaded or distributed code, programmers
only need to decide how data are to be sharded to mini-
mize communication. They can simply add the sharding
specification into the sequential SociaLite programs, which
typically requires no additional lines of code. In contrast,
even programmers well versed in the MapReduce or vertex-
centric programming models like Pregel and Giraph would
require significant effort to express graph algorithms in those
models. We found that the SociaLite benchmarks are 11 to
58 times more succinct than Giraph programs.

The high-level semantics of SociaLite not only eases pro-
gramming but also leads to better performance. SociaLite
programs run 4 to 12 times faster than Giraph programs
thanks to an efficient parallel execution engine and special
optimizations for recursive aggregate functions. We also



show that SociaLite can automatically derive approximate
algorithms for some of these graph analyses. In contrast,
high-level code optimization and transformation is difficult
for imperative languages due to over-specification in such
programs.

8. RELATED WORK
While Datalog was introduced in the 70s, it has gained

popularity recently and has been used in commercial sys-
tems [24] as well as research projects. Its high-level seman-
tics has been found to be useful to simplify programming
across many domains, including program analysis [37], net-
work systems [2, 3, 25], and modular robotics [7]. In the fol-
lowing, we focus on related work in parallel and distributed
Datalog as well as graph analysis.

Parallel and Distributed Datalog Evaluation.
There has been much work in the parallel evaluation of Dat-
alog programs [16, 39]. Ganguly et al. proposed parallelizing
Datalog evaluation by partitioning the set of possible vari-
able substitutions; an extra constraint with a hash-based
discriminating function is added to a rule body, so that each
processor is responsible for only a portion of possible vari-
able substitutions [16]. SociaLite’s parallelization is based
on sharding; shards of the first predicate of a rule are joined
by parallel workers. High-level data decomposition is speci-
fied by users, giving a certain degree of control to users for
improving efficiency.

More recently, Datalog has found its way into network
and distributed system research [2, 3, 25]. For the sake
of expressing distributed network state, NDlog and its suc-
cessor Overlog extended Datalog with a location opera-
tor, which indicates the storage location of tuples [2, 25].
Dedalus [3] further extended Datalog with two features: mu-
table states as well as asynchronous processing and com-
munication. These features help with the reasoning of dis-
tributed states, making it easy to implement distributed ser-
vices, such as Paxos [21].

While there are similarities, the motivations, semantics,
and design of the location operator in NDlog/Overlog are
completely different from that in SociaLite. NDlog and
Overlog are intended to be used where programmers want
to describe the functions of the individual nodes in a dis-
tributed network. As such, the location operator denotes an
actual machine address. In SociaLite, on the other hand, the
use of a distributed machine is just a means of completing
a task faster. The programmer has no need to dictate the
computation on the individual nodes. SociaLite’s location
operator is just a simple hint to indicate that the given table
is to be sharded with respect to the operand column. The
details of the data distribution, such as the actual machine
addresses of tuples, are abstracted away.

Distributed Data Analysis. Section 7.4 provides a
comparison between the MapReduce model and the Pregel
model. GraphLab is a distributed machine learning and
data mining (MLDM) system that adopts vertex-centric pro-
gramming model similar to Pregel, but with the support
for asynchronous computation. Whereas Pregel, GraphLab,
and MapReduce provide relatively low-level procedural con-
structs, SociaLite is an extension of a Datalog, a high-level
declarative query language. This high-level semantics sim-
plifies programming while facilitating optimizations like pri-
oritized and approximate evaluation.

REX [29] supports incremental iterative computation with
customized delta operations and handlers. With explicit
processing of deltas, it is possible for users to set a cus-
tomized termination condition for recursive queries or con-
trol the propagation of updates from one iteration to an-
other. In SociaLite, with the generalization of delta-stepping
algorithm, we prioritize the evaluation of updates, where the
priority is automatically inferred from the recursive mono-
tone aggregate functions.

Declarative Query Languages. The rising need for
large-scale data analysis has prompted the development of
a number of declarative query languages for distributed sys-
tems. Pig Latin [30] is a query language that compiles
to run on the Hadoop infrastructure. DryadLINQ [38] is
an SQL-like query language that extends the C# program-
ming language. DryadLINQ queries are compiled to run on
Dryad [20], which is Microsoft’s distributed computing plat-
form. Compared to the aforementioned query languages, So-
ciaLite is better suited for graph algorithms, many of which
can benefit from the support of recursion.

9. CONCLUSION
With online social networks such as Twitter and Facebook

boasting of hundreds of millions and billions of vertices, it
is necessary to harness the power of large-scale distributed
systems in analyzing these networks. Vertex-centric compu-
tation, as embodied by Pregel, a state-of-the-art language
for such analyses, requires programmers to manage the par-
allelism and communication at a very low level.

This paper shows that, with just a few annotations, pro-
grammers can describe these graph algorithms naturally in a
few Datalog rules and that a compiler can manage the dis-
tributed computation effectively. The programmer simply
specifies how tables are to be sharded across the machines,
and SociaLite automatically decomposes the computation
and generates the communication code. It also generalizes
the delta stepping technique to optimize recursive monotone
aggregate functions for parallel execution. The semi-naive
evaluation framework in SociaLite can produce partial re-
sults trivially; this is especially important for social queries
since fast response times are often more important than ac-
curacy. In addition, it uses Bloom filters as an approximate
data structure for storing large intermediate values.

We evaluated SociaLite with a suite of core algorithms
used in many graph analyses. We found that all, except
the shortest paths program, scaled linearly up to 16 cores
on a shared memory machine. The shortest paths program
showed a speed up of 10 on 16 cores. The programs tracked
the ideal weak scaling curve within a factor of two in our
experiment with 64 Amazon EC2 8-core instances. The So-
ciaLite programs are found to be 22 times more succinct
on average when compared to Giraph, an open-source al-
ternative to Pregel. Our proposed approximate evaluation
techniques are found to be effective on the couple of exam-
ples we experimented with.

The high-level semantics of SociaLite makes it possible for
the system to parallelize the code effectively and to trade off
accuracy for performance without user intervention. Fur-
thermore, as a language for deductive databases, SociaLite
makes it easy for programmers to write many interesting
social applications that leverage the core graph algorithms
such as those evaluated in this paper.
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