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Abstract

There is significant variation in the percentage of adults registered as organ donors across
the United States. Some of this variation may be due to characteristics of the sign-up pro-
cess, in particular the form that is used when state residents renew or apply for their driver’s
licenses. However, it is difficult to model and predict the success of the different forms with
typical methods, due to the exceptionally large feature space and the limited data. To sur-
mount this problem, I apply a methodology that uses data on subjective non-choice reactions
to predict choices. I find that active (ie yes-no) framing of the designation question decreases
designation rates by 2-3 percentage points relative to an opt-in framing. Additionally, I show
that this methodology can predict behavior in an experimental setting involving social motives
where we have good structural benchmarks. More generally, this methodology can be used to
perform policy pseudo-experiments where field experiments would prove prohibitively expensive
or difficult.
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1 Introduction

Demand for organ donation is high in the United States: There are currently over 120,000 people

awaiting transplants, and over 10,000 new candidates are added each year. Despite this large and

growing need, there is a limited supply of organs available; as a result, in 2013 over 6,000 people

died waiting for transplants.1 There are two sources of donor organs: live donors, who choose to

give an organ (usually a kidney) to a person in need; and deceased donors, who have agreed to

donate multiple organs in the event of their death.2 There have been several efforts to improve the

supply of live donor organs3 , but Kessler and Roth (2012) point out that a more effective policy

margin may be to increase the number of potential deceased donors. The organ donor designation

share is defined as the percentage of the adult population in the state that is registered to be an

organ donor in the event of their death. There is much variation in designation shares across the

United States, ranging from 19% in Texas to 80% in Alaska, with a national average of 47% as of

2012.4 These rates are on the whole perhaps surprisingly low, given that designating oneself as a

donor usually only requires one to visit a website or to check a box when applying for a driver’s

license. This discrepancy in shares raises the several questions: What is the source of this interstate

variation in donor designation? Given the clear need for more transplantable organs, how can these

rates be increased?

The differences in designation rate may be at least partly driven by differences in how the organ

donation decision is elicited. For example, consider the forms used in Connecticut and Louisiana

when a resident applies for a driver’s license (Figure 1). Both forms use what can be called an

active choice frame: Action is required if the respondent desires to respond in the affirmative or in

the negative. That is, the lack of a response is not the same as a “No.” Compare these to the form

used in New Hampshire, which uses an opt-in choice architecture: in this case, a lack of response

is indistinguishable from a “No.” The active choice framing could lead to higher donor designation

rates, if it prevents people from skipping or ignoring the donation question (Thaler, 2009). However,

Kessler and Roth (2014b) point to experimental evidence that mandated choice may not increase

donation rates, and may even have negative effects on recovery of organs post-mortem from eligible

donors who have not given consent.

In this paper, I use a new methodology, called non-choice revealed preference, to estimate the

effect of choice framing on donor designation choices. This methodology employs responses to

hypothetical and subjective questions to make predictions about previously unobserved settings.

When applied to the DMV forms, this methodology finds a small, negative (approximately -2%)

1See Organ Procurement Transplantation Network (2014) for more detailed data.
2Only a small percentage of those who register as deceased donors are able to donate their organs, due to the

strict medical requirements for the organs to be received in good enough condition for transplantation.
3Some of the most successful efforts include novel market design, such as directed donation chains (Ashlagi et al.,

2012).
4See Donate Life America 2013 Report Card for more details.
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(a) Question on the form used in Connecticut. Note the active choice framing of the question, as well as
the relatively precise and detailed wording.

(b) Question on the form used in Lousiana. This question also uses active choice framing but has an
extremely minimalist wording.

(c) Question on the form used in New Hampshire. This is an opt-in frame. Note also the heart symbol
used to draw the user’s attention to this question, and perhaps prime a more generous response.

Figure 1: Relevant snippets of forms used in Connecticut (top), Louisiana (middle), and New Hampshire
(bottom) when residents apply for a new driver’s license.

effect of switching from opt-in to active choice framing, a result which is in line with the best

existing empirical and experimental evidence on this question. The non-choice approach, however,

can be applied much more cheaply than an experiment and can give reliable estimates even when

a standard econometric approach might not.

To understand why the non-choice approach might be advantageous, it is important to un-

derstand that the DMV forms differ across states in a variety of other potentially consequential

ways: whether any additional information is given about the organ donation choice, whether the

form asks for a monetary donation, and whether the donation question is visually highlighted.

The behavioral and experimental economics literatures have shown that differences in context and

information provided can have strong effects on behavior that are not predicted classical models.

A recent example is found in Coffman et al. (2013), who show that changing one line in a letter to

applicants accepted to Teach for America has a significant effect on their willingness to both join

and stay in the program. If such framing and information architecture effects are indeed important

factors in the designation decision, states could make meaningful improvements in their designa-

tion rates by simply changing the forms used at the DMV. Importantly, many such changes could

presumably be implemented without the need for any new legislation.

How can we go about understanding which features of these forms have the largest effects on

donor choices? The standard approach might work as follows: We could collect all available forms

from across the United States and categorize them according to the objective dimensions we think

are likely to matter. We could then run a regression of the designation rate on these form-specific

variables, including controls for state-level variables that we think might effect designation rates.

The coefficients in this regression could then be used for prediction: The coefficient corresponding
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to the choice framing, for example, could tell a policy-maker whether to expect an increase or

decrease in designation rates in that state from a change in the choice framing.

There are several potential weaknesses with this approach, however. The first two difficulties

could be said to be problems with modeling. First, it is difficult to know a priori which differences

across state forms are the important ones. When evaluating a new form, we may simply not

code a variable that turns our to be an important factor in the designation process. Is color

or font choice important, for example? What about wording, placement of the question on the

page, or highlighting of the organ donation question? All of these factors could make a difference

for individual decisions, but including them all in a statistical model might lead to over-fitting.

Second, even if we know what factors to include in our model, we may not know how to properly

code them. How does one systematically describe something as subjective as how the wording of the

question motivates the individual? Certainly this affects the salience or informational content of the

question, but it is difficult to describe rigorously. The third potential problem with the objective

data approach is one of identification. Even if a reliable model were estimated, the available data

might have no variation along a key dimension, and we might be unable to estimate the effect of

that variable. For example, suppose that all existing forms used only the opt-in choice framing.

If we believe (from theory, laboratory experiments, or observation in related domains) that choice

framing matters in this setting, how would we predict the expected effect of a switching to an opt-in

frame? The necessary variation is simply not available in the data.

Such a situation is idea for application of the methods first developed in Bernheim, Bjorkegren,

Naecker and Rangel (2013). That paper proposes to solve these critical issues by creating a synthetic

experiment in non-choice response data, using regularization techniques to parsimoniously describe

the complex mapping from non-choice response to economic activity. If identified mapping is valid,

the treatment can be recovered for a proposed policy variation. This methodology may get around

several potential pitfalls of the standard approach, which I will explain in the following section.

The ultimate goal of this paper is to show how this new approach might be useful for improving

organ donation policy. I do this by running a “pseudo-experiment” on active and passive choice

forms, through the creation of counterfactual versions of each form that differ only in their choice

framing. The non-choice approach finds evidence that active choice framing has a small negative

effect on the donor designation rate. Unfortunately, it is unlikely that we will observe the counter-

factual forms used by the states, so the predictions cannot be directly validated. As a robustness

check, I apply the methodology to an experimental setting where I can test the non-choice models

out of sample more easily. I show that the non-choice approach accurately predicts behavior in pre-

viously unobserved settings, and that these predictions can be used to generate accurate estimates

of theoretical parameters that are impossible to estimate with the observed choice data.
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Figure 2: The model of cognition proposed in this paper. The standard economic approach (top) is to
completely bypass the subjective representation. In contrast, it may be advantageous to measure proxies for
the subjective representation (bottom).

2 Methodology

In this section, I explain the methodology in more detail, and review how previous research has used

non-choice responses to predict choices. Consider at generalized prediction setting: We have data on

choices in domain A, and we are interested in prediction choices in domain B. As discussed above, we

could collect objective descriptors of the options in domains A and B, estimate a model that predicts

choices from these characteristics using domain A data, and make predictions in domain B by

plugging in the appropriate objective data to these models. The non-choice reactions approach has

the same structure, but uses as predictors several non-choice reactions: unincentivized responses to

questions about options or choice problems. These include questions about the subjective attributes

of the options being considered, such as social image, warm glow, or moral concerns: “Which option

do you think more effectively addresses a typical person’s feeling good about themselves?” or “How

how hard was it for you to find the organ donation question?” These non-choice questions may also

include hypothetical choice questions, which can be thought of as potentially aggregating several

subjective dimensions at once.

Importantly, these non-choice reactions can be collected from individuals who are not the in-

dividuals whose choices we wish to predict. All that is necessary for this to work is that the

individuals providing the predictors are able to give non-choice reactions that are correlated with

choices of the target group, and that this correlation structure does not change from domain A to

domain B.

Why might these non-choice reactions allow us to make predictions about choices? As in Bern-

heim et al. (2013), I propose a two-step model of cognition that would support such a mapping

from non-choice responses to choice. First, the decision-maker observes the many objective char-

acteristics of the choice problem and translates these into a representation of the choice problem

in a subjective space. Dimensions of this subjective space include visceral reactions such as which
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option will make her feel happy or safe, what others will think of her choice, and so on. The decision

maker then makes a choice by optimizing a utility function that takes these subjective dimensions,

not the original objective characteristics, as inputs. This process is summarized visually in Figure

2. The standard approach in economics is to measure choices and objective inputs, and estimate

a model that relates these objects. In the non-choice response approach, one instead estimates a

model that relates the subjective dimensions to outcomes.

