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ABSTRACT	
	

The	scientific	legacy	of	Zvi	Griliches’	contribution	to	the	economic	analysis	of	the	diffusion	of	
technological	 innovations	 is	 the	 subject	 of	 this	 paper.	 It	 begins	with	 an	 examination	 of	 the	
relationship	between	Griliches’	pioneering	empirical	work	on	the	introduction	and	adoption	of	
hybrid	corn	and	the	subsequent	development	of	theoretical	models	and	econometric	research	
on	the	microeconomic	determinants	of	diffusion.	Next,	it	formalizes	the	way	that	the	dynamics	
of	diffusion	observed	at	the	aggregate	level	is	shaped	by	structural	conditions	at	the	micro‐level	
–	on	both	the	supply	and	the	demand	sides	of	the	market	for	products	embodying	technological	
innovations,	 both	 of	 which	 were	 addressed	 by	 Griliches	 (1957).	 It	 then	 points	 out	 the	
reflections	of	those	processes	in	lagged	behavior	of	aggregate	investment	in	durable	capital‐
embodied	innovations	–	often	regarded	as	an	independent	subject	of	Griliches’	analytical	and	
econometric	research.	The	latter	connection,	and	its	link	with	productivity	changes	stemming	
from	 embodied	 technical	 change,	 are	 made	 explicit	 by	 the	 model	 of	 micro‐to‐macro	
relationships	affecting	the	total	factor	productivity	(TFP)	growth	rate	that	is	presented	in	the	
third	major	section	of	the	paper	(and	the	Appendix).	The	three	foregoing	dynamic	phenomena	– 
diffusion, durable	investment	lags,	and	TFP	growth	–	were	the	topics	of	Griliches’	three	most	
widely	 cited journal	 articles,	 respectively.	 The	 connections	 among	 them	have	 not	 been	
generally	noticed	by	economists,	and,	indeed	they	remained	implicit	in his	writings	until	late	
in	his	career,	when	he	emphasized	the	diffusion‐productivity	nexus	as	a	key	proximate	
determinant	of	the	pace	of	economic	growth	–	a	perception	whose	importance	remains	
insufficiently	appreciated	in	 current	policy	discussions	 that	 focus	attention	on	 “innovation”	
as	 the	driver	of	 intensive	growth.	Having	directed	attention	to	the	microeconomics	of	technology	
adoption	underlying	the	‘transitions’	during	which	the	diffusion	of	major	innovations	generate	surges	
in	innovation‐embodying	 capital	 formation,	 and	 to	 the	 consequent	 waves	 in	 the	 TFP	 growth	
rate	 at	 the	 industry	and	sectoral	levels,	should	be	seen	as	prominent	among	the	important	and	
enduring	contributions	that	Zvi	Griliches	made	to	modern	economics.			
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doing,	 heterogeneous	 adopters,	 contagion	 model,	 threshold	 model,	 micro‐macro	
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Zvi	Griliches	and	the	Economics	of	Technology	Diffusion:	
Linking	innovation	adoption,	lagged	investments,	and	productivity	growth	

	
1. Introduction		

This	 essay	 considers	 the	 scientific	 legacy	 of	 Zvi	 Griliches’	 contribution	 to	 the	 economic	
analysis	 of	 the	 diffusion	 of	 technological	 innovations	 by	 examining	 the	 relationship	 between	 his	
pioneering	 empirical	work	 on	 the	 introduction	 and	 adoption	 of	 hybrid	 corn	 and	 the	 subsequent	
development	of	theoretical	models	and	econometric	research	on	the	microeconomic	determinants	of	
diffusion.	Those	developments	have	exposed	the	ways	in	which	structural	conditions	at	the	micro‐
level	on	the	demand	side	of	markets	for	new	process	innovations,	and	dynamic	feedbacks	affecting	
the	supply	side	of	the	markets	for	innovative	products	can	interact	to	shape	the	specifics	of	diffusion	
phenomena	 that	 are	 observed	 at	 the	 level	 of	 industries	 and	 sectors.	 Further	 elaboration	 of	 this	
analytical	perspective	brings	into	clearer	focus	the	micro‐to‐macro	connections	between	diffusion	
and	 the	 lagged	behavior	 of	 aggregate	 investment	 in	 capital‐embodied	 innovations,	 as	well	 as	 the	
impact	 of	 diffusion	 dynamics	 on	 the	 pace	 of	 growth	 of	 aggregate	 total	 factor	 productivity	 (TFP).	
Directing	 the	 attention	 of	 empirical	 and	 theoretical	 research	 to	 examine	 the	 microeconomic	
mechanisms	that	underlie	technological	‘transitions’	driven	by	the	diffusion	of	major	innovations	has	
revealed	 processes	 that	 can	 generate	 wave‐like	 surges	 of	 innovation‐embodying	 capital	
accumulation,	and	corresponding	waves	in	the	growth	rates	of	 industrial	and	sectoral	total	 factor	
productivity	 (TFP).	 The	 impetus	 his	 pioneering	 study	 of	 hybrid	 corn	 imparted	 to	 subsequent	
research	 aimed	 at	 identifying	 the	 roles	 of	 structural	 conditions	 and	dynamic	 linkages	 among	 the	
population	of	potential	adopters	and	the	suppliers	of	innovation‐embodying	producer	goods,	deserve	
recognition	 among	 the	 most	 important	 enduring	 legacies	 of	 	 Griliches’	 contributions	 to	modern	
economics.			

1.1			Diffusion,	distributed	lags	and	the	growth	of	measured	TFP:	Zvi	Griliches’	three	
biggest	journal	publication	“hits”			

The	 three	 most	 widely	 cited	 journal	 articles	 by	 Zvi	 Griliches	 deal,	 respectively,	 with	 the	
economics	of	the	diffusion	of	technological	innovations,	the	econometrics	of	distributed	lags	and	the	
sources	of	measured	changes	in	total	factor	productivity	(a	collaborative	paper	with	Dale	Jorgenson).	
Obviously,	 citation	 statistics	 are	 but	 one	 means	 of	 gauging	 the	 intellectual	 impact	 of	 research	
contributions	–	and	a	limited	one	at	that.1	Nevertheless,	it	is	testimony	to	the	significance	of	the	main	
subject	of	this	essay	that	the	1957	Econometrica	paper	on	the	introduction	and	acceptance	of	hybrid	
corn	 among	 U.S.	 farmers	 comes	 first	 in	 the	 rank	 ordering	 of	 the	 many	 journal	 articles	 whose	
cumulative	annual	 journal	citations	have	been	compiled	 in	Diamond’s	 (2003)	survey	of	Griliches’	
contributions	to	the	economics	of	 technology	and	growth.	Moreover,	 the	remarkable	 fact	 that	the	
annual	 flow	of	 citations	 to	 this	particular	 article	has	 continued	 to	 trend	upwards	 throughout	 the	
                                                           
1	The	three	papers	top	the	all‐time	citation	ranking	of	110	journal	articles	whose	annual	citation	counts	from	
1956	 to	 2002	were	 compiled	 from	 the	Web	 of	 Science	 journals,	 supplementing	 in	 some	 cases	 by	material	
covered	in	the	Social	Science	Citation	Index.	The	respective	total	citation	counts	reported	in	Diamond	(2003:	
Table	II)	for	these	articles	are:	Griliches	(1957)	–548.8;	Griliches	(1967)	–214;Griliches	and	Jorgenson	(1967)	
–	106.	Because	Diamond	(2003)	 interpolated	monthly	counts	 for	September‐December	of	 the	 final	year	by	
applying	multiplier	of	1.5	to	the	data	for	the	months	through	to	August	2002,	his	procedure	generated	some	
fractional	totals,	such	the	one	that	appears	for	the	first	paper	in	this	list.	On	the	general	topic	of	the	limitations	
of	publication	citations	as	indicators	of	scientific	importance,	van	Raan	(1988)	remains	an	excellent	place	to	
start.			
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forty‐five	years	following	its	publication	–	and	most	probably	for	the	full	half‐century	‐‐	bears	striking	
testimony	 to	 the	 lively	 interest	 among	 economists	 in	 the	 phenomena	 that	 it	 brought	 within	 the	
purview	of	their	discipline,	and	to	the	sustained	influence	of	that	path‐breaking	study.2	 	Although	
these	three	top‐cited	publications	generally	have	been	viewed	as	unrelated	contributions	(so	much	
so	that	their	joint	salience	in	economics	literature	owes	virtually	nothing	to	cross‐citations	among	
them),	there	are	significant	substantive	connections	among	these	topics.	That	contention	motivates	
the	discussion	pursued	in	the	following	pages.	

Necessarily,	it	begins	by	reviewing	the	specific	details	of	Griliches’	path‐breaking	paper	on	
the	introduction	and	adoption	of	hybrid	corn,	and	its	influence	upon	subsequent	research	by	others	
on	 the	 diffusion	 of	 innovations.	 This	 did	 not	 stimulate	 explicit	 considerations	 of	 economic	
relationships	 among	 the	 three	 dynamic	 phenomena	 that	 have	 just	 been	 bracketed	 here;	 the	
connections	 among	 them	 remained	 largely	 unexplored	 in	 the	 literature,	 including	 Griliches	 own	
research	where	they	remained	implicit,	at	best.	Indeed,	this	reflected	the	fact	that	by	the	mid‐1960’s	
his	 attention	 had	 turned	 away	 from	 the	 study	 of	 specific	 technological	 innovations	 and	 the	
phenomena	associated	with	their	diffusion	into	use,	and	he	did	not	return	to	the	subject	empirical	
studies	of	diffusion		–	apart	from	Griliches’(1980),	the	brief	(but	nonetheless	significant)	comments	
prompted	by	Dixon’s	 (1980)	re‐examination	of	 the	available	U.S.	data	on	 the	case	of	hybrid	corn.	
Nevertheless,	 clear	 recognition	 of	 the	 broader	 importance	 of	 understanding	 the	 dynamics	 of	
technology	adoption	resurfaced	in	Griliches’reflective	writings.	That	the	nexus	diffusion‐productivity	
growth	 nexus	 figured	prominently	 in	 his	 approach	during	 the	 1990’s	 to	 understanding	 the	main	
proximate	determinants	of	the	pace	of	economic	growth,	and	there	for	warranted	closer	attention	
from	 economists,	 is	 evident	 from	 the	 following	 passage	 in	 Griliches’	 R&D	 and	 Productivity:	 the	
Econometric	Evidence	(1998):	

“Real	explanations	[of	productivity	growth]	will	come	from	understanding	the	sources	
of	 scientific	 and	 technological	 advances	 and	 from	 identifying	 the	 incentives	 and	
circumstances	that	brought	them	about	and	that	facilitated	their	implementation	and	
diffusion.”3	

	 On	the	strength	of	that	endorsement,	this	paper	undertakes	to	counter‐balance	the	tendency	
of	the	endogenously	growth	model	literature	to	gloss	over	the	dynamic	processes	through	which	the	
diffusion	 of	 innovations	 is	 implicated	 in	 the	 realized	 pace	 of	 aggregate	 total	 factor	 productivity	
growth.	

1.2 Organization	and	overview		

	 The	organization	of	the	discussion	proceeds,	accordingly,	“from	micro	to	macro.”	Chapter	2	
begins	with	 a	 review	 of	 the	 approach	 that	 Griliches	 (1957)	 adopted	 in	 studying	 the	micro‐level	

                                                           
2	 Corroborative	 reassurance	 is	 available,	 from	 the	New	York	Times	 (5	November	 1999:	 p.	 11)	 obituary	 by	
Michael	Weinstein,	which	 reports	Dale	 Jorgenson’s	 reference	 to	 this	 study,	 along	with	 the	1958	 JPE	 article	
(measuring	the	social	rate	of	return	on	R&D	in	hybrid	corn)	as	the	best	known	and	most‐mentioned	of	Griliches’	
contributions.	Diamond	(2004)	also	notes	Ariel	Pakes’	(2000)	description	of	the	1957	Econometrica	article	as	
“seminal.”		

3	 Emphasis	 added.	 This	 passage	 is	 reprinted	 in	 Griliches,	 1998:	 pp.89‐90	 from	 Griliches	 (1994)	American	
Economic	Review	article	on	productivity,	R&D	and	“the	data	constraint.”	His	text	goes	on	to	say	that	recognition	
of	these	connections	would	–	or	at	least	should	‐‐lead	economists	“back	to	the	study	of	the	history	of	science	
and	technology	and	the	diffusion	of	their	products,	a	topic	that	we	have	left	largely	to	others.”	
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economic	determinants	of	the	introduction	and	adoption	of	diffusion	of	hybrid	corn	on	U.S.	farms.	
The	discussion	 (in	 sect.	 2.2)	 considers	 the	 impetus	 that	was	 imparted	 to	 economists’	 subsequent	
empirical	research	on	the	diffusion	of	process	innovations	by	the	emphasis	Griliches’	commitment	to	
the	 rational‐actor	model	 in	which	 profitability	 considerations	were	 the	main	 determinant	 of	 the	
speed	with	which	the	innovation	had	been	accepted	within	different	farming	regions.	It	traces	the	
way	that	the	particular	empirical	strategy	that	he	had	employed	directed	the	subsequent	course	of	
theoretical	model‐building	toward	accounting	 for	 the	 logistic	shape	of	diffusion	paths	 in	 terms	of	
“contagion”	effects,	although	these	were	not	featured	in	his	1957	discussion	of	the	role	of	information	
propagation	lags	in	the	adoption	process.	 	Section	2.3	returns	to	re‐examine	the	controversy	with	
rural	sociologists	who	had	been	provoked	by	Griliches’	treatment	of	the	subject	in	terms	that	allow	
little	if	any	explanatory	importance	to	the	aspects	of	it	on	which	their	approach	(informed	by	social	
psychology	and	sociometry)	had	 focused,	 and	 the	 respects	 in	which	 that	 stance	underwent	 some	
accommodating	 transformations	 in	 the	 course	 of	 responding	 to	 	 criticisms	 from	 that	 quarter	
(Griliches	 1960,	 1962).	 As	 a	 result,	 what	 is	 seen	 to	 have	 emerged	 from	 the	 controversy	 was	
substantive	 agreement	between	 the	 emphasis	 accorded	by	 sociologists	 and	 	 economists	 to	 social	
communications	as	the	central	dynamic	process	driving	of	technology	adoption,	accompanied	by	a	
growing	disjunction	between	the	conceptual	and	empirical	frameworks	within	which	work	on	the	
subject	proceeded	in	the	two	disciplines.	As		

	 As	Section	2.4	shows,	the	paradoxical	state	of	affairs	just	referred	to	became	manifest	in	the	
literature	with	the	rising	popularity	among	economists	of	the	formal	version	of	the	contagion	model	
that	 was	 introduced	 by	 Mansfield	 (1961),	 and	 the	 evident	 commonality	 between	 the	 latter’s	
econometric	strategy	and	that	which	Griliches	(1957)	had	introduced.	Section	2.5	 	takes	up	other	
matters	that	had	not	been	subjects	of	disciplinary	controversy	but	were	nonetheless	recognized	to	
be	problematic	‐‐	yet	not	readily	resolved	within	either	Griliches’	(1957)	explanatory	framework	or	
that	of	the	rural	sociologists	who	viewed			the	structures	channeling	social	influence	to	be	the	key	to	
understanding	adoption	behaviors.	Central	among	these	was	the	existence	of	heterogeneity	in	the	
circumstances	 of	 potential	 adopters,	 and	 its	 connection	 with	 the	 behavior	 of	 the	 suppliers	 of	
innovation‐embodying	inputs		‐‐	sucn	as	hybrid	corn	seeds,	which	Griliches’	study	had	undertaken	to	
explain	also	in	terms	of	rational	profit‐seeking	action.	Both	of	aspects	of	Griliches’	original	work	were	
marginalized	in	the	literature	by	the	growing	popularity	of	the	“information	contagion”	model,	but	
emerged	during	 the	 later	1960’s	 in	 an	 alternative,	 the	basic	 “threshold	model.”	This	 approach	 to	
explaining	diffusion	(David	1966,	1969,	1971)	was	based	on	recognition	that	many	innovations	were	
biased	 in	 their	 relative	 factor‐use	vis‐à‐vis	 the	established	production	 technologies,	and	 therefore	
explicitly	considered	the	way	this	would	interact	with	heterogeneities	among	potential	adopters	to	
affect	 their	 choices	 among	 the	 alternative	 available	production	processes.	 It	 opened	 a	new	 route	
through	which	empirical	models	could	account	for	aggregate‐level	lags	in	diffusion	lags	by	allowing	
for	the	effects	of	supply‐side	technical	change	that	altered	the	relative	price‐performance	ratio	of	
innovation‐embodying	products,	and	thereby	induced	sequential	demand‐side	switching	from	old	to	
new	process	technologies.	

	 Chapter	2’s	discussion	closes	by	considering	(in	2.6)	the	implications	for	empirical	research	
of	the	resulting	proliferation	in	the	literature	of	“diffusion	models”	that	appear	to	be	observationally	
equivalent,	 all	 being	 capable	 of	 generating	 the	 same	 form	 of	 aggre	 gate	 diffusion	 curves.	 To	 the	
contagion,	and	the	threshold	models	was	added	which	is	here	seen	to	be	an	incipient	evolutionary,	
replicator	model	that	appeared	in	Nelson	(1958)	–	although	not	construed	explicitly	in	evolutionary	
terms	until	 the	 early	 1980s.	All	 three	models	 are	 seen	 to	 be	 capable	 of	 generating	 the	 canonical	
logistic	form	of	S‐shaped	(ogive)	diffusion	curve	to	which	the	attention	of	model‐builders	had	been	
directed	by	Griliches	and	Mansfield.	There	 it	 is	shown	that	 their	observational	equivalence	at	 the	
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aggregate	level	is	superficial,	as	it	masks	the	absence	of	micro‐level	observations	that	would	permit	
identification	 of	 the	 quite	 distinct	 underlying	 specifications	 of	 in	 these	 models	 of	 behavioral	
responses,	structural	conditions	and	related	time	constants	of	the	dynamic	processes	governing	the	
temporal	distribution	of	adoption	decisions	taking	place	among	the	population	of	potential	adopters.			

Chapter	 3	 presents	 a	 more	 complete	 account	 of	 the	 “threshold”	 approach	 to	 the	
microeconomics	of	 technology	 adoptions	based	upon	explicit	modelling	 of	 the	 role	 of	 population	
heterogeneities.		Griliches	(1980),	in	a	brief	reflective	comment	contrasting	treatments	of	diffusion,	
characterized	 this	 recognition	 of	 the	 implications	 of	 heterogeneities	 among	 the	 potential	 users	
economic	 and	 environmental	 circumstances	 as	 a	 useful	 “moving	 equilibrium”	 alternative	 to	 the	
paradigm	of	a	“disequilibrium”	transition	governed	by	information	constraints.	 	The	exposition	in	
section	3.1	is	based	mainly	upon	David	and	Olsen	(1984,	1986),	which	expands	the	basic	“threshold	
model’s”	analysis	of	an	 informed	rational	agent’s	 choice‐of‐technique	decisions	(between	a	novel,	
evolving	technology	and	an	familiar,	mature	technology),	by	taking	into	account	the	dynamic	effects	
of	anticipated	feedbacks	from	changes	in	supply	conditions	affecting	the	costs	of	adoption.	The	latter	
formulation	absorbed	Stoneman	and	Ireland’s	(1983)	introduction	of	supply‐side	learning	effects	in	
the	“threshold”	framework,	but	went	further	by	considering	the	implications	of	learning	externalities	
or	“spill‐over	effects”	on	the	pricing	of	durable	production	assets	when	potential	users	(as	well	as	
producers)	 could	 anticipate	 the	 future	 trajectory	 of	 the	 relative	 prices	 of	 innovation‐embodying	
goods.	Whereas	Griliches’(1957)	viewed	the	supply	of	innovation‐embodying	inputs	as	affecting	only	
the	timing	of	the	first	significant	commercial	introduction	of	the	new	technology,	in	the	more	fully	
elaborated	models	of	the	1980’s	the	behaviors	of	agents	on	both	the	supply‐side	and	demand‐side	
are	seen	to	continuously	shape	the	dynamics	of		diffusion	path.		Moreover,	together	with	conditions	
in	 the	market	 for	 the	 goods	what	 it	 is	 used	 to	 produce,	 these	 endogenous	 forces	 can	 generate	 a	
moving	upper	ceiling,	or	saturation	level	in	the	extent	of	diffusion		‐‐		towards	which	the	actual	path	
of	diffusion’s	convergence	drives	the	ceiling	upwards	until	the	niches	into	which	the	innovation	can	
spread	are	exhausted.	

The	sources	and	forms	of	the	distributions	of	the	putative	heterogeneities	among	potential	
adopters	 that	 can	be	admitted	 in	models	of	 this	general	 class,	and	 their	 relationship	 to	 the	 time‐
constants	 of	 the	micro‐level	 diffusion	 process	 are	 discussed	 in	 Section	 3.3.	 This	 serves	 to	make	
explicit	 the	 connections	 between	 the	 structural	 conditions	 underlying	 such	 processes	 and	 the	
distributed	lag	dynamics	that	diffusion	could	generates	in	the	volume	of	aggregate	industry‐level	or	
sector‐level	investments	in	capital	equipment	and	structures	that	embody	the	innovation.	There	it	is	
noted	that	the	explicit	dynamic	analysis	of	adoption	decisions	presented	in	Chapter	3	underscores	a	
proposition	 that	 in	a	 sense	 is	 the	corollary	of	 the	point	emphasized	 in	section	2.6:	 fully	 specified	
models	of	diffusion	belonging	to	the	large	class	that	posit	the	existence	of	heterogeneities	among	the	
population	of	potential	adopters	can	generate	very	distinctive	differences	in	aggregate	level	diffusion	
dynamics,	even	where	the	hypothesized	economic	micro‐level	mechanisms	are	identical.	

	A	forward‐looking	message	that	emerges	in	section	3.4	is	that	econometric	testing	of	these	
and	still	richer	theoretical	models	of	technology	diffusion	will	not	be	possible	without	much	greater	
concerted	 efforts	 to	 develop	 extensive	 bodies	 of	 consistent	 micro‐level	 cross‐section	 data	 and	
aggregate	 time‐series	 observations	 that	 allow	 controlling	 for	 confounding	 effects	 on	 each	 of	 the	
distinct	subprocesses	that	are	recognized	by	the	array	of	alternative	diffusion	mechanisms.	It	is	noted	
that	the	inability	to	meet	that	exacting	challenge	undermined	early	socio	undermined	sociometric	
research	 by	 Coleman,	 Katz	 and	 Menzel	 (1957,	 1966)	 that	 was	 long	 taken	 by	 sociologists	 	 to	
empirically	support	the	claims	of	the	“social	learn	thorough		information	contagion”	explanation	of	
diffusion	phenomena	–	and	to	an	extent	that	has	only	recently	been	appreciated.	Clearly,	panel	data	
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providing	observations	not	only	on	adoption	behavior	but	internvenning	non‐pecuniary	interactions,	
including	social	communications	among	actual	and	potential	users	of	the	innovation,		are	what	will	
be	 required	 empirical	 identification	 of	 the	 micro‐level	 processes	 and	 measurement	 of	 their	
characteristic	time	constants	and	relative	impacts	on	the	course	of	changes	in	the	aggregate	extent	
of	diffusion.		

Chapter	4	builds	upon	the	analysis	of	the	general	threshold	model	of	diffusion	presented	in	
Section	3,	and	examines	the	implications	of	its	underlying	determinants	for	the	rates	of	growth	labor	
productivity	and	total	factor	productivity	at	the	aggregate	level	of	an	industry	in	which	a	new,	capital‐
using	process	technology	is	displacing	a	pre‐existing	method	producing	a	consumer‐good	using	only	
labor.	The	main	structural	 features	and	rationalizing	assumptions	of	 the	simulation	model	 that	 is	
constructed	for	this	purpose	are	outlined	in	section	4.1	(relegating	the	formal	details	to	the	paper’s	
Appendix).	Section	4.2	examines	the	main	points	that	emerge	from	the	simulation	exercises,	which	
exhibit	 the	 distinct	 ways	 in	 which	 underlying	 structural	 parameters	 affect	 the	 amplitude	 and	
durations	of	wave‐like	movements	 that	 the	process	of	 the	 innovation’s	diffusion	generates	 in	 the	
aggregate	level	growth	rates	labor	productivity	and	TFP.			

Having	 completed	 the	 announced	 task	 of	 showing	 the	 connections	 between	 micro‐level	
adoption	behaviors,	the	dynamics	of	distributed	lags	in	industry	level	investment,	and	the	diffusion‐
driven	sources	of	aggregate	TFP	growth,	the	paper	concludes	in	section	5	by	commenting	briefly	on	
a	possibly	 important	 set	 of	 connections	 that	may	warrant	 investigation	 and	 inclusion	 in	 a	 future	
elaboration	of	the	simulation	structure	presented	here.	These	concern	the	linkages	between	diffusion	
processes	 and	 the	 behavior	 of	 R&D	 investment	 in	 the	 industries	 that	 supplying	 the	 innovation‐
embodying	capital	goods,	and	translate	knowledge	gained	from	experience	in	producing	those	goods,	
as	well	as	from	the	firms	that	adopted	previous	vintages	of	their	innovative	products	into	newer	and	
more	effective	inputs	that	can	gain	acceptance	among	the	market	niches	that	the	innovation	has	not	
yet	penetrated.	Little	appears	to	be	know	about	this	aspect	of	the	nexus	that	may	indirectly	connect	
R&D	 and	 productivity	 growth,	 and	 such	 an	 exploration	 of	 the	 diffusion‐R&D	 connection	 might	
usefully	round	out	the	program	of	research	that	became	the	main	focus	of	Zvi	Griliches’	sustained	
contributions	to	the	empirical	study	the	sources	of	economic	growth	in	the	modern	era.		

	

2.	The	Nature	of	the	Legacy	—	Economics	and	Technology	Diffusion		

The	approach	taken	here	to	assess	the	nature	of	Zvi's	Griliches’	(1957)	seminal	contribution	
to	the	literature	on	the	economics	of	diffusion	must	consider	not	only	what	had	been	accomplished	
in	that	work,	and	how	it	shaped	the	ensuing	development	of	the	literature	devoted	to	this	subject,	
but	also	what	had	left	to	be	done	by	later	contributors.	This	section	therefore	focuses	upon	both	the	
achievement	and	the	limitations	of	this	famous	study	of	the	introduction	and	acceptance	of	hybrid	
corn	by	U.S.	farmers.		

	 2.	1	The	hybrid	corn	study	—	an	econometric	paradigm	is	born	

Zvi	Griliches’	early	econometric	study	of	the	commercial	introduction	and	diffusion	of	hybrid	
corn	in	the	U.S.	was	influential	for	two	reasons	that	were	somewhat	in	tension	with	each	other.	First,	
he	construed	the	phenomenon	of	diffusion	in	economic	rather	than	sociological	terms,	and	so	opened	
a	new	avenue	to	examining	the	economics	of	technological	change.	Second,	the	quantitative	approach	
he	adopted	was	primarily	inductive,	rather	than	dependent	upon	formulating	a	particular	theoretical	
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model	from	which	deductive	propositions	could	be	derived	and	subjected	to	statistical	tests.		Instead,	
his	work	had	given	others	a	simple	way	to	quantitatively	characterize	three	aspects	of	the	generic	
phenomenon	of	technology	diffusion	observed	at	the	aggregate	(population)	level	–	the	length	of	the	
introduction	lag,	the	speed	of	the	innovation’s	adoption	(or	“acceptance”),	and	the	terminal	extent	of	
its	diffusion.	This	providing	an	intuitively	appealing	and	tractable	empirical	methodology	that	proved	
to	be	widely	applicable,	and	attractive	in	leaving	room	for	many	alternative	explanatory	hypotheses	
concerning	the	underlying	behaviors	of	the	adopting	agents.		

Both	 aspects	 of	 Griliches’	 approach	 are	 reflected	 in	 his	 implicit	 characterization	 of	 the	
diffusion	process	as	one	that	occurred	successively	within	distinct	geographical	regions,	and	in	his	
selection	of	a	statistically	convenient	descriptive	specification	for	the	diffusion	path	–	namely,	the	
cumulative	logistic	distribution.	He	could	then	proceed	immediately	to	hypothesize	that	the	speed	of	
diffusion	(and	hence	the	overall	shape	of	the	S‐shaped	path	determined	by	the	slope	parameter	in	
the	 diffusion	 function)	 would	 reflect	 economic	 conditions	 having	 to	 do	 with	 the	 innovation's	
profitability	for	a	representative	adopter.	Similarly,	economic	factors	could	be	supposed	to	affect	the	
location	of	the	onset	date	for	the	diffusion	process	under	examination,	and	therefore	to	be	reflected	
statistically	in	the	value	of	that	second	(scaling)	parameter	of	the	logistic.4		

Griliches	thereby	was	able	to	characterize	the	diffusion	path	in	terms	of	two	readily	obtained	
parameters	–	the	slope	coefficient	of	the	logistic	function,	and	the	‘intercept’	coefficient	(which	sets	
the	initial	or	conventionally	perceptible)	proportion	of	adopters	from	whence	the	observed	diffusion	
process	proceeds.5	The	elegance	of	 this	 simplification	had	a	major	 initial	 influence	 in	 stimulating	
econometric	 research	 on	 diffusion:	 characteristics	 of	 various	 technological	 innovations,	 or	 of	 the	
industries	and	markets	into	which	these	had	been	introduced,	could	simply	be	entered	as	regressors	
that	might	account	for	inter‐innovation	variations	of	the	logistic	slope	coefficients.	

As	will	be	seen,	 this	soon	was	seized	upon	by	economists	as	an	“obvious”	way	proceed	in	
quantitative	 studies	 of	 the	 role	 of	 demand‐side	 conditions	 in	 determining	 the	 adoption	 of	 new	
production	 techniques	 and	 new	 goods.	 But,	 an	 equally	 novel	 aspect	 of	 Griliches’	 paper	 in	
Econometrica	 (1957)	was	 concerned	with	 factors	 operating	 on	 the	 supply	 side	of	 the	market	 for	
hybrid	corn	seed	in	the	U.S.	Like	many	other	innovations,	hybrid	plants	are	most	efficient	as	elements	
of	a	production	system	when	they	have	been	designed	for	a	specific	environment.	In	some	cases	the	
relevant	“environment”	is	economic,	in	the	sense	of	being	defined	by	the	structure	of	relative	prices	
of	 the	array	of	 inputs	used	by	 the	production	system;	 in	others,	 it	 is	 the	physical	environment	 to	
which	the	process	required	being	adapted.	In	the	case	of	hybrid	corn,	Griliches	noted,	local	variations	
in	soil	types,	climate,	and	pests	called	for	the	suppliers	of	seeds	to	develop	particular	varieties	that	
would	be	best	suited	to	the	requirements	of	farmer	in	the	various	sub‐regions	of	the	U.S.,	ranging	
southwards	from	Wisconsin	and	Iowa,	to	Texas	and	Alabama	(see	Fig.	2).	

                                                           
4	When	 the	upper	 asymptote	 of	 the	diffusion	path	 is	 taken	 to	 be	 unity	 (universal	 adoption),	 signifying	 the	
assumption	made	by	Griliches’	(1957),	there	are	only	two	free	parameters	to	fit	econometrically	for	the	logistic	
distribution.	But	the	conventional	approach	is	to	estimate	a	slope	parameter	and	an	intercept	constant	from	a	
(linear)	model	of	the	log‐odds	ratio.		See	discussion	below,	in	this	section.	

5	Griliches	(1957:p.504,	esp.	n.10)	obtained	these	parameter	estimates	by	unweighted	least‐squares	regression,	
based	on	the	log‐odds	transform	of	the	logistic	growth	curve,	rejecting	the	weighting	methodology	proposed	
by	 Berkson	 (1955)	 to	 correct	 for	 heteroskedasticity,	 on	 the	 grounds	 that	 the	 bio‐assay	 context	 in	 which	
Berkson’s	procedure	had	been	proposed	was	of	doubtful	applicability	in	the	(time‐series)	context	in	which	he	
was	working.		
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	Consequently,	 considerations	 of	 the	 profitability	 of	 the	 incremental	 “development”	
investments	this	entailed	–	such	as	the	extent	of	the	existing	corn‐acreage	in	the	sub‐region,	and	the	
typical	size	of	the	farm	that	the	company’s	seed‐salesmen	would	have	to	visit	–	would	be	expected	to	
affect	the	spatio‐temporal	sequencing	of	the	innovation’s	introduction.	In	this	part	of	his	analysis,	
Griliches	clearly	had	anticipated	the	efforts	of	later	builders	of	microeconomic	models	to	incorporate	
the	effects	of	 incremental	supply‐side	adaptations	upon	the	diffusion	process.	Yet	at	the	time	this	
aspect	 of	 his	 path‐breaking	 study,	 about	 which	 I	 will	 want	 to	 say	 something	 more,	 attracted	
comparatively	little	notice.		

Much	more	notice,	and	even	some	cross‐disciplinary	controversy	that	heighten	economists	
attention,	was	focused	on	aspect	of	his	work	that	supported	the	conclusion	that	adoption	behavior	
exhibited	a	“rational”	response	to	the	availability	of	a	superior	method	of	production,	one	that	was	
“consistent	with	the	idea	of	profit	maximization.”		Although	the	lagged	adoption	of	hybrid	corn	by	the	
farmers	in	a	particular	region	of	the	country	reflected	the	fact	that	“the	spread	of	knowledge	1s	not	
instantaneous”	(1957:p.522),	the	speed	with	which	the	region’s	imperfectly	informed	famers	came	
to	“realize	that	things	had	in	fact	changed”	in	the	technology	of	corn	cultivation,	and	adjusted	their	
methods	accordingly.		

