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Abstract

This paper analyzes the long-term consequences of teacher discretion in grading
of high-stakes tests. Evidence is currently lacking, both on which students receive
test score manipulation and on whether such manipulation has any real, long-term
consequences. We document extensive test score manipulation of Swedish nationwide
math tests taken in the last year before high school, by showing significant bunching in
the distribution of test scores above discrete grade cutoffs. We find that teachers use
their discretion to adjust the test scores of students who have “a bad test day,” but
that they do not discriminate based on gender or immigration status. We then develop
a Wald estimator that allows us to harness quasi-experimental variation in whether a
student receives test score manipulation to identify its effect on students’ longer-term
outcomes. Despite the fact that test score manipulation does not, per se, raise human
capital, it has far-reaching consequences for the beneficiaries, raising their grades in
future classes, high school graduation rates, and college initiation rates; lowering teen
birth rates; and raising earnings at age 23. The mechanism at play suggests important
dynamic complementarities: Getting a higher grade on the test serves as an immediate
signaling mechanism within the educational system, motivating students and potentially
teachers; this, in turn, raises human capital; and the combination of higher effort
and higher human capital ultimately generates substantial labor market gains. This
highlights that a higher grade may not primarily have a signaling value in the labor
market, but within the educational system itself.
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1 Introduction

The increased reliance on standardized testing in educational systems around the world has
gradually reduced teachers’ influence over students’ grades, and thereby potentially over
high-stakes outcomes. China, India, Israel and Japan all use standardized tests, graded
without any teacher discretion, to determine university admissions and entrance into pres-
tigious civil service occupations. In other places, such as in Scandinavia, teachers are given
substantial discretion in grading of high-stakes tests, which essentially permits manipulation
of test scores by “bumping up” certain students. In the United States, the current mounting
and bipartisan opposition to standardized testing may represent a first step towards raising
teachers’ discretion in grading of high-stakes tests.

Allowing teacher discretion in grading of high-stakes tests raises two key questions. First,
who benefits from test score manipulation? In particular, do teachers act in a corrective
fashion, by lifting up students who failed although they ought to have passed; or do they
use their discretion to discriminate based on factors such as gender or ethnicity? Second,
and even more crucially, does test score manipulation matter, in the sense that it conveys
real, long-term economic gains? This is a priori unclear, since test score manipulation gives
a student a higher test grade without raising knowledge. In order for this to have any effect,
grades per se must matter for long-term outcomes. In this paper, we examine both which
students benefit from manipulation, and whether test score manipulation matters.

More specifically, we analyze the impact of teacher discretion in grading in the context
of Sweden, which offers a highly suitable setting for two reasons. First, Swedish teachers
have considerable discretion in grading of nationwide math tests taken in the last academic
year before high school.! Second, we can leverage administrative population-level data that
enables us to follow the universe of students in Sweden from before high school, through-
out adolescence, and into adult life, all the while tracking key educational, economic, and
demographic outcomes.

We start by documenting extensive test score manipulation in the nationwide math tests
taken in the last year before high school, by showing significant bunching in the distribution
of test scores just above two discrete grade cutoffs. Asin the notch setting analyzed by Kleven
and Waseem (2012), we theoretically show that the key parameter of interest in our setting
is the lowest test score at which test score manipulation occurs. However, previous bunching
estimators rely on visual inspection for choosing either where manipulation begins or ends,

which is infeasible when recovering the un-manipulated distribution in a large number of

'While all ninth graders (the last year before high school in Sweden) take the same test, at the same
time, and the same grading manual is sent to all teachers, we do not refer to the test as a “standardized
test” given that grading de facto is non-standardized due to the teacher discretion in grading.



schools or regions; moreover, it does not readily permit identification of zero manipulation
in some schools or regions.” We therefore refine existing methods and develop an estimator
that relies on a fully data-driven approach to quantifying where manipulation of the test
score distribution begins.

We then develop a new Wald estimator that allows us to harness quasi-experimental
variation in whether a student receives test score manipulation — that is, falls below the
lowest test score where any manipulation occurs — to identify its effect on students’ longer-
term outcomes. Intuitively, students who fall below the lowest test score where manipulation
occurs (in the proximity of a given notch) face a zero probability of being graded up, whereas
students who reach the test score manipulation window face a weakly positive probability of
being inflated. Among students who reach the test score manipulation window, those who
de facto are graded up are akin to compliers; whereas those who are left un-manipulated can
be thought of as never-takers.

We first analyze the characteristics of the students who are selectively inflated by teach-
ers, around each of the two test score thresholds. Teachers are more likely to inflate students
who have “a bad test day,” suggesting that they use their discretion to undo idiosyncratic
performance drops below what would be expected based on each student’s previous perfor-
mance. Teachers do not selectively inflate based on gender, immigrant status, or whether
the student has a stay at home parent who potentially might have more free time to pressure
teachers into higher grades.