Once the non-choice responses are collected, the researcher can estimate a model that relates

these responses to choice. It is important to note that there may be a large number of potential

predictors to include, for two reasons. First, because the non- choice reactions are collected from

individuals but predictions are made a the choice problem level, responses must be aggregated.

Many of the non-choice questions ask for responses on a Likert scale, meaning that there are many

degrees of freedom in aggregating responses. For example, the research may look at the mean

responses on a scale of 1 to 7, or the percentage of subjects responding with a 4 or higher. The

non-choice approach considers all of these moments of the distribution of non-choice reactions as

possible predictors of choice. Second, there is a large number of potentially important subjective

dimensions, but only some of these dimensions may be correlated with choice. While the researcher

may be able to make a judgment about which variables should be included in the model, they

may include more variable than are relevant. To select the most useful set of predictors, and to

avoid over-fitting on the estimation data, I perform three different types of model selection when

estimating the non-choice models.

The first model selection technique is the Lasso algorithm, which solves the following minimiza-

tion problem:

minβ
∑
i

(yi − βxi)2 + λ|β|

The first term of the loss function is the standard squared error, as in OLS. The second term

penalizes for the total magnitude of coefficient used by the model. The parameter λ governs the

trade-off between the two terms in the objective function. It is set by a cross-validation procedure:

The data used for estimation is partitioned into a small number n of folds, and a large set of λ’s is

chosen for consideration.5 For each level of λ, the model is estimated n times, each time holding

out one fold. The MSE on the held out folds is then calculated. The λ for the prediction analysis

can then be selected by examining the MSEs; by convention, the largest lambda with MSE within

one standard deviation of the minimal MSE is usually chosen. For more details, see Zou and Hastie

(2005).

The second model selection method searches for the model with the lowest Bayesian Information

Criterion (BIC) on the one mover game data. This algorithm does a stepwise search of the set of

possible models until it finds a local minimum in the BIC (that is, neither adding not removing a

5The set is guaranteed to be bounded because for λ small enough, the problem reduces to the OLS problem, and
for λ large enough, only the empty model (ie only a constant is included) will satisfy the minimization problem.
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variable improves the BIC). The third technique is similar, except that it searches for a model with

the lowest cross-validated MSPE. It is important to stress that these methods, as well as the Lasso

model, do all of their model estimation selection on domain A only. Non-choice data from domain

B is then applied to the resulting models to generate predictions about behavior in that domain.

For comparison of predictive accuracy, we can calculate several statistics. Let p be a vector of

predictions for J outcomes, and r be the vector of corresponding actual values. The bias is then

defined as 1
J

∑J
j=1(pj − rj) = p̄− r̄, and is simply the average prediction error. The mean squared

prediction error is defined as 1
J

∑n
j=1(pj − rj)2. This metric is included because it is possible for

a predictor to have zero average bias but very large absolute bias. Both the bias and the MSPE

should ideally be close to zero. A less standard prediction metric that I will employ is used in

Bernheim et al. (2013), called the calibration score. This is slope of a regression of actual on

predicted values, ie β from the regression rj = α + βpj + εj . A calibration score of closer to 1 is

desirable: this indicates that difference in the prediction are unbiased for the actual changes in the

target variable.

This approach has several advantages over the standard methodology. First, the researcher

does not need to worry about capturing or coding all of the objective characteristics in her model,

because the model being estimated does not use these dimensions directly as inputs. This is

because the subjective dimensions are assumed to completely encode and subsume all relevant

objective dimensions. This feature addresses the modeling weaknesses of the standard approach

mentioned above. Second, the set of choice problems (in this case the set of DMV forms) needs to

span the important subjective dimensions, but not necessarily the set of objective dimensions. For

example, recall the case where all the DMV forms that the researcher has access to use only the

opt- in choice framing. In this case, directly estimating the effect of choice framing would be very

difficult. However, it may be that this set of available forms nonetheless spans the subjective space.

That is, what matters is not the choice framing, but how that framing effects the key dimensions

of the subjective representation, such as how each frame interacts with concerns about self-image,

warm glow, and other motivations for pro-social behavior. Thus, through careful selection of

non-choice questions, the researcher can circumvent the identification issue that may limit the

standard approach. Using these non-choice responses, the researcher can still make predictions

about counterfactual forms simply by collecting non-choice responses about these made-up forms.

There are several potential disadvantages with this new approach. Broadly, these concerns

pertain to the stability of the non-choice model: Can we use a model that relates choice and non-

choice reactions on a set of choice problems that the model has not seen? This problem has at least

two specific manifestations. First, since we can’t measure the subjective representation directly, we

must assume that some function of non-choice reactions proxies for the subjective representation.

Second, it may turn out that the non-choice questions in our data don’t span the entire subjective

space. We can take steps to combat these weaknesses, however. First, we can attempt to capture all
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space may be subjectively very similar.

Figure 3: A graphical representation of on possible failure of identification in the objective subjective
representations. The black squares indicate observed data, while the gray circle indicates a choice problem
or economic setting whose outcome is unobserved.

pertinent subjective dimensions by collecting responses to a large number of non-choice questions.

Through careful model selection, we can select the variables which are most useful for out-of-sample

prediction. And through cross-validation, we can directly test whether the non-choice models can

make useful prediction in previously unseen settings.

2.1 Previous Literature on Non-Choice Responses

Non-choice responses have been used across the social sciences. In economics, the stated preference

(SP) literature developed when researchers became interested in predicting choices in non-market

settings where no choice data was available.6 Hypothetical choices and stated preferences are usually

biased, however, typically in the direction of a higher stated willingness to pay for goods. (See List

and Gallet (2001) for a review of how hypothetical bias depends on context and elicitation method.)

Two methods have been proposed in this literature to deal with this bias. First, some research has

sought to ask questions that introduce less bias in the first place. One example of this approach is a

cheap talk script (used by Cummings and Taylor [1999]), which encourages the respondents giving

the unincentivized answer to attempt to give as close a response to their true preferences as possible.

Alternatively, many researchers have sought to calibrate the hypothetical statements ex-post. This

was first done by Kurz (1974), and Shogren (2006) provides a recent overview. Recent research

in economics has begun to examine how well questions other than hypothetical choice or stated

6This literature got its name from the fact that preferences were stated rather than revealed by observation of
choices.
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preferences are correlated with choice. Benjamin et al. (2014), for example, compare subjective

responses about well-being to actual choices of medical students applying for residency. They find

that while the subjective rankings predict choice rankings well, the two data sources imply different

trade-offs on key features of the residencies. This suggests that multiple non-choice data sources

may be needed to fully recover underlying preference parameters.

The marketing literature has developed techniques similar to the stated preference literature.

Many marketing papers use calibration techniques to examine how stated preferences predict pur-

chase behavior. (See Chandon et al. (2005) for a recent meta-analysis of this literature.) Some

papers in the marketing literature, most recently Alṕızar et al. (2003), have used stated preferences

to estimate structural parameters of choice functions. I perform a similar exercise in this paper,

but with fitted values from non-choice models.

Research in marketing, as well as in the SP literature, has focused on predicting the responses

of individuals. The non-choice approach used in this paper, on the other hand, makes predictions

about aggregate behavior only. This is for two reasons: First, we imagine that the policy goal is to

predict the behavior of a population under new, i.e. previously unobserved, economic conditions.

Second, the subjective dimensions that are key to identification in this approach are imagined

to vary on the choice-problem level. We could attempt to make predictions at the level of the

individual person for each context, but making aggregate predictions of behavior under a new policy

is sufficient form most applications. A further difference between this paper and the aforementioned

literature is that I do not collect choices and non-choice responses from the same individuals; to

do so might invite contamination of the two data sources. Again, this could be a problem in

application, where the effect of a totally new economic policy is to be predicted from the responses

of individuals who have never made choices in that setting, but the non-choice model is estimated

using responses from individuals who have made real choices in observed settings.

The neuroscience literature has also examined the relationships between choices and non-choice

responses, both in terms of brain images and more traditional non-choice data. A recent paper by

Kang et al. (2011) shows that the parts of the brain activated by real choices are also activated by

hypothetical ones, although the degree of activation is different. Additionally, Lebreton et al. (2009)

show that brain activity while giving subjective ratings of items is correlated with hypothetical

choices over those items. Smith et al. (2014) perform a predictive exercise most similar to that

of this paper: they use brain imaging to predict choices of individuals over new goods, or the

choices of entirely new groups of subjects. Taken together, these papers indicate that hypothetical,

subjective, and choice responses all use the same valuation pathways in the brain to some degree,

and that the relationship between these types of responses are at least somewhat stable across

individuals and contexts. While I will not use neural data in this paper, these results are useful

in that they give some credence to the existence of a subjective representation of choice problems

that may be useful for prediction.
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The political science literature deals very often with non-choice data in the form of opinion

and voting polls. As in the stated preference literature, papers in this area fall into two different

approaches. Much work has been done calibrating stated preferences from poll responses to predict

voter activity (Jackman (1999), Katz and Katz (2010)). A recent paper by Rothschild and Wolfers

(2011) attempts to fix the question ex ante; they find that asking voters who will win is a better

prediction of the ultimate winner of an election than asking about intended voting behavior. The

authors give the intuition that the expectations question gives more information: it reveals not just

the voter’s preferences but also their beliefs about the preferences of others. In Bernheim et al.

(2013), we show that “third party hypotheticals”, which ask about the likely behavior of others,

can be more useful for prediction that the standard first-person hypothetical.

3 Application to Organ Donation

Recall the two choice frames commonly used on DMV forms: In the opt-in framing, a non-response

is indistinguishable from a negative response. In the active choice framing, respondents must answer

“Yes” or “No”, and thus a non-response is not the same as a negative response. In this section, I

apply the non-choice methodology to estimate the effect of choice framing on the designation rate.

To judge how well the non-choice data answer this question, I will benchmark the approach with a

more standard panel regression analysis, which I discuss first.