	 Griliches’	 classic	 (1957)	 paper	 on	 hybrid	 corn	 did	 not	 undertake	 to	 develop	 a	 formal		
theoretical	justification	for	its	reliance	on	the	logistic	specification	in	the	econometric	analysis;	nor	
did	 it	emphasize	an	economic	(or	sociological)	explanation	 for	 the	 failure	of	 the	 innovation	 to	be	
taken	up	instantaneously	and	universally	as	soon	as	it	was	introduced	in	any	particular	region.	It	is	
reasonable	to	suppose	that	such	emphasis	was	not	thought	to	be		necessary,	in	view	of	the	compelling	
empirical	patterns	exhibited	in	that	famous	chart	of	the	S‐shaped	curves	tracing	the	rising	proportion	
of	 corn	 acreage	 planted	 with	 hybrid	 seed	 in	 each	 of	 the	 major‐corn	 growing	 states.	 There	 are,	
however,	several	passages	that	clearly	indicate	Griliches’	view	that	the	uncertainties	surrounding	the	
decision	as	 to	whether	 to	adopt	a	novel	method	of	production,	such	as	hybrid	corn,	could	not	be	
immediately	dispelled;	it	would	take	time	for	farmers	individually	to	accumulate	information	that	
successively	reinforced	confidence	the	innovations’	alleged	beneficial	(profitable)	properties.	Here	is	
the	way	he	puts	it	(Griliches,	1957,	p.	516):	“Also,	in	a	world	of	imperfect	knowledge,	it	takes	time	to	
realize	that	things	have	in	fact	changed.	The	larger	the	shift	 the	faster	will	entrepreneurs	become	
aware	of	it,	“find	it	out,”	and	hence	they	will	react	more	quickly	to	larger	shifts.”		

	 At	the	end	of	that	sentence	appear	a	footnote	that	has	been	largely	overlooked	by	most	of	the	
commentaries	 on	 this	 frequently	 cited	paper,	 but	which	 is	 nonetheless	 	 significant	 in	 reveal	 that	
Griliches	envisaged	the	individual	process	of	decision	making	under	uncertainly	as	inherently	time	
consuming,	 because	 sufficient	 confirmatory	 data	 had	 to	 be	 accumulated	 in	 order	 to	 justify	
abandoning	an	established	routine.	He	explicitly	refers	to	the	statistical	method	of	sequential	sample	
analysis	 for	 quality	 control	 decision,	 and	 the	 procedure	 for	 this	 (based	 on	 the	 Average	 Sample	
Number)	that	Wald	(1947)	had	devised,	taking	that	as	support	for	his	interpretative	hypothesis	that	
there	would	be	an	inverse	association	between	the	size	of	the	stimulus	(in	the	form	of	differentially	
greater	profitability)	and	length	of	time	that	would	elapse	before	the	a	deliberating	farmer	responded	
by	accepting	the	new	method.	The	Average	Sample	Number	as	the	expected	number	of	items	that	
would	need	to	be	sampled	for	a	given	batch	before	being	able(	with	a	specified	level	of	confidence)	
to	reject	the	batch	as	belonging	to	a	 lower	average	quality	population	than	the	standard	that	was	
desired.	Griliches	thus	likened	the	farmer’s	decision	under	uncertainty	to	a	quality	control	decision,	
in	which	information	would	have	to	be	accumulated	sequentially	in	order	to	attain	the	requisite	ASN	
for	discarding	open	pollinated	corn	in	favor	the	the	hybrid	alternative::		
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“This	is	analogous	to	to	the	situation	in	Sequential	Analysis.	The	ASN	(average	sample	
number)	 is	an	 inverse	 function	of,	among	other	 things,	 the	difference	between	 the	
population	means.	That	is,	the	larger	the	difference	between	the	two	things	which	we	
are	testing,	the	sooner	we	will	accumulate	enough	evidence	to	convince	us	that	there	
is	a	difference.”	Griliches	(1957:p.	516,	n.33)			

A	number	of	notable	points	emerge	from	closer	consideration	of	Griliches’	somewhat	arcane	
statistical	 analogy.	First,	 this	explanation	 for	 the	phenomenon	 that	new	and	supposedly	 superior	
methods	are	not	adopted	 instantaneously	 is	 fully	consistent	with	Griliches’	 approach	 to	adoption	
phenomena	 as	 reflecting	 rational	 decision‐making	 –	 in	 this	 case	under	 conditions	of	 uncertainty.	
Secondly,	 insofar	 as	 there	 is	 a	 decision	model,	 it	 is	 framed	 at	 the	 individual	 level	 and	 therefore	
invokes	a	representative	agent’s	behavior	to	explain	why	the	observed	transition	to	hybrid	corn	by	a	
typical	farmer	would	be	found	to	proceed	more	quickly	where	the	profit	differential	offered	by	the	
innovation	was	bigger.		Notably,	there	is	no	indication	that	the	arrival	of	confirmatory	information	is	
a	variable	that	could	depend	upon	interactions	or	communications	among	neighboring	farmers;	in	
the	sequential	analysis	set‐up	the	decision	is	being	made	completely	independently	of	others,	and	
based	entirely	on	the	receipt	of	information	that	is	generated	autonomously	–	perhaps,	in	the	actual	
case	at	hand,	being	broadcast	by	the	USDA	agricultural	extension	service.	

	Thirdly,	 micro‐level	 explanatory	 framework	 accounts	 for	 the	 delay	 in	 adoption,	 and	 for	
differences	in	the	length	of	that	delay	following	the	introduction	of	an	adapted	(and	hence	profitable)	
hybrid	in	the	region.	But	this	does	not	explain	the	phenomenon	of	a	continuous	rise	in	the	proportion	
of	farmers	that	have	joined	the	ranks	of	the	adopters.	Something	is	missing,	without	which	the	time	
path	 of	 diffusion	 a	 given	 corn‐growing	 region	 would	 take	 the	 “bang‐bang”	 form	 of	 adjustment:	
nothing	would	happen	following	the	introduction	of	the	innovation,	and	eventually	all	the	farmers	
would	adopt	at	once	–	supposing	there	was	no	constraint	on	the	available	supply	of	the	hybrid	seeds.6		

Fourth	and	last,	the	proximate	source	of	this	problem	is	the	representative	agent	approach	
that	has	been	seen	to	be	implicit	in	Griliches’	interpretation	of	his	empirical	results.	If	the	decision	to	
adopt	an	innovation	poses	a	binary	choice,	then,	in	order	to	account	for	the	continuity	of	the	observed	
transition	to	a	widespread	acceptance	of	the	new	technology	among	the	population,	it	is	necessary	
to	 posit	 some	 heterogeneity	 among	 the	 agents.	 Within	 the	 framework	 suggested	 by	 Griliches’	
discussion	 of	 sequential	 analysis,	 one	 could	 readily	 introduce	 differences	 in	 the	 rate	 at	 which	
information	would	reach	different	farmers;	or	suppose	that	the	loss	functions,	or	confidence	levels	
characterizing	different	agents	would	result	in	a	continuous	distribution	of	average	sample	numbers,	
so	that	if	broadcast	messages	about	the	benefits	of	switching	to	hybrid	corn	were	reaching	every	one	
at	 the	 same	 rate,	 the	 dates	 at	 which	 different	 farmers	 attained	 their	 respective	 ASNs	 would	 be	
distributed	continuously	through	time.	But,	the	pull	of	representative	agent	modelling	was	strong,	
and	the	path	towards	models	based	on	explicit	recognition	of	heterogeneities	in	the	population	of	
potential	adopters	was	not	taken	immediately	by	the	economists	who	followed	Griliches’	lead.			

                                                           
6	Strictly	speaking,	this	would	not	necessary	be	the	case,	given	Griliches’	choice	of	the	proportion	of	regional	
corn	acreage	planted	with	hybrid	corn	seeds	as	the	measure	of	the	extent	of	diffusion.	The	adoption	decision	
could	be	to	plant	some	of	the	farm’s	acreage	with	hybrid	corn,	and	adjust	this	upwards	over	time.	Therefore	
the	binary	decision	framework	does	not	necessary	apply	in	these	circumstances,	whereas	it	would	if	the	index	
of	diffusion	measured	the	proportion	of	farms	or	farmers	on	which	hybrid	seed	had	be	planted	at	all.	Mansfield	
(1963a,	1963b)	distinguished	between	inter‐firm	and	intra‐firm	diffusion,	with	appropriate	different	measure	
of	the	extent	of	adoption.		
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2.2 Toward	behavioral	interpretations:	the	“contagion	model”	emerges	

Not	long	thereafter,	Edwin	Mansfield’s	(1961,	1963a,	1963b,	1966,	1968b)	inquiries	into	the	
diffusion	of	 industrial	 innovations	began	 to	erect	an	 impressive	empirical	edifice	by	applying	 the	
descriptive	 statistical	 approach	 that	 Griliches	 (1957)	 had	 pioneered.	 	Mansfield	 (1961)	 ventured	
beyond	 Griliches’	 work,	 by	 proposing	 a	 formal	 economic	 rationale	 for	 his	 econometric	 studies’	
employment	of	the	logistic	 form	in	characterizing	the	time	path	of	measures	of	the	proportionate	
extend	of	diffusion	‐‐	explicitly	hypothesizing	that	information	imperfections	effectively	constrained	
adoption,	but	would	be	gradually	eliminated	as	knowledge	about	of	the	innovation	became	more	and	
more	widely	disseminated	by	social	communication	within	the	relevant	circle	of	potential	adopters.	
The	supposed	mechanism	of	dissemination	was	a	social	contact,	‘word‐of‐mouth’	transmission	of	the	
relevant	knowledge,	rather	than	one	based	upon	economic	consideration	of	the	benefits	and	costs	of	
searches	for	information	firms	for	which	the	new	industrial	processes	were	potentially	relevant.	This	
was	viewed	as	natural,	 and	essentially	 costless,	unlike	 the	broadcasting	of	 information	about	 the	
benefits	 of	 the	 innovation	 by	 the	 producers	 and	 vendors	 of	 the	 inputs	 that	 would	 enable	 the	
installation	and	operation	of	the	of	the	required	new	facilities	and	method’s	operation	–	knowledge	
intermediaries	 such	 as	 the	 publicly	 funded	 agricultural	 extension	 agents,	 and	 the	 marketing	
personnel	of	the	private	hybrid	seed	companies.	

Rather	than	trying	to	explain	why	such	information	seemed	to	flow	along	particular	channels	
within	a	network	of	social	communications	‐‐	of	the	sort	to	which	studies	by	rural	sociologists’	tended	
increasingly	assign	importance,	(1961:pp.746‐748)	produced	a	version	of	the	so‐called	‘contagion’	
model	of	information	diffusion,	by	starting	from	a	general	conceptualization	in	which	the	probability	
of	adoption	is	a	function	of	perceptions	of	the	magnitudes	of	the	greater	profitability	enjoyed	by	users	
of	 the	 innovation	 interacted	 with	 information	 about	 the	 extent	 of	 its	 adoption	 among	 others	
(“competitors”)	in	the	industry,	and	working	his	way	toward	the	well‐known	separable	form	of	the	
differential	 equation	 for	 the	 logistic	 “information	 propagation”	 process.7	 	 	 This	 	 classic	 “social	
contagion”	 or	 random	 “word‐of‐mouth”	 process	 of	 information	 dissemination,	 separates	 the	
expected	 effect	 upon	 a	 non‐adopter	 of	 learning	 about	 the	 relative	 advantages	 of	 an	 innovative	
method	from	the			likelihood	of	a	non‐adopter	(in	a	symmetrically	interactive	and	completely	inter‐
penetrating	 population	 of	 agents)	 becoming	 informed	 by	 others	 about	 the	 innovation’s	 putative	
benefits.8				

                                                           
7	This	derivation	involved	beginning	with	a	Taylor	series	expansion	of	an	general	multivariate	function,	and	
proceeded	by	successive	arbitrary	suppressions	of	higher‐order	terms,	and	an	equally	ad	hoc	 imposition	of	
limiting	 initial	 conditions,	 to	 arrive	 eventually	 at	 a	 deterministic	 expression	 for	 the	 increased	 number	 of	
adopters	whose	separable	form	expressed	the	probability	of	an	incremental	adoption	as	the	product	of	two	
components:	the	probability	of	a	randomly	drawn	agent	becoming	 informed,	and	the	conditional	 likelihood	
that	an	informed	agent	would	become	an	adopter.	The	rationale	for	this	cumbersome	procedure	nowhere	is	
stated	by	Mansfield.	But	its	palpable	effect	is	to	convey	the	appearance	of	arriving	at	the	logistic	regression	
model	from	a	completely	general	theory	of	the	representative	firm’s	adoption	behavior,	rather	than	from	the	
behavioral	hypothesis	that	the	hazard	of	the	marginal	“hold‐out”	adopting	the	innovation	is	a	time‐invariant	
function	of	innovation’s	comparative	profitability	(and,	possibly	some	constraints).	This	route	to	the	logistic,	
as	far	more	direct,	as	the	following	text	points	out.	But,	whatever	the	reason	for	Mansfield’s	more	roundabout	
approach,	its	effect	enhanced	the	contrast	between	his	contribution	and	the	earlier	paper	of	Griliches	(1957).						
8	 This	 and	 other	more	 complicated,	 mixed	 broadcast	 and	 social	 contagion	 processes	 originated	 and	were	
elaborated	in	the	field	of	mathematical	epidemiology	‐‐		notably	by	Bailey	(1957),		upon	whose	work	Mansfield	
(1961)	 had	 drawn.	 See	 also,	 Bailey	 (2nd	 Ed.,	 1975)	 for	 further	 refinements.	 The	 implicit	 constrast	 with	
“completely	interpenetrating”	is	a	population	that	is	stratified	by	social	class,	income‐related	status,	or	other	
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By	positing	that	information	is	transferred	(as	an	infection)	through	random	social	contacts	
between	those	who	had	already	adopted	the	innovation	and	those	who	had	not,	one	arrives	almost	
immediately	at	the	differential	equation:	dP	=	n	{	P(1‐P)	},	where	P	 is	the	mean	probability	that	a	
randomly	 drawn	member	 of	 the	 population	 of	 potential	 adopters	will	 already	 have	 adopted	 the	
innovation	 and	 hence	 possess	 information	 as	 to	 its	 benefits.	 Under	 conditions	 of	 complete	 and	
random	social	inter‐mixing,	the	product	term	{P(1‐P)}	is	the	probability	of	a	random	dyadic	contact	
at	each	“moment”	that	will	alter	the	non‐adopter’s	information	state	to	that	of	“sufficiently	informed.”	
If	 the	 constant	n	 is	 the	mean	 probability	 that	 a	 newly	 informed	 non‐user	will	 join	 the	 ranks	 of	
adopters,	 the	 left	 hand‐side	 of	 the	 equation	 represents	 the	 resulting	 increase	 in	 the	 expected	
increment	in	the	share	of	adopters	among	the	population.9		Then	P(t)	,	thus	defined,	is	a	measure	of	
Dn(t)	 the	 extent	 of	 the	 innovation’s	 diffusion	 at	 time	 t,	 and	 so,	 by	 integration	 of	 the	 differential	
equation	for	dP/dt,	one	may	arrive	immediately	at	the	result	that	Dn(t)	is	a	logistic	function	of	t,	with	
slope	parameter	n	.		

Mansfield	then	could	follow	Griliches’(1957)	empirical	strategy	and	his	general	emphasis	on	
the	 centrality	 of	 profitability	 considerations	 in	 adoption	 behavior,	 hypothesizing	 that	 where	
expected	 profitability	 of	 adoption	was	 higher,	 there	would	 be	 a	 higher	mean	 probability	 that	 an	
informed	 non‐adopter	would	 immediately	 accept	 the	 innovation.10	 He	 first	 found	n	 as	 the	 slope	
parameter	of	 the	 logistic	equations	 fitted	by	weighted	 least	squares	regression	 to	 the	 time‐series	
observations	on	the	actual	extent	of	diffusion	(Dn(t))	for	each	of	12	process	innovations	that	had	been	
introduced	in	the	period	between	1900	and	the	immediate	post‐World	War	II	years,	and	eventually	
were	adopted	by	all	the	major	firms	in	4	industries	‐‐	ranging	from	bituminous	coal	mining,	to	beer	
brewing,	iron	and	steel	and	railroads).			

Mansfield	took	as	a	measure	of	the	“profitability”	of	the	i‐th	innovation	in	the	j‐th	industry	
the	inverse	of	the	ratio	between	the	average	“payback”	period	that	the	major	firms	in	the	j‐th	industry	
had	 experienced	 when	 they	 installed	 that	 innovation	 (for	 all	 the	 major	 firms	 in	 his	 dataset	 did	
eventually	 adopt	 these	 technologies),	 and	 the	 average	 payback	 period	 that	 his	 management	
informants	from	that	industry	reported	was	used	by	firms	in	evaluating	all	such	investment	projects.		
This	was	one	of	a	pair	of	right‐hand	variables	he	entered	in	a	linear	regression	model	to	account	for	
the	variations	among	the	innovations	in	the	(slope	parameter)	estimates	of	their	respective	“speed	
of	acceptance”	(to	use	Griliches’	terminology)	‐‐	or	what	Mansfield,	focusing	upon	the	adopting	firms,	
termed	the	“rate	of	imitation.”	The	second	“explanatory”	variable	measured	the	relative	“lumpiness”	
of	the	required	investment	outlay	as	the	ratio	between	the	average	initial	expenditure	for	the	i‐th	
innovation	 in	 the	 j‐th	 industry	 and	 the	mean	 asset	 size	 of	 the	major	 companies	 in	 that	 industry.	
                                                           
ascriptive	 bases	 for	 preferential	 social	 attachments,	 or	 otherwise	 partially	 “balkanized”	 within	 essentially	
disconnected	networks	of	communication.	Coleman	(1964:	Ch.	17)	treats	the	mathematics	of	such	processes	
under	the	heading	of	“diffusion	in	incomplete	social	structures”.		

9		If		0<	n	<1,	as	is	usual	in	these	model,	in	the	deterministic	equivalent	version	of	these	models	one	must	allow	
the	possibility	that	the	average	“contacted”	agent	will	have	been	contacted	and	hence	“informed”	but	(with	
some	positive	probability)	remain	a	non‐adopter.	Implicitly	it	is	assumed	that	the	informational	effect	of	the	
contact	is	immediately	dissipated,	so	that	the	expected	effect	of	the	next	contact	is	that	same	as	that	of	the	first,	
or	any	among	those	that	preceded	it.	The	foregoing	text	is	phrased	accordingly.	

10	Mansfield	(1961:p.	746)	offered	the	same	rationale	for	the	hypothesized	effect	of	profitability,	referring	to	
Griliches’	 (1957)	 study:	 “As	 the	 difference	 between	 the	 profitability	 of	 this	 investment	 and	 that	 of	 others	
widens,	 firms	 tend	 to	note	and	respond	 to	 the	difference	more	quickly.	Both	 the	 interviews	 [the	Mansfield	
conducted	with	industry	personnel	from	whom	he	obtained	some	of	his	innovation	specific	data,	e.g.,	on	the	
payback	period]	and	the	few	other	studies	regarding	the	rate	of	imitation	suggest	that	this	is	so.”		
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Mansfield	(1961:	p.	747)	included	this	variable	on	the	argument	that	“firms	tend	to	be	more	cautious	
before	committing	themselves	to	such	projects	and	that	they	often	have	more	difficulty	in	financing	
them.”	

To		test	the	ability	of	the	foregoing	pair	of	industry‐specific	variables	to	account	for	the	inter‐
innovation	 variations	 in	 the	 speed	 of	 imitation,	Mansfield	 estimated	 the	 linear	 (log‐odds	 logistic	
transform)	 regression	model	 for	 the	 12	 “rate	 of	 imitation”	 (slope)	 parameters,	 constraining	 the	
coefficients	on	these	variables	to	be	the	same	for	each	of	the	innovations	adopted	within	each	of	the	
industries.11	Finding	a	statistically	significant	negative	estimate	of	the	coefficient	for	this	“investment	
size”	variable,	along	with	the	significant	positive	regression	coefficient	for	the	relative	brevity	of	the	
(ex	post)	“payback	period”,	Mansfield	concluded	that		–	some	unexplained	inter‐industry	variations	
notwithstanding	–	the	hypothesis	that	process	innovations	diffused	into	use	more	quickly	when	they	
were	more	profitable,	holding	constant	the	greater	risks	and	financing	constraints	associated	greater	
required	investment	size,	stood	up	to	the	data	“surprisingly	well.”	12		

2.3	Griliches	and	Mansfield	and	the	‘disequilibrium’	conceptualization	of	diffusion	

                                                           
11	This	paralleled	the	procedure	of	Griliches	(1957:	Tables	VI,	VII),	in	constraining	the	estimated	effects	on	the	
logistic	 slope	 parameters	 of	 the	 variables	 (average	 corn	 acreage	 per	 farm,	 pre‐hybrid	 average	 yields,	 etc.)	
indicative	of	hybrid	corn’s	differential	profitability	to	be	constant	across	the	states,	and	across	crop‐reporting	
districts.		

12	Describing	 this	 approach	as	based	upon	 the	 “deterministic”	 version	of	 the	 information	 contagion	model,	
because	it	sought	to	explain	the	rate	of	imitation	based	upon	(the	logistic	parameter	estimated	from)	the	actual	
timing	of	adoptions	by	firms	in	the	case	of	each	innovation,	Mansfield	(1961:sect.	6)	tried	a	second	econometric	
strategy,	 estimating	 a	 “stochastic	 version”	 of	 the	model.	 In	 effect,	 this	method	 obtained	 an	 estimate	 of	 the	
(hypothesized)	a	constant	hazard	of	adoption	from	the	mean	of	the	observed	proportions	of	(previous)	non‐
adopters	that	joined	the	ranks	of	adopters	at	each	successive	date.	Mansfield	(pp.	359‐360)	reported	that	the	
expected	number	of	new	adopters	at	each	date,	obtained	by	using	that	value	of	the	slope	parameter,	showed	
greater	deviations	from	the	actual	observations	than	the	residuals	obtained	from	the	weighted	least‐squares	
estimates	 of	 the	 (deterministic)	 logistic	 model;	 but	 that	 the	 results	 of	 regressing	 the	 estimated	 slope	
parameters	for	each	innovation	on	the	profitability	and	investment	size	variables	were	virtually	identical	to	
those	he	had	obtained	by	weighted	least	squares	regression	estimation	of	the	log‐odds	equation.	There	is	a	
small	 detail	 of	 econometric	 methodology	 that	 differentiates	 Mansfield’s	 empirical	 approach	 from	 that	 of	
Griliches,	but	appears	to	have	passed	without	notice	in	the	subsequent	literature.	Whereas	Griliches	(1957:p.	
505)	explicitly	justified	his	use	of	the	logistic	curve	simply	as	a	descriptive	device	(reducing	an	extensive	body	
of	data	to	three	sets	of	parameters	–	origins,	slopes	and	ceilings,	Mansfield	presented	his	regression	model	as	
based	upon	the	“deterministic”	logistic	equation	derived	from	a	behavioral	theory	of	diffusion	driven	by	social	
contagion,	adding	a	disturbance	term	to	the	log‐odds	transformation	of	the	equation	for	the	expected	number	
of	new	adopters	in	each	period.	In	this	case,	however,	mimimum	Chi‐square	estimation	would	have	been	more	
appropriate	than	the	maximum	likelihood	(weighted	least	squares)	estimation	procedure	that	Mansfield	had	
employed,	in	view	of	the	problem	of	serial	correlation	that	would	be	induced	by	disturbances	in	the	behavioural	
model	(see	Berkson	(1955):	thus,	a		negative	shock	at	t	would	reduce	the	number	of	adopters	in	the	population	
at	t+1,	which	–	under	the	hypothesized	information	contagion	process	‐‐	would	result	in	a	smaller	expected	
number	 of	 new	 adopters	 at	 t+1.	 One	may	 note	 that	 during	 the	 early	 phase	 of	 the	 process	 (i.e.,	 before	 the	
inflection	point	of	the	logistic)	the	persisting	negative	effects	of	a	negative	shocks	would	be	greater	than	the	
persisting	corresponding	effects	of	a	shock	of	equal	magnitude	but	opposite	sign,	so	that	in	addition	to	serial	
correlation	of	 the	disturbances	a	uniform	distribution	of	 random	disturbances	also	could	give	rise	 to	some	
degree	of	heteroskedasticity	in	the	residuals,	but.	how	seriously	Mansfield’s	estimates	were	affected	by	these		
problems	remains	unclear.		
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Two	 sets	 of	 remarks	 now	 are	 in	 order	 concerning	 the	 foundational	 phase	 of	 empirical	
research	on	the	economics	of	technology	diffusion,	represented	by	the	works	of	Griliches	(1957)	and	
Mansfield	(1961).	The	first	of	these	concerns	the	role	assigned	to	informational	constraints,	and	the	
reliance	 upon	 the	 passage	 of	 time	 as	 a	 proxy	 for	 the	 unobserved	 improvements	 in	 the	 state	 of	
knowledge	 among	 the	 population	 of	 potential	 adopters	 about	 the	 economic	 benefits	 of	 the	
innovation.	 The	 second	 concerns	 the	 assumption	 that	 the	 population	 of	 firms	 (and	 farms)	 is	
essentially	homogeneous	in	regard	to	their	situations,	except	in	regard	to	their	information	state,	so	
that	a	representative	agent	model	is	sufficient	to	characterize	individual	behavior	and	the	translation	
between	 the	 analysis	 of	micro‐level	 behavior	 and	 phenomena	 observed	 at	 the	 aggregate	 level	 of	
industries	or	sectors	is	easy	and	immediate.		While	these	comments	might	be	read	as	critical,	they	
are	not	“fault	finding”	and	take	nothing	away	from	the	seminal	achievements	of	the	pioneers	in	this	
field.	Rather,	 the	purpose	here	 is	 to	 indicate	how	the	subsequent	 flow	of	analytical	and	empirical	
research	 contributions	was	 channeled	 by	 the	 paths	 that	 had	 been	 opened	 during	 this	 formative	
phase,	and	those	that	remained	to	be	explored.		

2.3.1	Information	propagation	and	time	in	the	diffusion	of	innovations:		

In	his	brief	comments	on	Dixon’s	(1980)	“revisit”	to	the	subject	of	the	diffusion	of	hybrid	corn,	
Griliches	(1980:	pp.1463‐1464)	remarks	that	since	much	of	the	relevant	data	describing	and	affecting	
individual	adopters	of	new	technologies	are	unobservable,	“time	was	brought	into	the	analysis	as	a	
proxy”	 for	 one	 or	 another	 of	 the	 forces	 that	were	 viewed	 to	 be	 responsible	 for	 the	 innovation’s	
gradually	widening	acceptance.	His	own	work	is	described	as	having	featured	the	“‘disequilibrium’	
interpretation”	of	 the	situation	created	by	the	 introduction	of	commercially	available	hybrid	corn	
seed	 in	 each	 region,	 and	 taking	 “time”	 to	 proxy	 for	 “the	 spread	 of	 information	 about	 the	 actual	
operating	 characteristics	 of	 the	 technology	 and	 the	 growth	 in	 the	 available	 evidence	 as	 to	 its	
workability	and	profitability.”		The	same	approach,	taking	the	adopters’	information	states	to	subject	
to	alteration	with	the	passage	of	time	characterized	Mansfield’s	research,	although	he	explicitly	cited	
social	communications	as	influential	sources	of	information	transmission	from	(successful)	adopters	
to	 non‐adopters,	 whereas	 Griliches	 (1957)	 remained	 non‐committal	 about	 the	 specifics	 of	 the	
information‐transmission	mode.	Rather,	as	has	been	seen,	Griliches’	 reference	 to	 the	 “ASN	effect”	
implies	 that	 the	 content	 of	 the	 information	 would	 affect	 the	 representative	 agent’s	 speed	 of	
acceptance	 of	 the	 innovation,	 whatever	 the	 source:	 the	 larger	 was	 the	 associated	 profitability	
advantage	reported	by	 the	 flow	of	 information,	 the	 fewer	would	be	 the	expected	number	of	such	
reports	(i.e.,	the	average	sample	number),	and	(by	surmise)	the	shorter	would	be	the	time	required	
to	persuade	the	individual	to	adopt	the	innovation	in	question.13		

The	 contrast	 between	 the	way	 these	 two	 foundational	 research	 contributions	 treated	 the	
question	of	how	the	supposed	information	constraint	upon	adoption	came	to	be	removed	may	well	
have	reflected		a	difference	in	the	realities	of	the	situations	they	studying,		and	consequently	in	the	
source	 materials	 that	 were	 available	 in	 each	 case.	 	 Footnote	 reference	 in	 his	 article	 	 footnote	
references	leave	little	room	for	doubt	that	Griliches	was	thoroughly	aware	of	the	existence	of	active	
broadcast	sources	of	information	about	the	advantages	of	hybrid	corn	emanating	from	the	U.S.D.A.	
agricultural	 extension	 service	 and	 the	 private	 seed	 companies;	 whereas	 nothing	 of	 equivalent	
salience	 is	 in	evidence	regarding	 “marketing”	efforts	by	 the	vendors	of	any	among	 the	diverse	of			

                                                           
13	Uniform	messaging	speed,	independent	of	the	content,	is	therefore	implies	by	this	–	and	the	social	contagion	
models,	an	assumption	that	is	quite	plausible	when	considering	diffusion	phenomena	that	extend	over	a	span	
of	months	or	several	years.	But,	when	the	process	of	acceptance	stretches	over	decades,	the	time‐invariance	
assumption	becomes	more	dubious.			
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process	equipment	embodying	the	industrial	innovations	studied	by	Mansfield.	But,	perhaps	more	
significantly,	the	latter’s	proposal	of	an	“information	contagion”	interpretation	of	the	deterministic	
logistic	equation	appears	to	been	shaped	at	least	in	part	by	the	publication	‐‐	coincident	in	time	with	
Griliches	 (1957)	 ‐‐	 of	 Coleman,	 Katz	 and	 Menzel’s	 (1957)	 article	 on	 the	 adoption	 of	 the	 broad	
spectrum	antibiotic	Tetracycline	among	prescribing	physicians	in	a	New	England	city.14	This	was	the	
first	in	a	line	of	influential	quantitative	sociological	studies	by	these	authors	that	focused	on	the	role	
in	the	diffusion	of	innovations	of	personal	communications	and	“social	contagion”	processes.15			

	There	 is	 nothing	 to	 suggest	 that	 Mansfield	 equated	 the	 circumstances	 of	 the	 medical	
innovation	studied	by	Coleman,	Katz	and	Menzel	(1957,	1966),	and	their	conclusions	about	the	role	
of	word‐of‐mouth	transmission	of	information,	were	immediately	germane	to	the	economic	or	social	
circumstances	of	the	industrial	innovations	in	his	sample.16	The	marked	differences	between	the	6‐
month	period	within	Tetracycline	went	from	marginal	acceptance	to	near	universal	adoption	within	
the	 communities	of	physicians	 studied	by	Coleman,	Katz	 and	Menzel	 (1957,	1966),	 and	diffusion	
processes	that	Mansfield’s	data	described	as			extending	not	only	for	years,	but	over	decades,	would	
be	enough	to	raise	doubts	that	same	underlying	dynamic	of	information	percolation	was	responsible	
in	all	of	them.17	Mansfield	did	not	remark	on	that	particular	disparity,	however,	but	remarked	(1961:	
p.744,	and	n.	8)	that	while	the	diffusion	of	a	new	technique	generally	was	a	slow	process,	there	were	
wide	variations	among	innovations	in	the	“rate	of	imitation”:	on	average	7.8	years	elapsed	following	
an	innovation’s	introduction	before	half	the	industry’s	(major)	firms	had	adopted	it,	but	the	range	of	
                                                           
14	Mansfield	(1961:	pp.	745‐746)	referenced	this	work	in	support	of	his	argument	that	adoptions	would	become	
more	likely	as	“as	more	information	and	experience	accumulate,”	adding:	“Competitive	pressures	mount	and	
“bandwagon”	effects	occur.	Where	the	profitability	of	using	the	innovation	is	very	difficult	to	estimate,	the	mere	
fact	 that	 a	 large	 proportion	 of	 its	 competitors	 have	 introduced	 it	may	 prompt	 a	 firm	 to	 consider	 it	 more	
favorably.”	 This,	 however,	 says	 nothing	 explicit	 about	 social	 communications,	 and	 the	 footnote	 discussion	
(p.746,	n.8)	focused	on	“the	snow‐ball	effect”	noted	by	Coleman,	et	al.,	remarking	the	“almost	all	the	executives	
we	interviewed	considered	this	effect	to	be	present.”	

15	Coleman,	Katz	and	Menzel	(1957),	and	the	immediate	sequel	in	Katz	(1961),	represented	the	first	fruits	of	an	
effort	 to	 substantiate	 the	contention	 in	Katz	and	Lazarsfeld	 (1955)	 that	personal	 communications	were	an	
important	 influence	 in	 individuals’	 willingness	 to	 try	 new	 products.	 A	 more	 elaborate	 monograph	 on	
Tetracycline’s	 adoption	 among	 the	 physicians	 in	 four	 small	 Illinois	 cities,	 was	 published	 subsequently	 by	
Coleman,	Katz	and	Menzel	(1966)	under	the	title	Medical	Innovation	and	became	widely	influential.		as	having	
established	the	critical	role	information	propagation	by	of	word‐of‐mouth	through	social	networks	(see,	e.g.,	
Rogers,	1995).			