We then analyze the consequences of receiving test score manipulation. The presence
of two test score thresholds, for the grades “Pass” and “Pass with Distinction” respectively,
allow us to examine impacts at two distinct points in the student ability distribution.

Although inflating a student’s test grade does not increase her knowledge, we find that
it raises the student’s performance in the immediate future. In particular, students who are
inflated on the test, taken in February, perform better in other subjects during subsequent
months, which raises their final grades (awarded in June), and thereby their GPA. These
effects, which are particularly pronounced at the higher end of the ability distribution, are
driven either by self-signaling, where a higher test grade boosts the student’s self confidence
and effort, or potentially by signaling to other teachers to subsequently give higher grades as
well. Moreover, inflated students are more likely to choose a natural sciences track in high
school, which lends further support to a self-signaling mechanism.

We then examine outcomes at the end of high school, three years after test score ma-

nipulation. Being graded up above the lower (higher) threshold raises the likelihood of high

2See, e.g., Saez (2010); Chetty et al. (2011b); Persson (2014), and most closely related, Kleven and
Waseem (2012).



school graduation three years later by 20 (6) percentage points. The large impact at the
lower end of the ability distribution is consistent with our finding that test score manipu-
lation around the lower threshold raises the student’s likelihood of receiving a passing final
grade in math (awarded in June in the last year before high school), which is a necessary
condition for admittance to any high school.? Moreover, inflated students perform better in
high school: Those inflated above the lower (higher) threshold have 11% (7%) higher high
school GPA — even though manipulation does not, per se, push these students into high
schools with higher peer GPA.

Inflated students continue to benefit eight years after test score manipulation. Students
who are inflated above the lower (higher) threshold are 12 (8) percentage points more likely
to have enrolled in college, and have completed 3-4% more years of education, by age 23.
Moreover, inflated students are less likely to have a child during their teenage years. These
effects translate in to substantially higher incomes at age 23 (the end of our sample period)
for inflated students: Around both thresholds, inflated students earn a 20-30% higher income.

In sum, despite the fact that test score manipulation does not, per se, raise human
capital, it has far-reaching consequences for the beneficiaries, raising their grades in future
classes, high school graduation rates, and college initiation rates; lowering teen birth rates;
and raising earnings at age 23. The mechanism at play suggests important dynamic comple-
mentarities: Getting a higher grade on the test serves as a signaling mechanism within the
educational system, motivating students and potentially teachers; this, in turn, raises human
capital; and the combination of higher effort and higher human capital ultimately generates
large labor market gains.

This insight is related to the sheepskin literature, which analyzes the signaling value
of education in the labor market (Cameron and Heckman, 1993; Kane and Rouse, 1995;
Kane et al., 1999; Tyler et al., 2000; Clark and Martorell, 2014). In light of the fact that
this literature generally has found a small or zero signaling value of education in the labor
market, our results suggest that the signaling value of grades may be more important inside
the educational system itself, by raising students’ motivation or other teachers’ perceptions.

The importance of signaling inside the educational system ties to the literature on the
impact of receiving a failing grade (Jacob and Lefgren, 2006; Manacorda, 2012). This lit-
erature focuses on educational attainment within a few years of receiving a failing grade,
and do not follow the students into the labor market. Our paper essentially marries this
literature with the literature on the sheepskin effect, by drawing on data that allows us

get inside the “black box” of how a potential signaling effect within the educational system

3The only option available to a student who does not obtain a passing grade in math is a one-year remedial
program that serves to get the student ready for a three-year high school program with a one year delay.



affects each step of the educational trajectory, and ultimately outcomes in the labor mar-
ket. This enables us to precisely document the mechanism through which a pure signaling
effect translates into enhanced labor market outcomes: by first raising student and teacher
effort, which then raises human capital acquisition, which ultimately boosts labor market
outcomes. This is consistent with dynamic complementarities between student effort and
the quality of education (Cunha and Heckman, 2007). Moreover, while the literatures on the
sheepskin effect and the impact of receiving a failing grade in the United States have focused
on the lower end of the ability distribution and studied highly selected student populations,
we study a test taken by the universe of all students in Sweden and demonstrate that self-
or teacher-signaling is particularly important at the higher end of the ability distribution.