3.1 Panel Regression Approach

One standard regression-based approach to estimate the effect of choice framing is to collect the

available forms from other states, and estimate a model that relates objective characteristics of these

forms to the state’s designation rate. As discussed earlier in the paper, however, this approach may

fail if we do not capture all important objective characteristics in their model, or if there are

endogeneity or selection issues.

3.1.1 Data

Donor Designation Rate The outcome variable we are interested in is the donor designation

rate at the state-year level. The designation rate is defined as the percent of eligible adults applying

or renewing their license or identification at the state’s Department of Motor Vehicles (or similar

institution) who indicate that they want to become or continue to be an organ donor. The rate for

a large percentage of states is made public by Donate Life America (DLA). The rate is missing for

some state-years because it was not provided by the state to DLA. I have obtained all annual rates

made available from 2007 through 2012. Figure 4 plots the rate for each state over these years.

The annual rates are plotted relative to the rate in 2007 (or first available year) for each state.

From this figure we can see that designation rates are generally rising across the United States,
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Figure 4: Growth in donor designation rate for all states individually (dashed lines) as well as the United
States overall (thicker solid line). The designation rate is the fraction of license applications and renewals
at the DMV that resulted in a donor designation. All rates normalized so that the rate in 2007 (or the first
year of data for that state) is equal to 1. Not shown is the very large increase in Michigan, which went from
a rate of less than 10 percent in 2006 to 48 percent in 2012.

though there is some heterogeneity and instability in the increase. The summary statistics for the

designation rates by year are provided in Table 1, where we can see that the average designation

rate in the United States increases by about 2 percentage points per year.

Objective Predictors The majority of the objective predictors are observable characteristics of

the forms used as the state DMVs. I obtained 46 such forms used by 39 states.7 I coded all the

forms according to the following binary variables:

• Active: Whether the donation question is framed as an active choice (as opposed to an opt-in

framing). 30 forms have this feature.

• Highlight : Whether the donation question is visually highlighted (i.e. by a different text size

or color). 15 forms have this feature.

• Money : Whether the form also asks for a monetary donation to support organ donations. 15

forms have this feature.

• Info: Whether any additional information about organ donation is given on the form. 17

forms have this feature.

7I am deeply indebted to Judd Kessler and Linda Yao for providing copies of these forms.
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Year Mean Median Min Max

2007 36.8 36.2 8.9 67.5

2008 40.8 42.9 9.4 65.0

2009 41.3 43.2 11.1 64.4

2010 42.9 44.5 12.2 76.0

2011 44.1 43.7 13.3 76.6

2012 47.4 46.0 12.7 80.3

Table 1: Summary statistics of state-level designation rates across the United States. The mean is not
population- or donor-weighted. The designation rate is the fraction of license applications and renewals at
the DMV that resulted in a donor designation.

Additionally, it may be the case that social norms vary by state, and this leads some some states

to have higher donation rates. As a proxy for state-specific norms, I collected the average percent

of household income donated in each state in 2010. Because data are not available for most of the

time window of this study, this variable did not vary over time.

3.1.2 Methodology

I run the following regression:

DesignationRateit = β0+β1Activeit+β2Highlightit+β3Moneyit+β4Infoit+β5PercentGiveni+εit,

where i indexes states and t indexes years. I include year fixed effects, and errors are clustered at

the state level. Note that I do not include state fixed effects, as most states do not change their

forms over the time of the panel. As a result, any identification of the effect of the choice framing

(or any other form variable) will occur across states rather than within.

3.1.3 Results

In Table 2, we can see the results of a OLS regression of the model above. In the first with the

greatest coincidence of available designation rates and available DMV forms. First, we can see that

the effect of the changing from opt-in to active framing is positive but not significantly different

from zero at standard levels. For comparison, Kessler and Roth (2014a) estimate the effect of

California switching frame from opt-in to active to be between -2.2 and -2.7 percentage points.

These results are not necessarily in conflict, as my panel regression is attempting to identify the

average effect of choice framing over all the states in the sample, not just California’s. However, it

should be clear that the identification strategy in my regression is much more tenuous than Kessler

and Roth’s, who use a differences-in-differences approach.
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2006-2012

(Intercept) 0.360 (0.062)∗∗∗

Active 0.036 (0.028)

Highlight −0.008 (0.030)

Money 0.005 (0.029)

Info −0.118 (0.028)∗∗∗

Percent Given 0.001 (0.009)

R2 0.219

Adj. R2 0.143

Num. obs. 114

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 2: Ordinary least squares regression of donor designation rate at state-year level using objective
form characteristics only. Dependent variable is designation rate as a fraction. Level of observation is the
state-year. Year dummies included in regressions but excluded from table output. Standard errors clustered
at the state level.

Incidentally, the model in Table 2 also suggests that the provision of information about the

meaning of donor designation may actually lower donor designations rates. This result is also

somewhat in contrast to Kessler and Roth (2014a), who include in their paper an experiment with

real donation decisions where some subjects are exposed to a list of organs that may be used for

donation. They find that this exposure increases the registration rate in their experiment. In

contrast, my panel regression suggests that additional information can decrease the interest rate.

However, the information provided on the DMV forms is quite different than the list of organs

provided by Kessler and Roth, so again my results are not directly contradictory.

3.2 Non-choice Approach

To understand the motivation for this non-choice approach to this problem, consider what would

be the optimal experimental design to determine the effect of choice framing. Ideally, each state

would create two versions of their form: one opt-in and one active choice, but with all else held

equal. These forms would be randomly assigned to DMV customers, and the designation rate could

be compared for the two versions of the form. This approach would yield an estimate of the effect

of choice framing for any state.

Using the non-choice approach, I simulate this ideal experiment design without having to im-

plement a costly field experiment. To do this, I created a counter-factual version of each form in

my data: I edited the form to change the apparent choice framing, but kept the form otherwise

identical. For forms with an active choice framing, the negative option was removed. For forms

13



Figure 5: Example of a photomanipulation to switch the choice framing of a DMV form. The original
wording of the quesiton used an actice choice framing (top). Simply removing the “No” option results in an
opt-in choice framing (bottom).

with a passive or opt-in framing, a negative option was added. For an example of a factual and

counter-factual pair of forms, see Figure 5. Importantly, the forms were also censored to make it

difficult to tell which state each form was from; this reduced the chance that state-specific norms

or beliefs could affect a subject’s judgment of the forms.

3.2.1 Design

The non-choice responses were collected from participants on Amazon Mechanical Turk. Survey

respondents were shown 10 randomly selected forms.8 For each form, the respondent was asked to

think about the typical person in their state applying for a driver’s license with this form. They

were then asked to give their responses to the questions laid out in Table 3. It was made clear

to the respondents that they were not being judged or paid based on their accuracy. Participants

were paid a fixed amount of $3.00 for completing the survey. A screenshot of a decision screen for

this part of the study is shown in Figure B.1.

3.2.2 Data

Responses were collected from 572 Mechanical Turkers; 44 percent were female, and the majority

had completed at least some college education. The median age was 30. Subjects took 25 minutes

to complete the survey on average.

3.2.3 Model Selection and Prediction

I randomly divide the existing forms into 5 folds, and hold out one fold. The model selection

algorithms (and the benchmark panel regression) are run on the remaining four folds, with the

held out fold used to calculate prediction error. This process is repeated for each fold, so that

a prediction is generated for each form-year. The prediction metrics are then calculated at the

form-year level.

The results of this approach are in Table 4. I use all data from 2007 to 2012 where I have both

the designation rate for that state-year and the application form for that state-year. This gives

8All forms are visible at http://stanford.edu/~jnaecker/files/states.
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Questions Responses

How likely do you think the typical person in
the United States would be to become an organ
donor when filling out this form?

• Very unlikely

• Somewhat unlikely

• Equally likely and unlikely

• Somewhat likely

• Very likely

How how hard was it for you to find the organ
donation question? • Very easy

• Somewhat easy

• Neutral

• Somewhat hard

• Very hard

How hard to read is the form?

• Very easy

• Somewhat easy

• Neutral

• Somewhat hard

• Very hard

To what extent do you think that the way this
form asks about organ donation makes . . .

• an individual feel good about themselves
by signing up?

• an individual appear generous to others
by signing up?

• it easy for an individual to sign up?

• an individual feel pressured to sign up?

• Not at all

• Moderately

• Somewhat

• A fair amount

• Very much

Table 3: Non-choice questions for the organ donation survey, along with allowed answers. All responses
were on a five-point scale. All participants answered all questions in relation to 10 randomly selected forms.
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Method Mean Actual Mean Pred. Bias MSPE Calib.

Year Only 0.430 0.428 -0.002 0.023 -0.230

Applied 0.430 0.405 -0.025 0.044 -0.086

Likelihood ≥ 4 0.430 0.419 -0.011 0.023 -1.633

Likelihood ≥ 4 + Good ≥ 4 0.430 0.419 -0.011 0.021 0.499

Year + Likelihood ≥ 4 0.430 0.420 -0.010 0.023 -0.241

Year + Likelihood ≥ 4 + Good ≥ 4 0.430 0.418 -0.012 0.022 0.444

Lasso 0.430 0.410 -0.020 0.049 -0.387

Lasso (manual λ) 0.430 0.421 -0.009 0.025 -0.372

BIC Stepwise 0.430 0.457 0.028 0.223 -0.063

BIC Stepwise (Restricted) 0.430 0.395 -0.034 0.031 -0.024

CV-MSPE 0.430 0.400 -0.030 0.038 -0.461

CV-MSPE (Restricted) 0.430 0.413 -0.017 0.032 -0.627

Lasso (Year) 0.430 0.416 -0.014 0.030 -0.143

Lasso (Year, manual λ) 0.430 0.420 -0.010 0.026 -0.096

BIC Stepwise (Year) 0.430 0.316 -0.113 0.127 -0.108

BIC Stepwise (Restricted, Year) 0.430 0.398 -0.031 0.035 -0.119

CV-MSPE (Year) 0.430 0.390 -0.040 0.049 -0.182

CV-MSPE (Restricted, Year) 0.430 0.417 -0.013 0.035 -0.470

Table 4: Out-of-sample performance of non-choice responses compared to various objective data bench-
marks. The first section of the table shows the performance of the benchmarks that use only objective data
as predictors. The next sections shows the best-performing univartiate and bivariate non-choice data models.
The third section shows the performance of these models with year fixed effects added. The fourth section
shows the performance of the three model selection procedures, both with and without additional tightening
of the over-fitting penalties. The final section shows the performance of these same model selection methods
with year fixed effects added. Estimation is done using five randomly selected folds. Data are from 2007 to
2012.