16	Indeed,	Mansfield’s	(1961:p.746,	and	fn.8)	referred	to	this	article	in	the	context	of	arguing	that	“the	mere	fact	
that	a	large	proportion	of	its	competitors	have	introduced	it	may	prompt	a	firm	to	consider	it	more	favourably,”	
and	in	the	footnote	commented	only	that	“Coleman,	et	al.	[6]	noted	a	‘snow‐ball’	effect.	For	what	it	is	worth,	almost	all	
the	executives	we	interviewed	considered	this	effect	to	be	present.”	

17	Even	within	Mansfield’s	collection	of	innovation,	there	are	large	variations	around	the	mean	duration	of	x	
years	from	first	introduction	to	adoption	by	all	the	(major)	firms	in	the	respective	industries	–	the	population	
for	which	Mansfield’s	diffusion	measures	were	calculated.	For	example,	from	the	graphs	in	Mansfield	(1961:	
Fig.	 1)	 is	 seen	 that	 30	 years	 or	 more	 elapsed	 before	 all	 among	 the	 major	 railroads	 had	 adopted	 install	
centralized	traffic	control,	and	automatic	car	retarders;	that	was	the	case	also	regard	to	the	acceptance	of	by‐
product	coke‐ovens,	the	continous	annealing	process	by	the	major	iron	and	steel	firms:	whereas	10	years	or	
fewer	 elapsed	 before	 all	 the	 major	 firms	 had	 installed	 the	 pallet‐loading	 machine,	 the	 tin	 container,	 and	
continuous	 mining	 machinery.	 These	 variations	 did	 not	 merely	 reflect	 inter‐innovation	 differences	 in	 the	
extreme	right‐hand	tail	of	the	distribution	of	adoption	lags	(measured	from	the	respective	introduction	dates.	
Half	of	the	major	pig‐iron	producers	were	using	by‐product	coke	oven	within	15	years	,	where	as	half	of	the	
major	coal	producers	were	using	the	continuous	mining	machine	within	3	years.		
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inter‐innovation	variation	around	that	sample	mean	was	from	0.9	to	15	years.		One	might	wonder	
how	plausible	it	is	to	suppose	that	15	or	16	years	elapsed	before	the	last	half	of	the	major	pig‐iron	
producers	 heard	by	word‐of‐mouth	 about	 the	 proven	 advantages	 of	 installing	 by‐product	 coking	
ovens,	whereas	 only	5	 years	were	 required	 for	 the	 corresponding	message	 about	 the	benefits	 of	
continuous	mining	machines	to	percolate	into	the	non‐adopting	half	of	the	major	coal	companies.		

Nevertheless,	Mansfield’s	empirical	strategy	sought	to	account	for	those	variations	in	terms	
of	differences	among	the	(fixed)	characteristics	of	the	innovations	that	would	affect	the	profitability	
and,	recognizing	that	installation	of	lumpy	industrial	facilities	was	required	in	some	cases,	the	risks	
or	 financing	 obstacles	 involved	 in	 their	 installation.	 This	 supposed	 (implicitly,	 in	 endorsing	 the	
“contagion”	 model)	 that	 when	 an	 innovation	 was	 insufficiently	 attractive	 to	 win	 acceptance	 by	
substantial	portion	of	the	industry,	it	would	take	longer	for	non‐adopters	to	get	the	news,	and	a	small	
proportion	of	those	who	would	act	upon	it		positively.		

	The	“epidemic”	or	“social	contagion”	model	of	diffusion	has	gained	an	enduring	place	in	both	
the	economic	and	the	sociological	literatures	on	the	adoption	of	innovations,	and,	without	warrant,	
as	been	seen	is	now	casually	associated	with	micro‐level	behavioral	interpretations	that	are	adduced	
to	 account	 for	 both	 Griliches’(1957)	 and	 Mansfield’s	 findings	 about	 the	 relationship	 between	
profitability	 and	 speed	 of	 acceptance	 or	 imitation.	 Moreover,	 in	 view	 of	 the	 foregoing	 skeptical	
observations	concerning	the	relevance	of	information‐constrained	delays	in	adoption	–	which	would	
have	had	to	persist	for	decades	within	some	industries	before	gradually	being	allieviated	through	the	
slow	 dissemination	 of	 knowledge	 carried	 by	 word‐of‐mouth	 ‐‐	 this	 represents	 one	 of	 modern	
economics’	more	remarkable	triumphs	of	“nice	theory”	over	“empirical	plausibility.”		

	

2.4	Conflicts	over	economic	rationality	and	the	heterogeneity	of	potential	adopters		

A	second	feature	that	Griliches	(1957)	and	Manfield’s	(1961)	contributions	share,	in	addition	
to	(and	as	the	dual	of)	their	common	emphasis	on	the	slow	percolation	of	information	required	to	
persuade	 rational	 managers	 of	 the	 benefits	 of	 new	 techniques,	 is	 that	 both	 worked	 within	 a	
representative	agent	framework.	Consequently,	their	explanations	of	the	diffusion	phenomena	paid	
little	if	any	attention	to	the	role	that	could	be	played	by	the	existence	among	the	agents	(farmers	or	
firm	managers)	populating	the	relevant	 industries	of	differences	bearing	upon	the	profitability	of	
adopting	a	particular	innovation	at	a	given	point	in	time.	

This	commitment	to	the	representative	agent	modeling	approach	lurked	beneath	the	surface	
of	the	controversies	into	which	Griliches	found	himself	drawn	by	the	reactions	of	rural	sociologists	
to	his	Econometrica	article.	 	The	interest	of	economists	in	the	topic	of	diffusion	of	technology,	and	
their	appreciation	of	young	Griliches,	undoubtedly,	was	raised	further	by	that	controversy	and	the	
confident	and	deft	way	in	which	he	deflected	the	points	of	his	critics.	Griliches	had	presented	as	so	
compelling	to	be	beyond	cavil	his	conclusions	that	“taking	account	of	uncertainty	and	the	fact	that	
the	spread	of	knowledge	is	not	instantaneous,	farmers	have	behavied	in	a	fashion	consistent	with	the	
idea	 of	 profit	 maximization.”	 But	 he	 e	 may	 have	 underestimated	 the	 extent	 to	 which	 his	 plain	
expression	of	them	would	be	read	in	some	quarters	as	fighting	words.	Anyway,	here	is	what	he	said	
in	a	footnote	at	the	very	end	of	the	1957	paper:		
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“It	is	my	belief	that	in	the	long	run,	and	cross‐sectionally,	[sociological]	variables	tend	
to	cancel	themselves	out,	leaving	the	economic	variables	as	the	major	determinants	of	
the	pattern	of	technological	change.”		

	 Among	 rural	 sociologists,	 and	 especially	 those	 approaching	 the	 study	 of	 diffusion	 in	 the	
research	 tradition	 that	 had	 developed	 from	 Ryan	 and	 Gross’s	 (1943)	 pioneering	 study	 of	 Iowa	
farmers’	responses	to	the	introduction	of	hybrid	corn,	those	fighting	words	would	continue	to	rankle	
for	many	years	afterwards.	They	are	quoted	in	the	review	of	this	controversy	that	appeared	in	Everett	
M.	Rogers’	subsequent	surveys	of	research	on	the	diffusion	of	 innovations18	—	to	be	 immediately	
dismissed	in	those	pages	as	exemplifying	a	“ridiculous”	subscription	to	the	naieve	homo	economicus	
conceptualization	popular	among	members	of	the	“Chicago	School.”	In	truth,	Rogers	(1983,	and	in		
the	 two	 preceding	 editions	 of	 that	 book)	 completely	 missed	 the	 point	 of	 the	 position	 taken	 by	
Griliches	(1957,	1960,	1962)	in	turning	aside	the	complaints	of	this	critics.	However	rashly	phrased,		
his	parting	remarks	in	the	1957	article	really	were	not	about	whether	human	action	was	or	was	not	
influenced	 by	 non‐economic	 considerations;	 instead,	 they	 concerned	 the	 statistical	 question	 of	
whether	non‐economic	 influences	upon	 individuals’	behaviours	 	were	sufficiently	correlated	over	
time,	or	in	the	cross‐section,	to	exert	a	significant	influence	on	the	observed	aggregate	outcomes.	

At	least	two	aspects	of	what	passed	between	Griliches	and	the	rural	sociologists	in	that	now	
remote	 controversy	 over	 the	 diffusion	 of	 hybrid	 corn	 usefully	 be	 “revisited”	 in	 the	 present	
connection.	The	first	exposes	more	fully	points	of	commonality	as	well	as	the	disagreements	between	
the	approach	to	diffusion	phenomena	in	what	became	the	Griliches‐Mansfield	tradition	in	economics,	
and	the	defenders	of	the	rural	sociological	tradition.	The	second	illuminates	the	eventual,	reflective	
rapproachment	 with	 the	 sociologists’perspective	 that	 that	 can	 be	 read	 in	 Griliches	 (1980)	
“Comments”	on	Robert	Dixon’s	(1980)	paper	“Hybrid	Corn	Revisited”.	

In	 the	 following	 paragraphs	 these	 two	 threads	 are	 taken	 up	 in	 turn,	 and	 shown	 to	 be	
entangled	in	their	implications	for	the	way	that	economic	research	on	diffusion	has	developed	from	
the	seeds	planted	by	Griliches.	There	is,	in	addition,	an	important	relationship	between	the	two	point,	
inasmuch	as	both	were	completely	aligned	with	the	same	implicitly	“pro‐innovation”	disposition	that	
can	be	found	in	the	studies	by	Griliches,	and	later	by	Mansfield	–	and,	for	that	matter,	in	the	research	
tradition	on	diffusion	established	among	rural	sociologists	in	the	U.S.		The	common	view	was	that	the	
innovation	in	question,	whether	it	was	boiling	drinking	water,	planting	sorghum,	tractor‐ploughing,	
or	 the	oxygen	process	 in	 the	 iron	and	steel	 industry,	was	universally	superior	 in	some	 important	
objective	 sense	 vis‐à‐vis	 the	 “traditional”	 techniques	 that	 were	 in	 used	 farms	 or	 firms	 under	
examination.	 Further,	 that	 superiority	was	 taken	 to	 be	 established	 from	 the	 first	moment	 of	 the	
innovation’s	 introduction,	 and	 to	 persist	 thereafter.	 Implicitly	 this	 assumed	 away	 objective	
differences	in	the	circumstances	of	potential	adopters	that	might	have	a	bearing	on	their	(rational)	
decisions.	

		The	 issue	 in	 contention	 between	 the	 rural	 sociologists	 and	 Griliches’	 supporters	 and	
followers,	 therefore,	 was	 simply	 whether	 or	 not	 the	 index	 of	 that	 superiority	 was	 comparative	
profitability.	 	 Yett,	 there	 was	 nothing	 in	 the	 structure	 of	 Griliches’	 (1957)	 presentation	 of	 the	
descriptive,	statistical	model	of	logistic	diffusion	itself	that	connected	relative	profitability	directly	to	
the	pace	of	diffusion	as	measured	by	the	estimate	of	the	slope	parameter	of	the	logistic	curve.		The	
logistic	 form	was	 an	 a	 priori	 specification	 that	 had	 yet	 to	 be	 statistically	 against	 other	 possible	
diffusion	 paths.	 	 Mansfield’s	 proposed	 interpretation,	 which	 suggested	 that	 relatively	 higher	
                                                           
18	See,	for	example,	Rogers	(1983:	pp.	32‐34,	56,	214‐215).		
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profitability	would	increase	the	likelihood	that	informed	potential	adopter	would	actually	accept	the	
innovation,	after	learning	about	it	from	a	current	user,	also	was	not	tested	empirically;	although	it	
might	have	been,	by	considering	whether	the	order	of	adoption	of	a	given	innovation	was	positively	
associated	with	its	relatively	profitability	for	the	adopters.19			

2.4.1‘Congruence’,‘compatibility’and	variations	in	adopter’s	objective	circumstances		

The	 second	 point	 to	 be	 noted	 concerns	 the	 awkward	 implications	 that	 follow	 from	
acknowledging,	as	Griliches’	rejoinder	had	done,	that	an	innovation’s	profitability	might	be	affected	
by	its	“congruence”	and	“compatibility”	with	other	elements	in	the	established	farming	regime	–	as	
the	sociologists	had	contended.	In	other	words,	the	comparison	in	the	case	under	debate	might	not	
be	properly	characterized	merely	by	 looking	at	 the	costs	and	yields	of	hybrid	corn	seeds	and	the	
open‐pollinated	alternatives.		

Hybridization	 in	 effect	 had	 created	 a	 more	 efficient	 pump	 for	 nutrients,	 and,	 as	 the	
agricultural	extension	officers	of	the	day	were	explaining	to	farmers	–	albeit	in	different	terms	–	this	
pump	would	not	deliver	what	it	could	unless	it	first	was	properly	set	up.	Chemical	fertilizers	would	
have	to	be	supplied,	and	that	meant	fertilizer	tanks	would	need	to	be	purchased	and	installed;	more	
water	would	be	required	to	go	along	with	the	fertilizer,	and	that	might	mean	digging	new	wells,	or	
otherwise	improving	irrigation	capacity.	Providing	more	nutrients	would	heighten	the	problem	of	
weeds,	 and	 so	 chemical	 or	 mechanical	 means	 would	 need	 to	 be	 introduced	 to	 suppress	 these	
competitors	for	the	expensive	nourishment	that	the	hybrid	plants	were	supposed	to	pump	up.		Even	
that	was	not	the	end	of	the	matter.	In	addition	to	the	direct	financial	costs	of	those	fixed	inputs,	access	
to	working	capital	would	be	critical	when	a	wholesale	switch	was	made	to	hybrid	seed,	because	if	
bad	weather	or	pests	spoiled	the	harvest,	the	wherewithal	to	purchase	new	seed	for	following	year	
would	become	a	critical	condition	for	the	farm	family’s	survival	on	the	land.	

Looked	 at	 from	 this	 angle,	 the	 “representative	 agent”	 version	 of	 Griliches’	 	 “profitability	
counts”	story	about	hybrid	corn	appears	rather	 too	 facile.	Objective	economic	differences	existed	
among	 the	 farms	of	 the	Midwest	 in	 this	era,	quite	noticeably	 in	 regard	 to	 their	 current	and	 their	
expected	 future	corn	acreage,	 the	 terms	of	 their	access	 to	bank	 finance,	 their	 family	 labor	supply	
situation,	and	also	in	the	educational	attainments	of	the	farms’	operators	–	which	might	well	affect	
their	 capabilities	 to	 grasp	 and	 manage	 critical	 aspects	 of	 the	 new,	 more	 intricate	 system	 of	
cultivation.20	Surely	the	heterogeneity	of	the	population	in	these	respects	might	be	expected	to	show	
up	in	cost,	realized	yield,	and	farm	revenue	differences.	Hence,	by	the	very	same	argument	that	Zvi	
had	used	to	deflect	the	criticisms	from	his	sociological	antagonists,	the	determinants	of	perceived	
profitability	might	well	be	said	to	govern	the	extent	to	which	the	innovation	would	be	adopted	within	
a	farming	community.	But	profitability	was	not	simply	a	function	of	seed	yields	and	prices	that	were	
essentially	the	same	for	everyone.	

Supposing,	then,	that	awareness	of	the	requirements	for	commercially	successful	deployment	
of	hybrid	corn	had	become	thoroughly	disseminated	as	a	result	of	the	efforts	of	those	agricultural	
extension	 officers,	 there	 could	 nonetheless	 be	 “rational	 non‐adopters.”	 If	 that	 was	 the	 case,	
                                                           
19	 Instead,	Mansfield	 (1968)	 studied	 a	 number	 of	 different	 innovations,	 and	 sought	 to	 relate	 the	 speed	 of	
(logistic)	 adoption	 to	 characteristics	 of	 the	 typical	 	 firms	 in	 the	 industry	 that	 could	be	 viewed	 as	 having	 a	
bearing	on	the	profitability	of	the	innovation		in	question.				

20	The	significance	of	human	capital	intensity	among	the	sources	of	the	growth	of	U.S.	farm	productivity	would	
emerge	as	a	notable	finding	in	Griliches’	(1964),	an	aggregate	production	function	study.		
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something	else	in	the	objective	situation	would	have	to	change	in	order	for	there	to	be	the	further	
expansion	in	the	proportion	of	acreage	under	hybrid	corn.	That,	at	least,	was	the	way	it	appeared	to	
this	city‐boy	when,	without	ever	having	set	foot	on	an	Iowa	corn‐farm,	he	starting	to	think	about	the	
determinants	of	 the	diffusion	of	 grain	harvesting	 in	 the	 antebellum	Midwest,	 and	 came	upon	 the	
debate	that	had	gone	on	between	Grilichesi	and	his	critics.21	

There	was	another	bothersome	matter	—	not	unrelated	to	the	one	just	noticed,	but	having	to	
do	with	the	neat	empirical	strategy	that	Griliches	had	devised.	The	family	of	diffusion	paths	exhibited	
in	the	1957	papers	clearly	is	an	artifact	of	the	U.S.	Department	of	Agriculture’s	statistical	reporting	
practices:	total	corn	acreage	under	cultivation,	and	acreage	under	hybrid	corn	were	collected	at	the	
county	level,	aggregated	and	published	for	the	states.	Surely	these	political	units	had	to	be	viewed	as	
rather	arbitrary	aggregations	from	an	economic	standpoint;	there	were	not	even	any	apparent	state‐
level	 farm	policy	 issues	 that	would	 render	 it	 of	 economic	 interest	 to	 concern	 ourselves	with	 the	
dynamics	 of	 the	 diffusion	 of	 hybrid	 corn	 on	 a	 state‐wide	 basis.	 But,	 what	 was	 the	 theoretically	
appropriate	level	of	aggregation?	Supposing	that	the	data	could	be	obtained	on	a	county‐by‐county	
basis,	would	that	be	a	more	‘natural’	population	unit	within	which	to	examine	the	course	of	diffusion?	
Or	should	the	county‐level	data	be	re‐aggregated	to	form	some	economically	distinct	larger	regions	
within	which	there	could	be	said	to	be	substantial	homogeneity?	Would	such	a	thing	be	feasible,	let	
alone	appropriate	for	analytical	purposes?	

	The	answers	were	not	obvious.	 It	was	not	even	clear	that	the	 idea	of	regional	differences	
could	be	specified	clearly,	and	if	so,	whether	or	not	it	should	be	independent	of	fixed	features	–	such	
as	climate,	or	soil	types	–	that	might	have	a	bearing	on	micro‐level	adoption	decisions.	What	did	seem	
clear	is	that	if	all	the	state	data	for	corn	farmers	was	aggregated,	it	would	exhibit	an	adoption	path	
which	was	far	more	protracted	than	those	shown	for	the	individual	states,	a	point	commented	on	by	
Griliches	(1980:	Further,	because	that	diffusion	curve	would	have	a	unique	inception	date,	the	slope	
parameter	estimated	from	the	logistic	regression	would	need	to	describe	the	more	protracted	time	
path,	and	consequently	would	be	smaller	than	that	 for	many	of	 the	sub‐regions.	On	the	Griliches‐
Mansfield	 interpretation,	 however,	 differential	 profitability	 of	 hybrid	 corn	would	 affect	 the	 slope	
coefficient	of	the	logistic	and	consequently	govern	the	speed	of	the	contagion	process;	hence,	for	the	
larger	 aggregate	 if	 would	 have	 to	 be	 said	 that	 the	 differential	 profitability	 of	 the	 innovation	 for	
farmers	was	weaker	in	the	aggregate	(and	a	fortiori	weaker	in	the	late	adoption	regions)	than	was	
the	case	in	the	early	adopting	sub‐regions.	

But	Griliches	(1957)	had	provided	a	different	explanation	for	the	separation	between	early‐	
and	late‐adopters:	it	was	supposed	to	have	stemmed	from	the	differences	in	the	innovation‐suppliers’	
expected	profitability,	which	gave	rise	to	the	sequence	of	introduction	dates.	Looking	at	the	process	
from	the	aggregate	level,	it	now	seemed	that	the	heterogeneity	of	corn‐growing	conditions	across	the	
U.S.	played	a	role	 in	 the	diffusion	process	 that	was	not	acknowledged	when	Griliches	 focused	his	
empirical	analysis	at	the	state	level.	Yet,	if	this	was	a	valid	conclusion,	might	it	not	also	be	one	that	

                                                           
21	The	influence	of	those	doubts	about	the	sufficiency	of	the	‘contagion’	model	found	its	way	into	the	approach	
taken	 in	David	 (1966).	But,	 as	 that	 publication	was	meant	 to	 be	 a	 contribution	 to	 economic	history	 –	 in	 a	
festschrift	for	Alexander	Gerschenkron,	the	advisor	of	my	yet	unfinished	doctoral	dissertation	—	and	not	about	
diffusion	 theory,	 its	 pages	 contained	 no	 explicit	 references	 to	 Griliches’	 study	 of	 hybrid	 corn	 and	 the	
controversy	it	had	ignited.	Such	matters	would	wait	until	my	incipient	heterodoxy	could	be	formalized	for	a	
different	audience,	in	David	(1969).	
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would	hold	in	regard	to	the	diffusion	process	at	the	state	level?	And	then,why	not	also	at	the	county‐
level,	and	below?		

Perhaps	not	altogether	surprisingly,	rural	sociologists	–	even	before	they	reached	the	fighting	
words	at	the	end	of	Gliches’	Econometrica	article–	were	finding	it	difficult	to	square	the	complex	and	
nuanced	picture	that	had	been	projected	by	Ryan	and	Gross’s	(1943)	influential	study	of	the	response	
of	 Iowa’s	 farmers	 to	 the	 introduction	 of	 hybrid	 corn,22	 with	 Griliches’	 stark	 emphasis	 upon	 the	
differential	 profitability	 of	 hybrid	 corn	 as	 the	 principal	 systemic	 factor	 affecting	 the	 speed	 of	 its	
diffusion.	 Ryan	 and	 Gross	 (1943)	 had	 reported	 a	 complicated	 array	 of	 objective	 and	 subjective	
considerations	affecting	 the	 social	 communication	of	 influential	 information	within	 Iowa	 farming	
communities	 as	 having	 shaped	 the	 reception	 of	 hybrid	 corn	 cultivation	 as	 a	 substitute	 for	 the	
traditional	farming	regime	based	on	open‐pollinated	corn‐seed.	Furthermore,	the	critical	responses	
to	Griliches	(1957)	that	appeared	in	Rural	Sociology	from	Babcock	(1960),	and	Havens	and	Rogers	
(1962)	 in	 defending	 the	 research	 tradition	 stemming	 from	 Ryan	 and	 Gross’s	 pioneering	 study	
actually	went	beyond	 it	 and	emphasized	 the	 roles	of	 the	 “congruence”	 and	 “compatibility”	of	 the	
innovation	with	the	pre‐existing	farming	regimen	and	beliefs	about	their	efficacy	of	those	practices.	
These	 underlying	 structures	 were	 held	 to	 be	 the	 real	 determinants	 of	 the	 alacrity	 with	 which	
individuals	embraced.	23	

Griliches’	(1960,	1962)	sequential	rejoinders	to	Babock	and	Havens	and	Rogers,	respectively,	
were	spirited	but	actually	avoided	counter‐attacking;	his	rebuttals	adroitly	sought	to	deflect	points	
they	 offered	 in	 criticism	 of	 his	 emphasis	 on	 profitability	 as	 the	 determinant	 of	 the	 speed	 of	 the	
diffusion	process	in	any	given	farming	locale.		Essentially,	he	pointed	out	that	the	considerations	they	
raised	(which	will	be	examined	more	explicitly	in	section	3)	would	affect	both	the	reality	and	the	
perception	of	the	innovation’s	profitability;	therefore,	to	portray	their	influences	as	distinct	from	that	
of	profitability	was	a	“false	dichotomy”,	and	“another	false	dichotomy.”	On	one	face,	this	could	be	read	
as	 something	 of	 a	 retreat	 from	 the	 blunt	 dismissal	 of	 the	 relevance	 of	 “sociological	 factors”	 in	
Griliches’	1957	text,	while	on	its	other	face,	it	served	to	enlarge	the	tent	of	the	“profitability”	approach	
to	 explaining	 farmers’	 behaviors	 –	 so	 that	 everything	 could	 be	 taken	 in	 beneath	 it,	 and	 no	 real	
concession	need	be	made	to	the	critics.	Both	sides	withdrew,	and,	among	themselves	the	sociologists	
and	the	economists	alike	each	declared	total	victory.	

One	strand	in	the	subsequent	development	of	models	of	innovation	can	be	traced	back	to	the	
lively	controversy	with	rural	sociologists	that	Griliches	had	sparked	by	conceptualizing	the	adoption	
of	 innovations	 as	 a	matter	 of	 rational,	 profit‐seeking	 individual	 behavior,	 rather	 than	 as	 a	 social	
                                                           
22	This	had	been	a	landmark	contribution	to	the	methodology	and	substance	of	interview‐based	research	on	
the	adoption	of	innovations.	Indeed,	the	tradition	among	quantitative	sociologists	springing	from	the	work	of	
Ryan	and	Gross	 (1943)	 continues	 to	 shape	empirical	 studies	 in	 the	 field	of	marketing,	as	well	 as	 academic	
sociological	inquiries	into	the	adoption	of	technological	and	other	innovations	among	rural	communities	in	the	
developing	economies.	There	was	no	reference	to	this	work	in	Griliches’	Econometrica	article,	although	it	 is	
implausible	to	suppose	he	could	have	been	unaware	of	its	existence.		The	following	quotation	from	Ryan	(1948:	
p.273)	was	offered	by	Griliches	(1957,		p.	516	(n.31)	to	support		his	contention	that	the	available	supply	of	the	
hybrid	seed	in	the	1930’s	was	not	a	binding	constraint	during	that	early	stage	of	its	diffusion:	“the	rapidity	of	
adoption	approximated	the	rate	at	which	farmer’s	decided	favorably	upon	the	new	technique.”			

23	See,	for	example,	Babcock	(1962),	Rogers	and	Havens	(1962).	Rogers	and	Shoemaker	(1971)	and	Rogers	and	
Kinkaid	(1981)	have	carried	forward,	and	considerably	elaborated	and	generalized	the	emphasis	that	Ryan	and	
Gross	(1943)	placed	on	the	importance	for	the	dynamics	of	technology	adoption	of	structure	social	interactions	
among	the	potential	adopter	population	that	affected	access	 to	persuasive	 information	about	hybrid	corn’s	
advantages.	
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process.	That	cross‐disciplinary	encounter	in	itself	promoted	the	interests	of	economists	in	extending	
the	application	of	their	familiar	paradigm	of	microeconomic	behavior	into	a	new	area	of	empirical	
and	theoretical	analysis,	thereby	contributing	to	the	emergence	of	“the	“economics	of	technological	
innovation”	as	an	important	emerging	topic	for	the	profession	during	the	latter	1950s	and	the	early	
1960s.24			

	 2.4.2	Reflections	on	the	legacy	

Zvi	Griliches’	1957	article	on	the	adoption	of	hybrid	corn	established	his	position	as	the	path‐
breaking	economist	in	the	area	of	empirical	research	on	the	diffusion	of	innovations	and	the	source	
of	inspiration	for	much	of	the	following	research	on	the	subject.	 	The	literature	eventually	moved	
beyond	his	initial	contribution,	both	in	the	theoretical	analysis	of	technology	adoption	and	kindred	
phenomena,	and	in	the	specifics	econometric	tools	that		have	been	employed,	is	only	to	be	expected.	
In	 the	 history	 of	 science	 certainly	 it	 is	 not	 uncommon	 for	 the	 formative	 legacies	 of	 a	 major	
breakthrough	to	be	rapidly	outgrown	as	others	are	attracted	to	a	newly	opened,	promising	line	of	
inquiry.	But,	in	this	case,	progress	towards	the	integration	of	more	intricate	theoretical	analysis	with	
more	 sophisticated	 empirical	 studies	 has	 turned	 out	 to	 be	 more	 modest	 than	 might	 have	 been	
expected	at	the	outset.		

Griliches	himself	commented	upon	this,	suggesting	that	however	important	the	phenomenon	
of	“diffusion	lags”	might	be	as	a	practical	matter,	it	was	an	awkward	anomaly	for	economic	analysts	
accustomed	to	thinking	rational	agents	and	collectivities	of	agents	that	were	operating	at,	or	in	the	
near	neighborhood	of	equilibrium.	In	an	interview	conducted	by	Krueger	and	Taylor	(2000:	p.181),	
he	went	further	suggested	that	economists’	over‐riding	preoccupation	with	models	of	equilibrium	
had	 contributed	 to	 limiting	 further	 development	 of	 his	 initial	 empirical	 workof	 the	 diffusion	
innovations:		

“We	never	have	had	a	good	theory	of	transitions.	And	the	field,	by	and	large,	moved	
toward	an	 interpretation	where	everything	was	 in	equilibrium,	all	 the	 time.	So	 the	
diffusion	story,	as	such	didn’t	seem	like	the	model	people	wanted	to	develop….[M]ost	
of	 the	 economy	 is	 quite	 far	 away	 from	 the	 boundaries	 of	 the	 current	 state	 of	
knowledge.	Some	of	it	is	because	it	is	equilibrium—it’s	not	profitable	at	he	existing	
cost	structures.	But	some	of	it	is	because	it’s	new	and	it	hasn’t	been	fully	developed	
yet.	It’s	in	the	process	of	being	adopted.”		

                                                           
24	See	for	example,	the	seminal	article	by	Nelson	(1959)	on	the	“appropriability	problem”	in	R&D	investment,	
and	the	wide	range	of	new	research	on	the	rate	and	direction	of	“inventive	activity”	represented	in	the	NBER	
conference	volume	edited	by	Nelson	(1962).	Much	of	the	novel	focus	of	that	NBER	conference	reflected	the	
recent	formation	of	an	informed	and	influential	audience	that	had	formed	among	economists	(outside	the	sub‐
filed	of	agricultural	economics),	and	who	were	especially	appreciative	of	 the	step	represented	by	Griliches’	
(1957,	1958)	publications.		This	audience,	fortuitously	for	the	young	Griliches’	career,	had	been	created	by	the	
major	program	of	research	on	the	economics	of	technological	innovation	conducted	at	RAND	(in	Santa	Monica)	
during	1942‐1962.	This	early	work	in	the	early	1950s	featured	formative	memoranda	on	topics	such	as	the	
information‐theoretic	 formulation	of	 the	economics	of	research,	and	the	 implications	of	empirical	 “learning	
curves”	for	cost‐functions	in	the	airframe	industry	–	drawing	contributions	from		Kenneth	Arrow,	and	Selma	
Schweitzer	Arrow,	Armen	Alchian,	and	many	others	who	went	on	to	have	distinguished	careers	in	other	fields,	
as	did	Richard	Nelson	who	came	to	RAND	later	in	that	decade.	But	for	the	discoveries	of	Hounshell		(2000)	in	
the	RAND	archives,	little	would	be	known	about	this	important	intellectual	episode	–	apart	from	the	personal	
recollections	imparted	by	some	among	the	participants.	
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But	another	explanation	for	this	“disappointment”	would	seem	to	lie	in	a	different	problem,	
about	which	Griliches	was	outspoken	in	other	research	contexts.	It	soon	became	apparent	that	there	
were	 very	 exacting,	 and	 costly	 data	 requirements	 if	 consistent	 econometric	 studies	 were	 to	 be	
pursued	 at	 the	 aggregate	 level	 at	 which	 his	 hybrid	 corn	 research	 had	 been	 pitched,	 and	 at	 the	
microeconomic	level	toward	which	both	theoretical	modelling	and	empirical	research	on	adoption	
behavior	began	to	shift	soon	thereafter.				

Whereas	Griliches	had	been	able	to	construct	diffusion	detailed	region‐specific	time‐series	
from	the	available	voluminous	data	on	total	U.S.	farm	acreages	planted	with	corn,	and	the	acreage	
planted	 with	 hybrid	 corn	 –	 and	 using	 some	 unpublished	 data	 obtained	 from	 	 Department	 of	
Agriculture,	Mansfield	set	out	to	build	a	dataset	trace	the	penetration	of	the	range	of	new	techniques	
through	a	variety	of	trade	publications,	and	private	industry	sources.	Much	of	the	impact	of	Manfield’s	
(1963a,b,	 1966,	 1968b	 )	 later	 publications	 resulted	 from	 the	 sustained	 data	 collection	 effort	 he	
mounted,	 focused	 on	 the	 adoption	 of	 new	 technology	 both	within	 firms	 and	 across	 firms	 in	 the	
manufacturing	 and	 transport	 sectors,	 and	 much	 of	 what	 came	 to	 be	 known	 about	 the	 central	
tendencies	 and	 variations	 in	 the	 patterns	 of	 diffusion	 of	 industrial	 processes	 stemmed	 from	 this	
research	program,	in	which	several	generations	of	Mansfield’s	graduate	students	at	the	University	of	
Pennsylvania	were	enlisted.25		

With	the	exception	of	a	few	outstanding	contributors,	the	economics	profession	responded	
weakly	to	the	“data	constraint”	challenge.	The	result	has	been	that	systematic	econometric	research	
on	diffusion	 continues	 constrained	by	 the	 lack	of	 suitable	micro‐level	 data,	 and	 the	 gap	between	
theoretical	modelling	and	empirical	studies	has	tended	to	widen.26	One	of	the	manifestations	of	this	
gap	has	been	the	profusion	of	models	that	have	multiplied,	unconstrained	by	the	data.	The	other	side	
of	the	“data	constraint”	on	econometric	work	in	the	field	of	diffusion	has	been	comparative	absence	
of	the	imposition	of	“data	discipline”	upon	theoretical	elaborations	of	models	that	are	designed	to	be	
observationally	equivalent	within	the	limited	sphere	of	“stylized	facts”	that	substitute	extensive	and	
varied	datasets	about	actual	diffusion	experience.	The	following	section	is	meant	to	underscore	this	
point	with	concrete	examples.	