114 observations over 6 years, with 29 different states appearing at some point in the unbalanced

panel.

In the first section of Table 4, I include the prediction statistics for the two benchmarks models.

The “Applied Model” benchmark runs the OLS regression from Table 2 on the training data, and

uses the resulting model to predict the designation rates held-out forms. I also include benchmark

model that uses only the year dummies. For our non-choice models to be useful, they should have

better prediction statistics than these two benchmarks.

Before considering the model selection methods, I examine first some manually selected non-

choice models that use a small number of non-choice variables. In the second section of the table,

we see that predictions using only the hypothetical likelihood question have a low bias and MSPE,
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but extremely poor calibration. Adding a subjective dimension, however, can improve prediction

dramatically. The best improvement from a single variable comes from adding the a subjective

predictor derived from the question “To what extent do you think that the way this form asks

about organ donation makes an individual feel good about themselves by signing up?”

In the third section of the table, I add a time trend to these two simple non-choice models. The

predictive metrics are improved only slightly, indicating that the additional predictive power of the

time trend is marginal when the key non-choice dimensions have been included. This is consistent

with the fact that the average designation of the states increases only 2 percent per year, while the

variance across states each year is much higher. Thus the simple non-choice models seem to be

explaining a large portion of this cross-state variation.

Can we make better predictions by including more non-choice variables? Recall the intuition

that we are attempting to capture the subjective representation of the forms, which possibly vary

on many of these subjective dimensions. Intuitively, the hypothetical question may be a biased

prediction of the true designation rate, and that this bias changes with an important subjective

dimension of the forms. However, the additional non-choice questions may mediate this bias,

allowing us to make more accurate predictions if we include these variables. To this end, the fourth

section of Table 4 examines the predictive accuracy of the three main model selection procedures.

The Lasso algorithm, as discussed earlier in the paper, makes its selection of variables through

the addition of an explicit penalty term proportional to the amount of coefficient in the model. As we

can see from Table A.2, this algorithm fails to do much selection at all, despite the cross-validation

procedure used to pick a penalty term λ. As a more conservative model selection procedure, the

Lasso algorithm was run using a manually selected value for λ, chosen to result in models with

approximately 4 degrees of freedom. This restriction leads to a full-sample model that is much

sparser, and the MSPE is much improved. The BIC-selected and MSPE-selected models benefit

similarly from a manual restriction. In these cases, the selection methods were forced to consider

only models that included four degrees of freedom. All of these models select some function of

the hypothetical likelihood response, and all but the un-restricted BIC-selected model are in fact

identical.

In the final section of the table, I add a time trend to the set of variables that each model

selection technique is allowed to consider, and force the techniques to include this variable.9 The

resulting predictive power of each selection technique is generally improved by the inclusion of the

time trend. Because the reported prediction statistics are calculated from predictions made my

models that had not seen that data point, the inclusion of additional variable does not necessarily

improve the performance metrics. As above, it appears that the non-choice models can explain

much of the inter-state variation in designation rates, which is much large in magnitude than the

time trend.

9Note that time is included as a single trend variable and not as a set of year dummies as in the applied specification.
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Method Effect

Lasso -0.019

Lasso (manual λ) -0.025

BIC-selected 0.025

BIC-selected (restricted) -0.021

RMSE-selected -0.021

RMSE-selected (restricted) -0.021

Table 5: Average predicted effect of changing from opt-in framing to active choice framing for each model
selection procedure.

3.2.4 Effect of Choice Framing

We can now examine what our non-choice models have to say about the effect of choice framing

on the designation rate. Recall that for each existing form, I created a counterfactual version with

the opposite choice framing. I collected non-choice responses to both versions, so I am able to

construct the the following object:

â =
1

n

n∑
i=1

β̂(XA −XO),

where i indexes the nn forms, β̂ is the non-choice model estimated using the existing forms, XA

contains the non-choice variables corresponding to the active choice forms (both factual and coun-

terfactual), and XO contains the non-choice data from the opt-in forms. Thus the object â is the

average predicted effect of changing from opt-in to active choice framing. In Table 5, I give these

counterfactual predictions for each of the non-choice model selection techniques. From this table,

we can see that the predicted effect is negative in sign and around 2 percentage point in magnitude

for nearly every non-choice selection procedure. The model that is selected by three of the methods

gives a prediction of a negative 2.1 percentage point decrease from switching to the active choice

framing. This point estimate is nearly identical to that of Kessler and Roth (2014a).

4 Social Preference Experiment

The non-choice response approach in Bernheim et al. (2013) has been validated so far only in rela-

tively simple individual decision-making problems in the laboratory. However, the organ donation

application (and other public good applications) contains at least two complicating features relative

to these experiments. First, the application will use a new population of respondents (Mechanical

Turk workers) to predict behavior. Second, the decision to donate contains many more potential

subjective factors, such as social image and morality, that were not present in previous studies. To
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examine the potential effect of these issues, I will now apply the non-choice methodology to a set

of social preference experiments on Mechanical Turk. The results of this experiment will help us

determine whether the new methodology can work on a non-laboratory population and whether

it can capture key determinants of more complicated social decisions. The experiment serves an

additional purpose: I can estimate the non-choice model in one economic setting (a simple dictator

game) and compare its predictions to actual behavior in another settings (a more complicate game).

Furthermore, I can use a variety of more standard approaches (both structural and reduced form)

as benchmarks to gauge the efficacy of the non-choice approach.

4.1 Design

The experiment consists of two distinct sources of data collected from different groups of partici-

pants. First, I will discuss the choice data of interest, which come from to simple laboratory games.

The participants in these games made binary choices that affected their own payoffs and others,

much like the decision to donate one’s organs. I will then go over how the non-choice responses

about these two games were collected.

4.1.1 Choice Data

Subjects in the choice part of the experiment played two different binary-choice games: one in

which both players make a move, and one in which only one player was able to act. I will first

discuss the two-mover game, as the one-move game follows from this design.

Two-mover game. Player 1 moves first, and chooses either “Out” or “In”. If “Out” is chosen,

the game ends; Player 1 receives payoff of fO in dollars and Player 2 receives payoff sO in dollars.

If “In” is chosen, Player 2 may choose either “Left” or “Right”. If she chooses “Left”, the game

ends and payoffs are fL and sL respectively. If she chooses “Right”, the game ends with payoffs

fR and sR. An example of such a game is shown in Figure 6. The design of this game is based on

that of Ert et al. (2011), which in turn is similar to the design used in Charness and Rabin (2002).

In Figure 7, I plot several example versions of the two-mover game, which differ by the pay-

off parameters (fO, fL, fR, sO, sL, sR). The first mover’s payoff is plotted on the horizontal axis.

Similarly, the second mover’s payoff is plotted on the vertical axis. Thus each point on the graph

corresponds to a terminal node of the game; the points are labeled with the corresponding actions

preceding them. We can see that Player 1 must decide between ending the game with “Out” or

continuing the game with “In”. If Player 2 gets to make a choice, she chooses between “Left” and

“Right”, the payoffs for which I have connected with a line. The slope of this line determines what

kind of trade-off (if any) Player 2 must make in her decision. If the slope is negative, Player 2

must give up some of her payoffs to increase the payoffs of Player 1. If the slope is very steep, then

giving is very expensive: she must give up more than one unit of her payoffs to increase the other’s
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(fL, sL)

Left

(fR, sR)

Right

(a) The one-mover game, which is a binary dictator
game. Note this game is simply the proper subgame
of the two-mover game.

1

(fO, sO)

Out

2

(fL, sL)

Left

(fR, sR)

Right

In

(b) The two-mover game game. Player 1 moves first,
choosing “Out” or “In”. Player 2 then chooses “Left”
or “Right”.

Figure 6: Binary choice games used in binary choice experiment. The payoffs f are those for player 1,
while the payoffs s are for player 2.

payoffs by one unit. If the slope is very shallow, giving is very cheap: she needs to give up less than

one unit of her payoffs to increase the other’s payoffs by one unit. In some cases, the slope may

be positive or zero, in which case the players agree on which is the best outcome between “Left”

and “Right” in terms of monetary payoffs. Nonetheless, it is possible that Player 2 will pick the

dominated outcome between the two, perhaps to punish or spite Player 1.

Participants played 120 versions of the game with different payoff amounts (fO, fL, fR, sO, sL, sR).

These 120 sets were the same as those chosen by Ert et al. (2011) to cover a large space of possible

social preference games often used in the experimental literature.10 For example, if fR > fO > fL

and sL > sR > sO, this is the so-called “trust game”: the first mover can make both players better

off by playing “In”, but the second mover can take these gains for herself by choosing the more

selfish of her two options. (See version number 44 in Figure 7 for an example of such a game.) If

fR > fO > fL and sO > sR > sL, the situation is similar to that of the “ultimatum game”: the

first mover can play selfishly by choosing “In”, but the second mover can then punish him at some

cost to herself. (See version number 86 in Figure 7.) By including such a broad set of payoffs, we

can be more confident that any results found are a feature of the entire class and not just a small

corner of the payoff space.

One-mover game. In this game, Player 1 does not move. Player 2 chooses between “Left”,

with payoffs fL and sL, and “Right”, for payoffs fR and sR. An example of this game is shown in

Figure 6. This is a binary version of the standard dictator game used in numerous social preference

experiments. Importantly, there are 120 versions of this game, each one corresponding to the

subgame of one of the versions of the 2-mover game. That is, subjects playing the 1-mover game

10See Table A.1 for the complete list of games and their payoffs.
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Figure 7: Payoffs from four selected versions of the two-mover game. Payoffs for first mover on horizonal
axis, and payoffs for second mover on vertical axis. Version numbers 6 and 44 show a negative slope for
Player 2’s budget set, indicating that giving is costly. Version 57 shows a case where giving is costless, while
number 86 shows a case where Player 2 has a an option that Pareto-dominates the other in terms of cash
payoffs. Note that version 44 is an example of a simplified trust game: the first mover can move “In” in
the hopes that the second mover will choose to make a small sacrifice to choose “Right.” Version 86 shares
some attributes of the classic ultimatum game: the second mover can “reject” the first mover’s proposal of
ending at the “Left” node by playing “Right.”

face the same set of payoffs as in the 2-mover game, but without the context of their opponents

choosing “In” or “Out” first. To emphasize this fact, I have labeled the dictator in the one-

mover game as Player 2, and noted her payoffs with the same symbols following the “Left” and

“Right” terminal nodes for the two games. This feature of the experiment was not made salient to

participants, however.

Implementation details. The experiment was run on Amazon Mechanical Turk (“MTurk”).

This is an online labor market where workers (“Turkers”) perform short, computer-based tasks

for modest wages (typically around $5 per hour). The platform was originally intended for busi-

nesses to be able to “automate” repetitive digital tasks, such as transcription of audio or tagging

of image content. However, recently many social scientists have used the platform to perform

large-scale laboratory-style experiments. The population of Turkers is not representative of the
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population in the United States, as Turkers skew younger and are more likely to be male.11 How-

ever, Peysakhovich et al. (2014) show that the behavior of Turkers is generally similar to that

of standard laboratory subjects in a wide variety of social preferences tasks, and that Turkers

demonstrate individual consistency across these tasks and across time.

Subjects played all 120 versions of the two-mover game as both the first mover and the second

mover, as well as the 120 version of the one-mover game, for total of 360 decisions. The payoffs

f and s were displayed to subjects in experimental currency units (ECU), such that 10 ECU =

$1. The payoffs f and s were between 0 and 40 ECU (between $0 and $4) The experiment was

implemented using the strategy method. That is, subjects made all 360 choices without being

explicitly matched to a partner. When playing as the second mover in the trust game, the subjects

made their actions conditional on their opponent choosing “In”. After making all of their decisions,

the players were matched in pairs, roles were randomly allocated, and one round of one game was

implemented. All subjects received $5 for participation automatically upon completion of the

experiment, transmitted electronically through Mechanical Turk’s payment system to the Turker’s

bank account. Any winnings from the implemented round (which averaged $2) were calculated

after all subjects had completed, and transmitted as a second payment several days later.

4.1.2 Non-choice Data

Four additional groups of subjects were tasked with providing non-choice responses to each decision

problem. These subjects were shown the same instructions and games as the choice data subjects,

but they were told that instead of making a choice, they would give unincentivized responses about

the choice problems. Subjects were randomly assigned to one of four treatments, each of which

asked a different non-choice question or set of questions. (See Figure B.2 for the exact wording of

the instructions for these treatments.) The subjects in these four treatments answered the same

non-choice question or questions for their entire participation in the experiment.

Subjects in the hypothetical question treatment answered the following question: “Hypothet-

ically, which option would you choose?” Allowed responses were “Left” or “Right” when asked

about their actions for the roles of Player 2, and “Out” or “In” when asked about the role of Player

1. Subjects in the vicarious hypothetical treatment answered the following question: “Which op-

tion do you think the typical Mechanical Turker would choose?” Allowed responses were “Left” or

“Right” when asked about the roles of Player 2, and “Out” or “In” when asked about the role of

Player 1. The vicarious likelihood question is motivated similarly, but worded so that participants

can give a responses on a 5-point likelihood scale.

Finally, the subjective treatment asked participants about four possible dimensions of the sub-

jective representation of these binary games. All the questions of this type were motivated by

11Turkers are required by Amazon to have American bank accounts. Some English-speaking foreigners are able to
enter the labor force nonetheless, as determined by looking at their IP addresses. In my data, approximately 10% of
subjects appear to be foreign.
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leading theories of social preferences. The question about “feeling good” was intended to capture

the effect of warm glow preferences, for example. These questions were worded so as to ask how

these motivations addressed the concerns of a typical Mechanical Turker. As with the likelihood

treatment, these questions allowed for response at one of five levels.

Implementation Details. Participants in the non-choice response treatments answered their

question or questions for 360 unique settings: the 120 versions of the 1-mover game and 120 ver-

sions of both perspectives in the two-mover game game. Because these were non-choice responses,

payments did not depend on the responses of the subjects. Instead, subjects in these treatments

were paid a fixed amount of $7. This payment arrived as a $5 completion payment made immedi-

ately as in the choice treatment, followed by a $2 payment several days later to match the timing

of the choice treatments as much as possible.

4.2 Results

4.2.1 Overview of Data

The data for this experiment was collected from 149 subjects on Mechanical Turk in June of 2014.

The median age of subjects was 29, and they were 45% female. Despite what one might expect given

the low wages offered on the platform, 85% of subjects reported at least some college education.

Subject were randomly assigned to treatments upon starting the experiment; the number of subjects

in each treatment is given in Table 7. The median time to complete the experiment was 53 minutes

across all treatments.

Before moving on, it is important to note that the following analysis will focus only on the

behavior of subjects in the one-mover game and as the second mover in the two-mover game. By

examining only the behavior of the final move in each game, we do not have to worry about beliefs

of the subjects about what the second-movers will do. By design, each decision in the dictator game

has a payoff-equivalent decision for the second mover of the two-mover game. This will allow us

to directly examine whether final payoffs alone enter preferences, or whether subjects consider the

path taken those payoffs as well. When predicting behavior in the two-mover game from observed

behavior in the one-mover game, we now have a benchmark by which to judge our predictions: if

only final payoffs matter, then the subjects should make the same decisions in matched versions of

the two games.

4.2.2 Non-Parametric Results

We start by examining how behavior in the two games changes as the parameters of the choice

problems change. The most salient feature of the decision problems that the final mover in each

game faces is the relative payoffs of the two players. To summarize the relative payoffs for each
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Treatment Question(s) Responses

1. Hypothetical Hypothetically, which option
would you choose? • Left

• Right

2. Vicarious Hypothetical Which option do you think the
typical Mechanical Turker would
choose?

• Left

• Right

3. Vicarious Likelihood Which option do you think the
typical Mechanical Turker would
be more likely to choose?

• Very likely to choose Left

• Somewhat more likely to
choose Left

• Equally likely to choose ei-
ther option

• Somewhat more likely to
choose Right

• Very likely to choose Right

4. Subjective Questions Which option do you think
more effectively addresses a typ-
ical Mechanical Turker’s concern
about . . .

• feeling good about them-
selves?

• appearing generous to oth-
ers?

• how their payoff will com-
pare to others?

• how much money the other
player deserves?

• Left much more effective

• Left somewhat more effec-
tive

• Left and Right equally ef-
fective

• Right somewhat more ef-
fective

• Right much more effective

Table 6: Non-choice treatments and their corresponding questions and responses. Treatments were across
subjects, meaning that a subject answered the same question or questions for the entire length of the
experiment. For the first player perspective in the two-player game, “Left” and “Right” were replaced with
“Out” and “In”, respectively.
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Treatment Number of Subjects

Real Choices 36

Hypothetical 30

Vicarious Hypothetical 33

Vicarious Likelihood 33

Subjective Questions 17

Table 7: Number of subjects in each treatment. Mechanical Turkers were randomly assigned to treatment
upon starting the experiment. The number of subjects in the subjective questions treatment is noticeably
smaller due to attrition. This treatment took somewhat longer to complete, which may have caused more
subjects to drop out or fail to complete in the time limit given. If such selection is present, it should not
affect the performance of the non-choice methodology, as the subjects in the subjective questions treatment
gave responses to both the one mover and two mover games.

version, I define the price of giving as

p = log

(
− fL − sL
fR − sR

)
.

If the price is greater than zero, then Player 2 must sacrifice more than one dollar to give a dollar

to their partner. Conversely, if the price is less than zero, the decision maker needs to give up less

than one dollar to give a dollar to their partner. Of course, since the decision in this experiment

is binary, subjects can make only extensive-margin decisions about whether or not to choose the

selfish option rather than an intensive-margin decision about how much to give. So, we should

expect that the proportion of individuals choosing the selfish option should increase with the price

of giving. Note that this price is only well-defined for cases where the selfish option for the decision

maker is not also the preferred option of their partner. These other cases, where incentives of the

two players are aligned or where one or both player’s payoffs do not depend on the choices of Player

2, are dropped from this part of the analysis.

Figure 8 plots the fraction of subjects choosing the selfish option against the price of giving. As

expected, subjects choose the selfish option more often on average as the price of giving increases.