	 	2.5	Multiplying	models	of	logistic	diffusion	

Mansfield’s	(1961)	invocation	of	a	random	contact	process	of	contagion	was	only	one	among	
the	multiplicity	 of	 interpretations	 that	might	 equally	 have	 been	 attached	 to	 the	 phenomenon	 of	
logistic	diffusion.	At	the	reduced	form	level	at	which	econometric	work	in	this	area	was	conducted,	
most	of	the	alternative	formulations	were	observationally	equivalent.	In	the	following	paragraphs	I	
demonstrate	this	explicitly	without	attempting	to	be	exhaustive.			

2.5.1:	An	‘evolutionary’	economic	interpretation?	

	Consider,	 for	example,	a	variant	that	has	a	distinctly	evolutionary	flavor;	not	surprisingly,	
perhaps,	as	it	has	its	roots	in	the	mathematics	of	population	genetics.	Lucca	Cavalli‐Sforza	and	Marc	
Feldman	(1981)	provide	a	genetic	model	based	upon	random	population	inter‐mixing,	in	which	the	
proportion	of	the	population	(again,	we	may	label	it	P)	carrying	the	mutant	trait	evolves	according	to	

                                                           
25	 In	 the	 U.K.	 Nabseth	 and	Ray	 (1974),	 and	Davies	 (1979),	 similarly	 contributed	 to	 building	 the	 empirical	
foundations	for	the	study	of	diffusion,	but	this	effort	has	not	continued.				

26	Recent	exceptions		prove	the	rule:	see	Forman,	Goldfarb	and	Greenstein	(2003);	Bresnahan	and	Yin	(2007).	



‐	21	‐	
	

 
 

a	logistic	function	of	time.	They	show	that	the	slope	coefficient	of	the	logistic	(again,	call	it	n)	in	this	
case	is	simply	n	=ln(km	/ko	),	where	the	ratio	km	/ko	measures	the	Darwinian	fitness	of	the	mutant	
gene	relative	to	the	old	gene.	Translating	this	into	more	familiar	terms,	we	could	say	that	the	slope	
coefficient	 is	 a	 log‐transform	 of	 the	 ‘fitness’	 measure	 of	 the	 innovation’s	 advantage	 vis‐à‐vis	 the	
established	(cultural)	trait.	

	To	go	from	this	metaphor	to	a	formal	“evolutionary	economics”‐style	model	of	diffusion	some	
further	bits	must	to	added,	making	the	replicator	dynamics	explicit.	This	is	not	so	hard:	suppose	that	
the	innovation	(mutant	cultural	trait)	is	a	production	method	that	reduces	unit	production	costs	for	
the	adopting	firms,	and	that	the	latter	are	operating	in	a	competitive	market.	Next,	suppose	the	rate	
of	capacity	growth	via	investment	in	the	facilities	required	by	the	innovation	is	equal	to	the	profit	
rate.27	Since	the	firms	enjoying	the	lower	unit	costs	will	get	more	profit	per	unit	of	capacity	profits,	
the	capacity	of	 the	 firms	adopting	 the	 innovation	will	grow	relative	 to	 that	of	 the	non‐innovating	
remnant	by	km	/ko.		The	result	will	be	a	logistic	path	for	the	proportion	of	(full	capacity	utilization)	
output	that	is	produced	with	the	new	technique.	Viewed	from	this	unaccustomed	angle,	Zvi	Griliches’	
intuitive	 identification	 of	 the	 slope	 parameter	 of	 the	 logistic	 with	 some	measure	 of	 the	 relative	
profitability	of	the	innovation	in	question	might	entitle	him	to	further	esteem	–	surprisingly	in	this	
case,	as	a	pioneering	evolutionary	economist	in	spite	of	himself!28	

The	‘evolutionary	economics’	overtones	of	the	foregoing	sketch‐	model	notwithstanding,	it	
follows	the	work	of	Griliches	and	Mansfield	faithfully	in	its	assumption	that	the	coefficient	of	relative	
fitness	for	the	innovation	(i.e.,	the	new	‘cultural	trait’	in	question)	is	inherent	in	the	innovation	itself.	
An	obvious	justification	for	this	supposition	is	to	dismiss	as	inconsequential	the	possible	variations	
of	the	environments	encountered	by	those	who	acquire	the	trait.	More	complex	models	of	population	
genetics	 subsequently	 have	 abandoned	 that	 simplification,	 allowing	 both	 heterogeneity	 of	
environments	 and	 their	 dynamic	 transformation	 as	 a	 consequence	 of	 the	 diffusion	 of	 the	 new	
(behavioral)	trait	within	the	population.		

In	 a	 sense,	 the	 literature	 on	 the	microeconomics	 of	 diffusion	 began	 to	move	 in	 the	 same	
direction	(although	not	consciously	regarding	the	evolutionary	parallels).	This	development	turned	
upon	 a	 more	 formalized	 acknowledgment	 of	 the	 implications	 of	 heterogeneities	 in	 the	 adopter	
population,	and	biases	in	the	properties	of	innovations.	Together,	these	empirical	realities	posed	a	
challenge	to	the	casual	assumption	that	innovations	were	universally	dominant	vis‐à‐vis	pre‐existing	
technologies.	 They	 therefore	 pointed	 to	 the	 possibility	 that	 diffusion	 lags	 were	 not	 necessarily	
explained	by	 incomplete	 information.	This,	 in	 turn,	 raised	questions	about	 the	rationale	of	policy	
programs	 designed	 to	 promote	 technology	 adoption	 by	 providing	 demonstration	 programs	 and	
identifying	efficient	channels	for	the	propagation	of	information	about	the	innovation	in	question.29		

                                                           
27	If	we	are	entertaining	evolution,	why	not	also	have	a	Cambridge‐Pasinetti	style	theory	of	savings,	in	which	
the	capitalists	save	everything	and	the	workers	nothing?		

28	This	Molière‐like	denouement	should	not	obscure	the	credit	for	the	replicator	dynamic	in	this	formulation,	
which	was	introduced	much	later	by	Nelson	and	Winter	(1982),	who	created	a	stochastic	version	of	a	system	
with	 this	 structure	 and	 examined	 its	 path	 of	 adjustment	 (through	 selection)	 in	 response	 to	 the	 recurrent	
emergence	of	mutations	characterized	by	varying	degrees	of	“relative	fitness.”	

29	 See	 e.g.,	 Rogers	 and	Shoemaker	 (1971);	Rogers	 and	Kincaid	 (1981)	 for	programs	of	 that	 genre,	 and	 the	
implicit	critique	by	Stoneman	and	David	(1986).		
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The	 approach	 finding	 its	way	 into	 corners	 of	 the	 economics	 literature	 focused	 less	 upon	
information	contagions,	and	more	upon	 the	 implications	of	population	heterogeneities,	 combined	
with	fixed	costs	of	adoption	and	variable	input‐saving	biases	in	process	innovations.	It	allowed	for	
the	 possibility	 that	 expected	 scale	 of	 operations	might	 enter	 into	 investment	 decisions	 involving	
choices	between	new	and	old	techniques,	such,	that	given	the	relative	prices	of	the	fixed	and	variable	
inputs,	there	would	be	a	“threshold”	output	scale	below	which	adoption	would	not	occur,	so	long	as	
the	decision	agents	were	myopic	cost‐minimizers.	

2.5.2	Moving	equilibrium:	threshold	models	and	logistic	diffusion	

	My	initial	and	subsequent	contribution	to	the	modelling	of	diffusion	innovations	introduced	
and	generalized	that	approach	for	the	case	of	process	innovations.		But,	this	hardly	is	the	occasion	on	
which	to	review	the	details	of	all	those	papers.30	Rather,	the	point	in	bringing	up	the	matter	here	is	
simply	to	underscore	the	previous	assertion	that	there	are	many	different	models	that	will	account	
for	the	phenomenon	characterized	of	logistic	and	logistic‐like	diffusion	at	the	macro‐level.	The	class	
of	so‐called	‘threshold	models’	–	in	which	a	variety	of	formulations	is	subsumed	–	can	perform	that	
trick	 without	 having	 any	 recourse	 to	 imperfections	 in	 the	 information	 states	 of	 the	 agents.		
Furthermore,	 their	 simpler	 formulations	 suppose	 that	 adopters	 and	 non‐adopters	 alike	 at	 each	
moment	 are	 in	 profit‐maximizing	 (or,	 at	 least,	 cost‐minimizing)	 equilibrium.	 	 The	 essence	 of	 the	
approach	is	to	view	the	diffusion	path	itself	as	a	moving	equilibrium,	the	dynamics	of	which	can	have	
exogenous	or	endogenous	drivers,	or	both.		

In	 this	 light,	 one	might	 re‐phrase	Griliches’	 comment	 (quoted	above)	 about	 the	 economic	
profession’s	penchant	for	thinking	about	equilibrium	rather	than	about	transitions:	the	profession’s	
predilection	 for	 modelling	 the	 behavior	 of	 agents	 in	 equilibrium	 terms	 posed	 an	 obstacle	 to	
explaining	 macro‐transitions	 simply	 in	 terms	 micro‐level	 disequilibrium.	 Models	 of	 temporally	
extended	diffusion	processes	that	allow	feedback	from	the	process	itself	to	provide	dynamic	drivers	
for	a	moving	equilibrium	therefore	could	restore	the	conceptualization	of	the	macro‐phenomenon	as	
a	transition.		But	the	cost	to	the	neoclassical	world	view	of	pursuing	the	latter	interpretation	was	the	
acceptance	of	 externalities	 (such	as	 various	 forms	of	 “learning”)	 as	 a	 vital	 source	of	 the	 system’s	
dynamics.		

In	order	to	fix	ideas	here	we	may	start	with	the	basic	formalization	of	the	“threshold”	model	
of	technology	selection,	and	develop	a	simple	specification	that	allows	this	model	to	mimic	the	time	
series	implications	of	the	basic	contagion	model	—	by	generating	a	logistic	diffusion	path.	It	is	best	
at	this	stage	not	to	burden	the	exposition	with	mathematical	formalism,	so	the	notation	here	is	kept	
to	a	minimum	—	even	at	the	cost	of	leaving	some	loose	ends	that	can	be	tidied	up	afterward.		

The	basic	notion	of	an	adoption	“threshold”	is	that	there	is	a	variate	z	that	enters	the	discrete	
choice	problem	of	 individual	agent	 i	who	is	characterized	by	the	value	zi,	such	that	the	agent	will	
select	the	novel	option	—	the	innovation	—over	others	when	(zi	)	<	z*.		Thus,	z*	is	implicitly	defined	
as	the	“threshold	adoption	level”	of	the	key	variate.	Let	us	assume	that	the	technology	choice	is	for	

                                                           
30	See	David	(1969,	1986,	1991,	1997);	David	and	Olsen	(1984,	1986,	1992).	I	do	not	review	here	to	a	separate	
line	of	my	publications	that	are	concerned	with	models	of	inter‐innovation	rivalry,	particularly	those	driven	by	
network	externalities.		
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all	intents	and	purposes	irreversible,	perhaps	because	the	decision	to	adopt	the	innovation	entails	
acquisition	of	a	highly	durable	and	indivisible	physical	asset.31		

If	we	then	suppose	that	the	critical	variate	z	has	a	continuous	frequency	density	function	in	
the	 population	 of	 potential	 adopters,	 f(z)	 ,	 the	 proportion	 of	 the	 population	 among	 which	 the	
condition	 for	 adopting	 the	 innovation	 is	 not	 fulfilled	will	 be	 just	 the	 value	 of	 the	 corresponding	
(stationary)	 cumulative	density	 function,	F(z*).	 Therefore,	we	have	 as	 a	measure	of	 the	extent	of	
diffusion	the	proportion	of	the	population	that	should	adopt:	

D(z*)	=	1	‐	F(z*)	.	

Under	the	assumption	that	F(z)	 is	stationary,	D	(z*)	can	increase	if	and	only	if	z*	becomes	
smaller.	In	other	words,	the	threshold	point	has	to	pass	downwards	through	the	z‐distribution.		

If	 we	 know	 the	 shape	 of	 F(z),	 and	 can	 characterize	 the	 dynamics	 of	 z*(t)	 =	 g(t),	 it	 is	
straightforward	to	deduce	how	the	latter’s	motion	must	re‐map	F(z*)	Y	F(t),	thereby	generating	a	
’moving	 equilibrium’	 path	 for	 the	 diffusion	 index	 in	 the	 time	 domain,	 D(t).	 It’s	 really	 no	 more	
complicated	than	that!		

All	 sorts	of	 diffusion	paths,	 and	all	manner	of	micro‐level	 processes	generating	 aggregate	
level	time‐series	measures	of	diffusion	can	be	rationalized	in	terms	of	this	basic	framework.	Putting	
it	the	other	way	‘round,	by	specifying	f(z)	and	g(t)	one	may	derive	the	shape	of	the	diffusion	path.	
Thus,	let	us	posit	that	the	z‐distribution	is	the	log‐logistic,	and	that	g(t)	declines	exponentially	with	
time	at	the	instantaneous	rate	8,	and	see	what	happens.	We	now	may	write	

	 D(z)	=	1	‐	F(z*)	=	exp{	‐((ln	z)}	[1‐	D(z)]	=	(z)	‐([1‐	D(z)],		

and		

	 z*(t)	=	g(t)	=	z*(0)	[	exp{	‐8t}]	.		

Upon	 finding	 ln(z*(t))	and	substituting	 this	 in	 the	expression	 for	D(z=z*),	we	 immediately	
obtain	a	logistic	function	in	t	 ,	the	slope	parameter	of	which	now	is	revealed	to	be	n	=	(8	 .	This	is	
readily	confirmed	by	forming	the	resulting	expression	for	the	familiar	log‐odds	ratio:	

( )
) { *( )}

[1 ( )]
{ D t

t ln z o
D t

ln     


 .		

This	model	of	logistic	diffusion	affords	an	interesting	interpretation	of	the	coefficient	of	t	that	
may	be	estimated	by	linear	regression	methods;	it	reflects	both	the	rate	at	which	the	threshold	point	
is	falling,	and	the	shape	of	the	underlying	z‐distribution.	Given	an	extraneous	estimate	for	z*(0)	–	the	
value	observed	for	the	initial	adopters	–	both	of	the	model’s	structural	parameters	can	be	recovered	
from	the	intercept	and	slope	coefficients	of	this	linear	expression.		Formulated	as	a	regression	model	
by	 the	 addition	 of	 a	 disturbance	 term,	 the	 parameters	 of	 interest	 may	 be	 estimated	 by	 linear	

                                                           
31	 See	 Sect.	 3,	 for	 discussion	 of	 the	 specific	 contexts	 in	 which	 this	 formalization	 first	 developed,	 and	
subsequently	was	elaborated.		
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regression	methods.32	Obviously,	different	specifications	of	the	underlying	heterogeneity,	i.e.	of	the	
distribution	 function	 for	 z*,	 would	 generate	 different	 regression	 models,	 and	 correspondingly	
different	 interpretations	 of	 their	 coefficients.33	 	 It	 may	 be	 noticed	 that	 although	 profitability	
considerations	 obviously	 can	 enter	 into	 the	 marginal	 agent’s	 micro‐level	 decision	 functions,	 the	
estimated	parameter	n	says	nothing	at	all	about	the	relative	profitability	of	the	innovation.		

	

2.6	A	multiplicity	of	models	and	their	implications	for	empirical	research	

The	 specifics	 of	 the	 underlying	 adoption	 process	 for	 the	 innovation	 cannot	 be	 uniquely	
identified	simply	from	the	shape	of	the	diffusion	path	that	emerges	at	the	aggregate	level.	The	three	
simple	models	 just	 reviewed	 are	 observationally	 equivalent	 if	 one	 is	 restricted	 to	 looking	 at	 the	
times‐series	of	 the	changing	proportion	of	 adopters	 in	 the	population,	or,	as	Griliches	pioneering	
study	 of	 hybrid	 corn	 has	 done,	 at	 the	 proportion	 of	 aggregate	 output	 produced	 with	 the	 novel	
technology	 in	 a	 given	 region.	 This	 spotlights	 the	 the	 formidable	 challenges	 that	 are	 posed	 for	
empirical	researchers	who	seek	to	identify	the	specific	mechanism,	or	groups	of	mechanisms	that	are	
responsible	 for	 the	 temporally	 distributed	 uptake	 of	 particular	 innovations	 in	 one	 or	 another	
historical	 time	 and	 place.	 The	 requirement	 to	 collect	 consistent	 micro‐level	 cross‐section	 and	
aggregated	time‐series	observations	not	only	on	adoption,	but	on	the	variables	hypothesized	to	be	
critical	determinants	of	individuals’	decisions	regarding	their	choices	among	available	techniques,	
certainly	imposes	a	heavy	burden	on	the	individual	researcher	who	would	undertake	an	econometric	
investigation	of	this	kind.		In	this	light	we	may	recall	Zvi	Griliches’	(1994)	expression	of	concern	that	
the	economics	profession’s	 internal	 reward	structures	continue	to	 inhibit	our	collective	ability	 to	
ease	the	“data	constraint”	on	empirical	research	into	important	questions	affecting	economic	growth:	
34	

	“We	ourselves	do	not	put	enough	emphasis	on	the	value	of	data	and	data	collection	in	
our	training	of	graduate	students	and	in	the	reward	structure	of	our	profession.	It	is	
the	preparation	skill	of	the	econometric	chef	that	catches	the	professional	eye,	not	the	
quality	of	the	raw	materials	in	the	meal,	or	the	effort	that	went	into	procuring	them.”		

	 But	the	“observational	equivalence”	of	alternative	mechanisms	generating	diffusion	paths	at	
the	 aggregate	 level	 is	 not	 the	 whole	 of	 the	 identification	 challenge.	 Consider	 one	 class	 of	 these	
mechanisms,	the	“threshold	model”,	and	assume	that	a	dynamic	driver	sets	a	specific	time‐path	for	
the	fall	in	the	“break‐even”	variate	z*(t).	It	will	then	be	seen	that	different	distributions	of	z	‐‐	the	
critical	heterogeneity	in	the	population	of	potential	adopters	–	may	generate	distinctive	mappings	of	
diffusion	in	the	time‐domain.	When	the	threshold	variate	is	falling	exponentially,	it	has	been	seen	

                                                           
32	A	word	of	caution	is	in	order	for	those	who	would	follow	common	econometric	practice	and	estimate	the	log‐
odds	equation	by	OLS.	methods.	In	this	time‐series	relationship	the	problem	of	auto	correlated	disturbances	
suggests	relying	instead	on	minimum	Chi‐square	estimators	for	the	slope	coefficient.	

33	The	 threshold	model	developed	 in	David	 (1969)	 featured	expected	output	 as	 the	key	variable	 (z)	 in	 the	
adoption	 of	 a	 fixed	 input‐using	 technology,	 and	 specified	 this	 to	 be	 distributed	 lognormally	 within	 the	
population	of	potential	adopters.	With	the	threshold	falling	at	a	constant	exponential	rate,	8,	a	one	obtains	a	
probit	regression	model.	The	slope	coefficient	of	that	linear	relationship	in	t	is	simply	8/F	 ,	 	where	F	 	 is	the	
standard	error	of	N(0,	F	),	the	standard	normal	distribution	of	ln(z).			
34	Reprinted	from	the	1994	American	Economic	Review	article	in	Griliches,	(1998):p.	364.		
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that	a	log‐logisitc	distribution	of	z	in	the	population	of	potential	adopters	generates	a	diffusion	time‐
series	 that	 is	 logistic	 and	 symmetrical.	 Yet,	 were	 z	 to	 be	 distributed	 log‐normally	 the	 same	
exponentially	decreasing	threshold	z(t)*	gives	rise	to	a	transformed	cumulative	normal	(TCN)	time‐
path	for	the	proportion	of	adopters	in	the	population.35	 	Alternatively,	one	might	posit	that	the	z‐
distribution	was	log‐Gompertz,	so	that	the	time‐series	observations	on	proportion	of	adopters	in	the	
population	would	turn	out	to	be	the	cumulative	Gompertz	distribution,	and	the	time	profile	of	the	
incremental	increases	in	the	extent	of	diffusion	(	)D(t))	follow	the	innovation’s	introduction	would	
resemble	distributed	lags	of	the	Koyck	form.	Without	being	able	to	directly	examine	the	hypothesized	
z‐variate’s	 distribution,	 it	 would	 not	 be	 possible	 to	 attribute	 the	 variant	 diffusion	 paths	 to	 the	
differing	specifications	of	the	same	structure,	rather	than	to	possibly	fundamental	differences	in	the	
underlying	adoption	mechanism.36			

	 To	establish	the	connection	between	technology	diffusion	seen	as	a	continuous	time‐series	
process	at	the	aggregate	level,	and	as	a	quantal	response	at	the	level	of	the	individual	adopting	agents,	
one	must	an	appropriate	characterization	of	the	production	technologies	and	both	kinds	of	data.37	To	

                                                           
35	The	TNC	diffusion	curve	does	not	have	a	 traceable	closed‐form	expression,	as	 it	 involves	evaluation	of	a	
definite	integral,	but,	on	the	other	hand,	the	proportion	of	adopters	in	the	population	at	successive	points	in	
time	 lies	 along	 a	 straight	 line	 when	 plotted	 on	 normal	 probability	 scales,	 and	 the	 underlying	 parameters	
describing	the	log‐normal	distribution	and	the	rate	at	which	the	threshold	is	falling	can	be	estimated	by	probit	
regression	 analysis.	 These	 implications	 are	 derived	 in	 David	 (1969:	 section	 III.3),	 and	 Davies	 (1979)	
subsequently	–	but	apparently	quite	independently	‐‐	made	extensive	use	of	probit	regressions	his	empirical	
studies	of	diffusion.						David	(1969)	shows	that	if	the	critical	variate	z	is	output	scale,	the	measure	of	the	extent	
of	diffusion	Dv(t)		‐‐	denoting	the	share	of	total	industry	output	that	is	produced	using	the	innovation	–	need	not	
take	the	familiar	ogive	form	of	the	cumulative	normal.	When	the	diffusion	process	commences	with	adoption	
by	production	units	whose	output	scales	are	much	above	the	mean	of	the	output	scale	 in	the	 industry,	 it	 is	
possible	that	Dv(t)			1	without	exhibiting	an	inflexion.		

36	Unlike	the	logistic,	 the	Gompertz	distribution	does	not	generate	symmetric	S‐shaped	diffusion	paths,	and		
Dixon	(1980),	 following	the	empirical	strategy	devised	by	Griliches	(1957),	pointed	to	the	observed	 lack	of	
symmetry	in	the	updated	regional	time	series	of	the	extent	of	corn	acreage	under	hybrid	corn	as	his	grounds	
for	 estimating	 the	parameters	 of	 the	Gompertz	 function	 rather	 than	 the	 logistic.	 Griliches	 (1980:	 p.	 1463),	
however,		questioned	this	on	the	grounds	that	it	was	merely	curve‐fitting	to	accommodate	the	observed	“slow	
upper	tail”,	which,	he	suspected,	was	due	to	delayed	supply‐adaptations	in	hybrid	seeds	‐‐required	for	them	to	
be	profitably	use	in	the	certain	areas	that	were	ill‐used	to	the	initially	available	varieties.		

37	 Tempting	 as	 it	 may	 be	 to	 adopt	 a	 “representative	 agent”	 framework	 and	 introduce	 mathematically	
convenient	aggregative	production	relationships	to	finesse	the	need	to	understand	aggregate	level	phenomena	
at	 the	 underlying	microeconomic	 level,	 using	 appropriate	micro‐level	 data,	 succumbing	 to	 that	 temptation	
yields	at	best	 a	 “simulated	understanding”	of	 the	economic	 realities.	An	example	of	what	 from	the	present	
perspective	must	be	seen	as	an	error	of	aggregation	in	representing	the	economics	of	the	transition	to	a	major	
technological	 innovation	 is	provided	by	a	recent	attempt	to	apply	a	“representative	agent”	model	of	capital	
accumulation	 in	 characterizing	 the	 diffusion	 of	 mechanized	 production	 as	 a	 moving	 equilibrium	 process.	
Manuelli	 and	Seshadri	 (2003)	 construct	 a	 simulation	model	based	on	a	one‐sector	neoclassical	 production	
function	which	they	use	to	to	portray	the	growth	of	the	stock	of	farm	tractors	(and	the	decline	of	that	of	horses	
and	 mules)	 in	 U.S.	 agriculture	 during	 1880‐1930	 as	 “friction‐less	 technology	 adoption”	 –	 i.e.,	 pure	 factor	
substitution	‐‐	in	response	to	the	effect	of	rising	real	wages.	There	can	be	no	objection	here	to	the	choice‐of‐
technique	 framework,	 or	 the	 abstraction	 from	 short‐term	 lags	 due	 to	 “frictions”	 in	 the	 transmission	 of	
information	about	the	advantages	of	tractors.	But	Manuelli	and	Sashadri’s	analysis,	unfortunately,	remains		un‐
informed	by	any	of	the	recent	research	on	the	subject	of	“tractorization”	in	the	U.S.	‐‐	e.g.,	Sargen	(1979),	Ankli	
(1980),	 Fite	 (1980),	 Whatley	 (1985,	 1987).	 Consequently,	 it	 takes	 no	 notice	 of	 the	 wealth	 of	 micro‐level	
information	about	technical	changes	in	input	usage	and	input	prices	(especially	relative	prices	of	horse	fodder	
and	tractor	fuel),	as	well	as	such	critical	matters	as	the	constraints	that	climate	imposed	on	the	duration	of	
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be	consistent,	moreover,	the	time	series	should	be	aggregated	from	a	succession	of	cross‐sections	of	
the	population.	But,	if	what	is	wanted	is	a	time‐series	measure	of	diffusion	expressing	the	proportion	
of	aggregate	output	produced	with	the	novel	techniques,	or	with	each	of	the	relevant	new	and	old	
techniques	 to	which	 the	agents	had	access,	 then	 there	 is	a	 further	 requirement:	one	must	have	a	
measure	of	the	outputs	of	the	production	facilities	for	which	choices	among	the	available	techniques	
are	 being	made.	 Griliches	 (1957)	was	working	with	 a	measure	 defined	 in	 reference	 to	 the	 corn	
acreage	planted	in	each	region,	but,	from	that	alone	it	would	not	be	possible	identify	an	economic	
diffusion	mechanism	that	involved	the	propagation	of	information,	or	other	influences	transmitted	
in	the	interactions	among	the	farmers.	The	plots	of	arable	land	do	not	switch	from	being	under	open‐
pollinated	corn	to	being	planted	with	hybrid	seed	because	they	see	what’s	going	on	in	the	adjoining	
acreages,	 or	 pass	 messages	 to	 one	 another.	 	 	 Perhaps	 that	 “data	 constraint”	 served	 to	 restrain	
Griliches	 from	 explicitly	 discussing	 the	 views	 that	 had	 emerged	 from	 the	 local	 studies	 of	 rural	
sociologists,	concerning	the	importance	of	social	communications	among	the	sources	of	information	
influencing	farmers’	acceptance	of	new	production	methods.						

	
	 Consequently,	it	is	important	to	stress	that	at	the	start	of	his	econometric	research	career,	in	

his	 study	 of	 the	 diffusion	 of	 hybrid	 corn,	 Griliches	was	 (characteristically)	 careful	 in	 observing	 a	
distinction	between	two	kinds	of	empirical	research	strategies.	One	is	to	establish	the	nature	of	the	
regularities	that	are	present	in	the	aggregate	level	outcomes	of	economic	agents’	behaviors,	and	offer	
one	 or	 more	 hypotheses	 that	 are	 in	 effect	 “conjectured	 interpretations”	 of	 the	 sources	 and	
significance	 of	 those	 established	 statistical	 regularities.	 A	 quite	 different	 research	 strategy	
undertakes	 to	 specify	 alternative	 hypothesized	 mechanisms	 governing	 the	 behaviors	 of	 the	
individual	actors,	and,	where	appropriate	the	temporal	propagation	of	influences	among	them	that	
connect	the	sequence	of	those	actions.	The	goal	of	the	latter,	structural	approach	is	to	make	it	possible	
to	 uniquely	 identify	 which	 among	 the	 alternative	 mechanisms	 had	 generated	 the	 observed	
phenomenon	 –	 in	 principle,	 at	 least,	 given	 the	 requisite	 data	whose	 relevance	 is	 implied	 by	 the	
model(s).	 Clearly,	 Griliches’(1957)	 path‐breaking	 contribution	 opened	 up	 a	 path	 that	would	 lead	
others	to	follow	his	work	and	that	of	Mansfield	in	taking	the	second,	structural	modelling	approach	
in	 econometric	 studies	 of	 the	 diffusion	 of	 process	 technologies.38	 But	 he	 did	 not	 embark	 upon	 it	
himself.				
	

3.	Heterogeneous	and	the	Microeconomic	Equilibrium	Approach	to	Diffusion:		 Theoretical	
and	Empirical	Implications		

An	 inclusively	 broad	 and	 diverse	 class	 of	 diffusion	 models	 that	 possess	 a	 common	
fundamental	 structure	 is	 opened	 up	 by	 abandoning	 the	 representative	 agent	 approach	 and	
characterizing	the	population	of	potential	adopters	as	heterogeneous	in	one	or	more	respects	that	
impinge	upon	the	outcome	of	a	rational	micro‐level	assessment	of	the	economic	benefits	and	costs	of	
selecting	 among	 available	 production	 techniques.	 Analysis	 of	 those	 decision	 as	 irreversible	
investments	in	the	durable	facilities	required	to	install	a	novel	process	of	production	–	whether	in	a	
                                                           
available	time	intervals	for	post‐harvest	ploughing	and	the	comparative	speeds	of	tractors	vs.	horse‐teams	(on	
the	northern	plains);	or	about	the	impediments	to	mechanization	posed	by	labor	market	institutions	(in	the	
pre‐WWII	cotton	South).	The	result	 is	a	“explanation”	that	“simulates”	the	growth	of	 the	aggregate	stock	of	
tractors	without	being	in	anyway	enlightening	about	the	processes	that	underlay	that	development	in	different	
regions	of	the	country	during	different	periods	of	the	half‐century	under	examination.								

38	See	e.g.,	Trajtenberg	(1990),	Karshenas	and	Stoneman	(1992),	Stoneman	(2002),	Bresnahan	and	Yin	(2007),	
to	name	only	a	few	leading	exemplars.		
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business	firm,	or	a	household	–	calls	for	explicitly	dynamic	specification	of	the	potential	adopter’s	
opportunity	set,	and	the	way	in	which	the	latter	may	be	changed	as	a	consequence	of	feedbacks	and	
interactions	 with	 suppliers	 of	 the	 innovation‐embodying	 goods,	 and	 interactions	 with	 other	
adopters.	

3.1	Generalizing	and	Elaborating	the	Threshold	Model	

	Such	considerations,	already	touched	upon	in	the	exposition	of	the	basic	“threshold	model”	
of	diffusion	(in	section	2.5.2),	have	carried	the	theoretical	literature	well	beyond	the	framework	of	
the	pioneering	contributions	to	the	economics	of	technology	diffusion	represented	by	the	work	of	
Griliches	and	Mansfield.		The	new	conceptual	and	analytical	departure	of	this	approach	consists	in	
explicitly	assuming	that	the	population	of	potential	adopters	is	heterogeneous	in	some	respect	that	is	
relevant	to	the	individual	agents’	rational	and	informed	choice‐of‐technique	decision	regarding	the	
adoption	of	a	novel	production	technology,	and	seeking	to	characterize	the	dynamic	conditions	under	
which	there	will	be	an	equilibrium	path	for	that	innovation’s	diffusion.		.	

	The	existence	of	differences	among	potential	adopters	in	a	variable	(denoted	by	z	in	section	
2.5b)	affecting	decisions	as	to	whether	or	not	to	adopt	the	novel	automation	equipment,	and	will	has	
the	effect	of	partitioning	the	population	at	each	moment	in	time	between	those	for	whom	accepting	
the	innovation	is	optimal,	and	those	for	whom	it	is	not.	If	the	critical	value	z*	at	that	moment	‐‐	the	
so‐called	adoption	“threshold”	–	remains	unchanged,	the	process	of	diffusion	would	halt.	But,	with	a	
secularly	falling	threshold,	the	effect	of	the	heterogeneity	of	the	population	(with	regard	to	z)	is	to	
spread	 out	 the	 dates	 on	 which	 different	 members	 of	 the	 population	 choose	 to	 install	 the	 new	
production	 facilities.	 In	 the	 hypothesized	 circumstances,	 therefore,	 following	 the	 “shock”	 of	 the	
innovation’s	 introduction	 the	dynamics	of	 diffusion	will	 have	 the	 appearance	 of	a	distributed	 lag	
process	 of	 investment	 in	 automation	 equipment	 by	 the	 ensemble	 of	 “progressive”	 (innovation	
accepting)	firms	in	the	consumer‐goods	sector.	