The figure plots the average demand separately for the two games. If final payoffs were the only

variables than entered the subjects’ utility functions, we should see no difference between the two

games. However, we see than the demand for the selfish option depends noticeably on which game

is being played. In particulars, subjects make consistently less selfish choices at every price level in

the two-mover game. These results are confirmed by a regression analysis: in Table 8, I report the

results of probit regression of individual binary choices on price of giving and an indicator for game

type. Model 1 confirms that in aggregate, demand of the selfish option increases with price. Model

2 shows that the two mover game has a lower level of giving, though not a significantly different

slope. This gives us our first hint that preferences do not depend solely on monetary outcomes:
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Figure 8: Fraction of participants choosing selfish option for each game, as a function of the log price of
giving. The points correspond to one version of each game. Also plotted are probit response curves for
individual demand by Player 2 for the selfish option as a function of the price of giving, plotted separately
for the one-mover and two-mover games. Data is only from games where slope of Player 2’s budget set is
negative. Individual data points are not shown because all points lie at level either 0 or 1 on the vertical
axis. Only games with a well-defined log price are shown.

clearly, whether those outcomes are part of the two-player or one-mover game have a significant

effect on choices. To understand the difference between the two games, we turn to a structural

model of social preferences.

4.2.3 Benchmark Models of Social Preferences

In order to judge how useful the non-choice responses are in prediction choice behavior, I discuss

in this section several benchmark approaches that use choice data to predict behavior in a social

preference setting. The results below show that the subjects in this study have preferences that are

very similar to those of subjects in previous papers in the literature. However, I will also demon-

strate how their behavior shows a dependence on context that is not captured by the benchmark

approaches.
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Model 1 Model 2

Constant 0.833∗∗∗ 1.043∗∗∗

(0.136) (0.169)

Price 0.240∗∗∗ 0.292∗∗∗

(0.052) (0.073)

Two-mover −0.383∗

(0.197)

Price X two-mover −0.084

(0.063)

AIC 3736.461 3676.477

BIC 3748.916 3701.389

Log Likelihood -1866.230 -1834.238

Deviance 3732.461 3668.477

Num. obs. 3744 3744

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 8: Probit regressions of individual choices on price of giving and game type. Dependent variable is
indicator for whether subject choose selfish option. Standard errrors clustered at the subject level.

Structural Model. The first approach with which I will benchmark the non-choice prediction

is a leading structural model of social preferences. I will use the model proposed by Charness and

Rabin (2002). In this model, we imagine a setting where money is being divided between two

agents, 1 and 2. Agent 1’s utility depends on x1, the dollar amount that she receives, and x2, the

dollar amount her partner receives. Utility for agent 1 takes the following form:

u(x1, x2) = (1− ρr − σs− θq)x1 + (ρr + σs+ θq)x2,

The terms ρ, σ, and θ are parameters of the utility function, while the terms r, s, and q are

determined by the situation. We can see that the utility function puts weights on each of the dollar

payoffs, x1 and x2. These weights always sum to one, but their relative size varies depending on

the situation. First, we define the distributional terms r and s. If x1 > x2, then we set r = 1

and s = 0. Thus ρ is the weight that the decision-maker puts on their partner’s payoff when the

decision-maker is ahead in terms of payoff. If x1 < x2, then set s = 1 and r = 0. Thus σ is

the weight that the decision-maker puts on their partner’s payoff when the partner is ahead in

terms of payoff. Finally, we define q = −1 if the partner has “misbehaved”, and is 0 otherwise.

“Misbehaved” in the game analyzed in this section is defined as first mover choosing “In” when

“Out” would have been best joint payoff and best payoff for second mover.12 Thus θ measures the

12This is the definition used by Charness and Rabin (2002) as well as Ert et al. (2011), from whom the different
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reciprocal nature of the decision-maker’s preferences.

This model provides a useful benchmark because it incorporates a wide variety of commonly-

used social preference models. For example, if a subject cares only about her own payoff, then we

should find ρ = σ = θ = 0. If instead she cares only about maximizing total payoffs (ie utilitarian

preferences), then we should find ρ = σ = 1
2 and θ = 0. And if her utility is equal to the minimum

payoff (Rawlsian preferences), we should see ρ, σ → ∞ and θ = 0. This formulation of the utility

function also includes the model of Fehr and Schmidt (1999) as a special case where θ = 0.

Note that if θ = 0, the preferences represented are purely distributional: the final payoffs of

each player enter in the utility function, but how those allocations were arrived at does not. It

is possible, however, that preferences are affected by the payoffs of unrealized outcomes; that is,

the path matters, not just the outcome. The Charness-Rabin model allows for this possibility in a

fairly flexible way: the parameter θ indicates how much penalty the decision-maker applies to their

opponent when the opponent wrongs her.13 The importance of this reciprocity component can be

seen in comparing the one-player and two-mover games in this study.

I estimate the Charness-Rabin model using a maximum likelihood procedure, with an extreme

value error distribution. In this case, the probability of choosing option Right over option Left is

given by

P (R) =
eµUR

eµUL + eµUR
,

where UR and UL are the utility values of choosing Right and Left, respectively. The parameter

µ governs the error rate: a higher value indicates a smaller chance of choosing the lower-utility

option over the higher-utility one. The estimates I report assume a representative agent, ignoring

the possibility of heterogeneous preferences across agents. While heterogeneity is a potentially

interesting direction of study, I make this choice for two reasons. First, it allows me to judge the

non-choice models against the structural models in the case where both have the same degrees

of freedom. Second, the non-choice methodology I will employ will predict only population-level

choice frequencies, so again to level the playing field I choose to limit the structural methods to

the population level as well.

The results of this estimation are shown in Table 9. In the first two columns, I examine the

results when aggregating data from the two games. In the first column, I restrict θ = 0. We see that

since ρ > 0 and σ > 0, subjects put significant weight on other’s payoffs. However, the fact that

ρ > σ means that subjects on average put less weight on others’ payoffs when the other is ahead in

terms of dollar payoffs. In the second column, I allow θ to be determined by maximum likelihood.

The negative estimate of θ indicates that subjects do indeed have a reciprocal components to their

preferences. These point estimates are quite similar to those from Charness and Rabin (2002).

In the remaining columns, I consider the estimates we obtain when restricting the data to one

versions of each game are borrowed.
13One could also imaging more detailed models of reciprocity that explicitly model the expectations of the players.
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All data All data 1 mover game 2 mover game 2 mover game

µ 0.2106 (0.0048) 0.211 (0.0048) 0.2379 (0.0077) 0.1924 (0.0063) 0.1928 (0.0063)

ρ 0.3397 (0.0145) 0.3391 (0.0145) 0.2809 (0.0193) 0.3977 (0.0215) 0.3966 (0.0215)

σ 0.1521 (0.015) 0.1396 (0.0159) 0.1171 (0.0202) 0.1871 (0.022) 0.1739 (0.0232)

θ . -0.0721 (0.0263) . . -0.0744 (0.0369)

Table 9: Maximum likelihood estimates for the Charness-Rabin model under various restrictions. Errors
are from extreme-value distribution, governed by parameter µ. Parameters ρ and θ measure distributional
preferences, while θ measures reciprocal preferences. Model 1 estimates using second-mover choices from
both games, but with the restriction that heta = 0. Model 2 estimates using the full data set as well,
but with no restriction. Model 3 estimates CR using one-mover game data; in this case it is not possible
to estimate heta, which is set to 0. Model 4 estimates CR using only data from the second mover of the
two-mover game, with the restriction that heta = 0. Model 5 relaxes this restiction.

of the two games. If we restrict the reciprocity component θ = 0, we see that we get very different

estimates for ρ and σ across the two games (columns 3 and 4). Even if we drop the restriction

θ = 0 for the two-mover game, the two distributional parameters are different from those resulting

from the one-mover game (column 5). Taken as a whole, these results shows us that while the

Charness-Rabin model allows for a reciprocal term in the utility function, the model has failed to

fully capture the differences in behavior between the one-mover and two-mover games. This opens

the possibility that non-choice responses may be more useful as predictors than the Charness-Rabin

estimates.

Heuristic Model. As another benchmark, we can instead model subjects arriving at decisions

through simple heuristics, or rules of thumb, rather than utility maximization. There are a number

of possible such rules, many of which correspond to the special cases of the Charness-Rabin model

discussed above. However, these heuristics do not assume an underlying utility model, but simply

specify a probability of choosing an option as a function of its characteristics. The heuristics rules

that I will use are as follows:

• Selfish. The subject chooses the option with higher payoff for themselves.

• Nice selfish. The subject chooses the option with the higher payoff for themselves. If their

own payoff is the same for the two options, they choose the option with higher payoff for their

partner.

• Utilitarian. The subject chooses the option with the higher aggregate payoff for the two

players.

• Rawlsian. The subject chooses the option with the higher minimum payoff.

• Minimizing differences. The subject chooses the option which has the smaller difference

between the two player’s payoffs.
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To see which of these heuristics are being used by subjects, I regress subject decisions on five

indicators. The dependent variable is an equal to 1 if the subject chose the option “Right”, while

the independent variables are equal to 1 if the option “Right” is the option that corresponds with

the named heuristic, equal to 0 if the option “Left” meets the heuristic, and equal to 0.5 if both

options meet the decision rule’s criteria. The univariate models show that the selfish and nice-selfish

heuristics give the most explanatory power, but that all rules are correlated with choices to some

degree. The negative coefficient on the minimizing differences rule indicates that on average subjects

sought to maximize differences between payoffs, but this effect is much smaller in magnitude than

the other rules. Combining all heuristics into one model, we find that the nice-selfish rule is the

dominant decision factor, which is qualitatively similar to the results in Erev and Roth (1998),

who use a this same heuristic regression on their data. However, if we restrict the regressions by

game, we see that in the one-mover game, the selfish decision rule is much stronger than in the

two-mover game. This shows that like the Charness-Rabin model, the heuristic model also does

not fully capture differences in behavior in the two settings.

4.2.4 Prediction

In the preceding analysis we have looked only at in-sample fit of the benchmark models, but the

non-choice methodology is most likely to be useful when predicting out of sample. For what follows,

I will perform the following exercise: Using choice data only from the one mover game, I will predict

aggregate behavior in the two-mover game. As a benchmark, I will estimate the Charness-Rabin

model with the one mover game data, but I will not be able to identify the reciprocity component

θ, since there is no sense of one’s partner “misbehaving” when they cannot make a move in the

game. As another benchmark, I will estimate the reduced-form model from Table 10 using just the

one mover game data. We have already seen that this model demonstrates some flavor of stability:

the relative strength of the decision rules seems highly game-dependent.

It is possible that non-choice responses can overcome the instability prevalent in these other

approaches. The procedure for making predictions with non-choice responses starts with creating

the non-choice variables. The non-choice responses – which are collected at the individual level –

are first aggregated to the level of the choice problem. For the binary responses, the most obvious

aggregation is the mean, i.e. the fraction of non-choice subjects who respond with the selfish option

to the hypothetical and vicarious hypothetical questions. The responses on the 5-point scale can

be aggregated by taking averages as well, though this destroys much distributional information.

Additionally, one can create variables corresponding to the percent of non-choice subjects who

respond with level 2 or greater, 3 or greater, and so on.

Table 11 reports the predictive performance of the non-choice models and several benchmarks.

The first second contains the benchmarks. The first benchmark makes predictions from the

Charness-Rabin model estimated on the one mover game data. Recall that this approach does
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not allow for estimation of θ, so I set θ = 0 to make predictions. We see that this approach yields

a very small bias (less than one percentage point in average error) but a relatively poor MSPE and

calibration score. For a much more challenging benchmark, I can also estimate the Charness-Rabin

model on the data from both games.14 This additional data does not improve the prediction met-

rics; this is likely because, as we saw earlier, the Charness-Rabin does not seem to full capture the

differences in behavior between the two games.

Alternatively, we can predict that subjects will always demand the selfish option. This approach

does particularly poorly because it gives a myopic prediction that does not depend on the aspects

of the game at all. The heuristics method fares much better, with the lowest MSPE among the

benchmark models. The final benchmark, called version match, predicts that the aggregate choice

frequency in any version of the two mover game is the same as the aggregate choice frequency in

the payoff-matching version of the one-mover-game.

The rest of the table shows the performance of various non-choice models. First, I examine

the predictive power of the first-person hypothetical question. The label “raw” indicates that the

variable has been included directly as a prediction of the real demand, without the regression step

explained above. The raw hypothetical response turns out to be a relatively good predictor of

choices; in this setting, there appears to be only moderate hypothetical bias. The “trained” model

is only a marginally better predictor; this is due to the fact that the hypothetical bias is not perfectly

stable across the two games. The question is whether the addition of subjective dimensions can

further improve the predictive power of this hypothetical question.

In the next section of Table 11, I perform the full model selection procedures on all non-choice

variables. For the models marked as “restricted”, the search procedure did not consider models

that had more than 4 variables (including the constant); this was done to limit these approaches

to as many degrees of freedom as the Charness-Rabin benchmark has. From the table, it is clear

that this restriction does not hurt predictive performance, and can actually improve it noticeably.

The final section of the table given the non-choice models access to objective variables as well, in

particular the payoffs of the “Left” and “Right” terminal nodes. Again, this has little effect on

predictive performance of the various model selection techniques.

All of the resulting non-choice models have lower MSPEs than any of the benchmarks ap-

proaches, as well as reasonable biases and calibration scores. In fact, we can see in Table A.3 that

the resulting models are very similar, and often identical. The hypothetical first-person response

is included by all selection methods. The subjective asking about “appearing generous” and “how

much money the other deserves” also consistently appear in the non-choice models, indicating that

these variables play a key part in the subjective representation. In contrast, the variables derived

from the questions about “how their payoff will compare to others” and “feeling good about them-

selves” appear rarely in the non-choice models, if at all. This result suggests that warm glow and

14Again, the non-choice approach will not use data from the two mover game for estimation.
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Method Mean Actual Mean Pred. Bias MSPE Calib.

Charness-Rabin 0.8328 0.8254 -0.0074 0.0178 0.4440

Charness-Rabin (all data) 0.8328 0.7963 -0.0365 0.0171 0.4828

Selfish 0.8328 1.0000 0.1672 0.0427

Heuristics 0.8328 0.8862 0.0534 0.0081 1.3038

Version match 0.8328 0.8862 0.0534 0.0081 1.1094

Hypothetical Response (raw) 0.8328 0.8654 0.0326 0.0047 0.8087

Hypothetical Response (trained) 0.8328 0.8675 0.0347 0.0044 1.1637

Lasso 0.8328 0.8701 0.0373 0.0052 1.4148

BIC 0.8328 0.8675 0.0347 0.0044 1.1637

BIC (restricted) 0.8328 0.8675 0.0347 0.0044 1.1637

CV-MSPE 0.8328 0.8130 -0.0198 0.0079 0.6739

CV-MSPE (restricted) 0.8328 0.8689 0.0361 0.0041 1.1977

Lasso with objective 0.8328 0.8694 0.0366 0.0050 1.3923

BIC with objective 0.8328 0.8675 0.0347 0.0044 1.1637

BIC with objective (restricted) 0.8328 0.8675 0.0347 0.0044 1.1637

CV-MSPE with objective 0.8328 0.8216 -0.0112 0.0054 0.7772

CV-MSPE with objective (restricted) 0.8328 0.8689 0.0361 0.0041 1.1977

Table 11: Statistics for all methods predicting average behavior in the two-mover game. The first segment
includes the benchmarks against which the non-choice models can be judged. The Charness-Rabin predictions
are estimated using maximum likelihood. The (all) version generates its estimates from both the one-mover
and two-mover game. The selfish benchmark assumes all choices made with pure self-interest. The heuristics
benchmark uses the full regression model from table 10 run on the one-mover game only. The version match
benchmark assumes that the choice frequency in each version of the two-mover game is the same as the
choice frequency in the corresponding version of the one-mover game. The remaining segments document
the predictive performance of models that use the non-choice responses. The calibration score is slope
coefficient from regression of actual values on predicted.

status matter less for the subjective representation.

4.2.5 Counterfactuals

Ultimately, we are not interested just in being able to make accurate predictions, but in using these

predictions to learn about behavior. As an example, suppose we only had data on behavior in

the one-mover game, as well as non-choice responses for both games. What could we learn about

behavior in the two-mover game? One possibility is that we could test whether the reciprocity com-

ponent in the full Charness-Rabin model is non-zero. Doing so with only choice data is impossible,

as discussed above. It is possible using non-choice responses, however.

The first column of Table 12 gives the Charness-Rabin estimates from the two mover game choice
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Actual data Hypotheticals Vicarious Lasso BIC CV-MSPE

µ 0.1928 (0.0063) 0.241 (0.0084) 0.1534 (0.0056) 0.1855 (0.0065) 0.2045 (0.0069) 0.2111 (0.0071)

ρ 0.3966 (0.0215) 0.4039 (0.0206) 0.3377 (0.0255) 0.2377 (0.0249) 0.3433 (0.0226) 0.3026 (0.022)

σ 0.1739 (0.0232) 0.1199 (0.0228) 0.6869 (0.0258) 0.0521 (0.0284) 0.0415 (0.0267) 0.1094 (0.0248)

θ -0.0744 (0.0369) 0.0076 (0.0414) 0.3101 (0.0496) -0.0437 (0.0466) -0.0115 (0.0441) -0.0598 (0.0401)

Table 12: Estimates for the Charness-Rabin model with actual and synthetic data from the 2-mover game.
The first column reports the true estimates using the incentivized responses of the choice data subjects. The
next two columns report estimates derived from the responses of the hypothetical and vicarious hypothetical
groups. The last three columns report results from the fitted values of three selected non-choice models. For
these models, synthetic data was generated by assuming that the predicted frequency of choosing the selfish
option was the same as the actual choice frequency.

data; we are interested in whether we can recover these estimates using the non-choice approach.

The second column contains the estimates using raw hypothetical responses as if they were real

choices. The hypothetical responses generate estimates for σ and ρ, the distributional components,

that are fairly close to the real data estimates. However, the hypothetical choices suggest that the

reciprocity component θ is not statistically different from zero. Put another way, the hypothetical

responses themselves give no indication that reciprocity matters for decision-making. The third

column uses the third-party hypothetical question instead, and the resulting estimates of Charness-

Rabin are even farther from the real data.

The remaining columns are estimated from the predicted choice frequencies of the non-choice

models. Specifically, I generated synthetic data where the number of subjects was the same as the

choice data, and the aggregate choice frequency for each version was the same as the predicted value

from the non-choice model. The estimates from the non-choice models all have the correct sign on

the reciprocity component, as well as reasonably close estimates for the distributional components

and the error term. The MSPE-selected model, which has the lowest bias and MSPE of all the

non-choice models, also gets the magnitude nearly exactly correct.

5 Conclusion

I have shown how non-choice responses can be used to predict behavior in two donation settings:

sharing money in the lab and signing up to be an organ donor outside the laboratory. In both cases,

responses from a relatively parsimonious set of questions can provide more accurate predictions of

choice behavior than benchmark methods that are commonly used in those settings. Furthermore,

I have shown through a simple “pseudo-experiment” that an opt-in choice framing leads to higher

donation rates then an active choice framing. Predicting the magnitude of this effect is difficult

with observational data and beyond the scope of our current behavioral theories.

Of course, there are limitations to the non-choice approach. One must have a sufficiently rich set

of non-choice questions, so as to capture the subjective representation of the choice problem. From
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these questions, one must be able to construct a relationship that provides stable prediction across

policy changes. The survey population must be able to approximate the subjective impressions of a

potentially very dissimilar population in a potentially very unfamiliar setting. Empirical verification

and refinement of non-choice questions, through repeated application of this methodology, can help

us understand how successful it can be in new settings.