	In	 the	simplest	 formulation	of	 this	model	 the	 innovation‐embodying	capital	equipment	 is	
assumed	 to	be	 an	 infinitely	durable	 “machine”	 that	 is	 indivisible	 and	 sufficiently	 “lumpy”,	having	
sufficiently	 large	 capacity	 to	 obviate	 the	 need	 for	 any	 of	 the	 adopting	 firms	 to	make	 subsequent	
further	investments	in	equipment	of	the	same	type.		Consequently,	the	lags	observed	in	real	gross	
investment	at	the	industry	level	would	reflect	the	time	distribution	of	the	advancing	extensive	margin	
of	the	innovation’s	acceptance	in	the	industry.	The	shape	of	that	distribution,	like	the	shape	of	the	
diffusion	path,	would	reflect	the	the	underlying	frequency	distribution	of	z	in	the	population,	and	the	
dynamics	of	the	threshold	value,	z*(t).	As	has	been	previously	noted,	with	z*(t)	falling	at	a	constant	
(exponential)	rate	and	z	being	distributed	in	the	population	as	log‐Gompertz,	gross	investment	in	the	
industry	 would	 exhibit	 a	 Koyck	 lag	 distribution	 following	 the	 innovation’s	 initial	 commercial	
introduction.39			

                                                           
39		A	further	point	may	be	noted	in	this	connection.	If	one	supposed	that	z(i)		represented	the	i‐th	firm’s	unit	
transport	cost		to	ship	the	adopting	firms’	respective	outputs	to	the	nearest	market,	then,	as	will	be	seen	from	
section	 3.2	 (below),	 the	 distribution	 of	 the	 expected	 (and	 realized)	 volume	 of	 sales	would	 be	 determined	
endogenously	by	the	profit	maximizing	adopters’	choices	of	production	methods.		Output	would	shift	upwards	
as	a	result	of	the	reduced	unit	cost	of	production	for	infra‐marginal	adopters,	and	(ceteris	paribus)	would	also	
follow	the	underlying	z	distribution.	Because	the	effect	of	the	innovation	would	be	seen	in	a	rise	in	the	level	of	
total	industry	output	(as	well	as	average	firm	output),	and	if	average	transport	costs	were	falling	secularly,	the	
time‐series	of	the	level	of	output	in	the	industry	and	the	gross	flow	of	capital	formation	(need	to	implement	the	
innovation)	would	be	positively	correlated.	Since,	if	z	were	distributed	as	log‐Gompetz,	gross	investment	would		
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To	 fix	 ideas	 here	 it	 is	 convenient	 to	 give	 a	 brief	 exposition	 of	 the	 generalized	 “threshold	
approach”	 to	 modelling	 technology	 diffusion	 by	 following	 David	 and	 Olsen’s	 (1984,	 1986)	
presentation,	in	which	the	dynamics	of	transition	to	a	new	technology	is	envisaged	as	a	process	of	
capital‐using	“automation”	of	production	methods	in	a	consumer‐goods	industry.	This	model,	 like	
that	 developed	 contemporaneously	 by	 Ireland	 and	 Stoneman	 (1986),	 introduces	 an	 endogenous	
source	of	dynamics	by	allowing	for	incremental	supply‐side	modifications	that	lower	the	costs	of	the	
required	innovation‐embodying	capital	assets	(or,	equivalently,	increase	the	savings	in	unit	variable	
costs	of	production	with	equipment	of	constant	price).	Recognition	of	the	supply‐side	of	diffusion	
phenomena	is	very	much	in	the	spirit	of	Griliches’	(1957)	examination	of	the	role	of	the	hybrid	corn	
seed	companies,	which	sought	to	expand	their	market	by	successively	re‐adapting	their	product	to	
suit	the	conditions	(of	soil,	climate	and	insect	populations)	in	different	corn‐growing	regions.40	These	
incremental	 innovations	 are	 assumed	 to	 be	 embodied	 in	 successive	 vintages	 of	 a	 new	 class	 of	
indivisible	 capital	 equipment	 (“machines”),	 the	 first	 vintage	 of	 which	 is	 treated	 as	 having	 been	
introduced	by	an	exogenous	discrete	innovation.	The	“moving	equilibrium”	model	of	adoption	of	the	
novel	method	of	production	particularizes	the	general	observation	that	innovations	seldom	remain	
in	their	original	form,	and	that	improvements	by	the	suppliers	play	an	important	part	in	widening	
the	field	of	their	application	and	eventual	adoption	(see,	e.g.,	Rosenberg,	1972).41		

                                                           
follow	a	Koyck	lag‐distribution,	casual	econometric	analysis	might	well	yield	the	appearance	of	support	for	a	
“representative	agent”	 formulation	of	the	 familiar	capital	stock	adjustment	model.	But	appearances	may	be	
misleading,	and	in	the	case	envisaged,	the	underlying	microeconomic	reality	is	that	the	sequential	decision	to	
adopt	the	innovation	and	undertake	the	required	investment	was	causing	the	investment.			

40		In	the	case	of	hybrid	corn,	the	prices	of	sees	were	much	the	same	for	all	regions,	although	the	performance	
characteristics	of	the	newer	seed	were	improved	vis‐à‐vis	those	that	had	been	introduced	earlier	(see	Griliches	
(1957,	p.	507,	n.	19).	But	 the	resemblance	 to	 the	situation	envisaged	 in	David	and	Olsen	(1984,	1986)	and	
Stoneman‐Ireland	(1983)	models	is	not	complete	in	two	respects.	.	Firstly,	each	modification	of	hybrid	corn‐
seed	was	intended	to	suit	the	needs	of	farmers	in	a	specific	geographical	environment	other	than	those	where	
it	had	previously	found	acceptance,	and	secondly,	Griliches’	(1957:	esp.	pp.507‐509)	depicts	these	changes	as	
the	result	of	distinct	“introduction”	decisions	by	commercial	seed	producers	as	to	the	most	profitable	order	in	
which	to	enter	the	different	geographical	markets.	Therefore,	each	of	these	successive	“innovations”	–	based	
on	publicly	funded	experiment	stations’	research	and	private	R&D	by	the	seed	companies	–	would	have	had	
little	if	any	“spillover”	consequences	for	corn‐growing	in	other	regions	(except,	perhaps,	through	the	effects	on	
the	 eventual	 market	 price	 of	 corn	 itself).	 Both	 the	 David‐Olsen	 and	 the	 Stoneman‐Ireland	 models	 specify	
learning	effects	in	supply	following	the	commercial	introduction	of	the	new	technology.	As	these	lower	the	unit	
cost	of	producing	the	capital	good,	even	with	imperfect	competition	on	the	supply	side	the	prices	in	the	market	
for	the	e	innovative‐embodying	input	would	tend	to	fall	relative	to	the	output	of	the	final	goods	producers.	This	
drives	the	diffusion	of	 the	 innovation	among	them,	and	hence	continues	 the	accumulation	of	 the	 	 	vendors’	
experience	 in	producing	the	capital‐good.	Stoneman‐Ireland	assume	supply	 is	monopolized,	the	monopolist	
follows	a	optimal	inter‐temporal	price‐discrimination	strategy,	reducing	the	market	price	over	time;	whereas	
David‐Olsen	 assumes	 learning	 effects	 are	 not	 internalized	 and	 spillover	 among	 the	 firms	 in	 a	 competitive	
supply	,	forcing	the	supply‐price	to	fall	as	diffusion	proceeds.	(The	so‐called	“Coase	conjecture”	–	questioning	
the	viability	of	intertemporal	price‐discrimination	by	the	monopolist	vendor	of	a	durable	good,	such	as	is	is	
assumed	by	Stoneman	and	Ireland	(1983),	prompts	David	and	Olsen	(1992)	reformulation	the	model	under	
the	supposition	that	(like	IBM,	and	the	United	Shoe	Machinery	Company)	the	monopoly	supplier	rented,	rather	
than	sold	the	innovative	producer	durable.			

41	 Rosenberg	 (1972)	 emphasizes	 the	 generality	 of	 this	 phenomenon	 and	 its	 importance	 in	 the	 eventual	
displacement	of	formerly	dominant	technologies	by	new	ones	that,	in	their	original	formulations	often	were	
crude,	 and	 harboured	 defects	 that	 circumscribed	 their	 sphere	 of	 effective	 commercial	 application.	 This	
perspective	 in	 effect	 blurs	 the	 conceptual	 distinction	 been	 dynamic	 processes	 of	 diffusion	 and	 innovation,	
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The	form	in	which	the	model	will	be	set	out	here	takes	a	further	step,	however,	by	linking	the	
process	 of	 incremental	 improvements	 in	 the	 innovation’s	 formulation	 with	 an	 an	 	 endogenous	
“learning	process”	in	the	sector	that	supplies	the	“automation	equipment”,	i.e.,	a	durable	reproducible	
asset	 that	 embodies	 the	 basic	 innovation.	 It	 is	 assumed	 that	 this	 novel	 type	 of	 capital‐good	 is	
competitively	supplied,	and	the	improvements	that	are	made	on	the	basis	of	accumulating	experience	
with	 “field	 operation”	 of	 this	 type	 of	 equipment,	 for	 with	 its	 construction,	 is	 not	 privately	
appropriated	by	the	“learning	entities”.	Instead,	the	knowledge	is	a	“spill‐over”,	being	shared	by	all	
the	vendors	of	the	innovative	capital	goods	and	therefore	is	fully	translated	into	reductions	of	their	
unit	price‐performance	ratio.	Since	experience‐based	learning	effects	of	this	kind	depend	upon	the	
cumulative	processes	of		producing	(and/or	installing	and	using)	the	new	equipment,	they	represent	
a	feedback	effect	from	the	innovation’s	diffusion	and	therefore	constitute	an	endogenous	driver	of	
the	 sequential	 adoption	 of	 the	 innovation	 by	 the	 heterogeneous	 firms	 in	 the	 machine‐using	
industry.42		

Endogenous	 generation	 of	 incremental	 innovations	 is	 conventionally	 represented	 as	 a	
learning	process	that	results	in	a	continuous	reduction	of	the	unit	reproduction	cost	of	“machines	of	
a	 constant	 kind.”43	 	 This	 reduction	 proceeds	 at	 a	 pace	 governed	 by	 the	 rate	 of	 accumulation	 of	
collective	 experience	 among	 the	 ensemble	 of	 firms	 engaged	 in	 the	 business	 of	 supplying	 those	
machines.	Assuming	conditions	of	perfect	competition	prevail	in	the	latter	industry,	these	real	cost	
reductions	 equivalent	 to	 a	 relative	 decline	 in	 the	 hedonic	 price	 of	 the	 indivisible	 capital	 goods	
embodying	 the	 new	 technology.44	 Because	 the	 pace	 at	 which	 this	 kind	 of	 learning	 can	 proceed	
remains	limited	by	the	rate	at	which	the	new	technology	is	being	adopted,	expectations	about	the	
future	trajectory	of	incremental	innovations	and	the	continuation	of	diffusion	process	itself,	in	effect,	
become	hostage	to	one	another.	

Treating	this	complication	due	to	the	feedback	from	use‐experience	in	the	micro	level	model	
makes	 it	 essential	 to	 take	 account	 of	 the	 effects	 of	 anticipations	 (or	 expectations)	 of	 continued	

                                                           
although	 it	 is	not	 inconsistent	with	 insistence	on	distinguishing	between	 the	micro‐level	adoption	decision	
(involving	a	choice	among	existing	products	or	methods	of	production),	and	the	innovator’s	improvement	of	
the	performance	attributes	of	an	existing	product	or	production	technique.		

42	 	It	 is	 important	to	emphasize	that	while	the	induced	improvements	in	the	price‐performance	ratio	of	the	
innovation‐embodying	 equipment	may	be	 regarded	as	positive	 feedback	effect	 that	 is	 an	 externality	of	 the	
adoption	decisions	of	the	firms	in	the	consumer‐goods	sector,	the	latter	is	a	pecuniary	externality.	This	avoids	
complications	 would	 arise	 were	 the	 feedback	 effects	 of	 adoption	 to	 take	 the	 form	 of	 non‐pecuniary	
externalities,	 such	 as	 class	 “network	 	 effects”	 or	 interdependences	 among	 agents’	 preferences	 due	 to	
“demonstration	effects.”	 ces	arise	 in	an	externality	of	 capital.	As	will	be	noted	below,	 the	presence	of	non‐
pecuniary	externalities,	when	against	are	fully	informed,	can	give	rise	to	a	multiplicity	of	equilibrium	diffusion	
paths,	including	paths	that	exhibit	discontinuities	rather	than	a	continuously	rise	in	the	extent	of	diffusion.			

43	 The	 ubiquitous	 nature	 of	 the	 latter	 phenomenon	 supports	 the	 plausibility	 of	 supposing	 that	 a	 major	
technological	 breakthrough	 would	 establish	 a	 potential	 for	 many	 subsequent	 incremental	 improvements	
whose	cumulative	effect	upon	production	costs	might	well	overshadow	that	of	the	initiating	innovation.	See,	
e.g.,	Enos	(1962,	2001)	on	petroleum	refining;	Hollander	(1965)	on	rayon.	But,	see	also	Cohen	and	Klepper	
(2001)	on	the	role	that	purposive	R&D	–	rather	than	experience‐based	learning—may	play	in	the	generation	
of	incremental	technical	progress.		

44	 Another	 connection	 may	 thus	 be	 noted	 –	 between	 studies	 of	 diffusion	 dynamics	 and	 the	 theory	 and	
application	of	hedonic	prices,	to	which	Griliches	made	pioneering	contributions	(see	the	assessment	by	Pakes	
(2003).		
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technological	innovation	upon	the	timing	of	adoption	decisions,45	as	will	be	seen	from	the	following	
formalization	of	the	generalized	threshold	model.			

3.2	The	generalized	threshold	model		

Consider	an	industry	comprised	of	firms	producing	a	homogeneous	final	output,	denoted	by	
X,	and	marketing	it	competitively	at	price	p.	Further,	there	is	a	capital‐goods	industry	that	supplies	
machinery	 used	 in	 the	 production	 of	 this	 final	 good	 under	 conditions	 of	 perfect	 competition.	 To	
simplify	matters,	we	may	assume	that	the	remaining	sector	of	the	economy	is	large	in	relation	to	the	
former	 two,	 and	 its	 product	 is	 the	 numeraire	 of	 the	 system;	 machinery	 from	 the	 capital‐goods	
industry	is	not	used	by	this	(residual)	sector.	

The	machines	embodying	the	innovation	in	this	setup	are	taken	to	be	supplied	only	as	large	
and	indivisible	units	of	capacity,	at	the	unit	purchase	cost	k.	Although	only	one	unit	of	this	automation	
equipment	need	be	 installed	by	any	firm	in	order	 for	 it	 to	acquire	access	to	the	 latest	production	
technology,	in	this	general	formulation	one	may	allow	the	possibility	that	the	acquiring	firms	are	able	
to	operate	it	over	a	wide	range	of	output	scales.	

We	may	abstract	from	the	possible	effects	of	imperfect	information	and	uncertainty	upon	the	
process	 of	 diffusion,	 and	 assume	 instead	 that	 all	 firms	 in	 the	 final	 goods	 industry	 have	 identical	
(costless)	knowledge	concerning	the	benefits	and	costs	associated	with	use	of	the	new	production	
technology.	The	population	of	 firms	 in	 the	 industry	 is	 taken	 to	be	 fixed,	 implying	 that	only	 firms	
already	 established	 when	 the	 new	 equipment	 first	 becomes	 available	 will	 have	 access	 to	 the	
innovation.46	 	Rather	than	complicate	the	presentation	by	introducing	realistic	considerations	such	
as	the	depreciation	of	capital	goods,	and	the	possibility	of	replacement	of	obsolescent	equipment	at	
some	future	date,	one	may	make	the	following	further	assumptions:	(a)	all	investment	is	irreversible,	
which	 is	 to	 say	 that	 there	 is	no	market	 for	used	machinery	of	 any	 type;	 (b)	 capital	 equipment	 is	
infinitely	durable;	and	(c)	the	recently	introduced	line	of	machines	is	the	only	major	technological	
innovation	relevant	for	the	final	goods‐producing	industry	within	the	foreseeable	future.	47	

                                                           
45	 See	 Rosenberg’s	 (1976)	 discussion	 of	 the	 latter	 in	 a	 context	 where	 “learning	 effects”	 are	 kept	 in	 the	
background.	

46	This	assumption	is	not	a	serious	restriction	upon	the	analysis,	inasmuch	as	the	extant	firms	are	left	free	to	
vary	their	respective	production	scales;	yet,	it	greatly	simplifies	matters,	by	equating	the	stock	of	the	newest	
type	of	capital	equipment	(measured	in	standard	machine	units)	with	an	index	of	the	proportion	of	the	firms	
that	have	adopted	automation.	

47	Without	radically	altering	the	David	and	Olsen	(1984)	model,	the	more	glaring	unrealism	of	simplifications	
(b)	and	(c)	can	be	avoided,	putting	in	their	place	the	assumptions	of	stochastic	depreciation	of	the	“one‐horse	
shay”	variety,	and	stochastic	technological	obsolescence,	both	following	exponential	processes.	Under	the	one	
horse	shay	assumption,	depreciation	occurs	completely	and	 instantaneously.	 It	 thus	 takes	exactly	 the	same	
form	as	technological	obsolescence	due	to	the	sudden	availability	of	a	superior	type	of	machine.	If	the	stochastic	
processes	governing	these	events	yield	exponential	distributions	of	the	depreciation	and	obsolescence	dates,	
and	if	those	distributions	are	independent,	then	the	constant	hazard	rates	for	both	events	may	be	added	to	find	
the	hazard	rate	for	the	termination	of	the	benefit	stream	associated	with	a	given	piece	of	capital	equipment.	
Assuming	risk	neutrality,	the	expected	present	value	of	the	benefit	stream	may	then	be	found	simply	by	using	
the	latter	(constant)	hazard	rate	as	a	“risk	premium”	added	to	the	(riskless)	time	discount	rate,	 leaving	the	
analysis	 otherwise	 undisturbed.	 Ireland	 and	 Stoneman	 (1983),	 use	 this	 approach	 to	 model	 the	 effect	 of	
variations	 in	 obsolescence	 risks.	 The	 difficulty	 in	 treating	 physical	 depreciation	 the	 same	 way	 is	 that	
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3.2.1	Production	technologies	and	the	adopter’s	investment	decision	

Each	firm	in	the	final	goods	sector	must	decide	if	and	when	to	adopt	the	new	technology,	and	
will	make	this	decision	on	the	basis	of	the	net	present	value	of	the	investment	represented	by	a	newly	
installed	automated	plant.	Suppose	a	firm	has	decided	to	invest	at	date	T.	It	should	then	produce	so	
as	to	maximize	instantaneous	profits	at	each	point	in	time,	using	the	old	technology	(which	may	be	
embodied	in	existing	capital	goods)	before	date	T,	and	the	new	technology	thereafter.	Assume	that	
instantaneous	net	operating	revenue	functions	are	well	defined	for	both	technologies—at	least	over	
the	range	of	output	volumes	considered	here.	For	convenience	the	latter	can	be	referred	to	as	“profit	
functions”,	remembering	that	the	profits	in	this	case	are	gross	of	fixed	cost	charges.	

This	 specification	 of	 a	 profit	 function,	 denoted	 as	Ri(	 .	 )	 for	 the	 i‐th	 technology,	 implies	
decreasing	returns	to	scale	in	the	utilization	of	variable	inputs	in	the	production	processes.	Let	the	
instantaneous	profit	functions	for	the	old	(i	=	1)	and	new	(i	=	2)	technologies,	respectively,	be	

	 Ri	(p)	=	max
x

{px	–	Ci	(x)}	i	=	1,	2	 	 	 (2.1)	

where	Ci	(.)	denotes	the	respective	variable	cost	functions	and	p	is	the	product	price.	Note	
that	 the	 firm’s	 optimal	 output	 x	 is	 now	 given	 for	 each	 technology	 by	 the	 derivative	 of	 the	 profit	
function:	

	 	 xi	(p)	=	Rp	i	(p)	i	=	1,	2	.		 	 (2.2)	

These	cost	functions	remain	stationary	over	time,	by	assumption.	This	implicitly	imposes	the	
simplifying	assumption	that	factor	input	prices	are	time‐stationary.	For	the	sake	of	concreteness	and	
convenience,	 let	 us	 refer	 to	 the	 new	 technology	 (i	 =	 2)	 as	 “computer	 automation.”	 Then,	
enhancements	in	the	efficiency	of	automation	equipment	will	be	treated	as	equivalent	reductions	in	
the	unit	 reproduction	cost	of	 “machines	of	a	 constant	kind”,	 i.e.,	machines	characterized	by	 time‐
stationary	variable	costs	of	operation.	

The	automation	technology	can	only	be	of	interest	to	the	firm	if	the	profit	difference	

	 B	(p)	=	R2	(p)	–	R1	(p)	>0		 (2.3)	

for	at	least	some	range	of	future	prices.	This	difference	(the	undiscounted	gross	benefit	from	
adoption)	is	taken	to	be	positive	for	all	output	prices	considered	here.	It	does	no	great	violence	to	the	
engineering	 realities	 to	 posit	 also	 that	 this	 gross	 benefit	 function	 is	 increasing	 in	p.	 The	 latter	 is	
equivalent	to	supposing	that	the	marginal	cost	schedule	for	technology	2	lies	everywhere	below	that	
for	technology	1,	and	that	the	firm’s	optimum	supply	(holding	the	market	structure	unaltered)	thus	
is	higher	under	the	regime	of	automation.	This	last	implication	follows	directly	from	

	 Bp	(p)	=	x2	(p)	–	x1	(p)	>	0	.	 	 (2.4)	

                                                           
replacement	 demands	 break	 immediate	 correspondence	 between	 cumulative	 sales	 of	 the	 newest	 type	 of	
machine	and	the	diffusion	index.	
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As	 in	 all	 equilibrium	models	 of	 diffusion	under	perfect	 competition,	 it	 is	 essential	 for	 this	
analysis	 that	 there	be	some	objective,	 identifiable	heterogeneity	 in	 the	population	of	 firms	which	
results	 in	 the	 benefit	 function	 varying	 across	 the	 firms	 of	 the	 industry.	 	 This	 proposition	 was	
demonstrated	by	David	[1969]).	Possible	sources	of	heterogeneity	will	be	mentioned	shortly,	but	for	
the	present	it	is	sufficient	simply	to	note	that	the	profit	function(s)	will	be	indexed	by	a	firm‐specific	
characteristic,	z.		

Now	consider	the	investment	decision	facing	the	firm	of	type	z	at	date	t,	when	the	cost	of	
installing	a	new,	automated	plant	is	kt.	The	latter	price	is	not	indexed	by	z,	since	at	any	moment	of	
time	a	uniform	price	prevails	in	the	(competitive)	market	for	capital	equipment.	The	problem	to	be	
solved	by	the	z‐th	firm	therefore	is	to	choose	an	adoption	date	T	that	will	maximize	the	net	present	
value	function	

	 V	(T,	z)	=	  ( B (  )   - -rT -rT
T tp , z e d t k e   





 	,		 	 	(2.5)	

in	which	r	is	the	rate	of	time	discount.	

Assuming	smooth	price	paths,	the	necessary	first	order	condition	is	

	 V	(T,	z)		‐	B	(pT,	z)	+	r	kT	–	 Tk


	=	0.		 	 	(2.6)	

This	has	a	straightforward	and	familiar	 interpretation:	 the	cost	of	marginally	delaying	the	
adoption	(i.e.,	investment)	date	beyond	T	is	the	loss	of	instantaneous	profits	equal	to	B(.),	whereas	
the	marginal	gain	 is	 the	sum	of	 the	averted	costs,	namely	 the	rend	costs,	r	k,	 and	 the	anticipated	

capital	loss,	‐	 Tk

,	that	otherwise	would	be	incurred	due	to	the	instantaneous	drop	in	the	reproduction	

cost	of	the	new,	automated	plant	following	date	T.48		Implicitly,	the	inclusion	of	allowance	for	a	change	
in	the	value	of	the	fixed	asset	required	by	the	innovative	process	presupposes	that	rational	adopters	
would	form	expectations	regarding	the	future	course	of	the	price	(and	hence	the	reproduction	cost	
valuation)	of	that	asset.49			

                                                           
48	David	and	Olsen’s	(1984,	1986)	formulation	of	the	potential	adopter’s	problem	as	the	maximization	of	V(T,	
z),		defined	as	a	net	present	value	function,	represented	a	departure	from	David’s	(1966,	1969)	treatment	of	
the	 demand	problem	 as	 that	 of	 short‐run	 profit	maximization	 by	 competitive	 agents	 in	 the	machine‐using	
industry,	 thereby	 reducing	 the	 choice‐of‐technique	 problem	 to	 that	 of	 myopic	 cost‐minimization.	 The	
introduction	 of	 expected	 changes	 in	 the	 price	 of	 the	 capital	 good	 in	 the	 derived	 demand	 function	 for	 the	
innovation	at	each	point	in	time	distinguished	David	and	Olsen’s	(1984)	analysis	from	that	of	Stoneman	and	
Ireland	(1983,	and	1986),	which	follows	David	(1969)	in	modelling	the	demand	side	of	the	market.				

49	In	addition	to	the	theoretical	merit	of	this	belated	improvement	upon	basic	threshold	model	formulated	in	
David	(1966,	1969),	Lew	(2000)	suggests	it	may	be	empirically	relevant.	In	his	study	of	the	diffusion	of	tractors	
on	the	Canadian	prairies	during	the	late	1920s,	the	parameterized	version	of	the	basic	threshold	model	over‐
predicted	 the	 rate	 of	 adoption.	 Lew	 suggests	 that	 this	 discrepancy	 resulted	 from	 the	 model’s	 failure	 to	
incorporate	farmers'	expectations	of	future	prices,	and	the	volatility	in	wheat	prices	and	falling	tractor	prices	
are	shown	to	make	delaying	a	tractor	purchase	a	rational	decision	for	wheat	farmers	in	Saskatchewan	in	the	
late	1920s.	On	the	other	hand,	it	must	be	noted	that	the	success	of		using	the	threshold	model	(in	any	version)	
to	simulate	changes	in	the	(aggregate)	extent	of	diffusion	or	the	growth	of	the	tractor	stock	in	a	region	during	
a	 specific	 time	 interval	 should	depend	also	 on	 the	 accuracy	with	which	 the	pertinent	 heterogeneity	 in	 the	
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Additional	sufficient	conditions	for	date	T	to	be	optimal	for	the	z‐th	firm	are	straightfoward:	

	 	 v	(t,	z)	>or<	0	for	t	>or<	T		 	 	 (2.7a)	 	

and		

	 	 v	(T,	z)	 	0	.	 	 	 	 	 (2.7b)	 	

Evidently,	 because	 rational	decisions	 regarding	adoption	of	 the	new	 technology	would	be	
influenced	 by	 expectations	 regarding	 the	 future	 real	 costs	 of	 the	 innovation‐embodying	 capital	
equipment,	and	anticipated	decreases	in	its	price‐performance	ratio	–	whether	due	to	an	autonomous	
trend	of	technological	advances	affecting	firms	in	the	machine‐building	industry,	or	specific	“learning	
effects”	in	the	production	of	novel	capital‐equipment	in	question	‐‐	would	tend	to	delay	adoption	by	
marginal	 firms.	 	But,	where	 incremental	 improvements	of	 this	kind	can	be	anticipated	to	arise	as	
feedback	from	the	diffusion	process	itself,	further	adoption	would	depend	upon	the	balance	between	
negative	effect	of	anticipated	capital	losses	and	the	positive	effect	of	a	realized	reduction	of	the	fixed	
capital	input’s	price	vis‐à‐vis	that	of	the	variable	input	required	by	the	novel	process.50		

	The	present	formulation	follows	(1983)	in	explicitly	recognizing	the	role	in	diffusion	of	post‐
innovation	developments	on	supply	side	of	the	market	for	the	embodied	innovation.	In	this	respect	
these	models	bear	 some	kinship	with	Griliches’original	 analyis	of	 case	of	hybrid	 corn,	but	with	a	
significant	difference.	 In	 the	 latter	situation	 the	sub‐markets	were	spatially	as	well	as	 temporally	
separated,	and	anticipations	of	eventual	“improvements”	in	seed‐quality	would	not	exert	the	same	
delaying	efforts	on	adoption,	because	they	wouldn’t	be	pertinent	to	the	conditions	of	the	farmers	in	
the	initial	regions	where	the	innovation	had	already	been	introduced.	

3.2.2	Modelling	“learning	effects”	as	a	supply‐side	driver	of	the	dynamic	process	

	 Introducing	learning‐by‐doing	externalities	among	competitive	firms	that	supply	the	
innovation‐embodying	capital	good	implies	that	the	marginal	cost	of	producing	the	latter,	c(t),	will	
be	 a	 monotone	 increasing	 function	 of	 the	 cumulative	 production	 experience	 of	 that	 industry.	
Experience,	however,	may	be	taken	to	be	indexed	by	S(t),	the	cumulative	volume	of	the	industry’s	
shipments	(measured	in	“machine	units”	from	the	first	unit	sold	at	t	=	0).	Thus,	we	have	a	learning	
function	c(t)	=	L{		},		which,	under	the	assumed	competitive	conditions	of	supply	in	the	innovative	
capital‐goods	industry,	determines	the	dynamics	of	its	product	price:	

	 					 	 kt		=	c(t)	=	L{S(t)},			where	LS	<	0		.		 (2.8)	

	 Given	 the	 infinite	durability	of	 the	 innovation‐embodying	 “machines,”	 the	 index	of	
experience	 S	 also	 indexes	 the	 stock	 of	 automation	 equipment	 which	 adopters	 collectively	 have	
                                                           
adopter	population	is	characterised	–	which	in	this	case	would	be	the	relevant	portion	of	the	distribution	of	
arable	wheat	acreages	on	Saskatchewan	farms	at	the	time.		
50	See	Rosenberg	(1976)	 for	a	discussion	of	 the	role	of	expectations	 in	decisions	regarding	the	adoption	of	
innovations,	which	considers	a	wide	range	of	anticipations,	including	those	of	changes	in	the	performance	or	
user‐costs	 of	 substitute	 and	 complementary	 technologies.	 David	 and	 Olsen	 (1986)	 show	 conditions	 under	
which	the	combination	of	a	high	initial	user‐cost	of	capital,	and	too	rapid	an	expected	initial	rate	of	fall	of	the	
price‐performance	ratio	of	the	innovation‐embodying	capital	good	–	due	to	the	initial	steepness	of	the	learning	
curve	‐‐	would	prevent	the	diffusion	process	from	starting	automatically.			
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installed,	one	per	firm,	by	assumption.	Since	the	size	of	the	potential	adopter	population	may	be	held	
constant	at	N,	one	may	write		

	 	 	 S(t)	=	NC	{D(t)},	 	 (2.9)	

0	<D	<	1,	being	the	measured	extent	of	the	innovation’s	diffusion	among	the	firms	composing	
the	final	goods	sector.	Now,	following	the	representation	of	the	the	threshold	model	in	in	section	2.5,	
we	have	D(t)	=	[1	–	F(z(t)],	when	z	=	z*.	Substituting	this	in	eq.	(2.9),	the	function	determining		kt	can	
be	expressed	as					

	 	 	 kt				=	L{[1	–	F(z*(t))]}.		

Given	a	mapping		z*(t)	=	y,	where	y	indexes	the	marginal	adopter	at	t,	this	relationship	can	be	
written	more	compactly	as:			

	 	 	 kt				=	F(y),			 	 	 	 	 	 (2.10)	

so	 that	 the	 supply	 price	 of	 the	 innovation‐embodying	 capital	 good	would	 tend	 to	 decline	
relative	 to	 that	of	 the	output	of	 the	 sector	adopting	 the	new	 technology	 (assuming	no	equivalent	
technological	progress	affecting	other	inputs	in	the	final	goods	sector.	With	the	real	interest	rate	(	r	
)	 	constant,	 the	 	real	 “user‐cost”	of	 the	 innovation‐embodying	capital,	r	kt,	 	must	be	 falling	as	 the	
threshold	level	moves	downward	in	the	distribution	of	potential	adopters	to	firms	of	lower	rank	(y)..		