The strength of the non-choice data comes from the fact that it does not attempt to model the

relationship from objective data to choices, but rather from subjective responses to choices. This

approach has the advantage of being able to make predictions about changes in policies even when

no variation in the dimension of interest has been observed before. Because of this, the non-choice

approach may be useful for performing policy pseudo-experiments that are too difficult to run in

reality, perhaps because their are prohibitively expensive or repugnant. Non-choice data can help

us learn much more about behavior in these settings that we would not otherwise find out through

standard methods.
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Appendices

A Additional Tables and Figures

Version f1 s1 f2 s2 f3 s3

1 14 6 6 30 14 32

2 34 8 30 26 12 20

3 6 12 10 36 10 36

4 14 12 18 28 26 34

5 16 6 32 30 16 36

6 18 28 6 26 34 20

7 14 18 22 6 12 32

8 20 24 10 22 24 22

9 22 6 12 28 26 28

10 16 30 12 34 16 16

11 16 22 30 6 30 6

12 24 6 26 26 28 8

13 30 8 20 22 22 6
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14 8 24 16 12 32 10

15 22 12 22 24 32 30

16 20 36 22 8 8 26

17 20 20 30 12 10 10

18 26 12 16 36 26 10

19 22 8 28 30 18 8

20 20 14 12 32 26 26

21 8 24 20 6 36 6

22 10 34 8 16 36 8

23 14 10 26 14 32 18

24 24 12 14 30 26 16

25 6 22 8 22 20 26

26 18 28 22 20 30 16

27 28 22 8 22 34 30

28 30 6 10 6 36 20

29 20 22 16 30 30 10

30 24 4 34 18 32 6

31 8 8 24 14 22 24

32 14 32 24 12 30 14

33 28 20 4 4 30 30

34 24 24 26 6 26 6

35 20 22 32 22 36 8

36 10 26 34 6 12 30

37 8 22 16 8 22 14

38 24 36 32 22 6 6

39 30 34 34 6 20 28

40 28 28 34 24 14 22

41 22 34 26 24 12 8

42 28 14 14 34 30 34

43 6 22 32 28 20 8

44 6 32 10 24 12 34
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45 18 34 28 32 16 30

46 12 16 34 32 12 26

47 34 6 8 8 12 8

48 34 6 22 10 30 24

49 30 16 28 10 14 30

50 18 24 20 22 10 14

51 24 6 18 26 34 8

52 36 22 20 26 24 24

53 8 24 6 16 20 24

54 18 26 34 22 16 36

55 32 20 10 28 20 16

56 20 16 36 26 34 6

57 26 20 12 26 16 16

58 8 20 18 10 8 6

59 8 30 24 20 34 4

60 4 26 32 28 14 16

61 20 24 18 32 24 32

62 24 8 26 16 12 30

63 30 26 14 32 20 36

64 32 16 22 22 28 14

65 6 12 12 10 8 10

66 8 16 22 12 12 12

67 14 18 10 14 32 20

68 18 28 24 12 14 16

69 12 36 14 28 22 12

70 8 8 20 36 18 8

71 34 18 30 28 10 34

72 20 20 34 20 10 34

73 30 14 24 20 28 30

74 14 34 20 10 14 8

75 10 26 8 30 20 22
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76 34 6 30 32 6 10

77 14 24 20 10 8 34

78 32 18 10 32 36 36

79 20 20 10 30 18 8

80 18 16 32 20 14 22

81 8 10 20 18 12 8

82 20 36 32 30 36 26

83 8 8 18 18 30 10

84 12 22 22 4 36 20

85 34 34 18 6 36 18

86 10 22 20 8 12 12

87 26 16 24 20 32 26

88 10 32 12 20 12 20

89 32 6 14 14 32 6

90 12 12 20 6 34 12

91 24 8 6 18 20 8

92 20 26 30 16 20 30

93 24 28 6 34 26 10

94 26 8 26 8 32 10

95 22 26 30 24 12 26

96 24 32 14 32 26 14

97 20 32 26 6 32 16

98 28 36 32 26 22 24

99 10 34 16 18 28 12

100 32 18 6 10 30 28

101 24 8 34 4 32 8

102 18 8 12 16 12 14

103 6 10 10 30 8 14

104 10 12 28 6 24 24

105 36 10 8 10 14 32

106 28 18 32 26 20 16
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107 28 14 30 6 24 14

108 34 4 28 20 24 24

109 22 16 32 32 14 34

110 22 34 20 24 26 24

111 10 32 28 12 30 28

112 30 8 22 18 32 18

113 28 6 24 12 34 12

114 12 22 14 32 32 22

115 26 24 6 8 30 14

116 22 22 24 18 24 18

117 14 8 36 20 34 26

118 10 8 34 34 28 8

119 24 12 6 8 24 14

120 16 6 14 8 20 26

Table A.1: List of all games used in the binary game section of the paper.

B Instructions and Decision Screens for Laboratory Experiment
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te
d
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(Intercept) 0.499 -0.936 0.506 0.409 0.499 -0.140 -0.024

Likelihood 0.175

Likelihood ≥ 2

Likelihood ≥ 3 -0.462

Likelihood ≥ 4 0.481 0.029 0.481

Likelihood ≥ 5

Good

Good ≥ 2

Good ≥ 3 1.008

Good ≥ 4 -0.871 -1.170 -0.029 -0.871

Good ≥ 5 -0.260

Generous

Generous ≥ 2

Generous ≥ 3 -0.152

Generous ≥ 4 0.293

Generous ≥ 5

Moral

Moral ≥ 2 -0.664 -0.124 -0.837 -0.733 -0.510

Moral ≥ 3 -0.334

Moral ≥ 4

Moral ≥ 5 0.957

Easy

Easy ≥ 2 0.336

Easy ≥ 3 -0.874

Easy ≥ 4

Easy ≥ 5 1.181

Pressure

Pressure ≥ 2 0.719

Pressure ≥ 3

Pressure ≥ 4

Pressure ≥ 5 1.738

Hard to Find

Hard to Find ≥ 2 -0.421

Hard to Find ≥ 3 0.478

Hard to Find ≥ 4 0.080

Hard to Find ≥ 5 -0.856

Hard to Read

Hard to Read ≥ 2 1.525 1.023 0.814

Hard to Read ≥ 3 0.512 0.035

Hard to Read ≥ 4 -0.105

Hard to Read ≥ 5 0.041

Table A.2: Variables and corresponding coefficients resulting from the model selection procedures on the
organ donation panel data. Variables are listed along left-hand side, and each column corresponding to one
model selection procedure. Standard errors are not included.
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1 (Intercept) 0.266 0.266 0.266 0.266 0.372 0.360 0.192 0.297 0.200 0.297

25 Hypothetical 0.695 0.695 0.695 0.695 0.559 0.562 0.525 0.636 0.473 0.636

26 Likelihood

27 Likelihood ≥ 2

28 Likelihood ≥ 3 0.013 0.021

29 Likelihood ≥ 4 0.078

30 Likelihood ≥ 5

34 Vicarious 0.244 0.194

2 Compare

3 Compare ≥ 2

4 Compare ≥ 3

5 Compare ≥ 4 -0.053

6 Compare ≥ 5

7 Deserve

8 Deserve ≥ 2

9 Deserve ≥ 3 -0.154 -0.184

10 Deserve ≥ 4 0.183 0.258

11 Deserve ≥ 5 -0.233 -0.040 -0.144 -0.040

15 Generous

16 Generous ≥ 2

17 Generous ≥ 3 0.007 0.009 0.051 0.053 0.069 0.053

18 Generous ≥ 4 0.000 0.000

19 Generous ≥ 5 0.166

20 Good

21 Good ≥ 2

22 Good ≥ 3

23 Good ≥ 4

24 Good ≥ 5

12 f1

13 f2

14 f3 0.002

31 s1 0.001

32 s2 -0.001

33 s3

Table A.3: Variables and corresponding coefficients resulting from the model selection procedures on the
binary game data. Variables are listed along left-hand side, and each column corresponding to one model
selection procedure. Standard errors are not included.
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Figure B.1: Screenshot of non-choice responses screen in the organ donation application.

Figure B.2: Screenshot of page 1 of instructions for non-choice treatments of the binary game. The choice
treatment subjects did not see this page.
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Figure B.3: Screenshot of page 2 of instructions for non-choice treatments of the binary game, part 1. The
instructions for the choice treatment were identical, except that the highlighted note at the top of the page
was not included.
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Figure B.4: Screenshot of page 2 of instructions for non-choice treatments of the binary game, part 2. The
instructions for the choice treatment were identical, except that the highlighted note at the top of the page
was not included.

46



Figure B.5: Screenshot of a typical decision screen for the choice treatment of the 1-mover game.

Figure B.6: Screenshot of a typical decision screen for the choice treatment of the 2-mover game from the
first player’s perspective.
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Figure B.7: Screenshot of a typical decision screen for the choice treatment of the 2-mover game from the
second player’s perspective.

Figure B.8: Screenshot of a typical decision screen for the hypothetical question treatment of the 2-player-
game from the perspective of the second player. Note the highlighted note at the top of the page. This
appeared through the experiment to remind non-choice treatment subjects that they were not making actual
choices.
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Figure B.9: Screenshot of a typical decision screen for the hypothetical question treatment of the 1-player-
game. Note the highlighted note at the top of the page. This appeared through the experiment to remind
non-choice treatment subjects that they were not making actual choices.

Figure B.10: Screenshot of a typical decision screen for the hypothetical question treatment of the 2-
player-game from the perspective of the first player. Note the highlighted note at the top of the page. This
appeared through the experiment to remind non-choice treatment subjects that they were not making actual
choices.
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Figure B.11: Screenshot of a typical decision screen for the subjective questions treatment of the 1-player-
game. Note the highlighted note at the top of the page. This appeared through the experiment to remind
non-choice treatment subjects that they were not making actual choices.
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