3.2.3	Heterogeneity	and	the	“z‐distribution”	of	firms	

If	firms	were	identical,	they	all	would	choose	the	same	adoption	date,	and	at	that	date	new	
plants	would	go	into	production	as	rapidly	as	they	could	be	installed.	Insofar	as	any	diffusion	path	
was	observable,	it	would	only	reflect	the	sequence	of	temporary,	“rationing	equilibria”	in	the	market	
for	automation	equipment.	To	create	the	possibility	of	market‐clearing	equilibrium	diffusion	paths	
in	the	present	model,	David	and	Olsen	(1984)	make	a	crucial	assumption:	firms	in	the	final	goods	
sector	can	be	ordered	according	to	a	single	parameter,	or	index,	z,	such	that	the	gross	profit	difference	
B(.)	is	a	continuous	and	monotonically	decreasing	function	of	z:	

	 Bz	(p,	z)	<	0,						for	all	prices	p	in	the	relevant	range.		 	(2.11)	

One	 possible	 interpretation	 of	 the	 z‐parameter	 is	 that	 it	 indexes	 an	 intangible	 attribute	
affecting	 costs,	 such	 as	 managerial	 efficiency.51	 But	 z	 also	 may	 be	 taken	 to	 represent	 inter‐firm	
differences	in	more	objective,	and	directly	verifiable	conditions	impinging	upon	operating	profits,	
such	as	transport	costs	differences	affecting	the	f.o.b.	prices	of	their	final	product.52	The	firm‐specific	
variate	 z	 also	may	be	 interpreted	 as	 the	price	of	 one	of	 the	 inputs	used	 in	 the	 firm’s	 production	

                                                           
51	In	this	case	we	should	call	it	“z‐efficiency”,	by	analogy	with	Harvey	Leibenstein’s	famous	“x‐efficiency”.	

52	The	differential	transport	cost	interpretation	of	z	appears	to	be	quite	germane	in	discussions	of	the	diffusion	
of	automated	assembly	technology,	in	view	of	the	necessity	of	concentrating	production	in	plants	that	will	be	
intensively	utilized	through	multiple	shift‐working.	
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process,	 thereby	 permitting	 recognition	 of	 factor	 market	 imperfections	 as	 a	 source	 of	 the	
heterogeneity	among	the	population	of	potential	adopters.53		

It	is	of	course	a	drastic	simplification	to	suppose	that	firms	can	be	rank‐ordered	along	a	uni‐
dimensional	 scale.	 But	 while	 working	 with	 multivariate	 distributions	 is	 straightforward	
conceptually,	 it	 requires	 further	 specification	 of	 the	 co‐variances	 among	 the	 several	 sources	 of	
heterogeneity,	and	these	–	however	relevant	to	the	fine‐grain	empirical	details	‐‐	soon	begin	to	clutter	
up	the	analysis.	Nevertheless,	it	is	worth	remarking	also	that	the	z‐parameter	in	the	foregoing	case	
would	turn	out	 to	be	correlated	with	 the	scale	of	output	under	each	technological	regime.	Hence,	
there	could	be	positive	rank	correlations	between	the	order	of	adoption	among	firms	and	their	ex	
ante	 or	 ex	 post	 (output)	 size,	 just	 as	 in	 the	 scale‐constrained	 models	 presented	 by	 numerous	
empirical	studies.54		

	Indeed,	a	closer	examination	of	the	results	obtained	in	Mansfield’s	(1961,	1968)	studies	of	
the	diffusion	of	industrial	innovations	suggests	that	the	information‐contagion	rationale	offered	for	
his	econometric	specification	notwithstanding,	the	statistically	significant	“profitability	effects”	on	
the	 rate	 of	 adoption	 that	 he	 reported	 could	 have	 altogether	 different	 underlying	 causes.	 The	
statistically	 significant	 effects	 found	 in	 Mansfield’s	 regression	 estimates	 of	 the	 logistic	 slope	
coefficients	are	generated	by	the	subset	of	industry	cases	where	the	innovations	in	question	were	
fixed‐capital	using,	and	the	indexes	of	firm	characteristics	(supposedly	bearing	on	the	innovation’s	
profitability	included	measures	that	in	all	likelihood	were	positively	correlated	with	differences	in	
expected	output	scale.	That	might	imply	that	adoption	decisions	occurred	where	scale	was	sufficient	
to	 bring	 the	 firms	 across	 the	 break‐even	 threshold	 level,	 rather	 than	 as	 a	 response	 to	 higher	
prospective	rates	of	return	on	the	required	fixed	capital	outlay.	

In	the	model	just	presented,	however,	z	may	be	a	more	fundamental	source	of	heterogeneity	
that	explains	observable	differences	in	output	scale,	including	the	adjustment	of	production	scale	in	
response	to	the	availability	of	the	innovation	itself.	 	Moreover,	the	factor‐use	bias	of	technological	
change	may	switch	between	one	major	wave	of	 innovations	and	the	next,	so	that	the	firms	which	
enjoyed	input‐price	advantages	causing	them	to	be	largest	in	scale	of	output	under	the	old	technology	
would	not	necessarily	be	first	to	adopt	the	new.	55		

Under	the	more	general	conditions	David	and	Olsen	(1984,	1986	and	1992)	obtain	for	the	
existence	of	a	rational	foresight	equilibrium	path	of	diffusion,	the	time‐profile	of	the	proportion	of	
firms	that	have	already	installed	equipment	of	the	new	type—the	measure	of	the	extent	of	diffusion	
denoted	by	Dn(t)	—	may	exhibit	the	classic	ogive,	or	S‐shape.	Nonetheless,	there	are	circumstances	

                                                           
53	For	this	interpretation,	note	that	when	z	is	a	factor’s	price,	Hotelling’s	lemma	tells	us	that	Bz	(p,	z)	=	Rz2	(p,	z)	
–	Rz1	(p,	z)	=	‐[L2	(p,	z)	–	L1	(p,	z)]	,	where	Li	(p,	z)	are	the	input	demand	functions	for	that	particular	factor	
under	the	alternative	technologies.	Thus,	f	the	new	technology	results	in	the	firm	expanding	its	demand	for	the	
factor	at	the	prevailing	price	z	—at	least	over	the	relevant	range	of	output	price	p	—condition	(A8)	will	indeed	
be	satisfied.	

54	 David	 (1966,	 1971),	 Sargen	 (1979),	 Davies	 (1979),	 Stoneman	 and	 Ireland	 (1983)	 and	Whatley	 (1983).		
Stoneman	(2002:	Ch.8)	develops	an	nested	econometric	modeling	approach	to	distinguishing	among	“rank,”				
(capital)	“stock,”	temporal	“order”	and	“epidemic”	effects	in	the	diffusion	of	new	process	technologies.	

55	Instead,	the	size	ordering	of	firms	in	the	industry	may	undergo	non‐monotonic	transformation	in	the	course	
of	 the	 diffusion	 process.	 To	 appreciate	 this,	 one	 would	 have	 to	 look	 more	 closely	 at	 the	 product	 market	
equilibrium	conditions.	
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in	 which	 the	 diffusion	 curve	 would	 be	 concave	 over	 its	 entire	 range.	With	 this	 class	 of	 models,	
universal	adoption	or	“complete”	diffusion	is	by	no	means	a	necessary,	foreordained	outcome	that	
resembles	the	gradual	but	inevitable	filling	up	of	a	bottle.		

Although	there	are	solutions	(dynamic	equilibria)	in	which	the	diffusion	and	learning	will	get	
under	way	and	continue	until	it	approaches	universal	acceptance	‐‐	the	situation	depicted	in	Figure	
1,	it	is	also	quite	possible	for	the	diffusion	process	to	be		brought	to	a	stop	short	of	universal	adoption,	
which	the	case	depicted	by	Figure	2.	

	 	 	 	 [Figures	1	and	2	here]	

The	reasons	 for	 this	are	several.	 (i)The	 innovation	may	shift	 the	using‐industry	aggregate	
supply	schedule	relative	to	the	market	demand	schedule,	leading	to	falling	marginal	revenue		and	the	
disappearance	of	a	positive	gap	between	anticipated	benefits	and	anticipated	costs	of	adoption	at	the	
extensive	marginal.		(ii)	It	is	possible	that	production	of	the	capital	good	embodying	the	innovation	
requires	 an	 exhaustible	 resource	 input,	whose	 rising	marginal	 supply	price	 checks	 the	 fall	 in	 the	
relative	 price	 of	 the	 capital	 good,	 stopping	 the	 break‐even	 threshold	 for	 adoption	 from	 moving	
downward	through	the	z‐distribution.		(iii)		Partial	diffusion	is	more	likely	to	arise,	therefore,	if	the	
dynamic	driver	of	the	threshold	level	is	entirely	endogenous,	and	dependent	upon	positive	feedback	
from	the	movement	of	the	extensive	margin	of	adoption—as	in	the	learning	model.		

In	the	full	information	threshold	model	the	heterogeneity	of	the	population	requires	that	we	
abandon	the	notion	that	at	time	t	there	are	potential	adopters	beyond	the	extensive	margin:	if	the	
threshold	 ceased	 to	 fall,	 the	 process	would	 be	 at	 a	 stationary	 equilibrium.	This	 is	what	Griliches	
(1980)	pointed	to	when	he	commented	that	a	model	of	“a	moving	upper	limit”	–	such	as	that	in	David	
(1969)	–	could	replace	his	specification	of	an	ex	ante	fixed	upper	limit	that	could	be	observationally	
identified.	 	 In	addition,	and	of	possibly	greater	 interest,	 is	 the	result	 that	 in	some	conjunctions	of	
initial	supply‐side	and	demand‐side	conditions,	the	start	of	a	diffusion‐cum‐learning	process	driven	
by	perfect	competition	may	remain	blocked.	This	can	be	the	case	even	where	the	positive‐feedback	
process	driven	by	learning	effects	could	take	over	once	the	level	of	adoption	and	capital	goods	prices	
had	 been	 brought	 to	 a	 critical	 “take‐off”	 point,	 presumably	 by	 non‐market	 interventions.	 More	
generally	still,	under	full‐employment	conditions,	optimum	social	management	of	a	new	technology’s	
adoption	in	the	presence	of	learning	externalities	may	call	for	faster	diffusion	than	would	occur	even	
with	complete	information	(perfect	foresight)	and	perfect	competition	prevailing	in	all	the	relevant	
markets.	56	

Complications	of	this	nature	begin	to	take	on	greater	economic	policy	significance	when	one	
turns,	as	I	do	now,	to	consider	the	connection	between	the	microeconomics	of	technology	adoption	
and	the	macro‐	industry‐level	course	of	productivity	growth.		

	

3.3	Sources	of	adopter	heterogeneities	and	time‐constants	of	diffusion	processes		

Although	the	emphasis	of	the	foregoing	has	been	placed	upon	the	common	structure	of	the	
explanation	of	diffusion	phenomena	provided	by	the	threshold	adoption	models	and	the	consequent	

                                                           
56	The	implications	of	this	latter	point	for	patent	policy	as	a	second‐best	public	strategy	are	examined	in	David	
and	Olsen	(1992).	
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homomorphism	that	is	present	across	the	array	of	specific	diffusion	processes,	it	is	important	not	to	
close	this	discussion	without	calling	attention	to	the	empirically	observed	differences	in	the	time‐
constants	that	are	an	important	identifying	variable.	This	is	point	that	has	tended	to	be	overlooked	
in	the	economics	literature57.			

Finally,	it	is	appropriate	to	conclude	by	recalling	that	the	generic	structure	of	the	adopters’	
heterogeneity	 approach	 to	 understanding	diffusion	phenomena	 is	 so	 inclusive	 that	 unobservable	
psychological	 resistances	 or	 other	 behavioral	 impediments	 to	 action	 under	 uncertainty	 can	 be	
formulated	within	this	framework.	If	one	starts	with	the	supposition	that	such	directly	unobservable	
impediments,	 often	 described	 in	 the	 rural	 sociology	 literature	 as	 “resistances	 to	 novelty”	 or	
“psychological	inertia”	differ	among	individuals,	then	shape	of	the		distribution	of	such	resistances	
then	 becomes	 a	 relevant	 structure	 affecting	 the	 dynamics	 of	 the	 novelty’s	 acceptance	 in	 the	
population	 (see,	 e.g.	 David	 1969).	 For	 example,	 Young	 (2005)	 proposes	 to	 use	 the	 shape	 of	 the	
aggregate	diffusion	paths	to	identify	whether	the	process	underlying	the	diffusion	of	hybrid	corn	was	
simple	 contagion	 model	 involving	 information	 transmission	 (generating	 a	 logistic),	 and	 or	 by	 a	
“social	learning	process”	of	the	kind	first	suggested	by	Granovetter	(1978)	–	which	has	been	noticed	
can	be	formulated	a	a	member	of	the	family	of	“threshold	models.”		

The	 information	 propagation	 process	 can	 be	 specified	 in	 both	 cases	 as	 proceeding	 by	 a	
random	contacts	in	a	completely	intermixed	population,	so	that	the	only	structural	difference	is	the	
models	 is	 whether	 there	 is	 a	 uniform	 degree	 of	 “a	 priori	 resistance”	 among	 the	 agents,	 or	 a	
distribution	of	resistances	that	must	in	each	case	be	overcome	by	a	correspondingly	stronger	signal	
regarding	 the	net	benefit	 of	 adoption.	Given	 the	 specification	of	 a	 random	contact	process,	 if	 the	
experience	of	adopters	were	held	to	be	uniform	it	could	be	supposed	that	some	cumulative	number	
of	contacts	by	adopters	would	be	required	to	overcome	resistance	in	each	potential	adopter’s	case.	

While	a	much	in	this	vein	is	possible,	the	relevant	practical	question	is	whether	the	speed	of	
these	 information	 transmission	 processes	 is	 not	 so	 rapid,	 compared	 with	 the	 transition	 rates	
involved	when	irreversible	investment	decisions	about	new	transport	infrastructures,	or	durable	and	
lumpy	advanced	wafer	fabrication	equipment	(“steppers”)	in	the	semiconductors	are	at	stake,	that	
the	fine	grain	differences	among	them	will	not	substantially	affect	the	impact	of	the	diffusion	process	
upon	 productivity	 growth.	 	 It	 is	 to	 empirical	 questions	 of	 this	 kind	 that	 the	 following	 section	 is	
directed.	

                                                           
57	But	one	may	ask	whether	it	really	is	plausible	that	information	propagation	lags	and	social	learning	about	a	
given,	universally	superior	technology	could	account	 for	 these	observed	 lags?.	Even	 in	 the	case	of	Griliches	
hybrid	corn	study,	the	differences	between	Iowa	and	other	states,	e.g.	Kentucky	is	4	vs	9	years	to	go	from	10%	
to	90%	adoption.	A	simply	contagion	process	of	the	kind	proposed	by	Mansfield	would	have	to	explain	why	the	
time	rate	of	contacts	between	adopters	and	non‐adopters	was	so	much	higher	in	Iowa	than	elsewhere.	The	
alternative	ASN	mechanism	for	the	transition	of	individual	farmer’s	to	the	new	method	would	encounter	the	
same	problem:	 if	 individuals	 need	 repeated	 exposures	 to	 reports	of	 the	 innovation’s	 economic	 advantages	
before	becoming	convinced,	why	is	the	support	of	the	distribution	of	psychological	“resistances”	so	much	more	
compact	among	the	farmers	in	some	regions	than	elsewhere.	Griliches	comments	on	heterogeneities	among	
the	crop	reporting	regions	within	states	as	a	source	of	 lower	acceptance	rates	at	 the	state	 level.	Within	his	
framework	 of	 explanation	 those	 difference	 would	 have	 to	 correspond	 to	 differences	 in	 the	 observed	
profitability	of	adoption,	and	the	sources	of	the	latter	remain	identified	but	it	is	reasonable	to	suppose	that	this	
would	be	of	the	same	ve	magnitude	as	the	differences	in	the	observed	rates	of	acceptance.		(Given	the	power	of	
the	test	and	the	error	level	for	false	positives,	the	ASN	is	an	inverse	function	of	the	difference	between	sample	
means.)			
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4.	Diffusion	and	Productivity	Growth:	From	Micro	to	Macro	

A	 portion	 of	 the	 comparative	 neglect	 of	 empirical	 research	 on	 the	 microeconomics	 of	
technology	 choice	 and	 innovations’	 adoption	 histories	 may	 be	 attributed	 to	 the	 fact	 that	 the	
connection	between	diffusion	and	aggregate	productivity	growth	has	not	been	developed	formally.		
As	has	been	pointed	out	elsewhere	(David	1986;	and	also	David	&	Foray	1995),	the	political	economy	
of	growth	policy	has	promoted	excessive	attention	to	innovation	as	a	determinant	of	technological	
change	and	productivity	growth,	to	the	neglect	of	attention	to	the	role	of	conditions	affecting	access	
to	knowledge	of	 innovations	and	their	actual	 introduction	 into	use.	The	 theoretical	 framework	of	
aggregate	production	function	analysis,	whether	in	its	early	formulation	or	in	the	more	recent	genre	
of	endogenous	growth	models,	has	simply	reinforced	that	tendency.	To	try	to	correct	that	imbalance	
by	 explicitly	 modelling	 the	 connections	 between	 productivity	 growth	 and	 diffusion	 dynamics	 is	
something	that	Zvi	Griliches	might	well	have	done,	had	had	he	continued	to	pursue	his	early	interest	
in	the	diffusion	of	process	innovations	rather	than	focusing	his	research	to	empirical	studies	of	the	
relationships	productivity	change,	R&D	investment,	and	patenting	activity.	

The	model	considered	here	suffices	to	capture	the	direct	and	indirect	effects	of	the	diffusion	
of	a	major	or	“radical”	process‐innovation	upon	the	measured	growth	of	input	productivity.	While	it	
serves	 to	 highlight	 several	 general	 propositions	 that	 are	 simple	 but	 often	 overlooked	 about	 the	
relationship	between	the	pace	of	productivity	growth	and	the	pace	at	which	productivity‐enhancing	
innovations	are	adopted,58	this	heuristic	exercise’s	main	value	is	to	identify	explicitly	key	micro‐level	
determinants	 of	 the	 dynamics	 of	 diffusion	 among	 the	 proximate	 factors	 governing	 the	 aggregate	
productivity	growth	rate	in	the	adopting	sector	of	the	economy.			

The	components	of	the	model	are	reduced	form	relationships	that	embed	a	set	of	underlying	
the	microeconomic	conditions	governing	firms’	decisions	to	adopt	a	new,	fix‐input	using	and	variable	
(labor)	input‐saving	technology	for	consumer‐goods	production,	and	the	induced	processes	through	
which	suppliers	and	users	of	the	new	process‐equipment	modify	its	design	and	mode	of	application	
on	the	basis	of	 field	experience.	Being	based	on	“learning	by	doing”	and	“learning	by	using,”	such	
modifications	 are	 driven	 by	 the	 innovation’s	 diffusion	 and,	 in	 turn,	 contribute	 both	 directly	 and	
indirectly	to	enhancing	productivity	in	the	consumer‐good’s	sector.	Their	direct	impact	is	due	to	the	
reduced	labor‐input	requirements	with	the	new	technology	with	that	technique,	which	are	assumed	
to	 result	 from	 labor‐training	 effects	 and	 organizational	 changes	 that	 spill‐over	 throughout	 the	
“progressive,”	 innovation‐adopting	 segment	 of	 the	 consumer‐goods	 industry,	 thereby	 raising	 its	
average	level	of	productivity.	Their	indirect	impact	stems	from	the	lowered	price‐performance	ratio	
of	the	capital	equipment,	which	expands	the	extensive	margin	of	adoption	in	that	industry,	increasing	
the	 relative	weight	 of	 the	 industry’s	 “progressive”	 segment	 in	 total	 industry	 output,	 and	 thereby	
raising	the	industry’s	overall	level	of	labor	productivity.		

                                                           
58	These	 relationships	 have	 previously	 been	 explored	 in	 the	 specific	 historical	 context	 of	 the	 effects	 of	 the	
diffusion	 of	 the	 electrical	 dynamo	 (and	 secondary	 electric	 motors	 in	 particular)	 on	 the	 surge	 of	 U.S.	
manufacturing	 productivity	 growth	 during	 the	 1920s.	 See	 David	 (1991:Technical	 Appendix),	 an	 OECD	
publication	that	has	been	cited	more	widely	than	it	has	been	read;	a	pdf	version	may	be	obtained	on	request	
from	the	author.	 See	also	David	and	Wright	 (2003)	 for	 comparative	evidence	on	 the	diffusion‐productivity	
growth	link	in	the	case	of	U.S.,	British	and	Japanese	industrial	electrification	during	the	Interwar	era.		
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In	the	basic	formulation	exhibited	here,	the	simulation	structure	doesn’t	pretend	to	capture	
the	 entire	 range	 of	 complex	 interdependences	 that	 could	 exist	 between	 the	 pace	 of	 the	 new	
technology’s	diffusion	and	the	rate	of	(endogenous)	improvements	stemming	from	experience	with	
the	new	technology,	but	 it	conveys	an	empirically	plausible	picture	of	a	dynamic	transition	in	the	
industry	that	 is	being	driven	endogenously,	by	 feedback	from	the	process	of	diffusion	 itself.	Even	
though	there	may	exist	other	sources	of	change	affecting	user‐costs	of	the	new	technology,	in	addition	
to	 the	 experience‐based	 improvements	 in	 input	 efficiency	 explicitly	 represented	 in	 the	model	 as	
depending	directly	upon	continued	diffusion,	the	specifications	employed	in	the	simulations	will	be	
seen	to	plausibly	allow	for	other	indirect	dynamic	feedback	effects	on	the	growth	of	aggregate	labor	
productivity	and	TFP	in	the	consumer‐goods	industry.			

Presentation	 of	 the	 details	 of	 the	 micro‐to‐macro	 simulation	 model	 is	 relegated	 to	 the	
Appendix,	and	text	that	follows	complements	the	formal	derivations	found	there	by	discussing	the	
plausibility	 (if	 not	 the	 “realism”)	 of	 the	 main	 assumptions	 and	 specifications	 (in	 sect.	 4.1),	 and	
commenting	upon	the	interpretation	of	the	simulation	exercises	(in	sect.	4.2).	59		

4.1	 Assumptions,	 model	 specifications	 and	 implications	 for	 the	 diffusion‐driven	
	 aggregate	productivity	growth	rate:		

For	 these	 purposes	 one	 may	 envisage	 a	 discrete	 process	 innovation	 embodied	 in	 an	
indivisible	capital‐good	(“machine”)	that	is	assumed	to	be	of	fixed	capacity	and	infinite	durability.		
The	 production	 process	 using	 this	 new	 technique	 is	 characterized	 by	 lower	 unit	 	 labor	 input	
requirements	than	are	obtained	with	the	pre‐existing,	purely	labor‐using	method	of	producing	the	
consumer	 good,	 and	 it	 is	 assumed	 that	 the	 respective	 unit	 labor	 requirement	 for	 each	 of	 the	
techniques	are	invariant	to	the	scale	of	production	(up	to	the	capacity	limit	of		the	machine	in	the	
case	of	the	newer	one).	Specifically,	denoting	the	real	output	flow	per	unit	of	labor	input	using	the	j‐
th	 technique	 at	 time	 t	 as  tj ,	 where	 j	 =	 o	 represents	 the	 “old”	 technique	 and	 j	 =	N,	 the	 “new”	

technique,	 it	 is	 assumed:	 (a)that	 the	 innovative	 technique	 is	 characterized	 by	 higher	 labor	
productivity	:	 ( ) ( )N ot t  for	all	t;	(b)	the	old	technology	uses	only	labor,	and	its	unit	labor	input	

requirements	remain	unaltered:	 ( )t 0 0 ,	for	all	t.	

Further,	there	is	an	“incremental	improvement	function”	for	the	innovation,	arising	from	the	
accumulation	of	experience	in	commercial	applications	of	the	new	technique	which	yield	“learning	
spill‐overs”	 within	 the	 progressive	 segment	 of	 the	 consumer‐goods	 industry.	 These	 “learning	
externalties”	leave	the	output	capacity	of	the	machine	unchanged	but	have	the	effect	of	raising	 N
(t),	the	average	labor	productivity	of	all	of	the	facilities	in	the	progressive	segment	of	the	industry,	
that	is	to	say,	of	all	production	entities	that	have	adopted	the	innovation.60	Because	the	capacity	of	
the	innovation‐embodying	“machines”	is	assumed	to	be	fixed,	and	the	latter	are	perpetually	durable,	

                                                           
59	The	following	text	refers	readers	to	specific	equations,	using	the	numbering	that	appears	in	the	Appendix.		.		
60	The	 context	 of	 the	 innovation’s	 application	here	 refers	 to	different	production	 facilities,	 all	 of	which	 are	
assumed	to	involve	essentially	the	same	production	operations.	This	abstraction	from	reality	is	worth	noting,	
especially	when	one	considers	the	diffusion	of	so‐called	“general	purpose	technologies.”	Adaptation	of	GPTs	to	
the	requirements	of	different	industrial	applications	typically	has	entailed	significant	collateral	investment	in	
technical	improvements,	ancillary	capital	formation	and	organizational	change	‐‐	as	has	been	documented	for	
specific	 cases	 as	 different	 as	 electrification	 and	 ICTs	 (see,	 e.g.,	 David	 ,1991;	 David	 and	 Wright	 (2003);	
Brynjolfsson	(2000);	Bresnahan,	Brynjolfsson	and	Hitt	(2002)..			
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cumulative	production	experience	grows	pari	passu	with	the	stock	of	machines.	Further,	under	the	
simplifying	restriction	that	the	total	number	of	production	facilities	(firms)	in	the	sector	is	constant,	
the	share	of	the	sector’s	output	produced	by	its	innovation‐adopting	firms	is	the	measure	D(t)	=	Dn(t),	
where	Dn	denotes	the	proportion	of	adopters	among	N	firms	of	this	sector.		As	the	innovation	comes	
into	more	widespread	use	in	the	consumer‐goods	sector,	this	results	in	micro‐level	average	unit	labor	
requirements	decreasing	for	all	adopters,	both	absolutely	and	vis‐à‐vis	the	“old”	technique.61		

At	a	given	moment	in	time	the	level	of	average	labor	productivity	in	the	sector	of	the	economy	
to	which	the	innovation	is	applicable	can	be	represented	as	a	function	of	the	share	of	the	sector’s	
output	 being	 produced	 by	 its	 “progressive”,	 innovation‐adopting	 segment	 and	 the	 relative	 labor	
input	requirement	of	the	new	and	the	old	techniques.	The	output	share	of	the	industry’s	“progressive”	
segment	is	the	relevant	measure	of	the	extent	of	the	innovation’s	diffusion,	D(t),62		and	the	average	
level	of	 labor	productivity	throughout	the	consumer‐goods	industry	is	found	as	the	inverse	of	the	
weighted	 harmonic	 average	 of	 the	 unit	 labor	 requirements	 of	 adopters	 and	 non‐adopters	 of	 the	
innovation	 (eqs.	A.1,	A.2)	 ‐‐	 the	weights	being	D(t)	 and	 [1	–	D(t)],	 respectively.	 Consequently,	 an	
increase	in	the	extent	of	diffusion	has	a	direct,	compositional	shift	effect	on	the	growth	rate	of	average	
labor	productivity	in	consumption‐goods	sector,	and	may	have	“indirect	effects”	through	the	variety	
of	channels	through	which	more	widespread	use	of	the	new	technology	alters	 its	unit	 labor	input	
requirements	—	vis‐à‐vis	that	of	the	“old”	technology	‐‐	in	all	applications	(eq.	A.1a).	Improvements	
that	lower	the	unit	labor	requirements	associated	with	the	innovation,	in	term	are	a	source	of	“self‐
reinforcing”	feedback”	that	sustains	its	widening	acceptance.			

	 	A	further,	general	empirical	 implication	may	be	remarked	upon	at	this	point.	It	 is	evident	
(from	 eq.	 A.5)	 that	 the	 average	 rate	 of	 growth	 of	 labor	 productivity	 in	 the	 innovation‐adopting	
industry	cannot	be	strictly	proportional	 to	 the	rate	of	growth	of	 the	output‐share	measure	of	 the	
extent	 of	 diffusion,	D(t).	When	 the	 time‐path	 of	D(t)	 takes	 the	 classic,	 symmetric	 S‐shaped	 form	
described	by	the	cumulative	logistic	(or	the	normal)	distribution,		the	annual	change	in	the	extent	of	
diffusion	(dD)	will	reach	a	maximum	(the	inflection	point	of	the	curve)	where	D	=	0.5,	but	the	the	
peak	 in	 the	 proportional	 growth	 rate	 of	 labor	 productivity	 necessarily	 occurs	 after	 the	 extent	 of	
diffusion	 had	 passed	 its	 peak	 ‐‐	 the	 “half‐way”	 mark,	 under	 the	 stated	 symmetry	 conditions.		
Moreover,	further	postponement	of	the	productivity	growth	peak	would	result	where	the	elasticity	
of	the	innovation’s	indirect	effects	is	not	constant,	but	instead	increases	as	the	innovation	becomes	

                                                           
61	Because	the	process	envisaged	is	one	in	which	D(t)	increases	monotonically,	it	is	not	necessary	to	formally	
specify	that	the	enhancement	effects	due	to	learning	are	irreversible,	so	that	the	ratio	( ( ) / ( )N ot t  )	is	non‐

decreasing.	

62	 The	domain	of	D	 is	 [0,1],	 but	 the	upper	 limit	 is	 definitional	 and	 the	 attained	 limit	 of	D(t)	 is	 taken	 to	 be	
endogenous,	for	reasons	discussed	in	connection	with	Figure	2,	above,	in	Section	3,	but,	under	the	assumptions	
made	here,	production	facilities	using	“the	machine”	always	are	operated	at	the	latter’s	fixed	capacity	(specified	
in	terms	of	output).	Further,	it	is	convenient	to	assume	that	there	is	a	“management	constraint”	on	the	use	of	
labor	in	the	old	technology,	so	that	the	output	of	individual	production	facilities	(firms)	in	the	non‐progressive	
segment	 is	bounded	at	 a	 constant	uniform	 level	 that	never	exceeds	 that	of	 the	machine‐using	 firms.	These	
assumptions	support	the	equivalence	of	the	measures	D	=	Dn	.	Note	that	Griliches	(1957)	also	works	with	an	
output	related	measure	of	D(t)	–	the	proportion	of	total	corn	acreage	that	was	planted	with	hybrid	corn	seeds.	
Had	he	 sought	 to	define	 an	 appropriate	 (output	 share)	measure	 for	deriving	 average	productivity	 in	 corn‐
production	as	 a	 function	of	 the	 acceptance	of	hybrid	 corn	 seed,	 it	would	have	been	necessary	 to	allow	 for	
difference	in	yield	per	acre	between	hybrid	and	open‐pollinated	corn	in	each	of	the	crop‐reporting	regions.	But	
that	was	not	Griliches’	purpose,	and	he	simply	accepted	the	available	U.S.	Agriculture	Department	statistics	of	
acreages	planted	by	type	of	seed.			



‐	41	‐	
	

 
 

the	 dominant	 technology	 within	 the	 sector.	 Such	 “delayed	 positive	 feedback	 effects”	 on	 the	
differential	between	productivity	levels	characterizing	the	new	and	old	technologies	are	quite	likely	
to	 be	 important	 where	 there	 are	 significant	 network	 externalities,	 and	 labor	 force	 training	
externalities	that	accompany	more	widespread	adoption	of	the	innovation.		

For	convenience	of	implementation,	the	simulation	model	is	specified	under	the	assumptions	
that:	

	
	(i)	there	is	a	stationary	log‐logistic	frequency	distribution	of	an	underlying	critical	variate	z	

among	 the	 firm	belonging	 to	 the	population	of	potential	 adopters	 (e.g.,	 their	 respective	 expected	
output	scales,	or	distances	from	the	market	for	their	output);	

	(ii)	the	threshold	value	for	agents	to	select	the	new	technique	is	z*(t)	at	time	t,	and	it	declines	
at	the	exponential	rate	8	;	

	
	(iii)	that,	since	the	new	technique	is	embodied	in	a	fixed	discrete	input‐bundle,	only	one	unit	

of	which	is	acquired	by	each	adopting	agent,	firms	working	with	a	unit	of	the	innovative	technology	
all	will	have	identical	and	constant	flow	output	capacity	kN	 ,	whereas	non‐adopting	firms	will	have	
constant	flow	output	capacity	kO.	<	kN	.	

These	assumptions	lead	immediately	to	two	results	that	are	useful	in	simplifying	the	exposition.	The	
index	of	the	extent	of	diffusion	at	time	t,	D(t),	defined	as	proportion	of	the	population	that	has	adopted	
the	innovation,	will	be	a	logistic	function	in	the	t‐domain,	with	asymptotic	saturation	at	D()=1	(eq.	
A.6).			Secondly,	the	instantaneous	growth	rate	along	the	diffusion	path	will	be	directly	proportional	
to	[1‐	D(t)],	where	the	factor	of	proportionality	is	  >	0	(see	eq.	A.7b).	

	 The	parameter	8	 ,as	has	been	noted,	is	the	exponential	rate	at	which	the	threshold	variate	
z*(t)	 is	decreasing,	whereas	  	 is	 the	 slope	parameter	of	 the	 cumulative	 logistic	distribution,	 and	
varies	directly	with	the	kurtosis	(peaked‐ness)	of	the	frequency	distribution	of	z	and	inversely	with	
its	variance	among	the	firms	forming	the	population	of	potential	adopters	 in	the	consumer‐goods	
sector.	 Variations	 of	 this	 parameter	 pair,	 reflecting	 alterative	 underlying	 conditions	 affecting	 the	
microeconmics	of	adoption	of	the	innovation	therefore	will	translate	into	alternative	shapes	of	the	
diffusion	path,	D(t),	and	thence	into	corresponding	alternative	productivity	growth	paths.				

		 A	further	simplifying	specification	of	the	endogenous	“improvement	 function”	for	the	new	
technology	results	in	
		
	 (iv)	a	constant	elasticity	of	average	labor	productivity	among	adopting	firms	with	respect	to	
the	extent	of		diffusion	in	the	industry):		 ( )t =	 0( ) =	 ,	for	all	t.			

	 Because	D(t)	is	tantamount	to	an	index	of	the	extent	of	the	cumulative	experience	with	the	
production	and	 the	utilization	of	 the	 innovation‐embodying	capital	 goods,	 this	 constant	elasticity	
condition	is	satisfied	by	the	classic	learning	curve	or	“progress	function”	suggested	by	Hirsch	(1952)	
and	Arrow	(1962)	–	as	is	seen	from	(eq.	A.8).		That	interpretation	is	entirely	straightforward	when	
the	 “learning”	 involving	 integrating	 the	 novel	 capital	 goods	 into	 production	 operations	 and	 the	
acquisition	 by	workers	 of	 skills	 in	 its	 use,	 as	 a	 function	 of	 operating	 the	 infinitely	 durable	 fixed‐
capacity	machines.	As	was	noted	above,	given	the	proportion	of	output	represented	by	the	capacity	
of	 the	 new	 machine	 stock	 then	 would	 vary	 directly	 with	 the	 cumulated	 output	 of	 the	 industry	
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supplying	such	equipment,	and	also	with	the	cumulated	volume	of	gross	investment	represented	by	
those	machines.63	

It	is	necessary	to	pause	here	and	to	notice	an	implication	of	having	previously	specified	that	
the	micro‐level	“break‐even”	threshold	was	being	driven	downwards	through	the	distribution	F(z)	
at	a	constant	(exponential)	rate	(8	).		Consistency	between	that	specification	and	the	specification	of	
a	 constant	 elasticity	 of	 “learning”	 with	 respect	 to	 D(t)	 ‐‐	 which,	 by	 lowering	 the	 unit	 labor	
requirements	for	users	of	the	new	(mechanized)	technique	will	reduce	the	critical	threshold	(z*)	at	
a	 slowing	 pace	 as	 diffusion	 proceeds,	 implies	 that	 some	 other	 forces	 in	 addition	 to	 the	 assumed	
diffusion‐induced	 “learning	effects”	must	also	be	acting	on	z*(t)	 	These	auxiliary	dynamic	drivers	
would	 have	 operate	 so	 as	 to	 reduce	 z*(t)	 at	 a	 compensating	 pace	 that	 was	 increasing	 in	D(t)	 ‐‐	
although	 less‐than‐proportionately	 –	 in	 order	 to	maintain	 the	 over‐all	 constancy	 of	 the	 specified	
exponential	rate	(8)	of	the	threshold’s	downward	passage	through	the	z‐distribution.	

Plausible	candidates	are	available	to	fill	that	role,	and	the	interpretation	of	the	reduced	form	
simulation	model	 can	 be	 enriched	 by	 briefly	 describing	 a	 particular	 set	 of	mechanisms	 that	 are	
consistent	 with	 the	 previous	 analysis	 of	 diffusion	 dynamics	 in	 a	 heterogeneous	 population	 of	
potential	adopters.64	The	accumulation	of	process	innovations	in	the	capital‐goods	sector	that	was	
supplying	 the	 machines	 ‐‐	 deriving	 from	 the	 shared	 cumulative	 experience	 gained	 in	 machine‐
building,	 could	 generate	 cost‐savings	 advances	 in	 machine‐building	 at	 a	 rate	 that	 would	 be	
augmented	by	recombination	of	the	resulting	incremental	process	improvements.65	The	implication	
of	recombinant	novelty	in	this	case,	assuming	competition	among	the	firms	in	the	machinery	supply	
sector,	is	that	the	rate	at	which	the	ratio	between	real	wage	and	the	competitive	supply‐price	of	the	
machine	would	tend	to	rise	more	quickly	as	the	diffusion	process	proceeded	–	because	the	cumulative	
number	of	machines	installed	would	rise	pari	passus	with	the	rising	extent	of	diffusion	‐‐	under	the	
assumption	 that	 the	 number	 of	 establishment	 in	 the	 population	 of	 potential	 adopter	 remained	
unchanged.	

Therefore,	we	may	posit	the	operation	of	this	second	feedback	loop	‐‐	from	the	progress	of	
diffusion	to	process	innovations	in	machine‐building	that	are	cost‐saving	for	the	firms	in	that	sector.	
The	effect	of	the	later	will	be	to	increase	the	rate	at	which	the	threshold	for	adoption	in	the	consumer‐
goods	sector	is	reduced	over	the	course	of	the	innovation’s	diffusion.	This	induced	concomitant	of	

                                                           
63	This	 follows	 immediately	 from	the	assumptions	 that	 the	 ‘’learning	effect”	 in	 the	use	of	machines	 is	both	
Harrod‐neutral	 and	 disembodied.	 The	 former	 of	 these	 assumed	 conditions	 leaves	 the	 per	 period	 output	
capacity	of	additions	to	the	stock	of	the	novel	capital	good	unaltered,	so	that	the	ratio	of	aggregate	output	to	
the	stock	of	machines	installed	remains	constant,	and,	given	the	infinite	durability	assumption,	over	time	the	
cumulative	volume	of	production	 rises	pari	passus	with	 cumulative	 investment	 in	 the	new	equipment.	The	
latter	condition	implies	that	it	“spills	over”,	providing	an	externality	for	all	the	enterprises	that	have	adopted	
the	innovation	–	in	the	form	of	the	reduced	unit	labor‐requirements	in	production	of	the	consumer	good	(as	
noticed	in	footnote	37,	above).			

64	Harking	back	 to	 the	multi‐sector	model	presented	 in	 section	3,	 it	will	 be	 recalled	 that	 the	population	of	
establishments	in	the	consumer‐goods	industry	may	be	heterogeneous	with	respect	to	their	expected	scales	of	
production,	and	the	threshold	scale	for	adoption	z*	would	then	tend	to	be	driven	downward	by	increases	in	the	
ratio	of	the	unit	labor	costs	to	the	user	cost	of	the	fixed	capital	equipment	(the	indivisible	“machine”).	

65	On	recombinant	generation	of	technological	(and	other)	novelties,	see,	e.g.,	Weitzman	(1998),	and	Shapiro	
and	Varian	(1999),	and	the	conceptualization	a	process	of	incremental	“recombinant	innovation”	generating	a	
rising	–	albeit	bounded	‐‐	rate	of	technological	change.	This	is	assumed	here	to	yield	an	accelerated	pace	of	
gains	in	the	efficiency	with	which	the	innovation‐embodying	machines	can	be	produced.		.		
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continued	diffusion	could	combine	with	an	exogenous	constant	trend	rate	of	growth	of	economy‐
wide	real	wage	rate	due	to	developments	arising	outside	the	innovation	adopting	consumer	goods	
industry,	and	thereby	suffice	to	exactly	offset	the	decelerating	rate	of	fall	in	the	threshold	due	to	the	
feedback	from	the	direct	and	indirect	effects	of	the	innovation’s	widening	adoption.	Indeed,	it	is	not	
difficult	to	find	the	conditions	under	which	the	joint	operation	of	these	exogenous	and	endogenous	
drivers	would	just	suffice	to	maintain	the	constancy	of	the	exponential	rate	fall	in	the	threshold	for	
adoption,	fulfilling	the	simulation	model’s	ability	to	generate	a	diffusion	path	that	has	the	classical	
logistic	form.66	

The	foregoing	interpretation	of	the	reduced	form	labor‐productivity	improvement	function	
for	 the	 innovation	 clearly	 shares	 something	with	 the	 conventional	 suppositions	 that	 learning‐by‐
producing	 and	 learning‐by‐using	 new	 investment	 have	 effects	 on	 productivity	 that	 are	 Harrod‐
neutral.	Consequently,	it	is	conceivable	these	endogenous	effects	could	be	incorporated	in	growth	
models	 that	 are	 consistent	with	 the	 existence	 of	 a	 balanced,	 or	 steady‐state	 growth	 path	 for	 the	
economy.	But,	as	will	be	seen,	the	transition	following	the	introduction	of	an	innovation	in	a	given	
industry	or	sector	of	the	economy	generates	a	wave	in	the	growth	rate	of	aggregate	productivity.	To	
maintain	the	economy’s	aggregate	productivity	growth	at	steady	rates	would	require	a	succession	of	
fortuitously	timed	innovations	appearing	in	various	sectors,	or	a	sequence	of	transitions	driven	by	
the	overlapping	diffusion	of	successively	introduced	general‐purpose	technologies.	

	Such	constructions,	however,	lie	beyond	the	aspirations	of	the	present	simulation	exercise,	
which	aims	to	establish	more	limited	propositions	the	diffusion‐productivity	growth	nexus.	It	should	
be	equally	obvious	that	the	present	formulation	has	sought	to	avoid	the	complications	of	allowing	for	
less‐than‐universal	and	instantaneous	learning	externalities,	such	as	would	be	present	were	one	to	
suppose	 that	 the	 learning	 effects	 resulted	machines	 that	 improved	 in	 quality	 continuously	 from	
vintage‐to‐vintage.67	Were	the	latter	to	be	the	case,	however,	the	latest	incremental	reduction	in	labor	

                                                           
66	From	the	specification	of	the	learning	function	in	eq.	A8,	and	eq.	A7b	it	can	be	seen	that	the	rate	at	which	
z*(t)	 would	 be	 falling	 due	 to	 the	 endogenous	 learning	 effects	 within	 the	 adopting	 industry	 is	 8e(t)=	  [

(log{ ( )} / )D t t  ].	 This	 rate,	 obviously,	 is	 decreasing	 in	 D(t).	 The	 simplest	 specification	 of	 an	 offsetting	

endogenously	generated	downward	force	on	the	adoption	threshold	would	require	that	rate	to	be:																	8`(t)	
=	8	‐	8	e(t)=	8 (1 )[1 ( )]D t   ,	i.e.,	a	rate	that	is	increasing	with	D(t),	but		less‐than‐proportionately.	.In	the	
present	context	of	an	innovation	that	is	relatively	fixed	factor	intensive	and	variable	input‐	(labor‐)	saving,	the	
joint	 candidates	 for	 this	 role	are	 (1)	an	exogenous	constant	upward	 trend	 in	 the	real	wage	 (8	 at	 the	rate	 [
(1 )  )	–	due	 to	developments	exogenous	 to	both	 the	machine‐building	 industry	and	 the	particular	 final	
goods	industry,	and	an	endogenous	feedback	from	cumulative	“learning	effects”	in	the	machine‐building	sector.	
The	latter	must	continuously	reduce		the	ratio	between	the	price	of	the	innovation–embodying	capital‐good	
and	the	wage	rate	throughout	the	diffusion	process	–		a	rate	that	is	increasing	with	cumulative	increase	in	the	
stock	of	machines	that	had	been	installed:	(8	[ (1 )  ]D(t)).			

67	Comin	and	Hobjin	(2008)	have	made	an	effort	to	introduce	continuous	vintage	improvement	of	embodied	
innovations	into	a	one‐sector	model	of	steady‐state	growth,	while	allowing	for	the	growth	rate	of	aggregate	
labor	productivity	 to	be	affected	by	 technology‐specific	 “diffusion	 lags”.	As	 theirs	 is	 a	 representative	agent	
modelling	approach,	the	concept	of	diffusion	departs	from	the	definition	of	increasing	extent	of	acceptance	of	
the	 innovation	 among	 a	 heterogeneous	 population	 of	 potential	 adopters,	 or	 of	 the	 rising	 proportion	 of	
aggregate	output	produced	with	the	new	technology.	Curiously,	therefore,	“lags”	in	their	model	do	not	measure	
the	 time	 elapsed	 between	 commercial	 introduction	 and	 substantial	 saturation	of	 the	market	 for	 particular	
innovations.	Instead,	they	define	the	“diffusion	lag”	unconventionally	as	the	(constant)	delay	between	invention	
and	 commercial	 introduction	 of	 each	 vintage	 of	 the	 family	 of	 innovations	 ‐‐including	 the	 first).	 The	 latter	
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requirements	 would	 be	 confined	 only	 to	 the	 current	 extensive	 margin	 of	 adopting	 firms	 in	 the	
consumer	goods	sector—which	is	not	the	case	here.68		

The	 foregoing	 log‐logistic	 heterogeneity	 specifications,	 and	 the	 expression	 for	 the	 growth	
rate	of	aggregate	labor	productivity	as	a	direct	and	indirect	function	of	D(t),	lead	to	an	expression	
(eq.	A.9)	for	the	proportional	rate	of	growth	of	aggregate	labor	productivity	in	the	consumer‐goods	

sector	‐‐	denoted	by	 ( )LL t


:	

where	
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 	>	0	being	a	normalization	parameter	in	the	learning	function.	

	 It	is	evident	that	that	the	growth	rate	is	quadratic	in	D(t)	‐‐	whether	or	not	there	are	indirect	
learning	effects	from	diffusion	(i.e.,	for	0	<	 )	–	which	leads	one	to	anticipate	the	finding	that	the	
monotonic	rise	of	the	logistic	diffusion	curve	will	generate		a	single‐peaked	wave	in	the	growth	rate	
of	labor	productivity.	Further,	the	product	of	the	micro‐level	parameters,	  ,	will	acts	as	a	scalar	
multiplier	 affecting	 the	 slope	 of	 the	 diffusion	 curve	 and	 hence	 the	 the	 amplitude	 of	 the	 wave	
generated	 in	 the	productivity	 growth	 rate.	The	 first	 aspect	of	 this	may	be	 seen	directly	 from	 the	
simulations	displayed	in	Figure	3,	which	shows	three	alternative	diffusion	paths	on	the	left‐side	of	
the	panel,	corresponding	to	different	heterogeneity	specifications	corresponding	to	the	value	of	the	
variance	of	the	z‐distribution,	while	holding	constant	8,	the	rate	of	fall	in	the	threshold	z*(t).	On	the	
right‐side	 of	 Figure	 3	 appear	 the	 corresponding	 waves	 that	 are	 induced	 in	 the	 growth	 rate	 of	
aggregate	labor	productivity.69	

	 From	the	positive	value	of	2	that	appears	in	the	notes	beneath	Figure	3,	it	can	be	seen	that	
these	growth	rate	simulations	allow	for	learning	effects	with	the	new	technology.		The	timing	in	the	
peak	in	the	aggregate	labor	productivity	growth	rate,	which	occurs	after	the	maximum	in	the	slope	

                                                           
corresponds	to	what	Griliches	(1957),	Mansfield	(1962)	and	the	following	literature	label	as	the	“introduction”	
lag,	distinguishing	it	from	the	“acceptance”	or	“diffusion”	lag.				

68	Without	a	 complete	 specification	of	 the	micro‐level	 adoption	dynamics	 it	 is	not	possible	 to	 compare	 the	
implications	for	the	path	of	aggregate	productive	change	of	a	vintage	model	with	embodied	learning	effects,	
rather	than	the	present	model	of	diffusion	with	disembodied	augmentation	of	the	benefits	accruing	to	all	the	
adopters	of	the	innovation.			

69	From	the	top	panel	of	Figure	4	(below)	it	also	may	be	seen	that	although	the	behavior	of	the	average	labor	
productivity	growth	rate	is	non‐monotonic,	the	underlying	diffusion	rate	(i.e.,	the	proportional	growth	of	D,	is	
undergoing	continuous	retardation	along	the	logistic	path.	A	good	bit	of	surprise,	and	some	confusion	on	this	
point	stems	from	the	casual	supposition	that	the	rate	of	productivity	growth	should	reflect	immediately	reflect	
the	rate	of	diffusion,	whereas	it	is	the	absolute	rate	of	change	in	D	that	matters.		
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of	the	diffusion	curve	–	at	the	inflexion	of	the	logistic	(D(t)	=	.5),	as	has	been	seen,	is	a	general	property	
that	holds	whether	or	not	there	are	indirect,	feedbacks	from	“experienced‐based	learning”.		

[Figure	3	here]	

Figure	3	exhibits	a	third	point,	upon	which	Part	2	remarked:	the	influence	of	the	shape	of	the	
distribution	 of	 underlying	 population	 heterogeneity	 upon	 diffusion	 dynamics,	 and	 hence	 upon	
aggregate	productivity	growth	in	the	industry.	Other	things	being	equal,	the	lower	the	value	of	the	
logistic	 parameter(,	 the	 greater	 is	 the	 variance	 (and	 the	 lower	 is	 the	 Kurtosis)	 of	 the	 frequency	
distribution	 of	 the	 population	 characteristic	 (z)	 that	 enters	 the	 micro‐level	 choice	 of	 technique	
decisions.	Thus,	with	the	“break‐even”	assumed	to	be	falling	exponentially	at	the	same	(fast)	rate	in	
all	 three	 situations,	 its	 is	 seen	 that	 lower	values	of	(	stretch	out	 the	diffusion	process,	 lower	 the	
productivity	growth	profiles	and	displace	the	(attenuated)	peak	substantially	into	the	future.70		

Two	implications	follow	immediately	from	this	latter	observation.	First,	one	is	only	seeing	
half	 the	picture	by	 focusing	on	 the	determinants	of	 the	pace	at	which	 the	 threshold	point	z*(t)	 is	
pushed	 downward	 through	 the	 z‐distribution.	 Putting	 this	 more	 concretely,	 the	 essentially	
neoclassical	factor‐substitution	story	that	economists	today	like	to	tell	about	the	way	that	a	new	form	
of	capital	raises	aggregate	capital‐intensity	and	thereby	raises	labor	productivity,	more	often	than	
not	is	an	inadequate	“representative	agent”	tale.		All	the	emphasis	is	placed	on	the	forces	causing	the	
relative	fall	of	the	real	user‐costs	of	fixed	capital	inputs	(such	as	computer	equipment)	vis‐à‐vis	labor	
inputs	—	as	the	driver	of	factor	substitution,	and	hence	the	determinant	of	the	growth	rate	of	labor	
productivity.	But	if	the	z‐distribution	differed	from	one	sector	of	the	economy	to	the	next,	there	would	
be	quite	different	patterns	of	diffusion	and	correspondingly	different	labor	productivity	performance	
–	 for	 which	 the	 hypothesized	 representative	 agent	 “model”	 would	 have,	 at	 best,	 only	 ad	 hoc	
explanations.	71		

Secondly,	 it	 is	 worth	 noticing	 that	 the	 measured	 pace	 of	 diffusion	 and	 the	 dynamics	 of	
productivity	may	well	be	affected	by	the	alteration	of	the	underlying	z‐distribution,	as	a	result	of	the	
economic	pressures	emanating	from	the	adoption	of	the	innovation	by	some	firms	in	the	industry.	It	
is	quite	conceivable	that	competitive	pressures	on	the	non‐adopting	remnant	of	the	industry	would	
force	out	firms	at	the	low	z	end	of	the	distribution,	thereby	tending	to	raise	the	parameter	(	over	the	
course	of	the	process.	The	result	would	no	longer	be	a	strictly	logistic	diffusion	path.	To	preserve	the	
latter	form,	it	would	be	necessary	for	the	z‐distribution	to	be	transformed	by	a	(‐preserving	upward	
shift	in	its	mean.	Suppose	that	evolution	of	the	first	moment	of	z	proceeded	at	a	constant	proportional	
rate,	:	.	It	is	simple	enough	to	show	that	the	slope	coefficient	of	the	resulting	logistic	diffusion	path	
would	then	become	{((8+:)}.	Consequently,	the	working	of	competitive	forces	at	the	industry	level	
can	quite	neatly	be	 formally	 assimilated	 into	 this	 richer	 account	of	 long‐run	productivity	 growth	
dynamics.		

                                                           
70	Note	that	the	absolute	values	of	(	and	8	used	in	this	simulation	are	rather	arbitrary;	the	same	results	could	
be	obtained	if	the	annual	rate	of	decline	in	8	were	taken	to	be	half	as	fast	–	approximating	the	15%	per	annum	
trend	in	the	hedonic	prices	of	computer	and	communications	equipment	—	if	the	underlying	heterogeneity	
distribution	was	half	as	spread	out	(i.e.,	(=	{0.6,	0.9	and	1.2}).		

71	 The	 resemblance	 of	 this	 picture	 to	 the	 now‐popular	 line	 of	 interpretation	 of	 the	 computer‐revolution’s	
contribution	 to	 aggregate	 productivity	 (developed	 in	 the	 influential	work	 of	 Jorgenson	 (2000)	 and	 his	 co‐
authors)	is	not	entirely	coincidental.		
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		 4.2	 Simulating	 effects	 on	micro‐level	 deteminants	 of	 diffusion	 on	 the	 growth	 rate	
	 of	measured	TFP	

Explicit	modelling	of	 the	microeconomics	of	diffusion	decisions	shed	further	and	different	
light	upon	the	sources	of	the	“productivity	residual.”	Quite	clearly	this	cannot	be	the	whole	picture,	
because	the	effects	of	the	diffusion	process	in	the	case	of	each	innovation	(or	family	of	improvable	
innovation)	are	transitional.		When	the	new	technique	finds	its	way	into	all	the	available	niches	of	
use,	 the	 impetus	 imparted	 to	 productivity	 improvement	 is	 exhausted.	 Diffusion	 thus	 resembles	
evolutionary	processes	of	selection,	 in	being	“a	 fire	that	consumes	 its	own	fuel.”	This	 transparent	
consideration	certainly	is	sufficient	warrant	for	the	attention	that	Zvi	Griliches’	empirical	research	
program	devoted	 to	 the	nexus	 between	 firm‐level	R&D	 investment	 and	multi‐factor	 productivity	
growth.	 But	 perhaps	 something	 was	 lost	 by	 working	 at	 that	 very	 low	 level	 of	 aggregation:	 it	
suppressed	attention	to	the	industry‐and	sector‐level	productivity	effects	that	depended	upon	the	
diffusion	 of	 the	 novelties	 created	 in	 company	 laboratories,	 and	 by	 publicly	 funded	 research	 in	
universities	and	government	mission‐agencies.	

	Granting	 while	 sustained	 advances	 in	 total	 factor	 productivity	 do	 depend	 upon	 the	
generation	of	further	innovations,	to	the	degree	that	substantial	productivity	raising	techniques	are	
not	 being	 introduced	 continuously	 in	 time,	 the	 pace	 of	 TFP	 growth	will	 be	 subject	 to	 wave‐like	
impulses	 that	 reflect	 the	 dynamics	 of	 the	 overlapping	 diffusion	 of	 sequential	 innovations.	
Technological	 breakthroughs	 that	 yield	 potentially	 large	 and	 ubiquitous	 gains	 unit	 labor	
requirements	 for	 the	adopters,	and	 induce	clusters	of	 innovation	 in	numerous	 technically	related	
industries,	consequently	may	well	generate	pronounced	surges	in	the	productivity	growth	rate	some	
considerable	time	after	the	key	innovation	is	first	introduced.			

	 The	simulation	model	developed	in	the	Appendix	generates	changes	in	the	TFP	growth	rate	
by	expressing	the	latter	as	inverse	of	the	weighted	average	of	the	rates	of	change	in	the	unit	labor	
input	and	unit	capital	input	requirements	in	the	progressive,	innovation‐adopting	segment,	and	the	
rate	of	change	in	the	unit	labor	input	requirements	of	the	part	of	the	at	industry	that	continues	to	
work	with	the	old	(un‐mechanized)	techniques.	The	weights	for	those	two	segments,	as	before,	are	
found	 from	 the	 measure	 of	 the	 extent	 of	 diffusion	D(t)	 (see	 eq.	 A.11).	 In	 order	 to	 calculate	 the	
weighted	average	of	the	growth	rates	of	capital	and	labor	productivity	in	the	“progressive”	segment	
of	 the	 industry,	 however,	 is	 necessary	 also	 to	weight	 the	 latter	 by	 the	 elasticities	 of	 output	with	
respect	to	each	of	the	factor	inputs.	The	simplest	approach	available	is	the	one	that	has	been	adopted	
for	the	present	simulation	exercises,	namely,	positing	that	the	segment	of	the	final	goods	industry	
comprising	production	facilities	that	have	adopted	the	innovation	is	characterized	by	an	aggregate	
production	function	of	the	Cobb‐Douglass	form,	a	specification	that	is,	at	least,	not	inconsistent	with	
the	restrictions	that	have	been	placed	on	the	new	technique	of	production.72		

                                                           
72	A	Cobb‐Douglass	 aggregate	production	 function	 for	 this	 (growing)	 sector	would	be	 implied	 if	 the	 fixed‐
coefficient	production	techniques	being	used	by	the	constituent	firms	(each	technique	being	characterized	by	
a	capital‐labor	ratio)	varied	according	to	a	Pareto	distribution.	See	Houthakker	(1955‐56).	Such	a	possibility	is	
not	obviously	inconsistent	with	the	assumptions	that	have	been	made	about	the	novel	technology,	because	the	
while	the	capacity	of	the	indivisible	capital	good	embodying	the	innovation	is	assumed	to	be	constant,	the	unit	
labor	 input	 requirements	 are	 subject	 to	 change	 over	 time,	 as	 are	 the	 associated	 production	 scales	 of	 the	



‐	47	‐	
	

 
 

	 It	follows	that	the	elasticity	of	output	with	respect	to	labor	input	in	the	adopting	segment	of	
the	industry	will	be	constant	over	time.	Under	conditions	of	competition	in	the	product	and	factor	
markets,	 this	 implies	 that	 the	 share	 of	 labor	 in	 aggregate	 output	 of	 the	 adopting	 segment	 of	 the	
industry	also	will	be	a	constant,	0		< N <	1.	73		But	in	the	consumer‐goods	industry	as	a	whole,	labor’s	

share	will	be	contracting	as	the	diffusion	of	the	relatively	capital‐using	innovation	proceeds	and	the	
aggregate	capital‐output	ratio	in	the	industry	is	pushed	upwards	(see	eq.	A.14).		

There	are	two	alternative	special	assumptions	of	interest	in	regard	to	the	rate	of	change	in	

output‐capital	ratio	with	the	new,	mechanized	technology,	 )(tN



 :	under	the	assumption	of	Harrod‐
neutrality	it	is	zero,	whereas	under	the	assumption	of	Hicks‐neutrality	is	equality	to	the	rate	of	change	
in	labor	productivity.	Correspondingly,	there	are	two	alternative	expressions	(eqs.A.15	and	A.16)	hat	
relate	the	rate	of	change	of	the	industry‐wide		average	productivity	of	capital	in	the	consumer	goods	
sector	to	the	growth	rate	in	the	measure	of	diffusion.		

	 Because	 it	 has	 been	 assumed	 that	 a	 Cobb‐Douglass	 aggregate	 function	 describes	 the	
relationship	between	labor	and	capital	inputs	in	the	progressive,	innovation‐adopting	segment	of	the	
portion	 of	 the	 consumer‐goods	 industry,	 Harrod‐neutrality	 and	 Hicks‐neutrality	 are	 equivalent	
specifications	for	the	effects	of	technological	change	within	that	portion	of	segment	industry,	but	that	
is	 not	 the	 case	 for	 the	 industry	 as	 a	 whole.	 Consequently,	 there	 are	 two	 alternative	 simulation	
equations	for	the	growth	rate	of	TFP,	in	the	Harrod‐neutrality	case:	

 2( ) | ( ) 1 1 ( ) ( )(1 ) ( )[1 ( )]N NHarrod NA t t D t D t D t  
 

            
			 	

                                                           
adopting	firms	at	the	extensive	margin.	But,	that	alone	does	not	suffice	to	guarantee	that	the	distribution	of	
micro‐level	technical	coefficients	would	have	the	Pareto	form.			

73	Inasmuch	as	the	output	capital	ratio,	v	is	taken	to	be	constant	for	adopting	firms,	assuming	they	produce	at	
the	capacity	of	“the	machine”,	constancy	of	the	real	rate	of	interest	(r)	in	the	economy	would	set	the	share	of	
output	imputed	to	capital,	and,	under	constant	return	to	scale,	this	fixes	 N 	=	[1‐		r	v	],	whereas,	for	the	industry	

as	a	whole	the	share	of	labor	is	decreasing	as	the	diffusion	of	the	relatively	capital‐using	technology	proceeds	
(eq.	A.12)	and	can	be	found	from	 ( )L t =	1	–	D(t)[	r	v	].		One	cannot	suppose	that	at	the	level	of	the	individual	

firms	the	share	of	output	going	to	capital	was	the	elasticity	of	output	with	respect	to	capital	input	services,	since	
with	fixed	coefficients	that	elasticity	is	not	defined.	But,	the	assumption	made	here	applies	to	the	aggregate	
production	function	for	the	innovating	segment	as	a	whole.	One	is	then	free	to	assume	that	at	the	micro	and	
aggregate	 level	 of	 the	 ensemble	 of	 adopters	 in	 the	 consumer‐goods	 sector,	 the	 average	 rate	 of	 return	 to	
(infinitely	 durable)	 capital	 is	 the	 real	 interest	 rate	 in	 the	 economy.	 	 This,	 however,	 does	 constrain	 the	
interpretation	that	can	be	placed	on	the	source	of	heterogeneity	in	the	population	of	adopters.	For	example,	it	
would	be	difficult	to	consistently	suppose	that	a	threshold	model	based	upon	differences	among	firms	in	their	
expected	output	rate	accounted	for	non‐adoption	by	firms	that	were	below	the	break‐even	scale	of	production	
for	an	innovation	that	was	fixed‐factor‐using,	and	variable‐factor	–saving	–	as	suggested	in	the	discussion	of	
section	3.	Firms	at	the	margin	of	adoption	would	be	“breaking	even”,	and	earning	the	opportunity	cost	rate	of	
return	on	their	investments,	but	as	diffusion	proceeded	(with	the	threshold	declining)	a	growing	fraction	of	the	
adopters	would	be	earning	supernormal	returns	on	their	 investment	–	as	 their	output	scale	was	above	the	
breakeven	point.	Diffusion	would	drive	a	rise	in	the	share	of	output	that	came	to	owners	of	capital	within	the	
consumer‐goods	sector’s	“progressive”	segment,	and	a	fortiori	in	the	sector	as	a	whole	–	because	the	aggregate	
capital‐output	ratio	there	was	rising	as	more	and	more	firms	adopted	the	capital‐using	innovation.			
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and	the	Hicks‐neutrality	case:		

 ( ) | ( ) | ( ) 1 [1 ( )]NHicks NA t A t HaN D t 
 

             
,	

derived	as	eqs.A.19	and	A.20,	respectively.			 	 	

Other	things	being	equal,	simulations	of	equation	(A3.20)	produce	TFP	growth	rates	that	lie	
everywhere	above	those	from	equation	(A.19),	since	the	second	of	the	right‐hand	terms	in	the	first	
of	these	equations	is	positive.		

One	readily	can	find	the	first‐order	condition	for	the	peak	TFP	growth	rate,	d ( ( ) | )A t HiN
 

  
=	0	(from	eqs.	A.	9	and	A.18,	and		The	positive	value	of	D(t)**	which	satisfies	that	condition	is	found	
to	be	a	function	of	the	model’s	four	parameters	(",	2,	8,	 N ),	and	the	normalizing	constant,	6	.	Given	

D**(t),	 and	 the	 parameter	  ,	 which	 is	 a	 constant	 reflecting	 the	 initial	 position	 of	 the	 threshold	
variable	in	the	z‐distribution	at	t	=	0.,	it	is	straightforward	to	solve	for	a	general	expression	giving	the	
date	t**	at	which	the	peak	growth	rate	of	TFP	occurs.	The	numerical	simulations	displayed	in	Figure	
4,	however,	convey	the	essential	points	of	the	story	rather	more	immediately.	

[Figure	4	here]	

The	 top	 panel	 in	 Figure	 4	 presents	 alternative	 diffusion	 paths	 generated	 by	 variant	
specifications	 regarding	 the	 rate	 of	 decline	 in	 the	 “break‐even”	 threshold	 level	 z*,	 and	 the	
corresponding	 time	 profiles	 of	 the	 proportionate	 rate	 of	 diffusion,	 which	 is	 seen	 to	 undergone	
continuous	 retardation.	 The	 latter	 is	 more	 pronounced	 when	 the	 process	 is	 being	 driven	 by	 a	
comparatively	fast	decline	in	z*(t).		

Simulation	 results	 for	 the	 growth	 rate	 of	 average	 labor	 productivity	 and	 the	multi‐factor	
productivity	residual	appear	on	the	left‐	and	right	hand	side	of	the	lower	panel,	respectively.	These	
calculations	have	been	made	using	three	alternative	specifications	of	the	strength	of	the	impact	of	
learning	from	diffusion	experience	on	the	incremental	improvement	of	the	new	technology’s	relative	
efficiency.	In	the	base	case,	condition		2	=	0	signifies	the	absence	of	any	such	learning	effects.	Under	
the	assumption	of	a	fast	rate	of	decline	in	the	threshold	value	z*(t),	the	inflection	point	of	the	diffusion	
path	occurs	at	D	=	0.5,	indicated	by	the	dotted	vertical	line	at	the	t=30	date.	One	can	see	that	the	peaks	
in	 the	 labor	 productivity	 growth	 rate	 are	 displaced	 to	 the	 right	 of	 that,	 the	 ‘delay’	 being	 more	
pronounced	the	stronger	are	the	endogenous	learning	effects.		

The	results	show	that	the	peak	of	the	TFP	growth	rate	is	similarly	displaced	in	time	beyond	
the	date	of	the	inflection	point	of	the	diffusion	path.	This	rightwards	shift	is	more	pronounced	than	
that	 observed	 in	 the	 case	 of	 the	 growth	 rate	 of	 labor	 productivity.	 The	 latter	 reflects	 the	 strong	
contributions	 of	 increasing	 fixed	 input	 (capital)	 deepening	 during	 the	 phase	 when	 the	 absolute	
changes	in	the	extent	of	diffusion	become	large.		

The	 alternative	 cases	 presented	 by	 Figure	 4	 display	 the	 time	 profile	 of	 the	 multi‐factor	
productivity	 residual	 under	 the	 assumption	 that	 there	 are	 positive	 Hicks‐neutral	 efficiency	
improvements	in	the	new	technology	that	proceed	pari‐passus	with	the	widening	of	experience	in	the	
use	of	the	new	technology	(i.e.,	with	the	extent	of	diffusion).		Intuition	is	satisfied	by	observing	that	
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the	 greater	 is	 the	 elasticity	 of	 these	 learning	 effects	 on	 efficiency	 with	 respect	 to	 the	 extent	 of	
diffusion,	the	stronger	the	upward	effect	on	the	profile	of	the	TFP	growth	rate.		

Were	the	learned	improvements	in	factor	efficiency	to	be	confined	to	enhancements	in	the	
efficiency	of	labor,	as	is	the	case	under	Harrod‐neutrality,	the	general	level	of	the	TFP	profile	would	
be	lower;	also	its	peak	would	be	reached	still	later	in	the	diffusion	process	than	the	simulation	results	
show	the	Hicks‐neutrality	specification.	The	intuition	for	this	is	quite	direct:	under	Harrod	neutrality	
improvements	 there	 is	 no	 source	 of	 capital	 efficiency	 improvements	 to	 offset	 the	 decline	 in	 the	
sector‐wide	average	productivity	of	capital	as	diffusion	proceeds.	

Note	 that	 some	 special	 conditions	 are	 required	 in	 order	 for	 the	 foregoing	 assumption	 of	
incremental	improvement	in	the	relative	efficiency	of	the	new	technique	to	be	consistent	with	the	
(unchanged)	 specification	 of	 the	 diffusion	 path.	 	 The	 effects	 upon	 either	 the	 heterogeneity	
distribution,	or	the	movement	of	the	adoption	threshold	must	change	in	an	offsetting	manner	and	so	
keep	 the	 threshold	 falling	 over	 time	 at	 a	 constant	 exponential	 rate,	 as	 the	 simulations	 posit.		
Alternatively,	one	may	suppose	that	the	distribution	of	critical	heterogeneities	in	the	population	is	
displaced	at	a	rate	that	offsets	the	declining	pace	of	growth	of	labor‐	and	capital‐input	efficiency	due	
of	 experience‐based	 learning.	 It	 is	 not	 implausible	 that	 the	 pace	 of	 upward	 shift	 in	 the	 expected	
output	 size	 distribution	 could	 be	 accelerating	 over	 time	 in	 such	 a	 fashion.	 Similarly,	 it	 is	 quite	
conceivable	that	the	relative	user‐cost	of	the	new	capital	in	the	industry	might	fall	at	a	quickening	
pace,	either	because	the	economy‐wide	level	was	being	forced	upwards	or	because	scale	effects	were	
lowering	the	real	costs	of	producing	the	new	fixed	inputs.		Of	course,	the	constant	rate	of	fall	in	the	
adoption	threshold	has	been	assumed	here	primarily	for	expositional	convenience.	

	

5.		Conclusion:	Going	forward	with	empirical	research	on	diffusion		

As	 has	 been	 seen,	 the	 class	 of	 microeconomic	 models	 of	 new	 technology	 adoption	 that	
recognized	 the	 existence	 of	 underlying,	 critical	 heterogeneities	 in	 the	 population	 of	 potential	
adopters,	and	the	relationship	the	latter’s	distribution	in	the	population	and	the	distribution	of	the	
agents	adoption	decisions	in	time,	offers	a	quite	comprehensive	framework	for	studying	diffusion	
phenomena	where	decisions	by	the	agents	do	not	involve	strategic	considerations.	 	The	threshold	
model	is	not	so	much	a	theory	of	the	diffusion	of	innovations	as	it	is	a	paradigm	within	which	one	
may	 articulate	 a	 variety	 of	 distinct	 theoretical	 models	 involving	 both	 the	 demand‐side	 and	 the	
supply‐side	of	 the	market	 for	new	technologies.	Thus,	 it	 is	capable	of	subsuming	a	quite	different	
economic	mechanisms,	and	its	variant	formulations	can	in	principle	account	for	diffusion	processes	
that	 follow	 different	 lag	 structures	 that	 are	 very	 protracted,	 as	 well	 as	 those	 which	 are	 highly	
compressed	in	time.	

By	 “connecting	 the	 dots”	 between	 the	 seminal	 contributions	made	 in	 Zvi	 Griliches	 to	 the	
economics	of	technology	diffusion,	the	study	of	distributed	adjustment	lags,	and	the	growth	rate	of	
measured	TFP,	the	preceding	paper	raises	two	sets	of	issues	for	empirical	research	that	can	be	seen	
to	cut	across	these	three	fields.	The	first	issue	is	that	of	the	“data	constraint”	on	empirical	efforts	to	
identify	particular	micro‐level	mechanisms	 that	generate	 time‐series	phenomena	observed	at	 the	
level	of	population	aggregates.	The	exacting	data	requirements	‐‐	consistent	time‐series	data	at	the	
aggregate	 level	and	cross‐section	observations	at	 the	micro‐level	–	have	been	pointed	out	(in	 the	
conclusion	 of	 section	 2)	 as	 a	 serious	 obstacle	 to	 econometric	 identification	 and	measurement	 of	



‐	50	‐	
	

 
 

specific	sub‐processes	that	may	be	contributing	to	slowing	the	speed	of	innovation’s	diffusion	into	
widespread	acceptance.	

	Whether	the	incentives	and	material	resources	can	be	mobilized,	in	order	to	carry	through	
an	 extensive	 program	 of	 data	 collection	 and	 data	 preparation	 that	 will	 be	 needed	 if	 empirical	
research	in	this	field	is	to	move	forward	in	tandem	with	the	elaboration	of	new	analytical	models	is	
an	important	practical	issue.	Unfortunately,	little	has	happened	to	alter	the	fundamental	sources	of	
the	“data	constraint”	in	this	area,	which,	as	Zvi	Griliches	pointed	out	in	another	connection,	stem	as	
much	from	the	internal	reward	structure	of	the	academic	economics	as	they	do	from	the	policies	of	
public	and	private	research	funding	agencies.		

But	this	realism	does	not	counsel	resignation	and	despair:	there	is	much	that	can	be	done,	
and	is	worth	doing	that	does	not	require	the	econometrically	conclusive	identification	of	the	domains	
of	empirical	relevance	of	the	many	distinctive	theoretical	structures	that	have	been	and	still	could	be	
proposed	in	this	field.		Even	with	the	available	data	it	seems	it	would	be	useful	and	not	at	all	infeasible	
systematically	to	distinguish	empirically	between	two	broad	classes	of	diffusion	phenomena.		On	the	
one	hand,	would	be	those	that	do	not	involve	significant	irreversible	investment	expenditures,	and	
are	driven	primarily	by	the	relative	rapid	propagation	of	information	–	the	primary	effect	of	which	is	
to	dispel	uncertainties	about	the	net	benefits	of	adoption	on	the	part	of	the	agents.	On	the	other	hand,	
one	 expects	 to	 find	 	 diffusion	 phenomena	 whose	 dynamics	 involve	 temporally	 more	 prolonged	
transitions	 from	 restricted	 to	 widespread	 application	 of	 the	 new	 technology,	 and	 it	 may	 be	
conjectured	that	on	careful	examination	of	their	individual	circumstances,	these	cases	will	be	found	
to	reflect	the	induced	modification	of	the	economic	and	technical	characteristic	of	the	new	technology	
in	response	to	feedback	induced	by	the	process	of	diffusion,	thereby	permitting	the	new	technological	
system	to	become	attractive	to	an	increasing	proportion	of	a	heterogeneous	population	of	rational	
and	already	informed	economic	agents.	

		Logically,	there	can	be	a	mixed	category,	where	both	information	propagation	and	a	moving	
equilibrium	of	technology	adoption	by	informed	agents	both	must	be	viewed	as	of	more	or	less	equal	
quantitative	 importance	 in	 setting	 the	 time	 constant	 for	 the	 overall	 diffusion	 process.	 It	 seems	
reasonable	to	suppose	that	most	of	the	data	that	has	been	collected	will	be	found	to	belong	in	the	
polar	 categories,	 and	moreover,	 that	 what	 is	 conventionally	 measured	 as	 growth	 in	 total	 factor	
productivity	 at	 the	 aggregate	 industry	 and	 sectoral	 levels,	 and	 imputed	 to	 “innovation”	 will	 be	
attributable	to	the	compositional	effects	within	industries	and	sectors	of	the	diffusion	processes	that	
belong	in	the	category	of	he	“low	frequency”	feedback	dynamics.				

	 Still	other	empirical	enquiries	would	appear	to	be	both	feasible	and	useful	in	exploring	links	
between	 diffusion	 processes	 and	 sub‐field	 of	 the	 economics	 of	 technological	 change	 where	 Zvi	
Griliches’	work	 opened	major	 research	 thoroughfares	 that	 others	 have	 been	 able	 to	 travel.	 	 The	
connection	between	changes	in	measured	productivity	at	the	level	of	the	enterprise	and	innovative	
activities	associated	with	R&D	expenditures	and	patenting	was	a	central	preoccupation	of	Griliches’	
research,	about	which	the	preceding	pages	of	this	paper	have	remained	silent.74		Having	here	fulfilled	
the	promise	to	exhibit	the	connections	that	may	and	should	be	drawn	between	research	on	diffusion,	

                                                           
74	See	Griliches	(1998),	and	notably	in	this	context,	Griliches	and	Mairesse	(1984),	Griliches,	Hall	and	Hausman	
(1986),	Griliches	and	Regev	(1995),	for	the	legacy	of	this	program	of	mico‐level	econometric	investigation		is	
evident	in		the	contributions	of	Hall	(2009),	Mairesse,	Mohnen	and	Kremp	(2009),	Regev	(2009),	and	others	
that	appear	in	Part	IV	of	this	Issue.		
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distributed	 lags	 and	 TFP	 growth,	 perhaps	 a	 further	 feasible	 task	 for	 the	 future	 is	 the	 empirical	
exploration	of	the	nexus	between	diffusion	and	R&D.	

	 	It	seems	entirely	reasonable	to	suppose	that	there	may	be	some	identifiable	feedback	from	
changes	in	the	sales	revenues	received	by	suppliers	of	producer	(or	consumer)	goods	that	embody	
innovative	production	processes,	and	the	internal	financing	of	R&D	investment	to	further	develop	
their	 products	 innovation	 ‐‐	 improving	 the	 performance,	 or	 maintainability	 of	 later	 vintages	 of	
the	original	innovation's	design?		Figure	5	summarizes	the	several	dynamic	connections	that	were	
already	 represented	 in	 the	 simulation	 structure	 discussed	 in	 Section	 4,	 and	 ventures	 to	 indicate	
(conjecturally,	 with	 a	 question‐mark)	 that	 a	 fourth	 set	 of	 dynamic	 relationships	 bear	 closer	
investigation:	these	involve	“post‐innovation	R&D	expenditures”	that	are	both	dependent	upon	the	
progress	 of	 an	 innovation’s	 diffusion,	 and	 in	 turn	 affect	 the	 speed	 and	 eventual	 extent	 of	 its	
acceptance.	

			This	opens	a	 topic	 that	has	remained	more	or	 less	untouched	 in	 the	diffusion	 literature	and	
barely	noticed	in	econometric	research	that	has	focused	on	the	determinants	of	R&D	expenditures	at	
the	firm	level	and	their	impacts	upon	productivity	growth.	Here	one	can	only	speculate	briefly	about	
three	possible	lines	along	which	future	research	into	the	existence	and	importance	of	such	micro‐
level	connections	might	unfold.			

	 	 	 	 	 	 	 	 First,	 one	 can	 start	 by	 examining	 the	 possible	 diffusion‐R&D	 nexus	 based	 upon	 the	
relationship	between	gross	sales	revenues	from	the	innovative	product	line,	and	the	latter’s	effect	
the	 firm’s	net	earnings,	which	 in	 turn	might	positively	affect	R&D	budgeting	decisions,	especially	
smaller	enterprises	where	R&D	was	tightly	constrained	by	retained	earnings,	or	 lenders	rationed	
credit	 to	 support	R&D	on	 the	basis	of	new	product	 sales	growth.	 	As	 second,	variant	 connection,	
perhaps	more	relevant	where	a	larger	firm	at	any	point	of	time	had	a	number	of	product	lines	that	
differed	 in	 their	 degree	 of	 novelty,	 and	 the	 question	 of	 funding	 further	 improvement	 in	 a	 newly	
introduced	product	(embodying	an	innovative	production	technology)	was	primarily	one	allocating	
available	 retained	 earnings	 for	 R&D	 among	 the	 claimant	 product	 lines.	 In	 this	 case,	 attention	 is	
directed	to	the	possibility	that	there	are	life	cycles	in	R&D	budgeting	at	the	level	of	the	individual	
product	line:	in	the	early	phases	of	a	new	product’s	diffusion,	rising	sales	volume	–	however	small	in	
absolute	terms	–	may	strengthens	the	case	for	the	firm	to	continue	R&D	expenditures	to	improve	an	
emerging	("proven")	addition	to	the	product	line,	and	so	work	to	further	expand	the	dimensions	of	
the	market	niche	into	which	it	is	being	accepted.		But,	by	the	same	token,	once	an	inflection	point	in	
the	diffusion	path	is	passed,	quite	conceivably	there	will	be	some	waning	of	the	capital	budgeting	
committee’s	enthusiasm	for	continuing	to	try	to	push	the	innovation	into	marginal	portions	of	the	
market,	 and	 the	 higher	 absolute	 level	 of	 sales	 revenues	 from	 the	 maturing	 product	 will	 be	
increasingly	diverted	to	supporting	the	improvement	of	younger	product	lines.75		

		A	second	distinct	line	of	inquiry	would	lead	toward	better	understanding	of	the	mechanisms	
involved	 the	 user‐producer	 feedback,	 generating	 suggestions	 for	 further	 improvement	 in	

                                                           
75	Note	that	where	funds	for	R&D	are	not	constrained	by	sales	of	the	new	product	itself	the	overlapping	life‐
cycles	in	product	lines,	as	just	described,	would	general	feedbacks	whose	implications	for	the	dynamics	of	the	
threshold	level	for	adoption	are	sharply	distinguishable	from	those	where	product	performance	improvements	
driven	implementing	by‐product	learning	based	upon	the	accumulated	experience	among	either	the	suppliers	
or	the	adopters	of	the	innovation.	In	particular	it	would	tend	to	impart	a	more	pronounced	sigmoid	pattern	to	
the	changes	 in	 the	 relative	attractiveness	of	 the	specific	 innovative	 technique	 to	 the	potential	adopters.	By	
contrast,	in	the	model	of	Sect.	4,	the	(new)	machine‐building	firms’	movements	down	their	experience‐based	
learning	 curves	 yields	 decreasing	 incremental	 gains	 in	 the	 price‐performance	 ratio	 of	 the	 innovation‐
embodying	product.			
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performance	 based	 upon	 reports	 from	 field	 use	 through	 dealership	 and	 maintenance	 service	
networks	for	producer	durable,	or	information	returned	to	the	firm	by	sales	personnel.	The	literature	
in	 industrial	 organization	 economics	 and	 management,	 with	 few	 exceptions,	 has	 conceptualized	
learning‐by‐doing	 in	 production	 activities	 not	 as	 an	 object	 of	 management	 and	 the	 deliberate	
allocation	of	resources,	but	rather	as	the	opportunistic	implementation	of	incremental	modifications	
in	 product	 design,	 fabrication	 methods,	 or	 modes	 of	 use	 that	 are	 essentially	 by‐products	 of	 the	
operation	of	established	production	routines	and	therefore	can	be	regarded	as	costless.	Thus,	they	
are	held	to	be	analytically	distinct	from	R&D	investments,	which	are	treated	as	temporal	precursors	
to	the	establishment	of	production.	Yet,	there	is	ample	reason	to	think	otherwise,	and	therefore	to	
entertain	 the	 idea	 that	 some	significant	part	of	 the	expenditures	 reported	as	R&D	may	represent	
deliberate	 investments	of	design	and	engineering	resources,	and	costly	organizational	 integration	
and	 analysis	 of	 information	 flowing	 from	 interactions	 between	 sales	 and	 service	 personnel	 into	
managerial	 processes	 intended	 to	 optimize	 and	 capture	 the	 benefits	 of	 experience‐driven	
“learning.”76		Clearly	there	is	evidence	that	this	is	the	case	in	some	industries	where	there	is	technical	
support	for	marketing	of	new	complex	products,	and	the	control	of	quality	and	yield	in	fabrication	is	
an	 important	 determinant	 of	 unit	 costs.77				
									

	 Thirdly,	 consider	 the	 role	 of	 the	 information	 revealed	 by	 sales	 reports	 about	 "structural	
holes"	in	the	market	‐‐	areas	where	the	innovation	surprisingly	fails	to	penetrate,	which	are	identified	
by	reports	from	the	field	and	points	to	problematic	features	of	the	existing	design?	This	is	a	variant	
of	 the	 	 "focusing	 devices"	 for	 technological	 change	 argument	 ‐‐	 a	 la	 Rosenberg	 (1972),	 but	 the	
feedback	about	dysfunctional	 features	 is	market	mediated,	rather	 than	technical	and	 taking	place	
within	the	innovating	firm	‐‐which	is	mainly	what	Nate	had	in	mind.	Do	we	know	anything	about	any	
of	this?	Shouldn't	we?		It	would	then	be	possible	to	take	account	of	another	feed‐back	loop	that	links	
R&D	into	the	system	along	with	"diffusion",	"lagged	investment",	and	TFP	growth.	

                                                           
76	Hatch	 and	Mowery	 (1998),	 in	 addition	 to	 providing	 a	 survey	of	 the	 literature	on	 learning	by	doing	 that	
supports	 the	 foregoing	 characterization,	 present	 an	 analysis	 of	 deliberate	 practices	 in	 the	 semiconductor	
fabrication	industry	that	allocate	resources	to	managing	the	learning	process	in	order	to	increase	yields	while	
maintaining	quality.	See	also,	in	this	vein,	Adler	and	Clark	(1991),	and	Pisano	(1997).					

77	The	literature	on	producer‐user	interactions,	starting	with	Rosenberg	(1982)	Ch.	6	on	“learning	by	using”	–	
particularly	in	reference	to	optimization	of	aircraft	performance,	might	be	fruitfully	harvested	for	additional	
evidence	that	translating	the	information	captured	during	field	use	into	productivity‐	or	product	performance‐
enhancing	engineering	modification	entails	both	fixed	and	variable	resource	expenditures,	some	part	of	which	
surely	wind	up	as	expensed	by	the	supplying	firm	but	reported	as	“Development”	under	R&D	for	tax	purposes.	
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          alternative  diffusion-driven (Hicks-neutral) “learning effects” the relative productivity of the new technology 
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	 A‐1	
APPENDIX	

	
A	Heuristic	Model	Linking	Aggregate	Productivity	Growth	Rates	to		

Micro‐level	Determinants	of	Technology	Diffusion	Dynamics	
	

A.	1		Definitions	and	assumptions	

The	following	notation	refers	to	an	industry	or	sector	producing	a	homogeneous	good,	V:	

	  tj :	 is	output	per	unit	of	labor	input	using	the	j‐th	technique	at	time	t,	where	j	=	o		represents	the	

“old”	technique	and	j	=	N,	the	“new”	technique;	 ( ) ( )N ot t  	for	all	t.	

	  tD :		 is	the	proportion	of	aggregate	output	produced	using	technique	N,	at	time	t;	

	 )t( :	 is	aggregate	labor	productivity	at	time	t.		
	
Aggregate	labor	productivity	 )t( 	may	be	expressed	as:	

									 	   1

0 0( ) ( ) 1 ( ){1 ( ( ) / ( ))}Nt t D t t t       			.																																																										(A.1)	

		 	 	 	 	 									A‐2		
	
	 There	 are	 two	 simplifying	 assumptions	 that	 restrict	 the	 dynamics	 of	 the	 technique‐specific	 labor	
productivity	rate:	 	
	
		 Assumption	1:	 00 )(  t for	all	t.		

Assumption	2:	  
2

2
( ) ( ) , 0, 0.N N

N Nt D t
D D

    
  

 
	

A.2	Determinants	of	the	growth	rate	of	aggregate	labor	productivity	

	 	 The	general	expression	for	the	dependence	of	the	proportional	growth	rate	of	labor	productivity	on	
changes	in	the	extent	of	the	innovation’s	diffusion	is	obtained	by	rewriting	(A.1)	as	

	 																										 ,
)()]([1

)( 0











tDt

t



 	 (A.2)	

where	we	define:	 









)(
1)( 0

t
t

N


 .	

The	 proportionate	 growth	 rate	 of	 labor	 productivity,	  ( ) ln ( ) /t t t 


   ,	 is	 then	 found	 by	

differentiation	of	(A.2):		

	
1 ( ) ( ) [1 ( )] ( ) ( )

( )
1 [ ( )] ( ) 1 [ ( )] ( )

d t dD t t t dD t
t

dt t D t dt t D t dt

   
  

                  
,		 (A.3)		

where	the	elasticity	parameter	in	the	endogenous	innovation‐improvement	function,	is	denoted	by	
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( ) ( )

( )
( ) ( )

N

N

t D t
t

D t t





 


			 .	 	 	

The	first	term	on	the	RHS	of	(A.3)	gives	us	the	direct	effect	of	diffusion	on	productivity	growth,	which	
is	the	total	effect	in	the	simplest	case	where	neither	the	new	nor	the	old	technologies	undergo	any	change	in	
their	respective	unit	labor	input	requirements,	i.e.	where	 ( )t =	0	and	 ( )N Nt  	for	all	t.			The	second	term	

on	 the	 RHS,	 obviously,	 gives	 the	 indirect	 effect.	 For	 future	 reference,	 the	 time‐path	 of	 aggregate	 labor	
productivity	will	be	denoted	by	 1( ) ( )t t  	 in	the	simplified	case	( N 	=	0	)	where	the	diffusion	of	 the	

innovation	does	not	induce	further	reductions	in	the	unit	labor	requirements	for	those	firms	that	have	adopted	
it.				

It	is	now	straightforward	to	show	that	aggregate	labor	productivity	does	not	grow	most	rapidly	when	
the	extent	of	diffusion	 is	 rising	at	 its	 fastest	pace.	 	This	proposition	holds	generally,	 but	 it	 is	most	 readily	
understood	by	examining	the	case	where	 	 	 ( )t =	0	and	 )()( ot NN   ,	so	that	  (t)	=  	>	0	for	all	t.	The	
general	expression	in	equation	A.3	simplifies	to		

	 1
( )

( ) , 0
1 ( )

dD t
t

D t dt

 


  
   

		.	 (A.3a)	

Evidently,	 1


	is	not	simply	proportional	to	the	change	in	the	extent	of	diffusion	(dD),	and	therefore	it	

will	not	reach	a	maximum	when	dD/dt	reaches	its	maximum.	This	is	readily	shown	by	differentiating	 )(1 t


 	
with	respect	to	time:		

	
22

1
1'2

( )

1 ( )

d t d D

dt D t dt

  



             

	,		 (A.4)	

from	which	it	follows	that	at	
22

1'
1'

2

( )
max , 0, and

dD d D d t

dt dt dt







        
 

.	

For	the	typical	case,	[max	(dD)]	occurs	in	the	interval	(0,1),	implying	that	
1 | m ax ( )d D

 
  

cannot	be	at	

a	maximum.		Since	the	term	in	brackets	(	)	on	the	RHS	of	equation	(A3a)	is	increasing	monotonically	in	D(t),			
max	 1( )t 	must	be	reached	later	than	max	(dD).			

It	 is	now	straightforward	 to	show	that	 this	 result	 is	more	general	when	 there	a	constant	elasticity	
parameter	 that	 describes	 the	 dependence	 of	 the	 indirect	 “learning	 effects”	 upon	 changes	 in	 D(t),	 i.e.,	

( ) ( )t   	for	all.			One	may	then	define	a	new	parameter,		

	 	 	 	 (1 ) /k    ,		
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and	notice	 that	 the	basic	differential	equation	(A.3)	 for	 the	sum	of	direct	and	 indirect	effects	 then	may	be	
written	in	the	alternative	form:			

A‐3	

( )
( ) , 0, 0

1 ( )

dD t
t k k

D t dt

 


  
    

		.	 	 	 (A.5)	

From	 this	 it	 follows	 immediately	 that	 the	 value	 of	D(t)	 at	 which	 the	 whole	 expression	 for	 the	 labor	
productivity	growth	rate	reaches	its	maximum	will	coincide	with	that	obtained	for	the	special	case	when	only	
direct	effects	are	present:		 1m a x m a x 

 

 .	

A.4	Diffusion	model	specifications	and	the	time‐path	of	average	labor	productivity	in	the	industry		

For	eventual	computational	convenience,	drawing	upon	the	discussion	in	Section	2.3	of	the	text,	we	
may	introduce	3	specifying	assumptions	for	the	micro‐level	dynamics	of	the	diffusion	process:			

	 Assumption	3:	There	is	a	stationary	underlying	distribution	of	the	critical	variate	z	in	the	population	of	
potential	adopters	 that	 is	 log‐logistic	 in	 form,	and	 the	 threshold	value	 for	agents	 to	select	 the	new	
technique	is	z*(t)	at	time	t,	which	declines	at	the	exponential	rate	8	.		

	 Assumption	4:	The	new	technique	is	embodied	in	a	fixed	discrete	input‐bundle,	only	one	unit	of	which	
is	acquired	by	each	adopting	agent.	Firms	working	with	a	unit	of	the	innovative	technology	all	have	
identical	and	constant	flow	output‐flow	capacity	kN,	whereas	non‐adopting	firms	have	constant	output‐
flow	capacity	kO	.		

From	these	specification	it	follows	that	an	index	of	the	extent	of	diffusion	at	time	t,	D(t),	defined	as	
proportion	of	the	population	that	has	adopted	the	innovation,	will	be	a	logistic	function	in	the	t‐domain,	with	
asymptotic	 saturation	 at	D()=1.	 This	 yields	 closed‐form	 expressions	 for	 the	 level,	 the	 absolute	 and	 the	
proportional	changes	in	D(t):		

First,	we	have	the	form	already	familiar	from	the	derivation	(see	section	2.4	of	the	text):		

	 1( 0, 0*( ) 1 , ;)( tzD t e            		 (A.6)	

where	 *z   =	 	is	a	constant	reflecting	the	initial	position	of	the	threshold	variable	in	the	z‐distribution	
at	t	=	0.		

	 Second,	for	all	  >	0,	we	obtain	

	
( )

( )[1 ( )] ( );
dD t

D t D t
dt

   	 (A.7a)	

	 ( ) ( )[1 ( )].D t D t


   		 (A.7b)	

Assumption	5:	There	is	an	endogenous	“improvement	function”	for	the	average	labor	productivity	of	
workers	using	the	new	technology	which	is	characterized	by	a	constant	(less‐than	unitary)	elasticity	
of	response	to	the	increased	extent	of	diffusion.	
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This	specifying	assumption	is	satisfied	by:	

	 	    ( )
( ) ( ) , 0 1,N N

D t
t o



  


 
   
  

			 	 	 	(A.8)	

A‐4	

where	 	is	an	arbitrary	normalization	constant.	

The	 foregoing	 log‐logistic	 diffusion	 specifications,	 in	 conjunction	 with	 equation	 (A.3),	 lead	 to	 the	
following	simulation	equations	for	the	direct	and	indirect	effects	combined:	

( )(1 )
( ) ( ( )[1 ( )]( )),

1 [ ( )] ( )

( ) 1 [ ( )] ,

LL
t

t D t D t
t D t

t D t 

  


 





  
    

 

	 (A.9)	

where	 0 ( )
( )N o

 


 ,		and	 ( )LL t


	denotes	the	aggregate	growth	rate	of	labor	productivity	for	the	underlying	

diffusion	process	based	on	the	log‐logistic	heterogeneity	specification.		

In	the	special	case	in	which	there	are	no	“learning	effects”,	i.e.	 0)(  t ,	the	simulation	equation	
reduces	to:	

 1 ( ) ( )[1 ( ) ( )
1 ( )

LL t D t D t
D t








   


 
 
 

			.	 (A.10)	

A.5	Diffusion	dynamics	and	the	growth	rate	of	aggregate	TFP		

As	 the	 simulation	 model	 developed	 here	 maintains	 the	 underlying	 specifications	 that	 generate	 a	
logistic	time	path	for	the	diffusion	index, ( )D t ,	the	LL	subscript	on	variables	denoting	the	productivity	growth	
rates	in	the	industry	will	be		suppressed	in	the	following	exposition.	

Accepting	the	conventional	Abramovitz	(1956)‐Solow	(1957)	computation	of	the	rate	of	growth	of	the	
total	factor	productivity	(TFP)	residual,	the	latter	may	be	expressed	as	the	factor	share‐weighted	average	of	
the	average	labor	productivity	and	capital	productivity	growth	rates:			

	   ))t(()]t(1[)t()t(A LL



 ,	 (A.11)		

given	the	expression	for	the	proportional	growth	rate	of	TFP,	once	we	have	expressions	for	the	time	rates	of	

change	of	output	per	unit	of	capital	input,	denoted	(


 ),		and	for	the	share	of	labor	in	the	aggregate	output	of	
the	sector	in	question, )(tL .		

	

A.5	(a)	Labor’s	share	in	aggregate	output:	
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Assumption	 6:	 The	 segment	 of	 the	 final	 goods	 industry	 comprising	 production	 facilities	 that	 have	
adopted	 the	 innovation	 is	characterized	by	an	aggregate	production	 function	of	 the	Cobb‐Douglass	
form.		

From	that	specification	(the	plausibility	of	which	is	discussed	in	Section	4.1	of	the	text,	particularly	in	footnote	
56)	it	follows	that	the	elasticity	of	output	with	respect	to	labor	input	in	the	adopting	segment	of	the	industry		

A‐5	

will	 be	 constant	 over	 time.	 Thus,	 under	 conditions	 of	 competition	 in	 the	 product	 and	 factor	 markets,	
Assumption	6	implies	that	the	share	of	labor	in	aggregate	output	of	the	adopting	segment	of	the	industry	also	
will	be	a	constant,	0		< N <	1.	

As	indicated	by	the	remarks	on	Assumption	1,	the	share	of	labor	in	the	old	technology‐sector	of	the	
economy	is	taken	to	be	unity,	so	that	the	share	of	labor	in	the	industry	as	a	whole	is:		

	  NL 1)t(D1)t(  	.	 (A.12)	

A.5(b)	The	growth	rate	of	capital	productivity:	

The	 aggregate	 capital	 productivity	 growth	 rate	 depends	 upon	 the	 rate	 of	 change	 in	 the	 extent	 of	
diffusion,	 and	 the	 level	 and	 changes	 occurring	 in	 the	 productivity	 of	 capital	 used	 in	 the	 new	 technology	
segment	of	the	industry	(or	sector).	Denoting	the	latter	by	vn(t),	and	recalling	that	the	old	technology	uses	only	
labor,	the	aggregate	capital	productivity	in	the	industry	is	given	by		

	

  1
( ) ( ) / ( ) ( ) / ( )N Nt D t t t D t    	.	 (A.13)	

From	equation	(A.13),	by	differentiation,	and	multiplication	of	both	sides	of	the	resulting	expression	
by	1/(t),	the	growth	rate	of	aggregate	capital	productivity	is	simply:		



 )t(D)t()t( N 	 (A.14)	

Two	alternative	specifications	are	of	interest	in	regard	to	 )(tN



 :	

	 	Assumption	7a:	Improvements	in	the	efficiency	of	the	new	technology	due	to	endogenous,	diffusion‐

dependent	changes	are	Harrod‐neutral	(denoted	HaN)	‐‐	they	raise	 ),t(N 	but,	leave	 0)t(N 


for	all	

t.		

	Consequently,	Harrod‐neutrality	in	the	innovation‐using	sector	implies	that			

( ) | ( )t H aN D t
 

  
  

	 (A.15)	

Alternatively,	one	may	entertain	

Assumption	7b:	Improvements	in	the	efficiency	of	the	new	technology	due	to	endogenous,	diffusion‐
dependent	changes	are	Hicks‐neutral	(denoted	HiN),	i.e.	they	result	in	 

 )t()t( NN 	for	all	t.		

Making	use	of	eq.	(A.8),	Assumption	7b	implies:		
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( ) | ( ) ( ) (1 ) ( )t H iN D t D t D t  
   

       
      

	 (A.16)	

	 For	 the	 industry	 as	 a	 whole,	 where	 measured	 aggregate	 TFP	 changes	 (interpreted	 as	 ‘efficiency	
growth’)	 result	 from	 the	 direct	 compositional	 effects	 of	 the	 innovation’s	 diffusion,	 and	 endogenous	
improvements	 the	 productivity	 of	 the	 adopters.	 Consequently,	 the	 variant	 specifications	 of	 the	 way	 that	

“learning”	or	other	 externalities	of	 the	 innovation’s	diffusion	effects	 ( ( )N t ,	 ( )N t


),	will	 yield	different	

industry‐wide	growth	rates	for	measured	TFP.				

A‐6	

	 A.6	Simulation	equations	for	the	aggregate	TFP	growth	rate	

Combining	the	results	given	by	equations	(A.11)	and	(A.15)	or	(A.16),	alternatively,	we	obtain	for	the	
Harrod‐neutrality	and	Hicks‐neutrality	cases,	respectively:	
	

	

 2( ) | ( ) ( ) 1 ( ) ( )
L L

Harrod - NA t t t t D t  
  

     
      

	 	 (A.17)	

and	

 2( ) | ( ) ( ) 1 ( ) (1 ) ( )
L L

Hicks - NA t t t t D t   
  

      
      

	 	 (A.18)	

Substituting	for	 )t(L 	from	equation	(3.12),	for	 )t(D


from	(3.7b),	these	expressions	may	be	rewritten	
in	the	form:	

 2( ) | ( ) 1 1 ( ) ( )(1 ) ( )[1 ( )]N NHarrod NA t t D t D t D t  
 

            
,		 (A.19)	

and	

 ( ) | ( ) | ( ) 1 [1 ( )]NHicks N Harrod NA t A t D t 
 

              
	.	 	 (3.20)	

From	equations	(3.18)	and	(3.9),	one	readily	can	find	the	first‐order	condition	for	the	peak	TFP	growth	

rate,	d ( ( ) | )A t HiN
 

  
=	0.	The	positive	value	of	D(t)**	which	satisfies	that	condition	is	a	function	of	the	four	

parameters	(",	2,	8,	 N )	and	the	normalizing	constant,	6.		

Given	D**(t),	and	the	parameter	 	defined	in	equation	(3.6),	it	is	straightforward	to	solve	for	a	general	

expression	giving	the	date	(t**	)	at	which	which	the	peak	growth	rate	of	TFP	occurs.		