More generally, we contribute to a growing literature that documents long-term impacts
of a range of school policies or circumstances, including school desegregation (Billings et
al., 2014); school choice (Ahlin, 2003; Sandstréom and Bergstrom, 2005; Bjorklund et al.,
2006; Lavy, 2010; Deming et al., 2014; Edmark et al., 2014; Lavy, 2015); preschool programs
(Garces et al., 2002); reductions in class size (Krueger and Whitmore, 2001; Chetty et al.,
2011a; Fredriksson et al., 2012); and teacher value added (Chetty et al., 2011a, 2014). To
the best of our knowledge, our paper is the first to assess the long-term consequences of test
score manipulation, as well as to document which students stand to gain.

A few papers empirically assess the potential causes of test score manipulation. Lavy
(2009) analyzes the impact of individual monetary incentives on teachers in Israel. While
he finds that monetary incentives induce teachers to raise effort, he finds no evidence of
manipulation of test scores. Dee et al. (2011) document manipulation of test scores on the
New York City’s Regent’s Exam, and show that it is driven by local teachers’ desire to
help their students avoid a failure to meet exam standards. Finally, Tyrefors Hinnerich and
Vlachos (2013) compare the scores on Sweden’s nationwide math tests when corrected by
teachers — that is, the test scores that we observe — with test scores when (a subset of) the
tests were re-graded, in 2010, by the National School Board. They find that the nationwide
tests were graded more leniently in voucher schools than in public schools, suggesting that
competition for students may be one driver of test score manipulation.*

To the best of our knowledge, the only paper that analyzes the impact of teacher dis-
cretion on achievement is Lavy and Sand (2015). In the context of Israel, they demonstrate
that teachers’ grading display a gender bias favoring boys, and that this bias boosts (de-

presses) boys’ (girls’) achievements and raises (lowers) boys’ (girls’) likelihood of enrolling in

4While we do not observe re-graded test scores, the counterfactual test score density that we estimate
approximates the re-graded distribution. On the relationship between grading leniency and competition for
students, also see Vlachos (2010) and Bohlmark and Lindahl (2012) for evidence from Sweden, and Butcher
et al. (2014); Bar et al. (2009) for evidence from the U.S.
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advanced courses in math.” While this credibly demonstrates impacts on immediate student
outcomes, we hitherto have no evidence on whether there are any real, long-term economic
effects of teacher discretion in the grading of high-stakes tests. In this paper, we begin
to fills this gap by demonstrating large and important long-term consequences of teacher
manipulation on those who are favored relative to those who are not.

Finally, there is a key distinction between our paper and the literature that analyzes
the impact of passing a high-stakes test in the absence of teacher manipulation. Lavy et al.
(2014) analyze the impact on earnings of performance on a high-stakes test in the context
of Israel, using pollution as an instrument. Their results highlight that the test allocates
high-stakes rewards in an essentially random fashion to those who narrowly fare better (due,
in their context, to lower pollution exposure during the test day). Our analysis is distinct in
that we analyze the impact of crossing an important proficiency threshold when teachers have
discretion in moving students’ across the high-stakes threshold. Depending on how teachers
use this discretion, the impact of passing when being lift up by a teacher with discretion
may be radically different from the impact of passing essentially by chance — this, in fact, is
one of the key motivations for potentially allowing for teacher discretion.

The remainder of the paper proceeds as follows. Section 2 provides more detailed infor-
mation on schooling in Sweden, and Section 3 describes the various data sources that we
draw on. Section 4 provides a formal model of teachers’ grading behavior. In Section 5,
we recover the un-manipulated test score distributions in Sweden. Finally, in Section 6 we
exploit the variation in the likelihood of receiving an inflated grade to quantify the causal

impact of test score manipulation on subsequent schooling and adult labor market outcomes.

2 Institutional background

2.1 Schooling in Sweden

In Sweden, schooling is mandatory until age 16, which corresponds to the first nine years
of school (ages 7-16). During the time period that we analyze, grades are awarded for the
first time in the Spring semester of eighth grade. One year later, at the end of ninth grade,
the final grades are awarded. All subjects are graded. The grading scale is Fail, Pass, Pass

5They quantify gender biased grading leniency by comparing teachers’ average grading of boys and girls
in a non-blind classroom exam to the respective means in a blind national exam marked anonymously. This,
in spirit, is very similar to our methodology: we compare the distributions of test scores under manipulation
to what these distributions would have looked like in the absence of manipulation. Contrary to Lavy and
Sand (2015), however, we do not readily observe these counterfactuals from blind grading of the same tests,
but we develop a methodology to estimate them.



with Distinction (henceforth PwD), and Excellent. All students who wish to continue to
the next scholastic level, grades 10-12 (ages 16-18; roughly equivalent to high school in the
U.S.), must actively apply to grade 10-12 schools (henceforth high schools).

There is a range of high school programs, ranging from vocational (construction, hair-
dresser, etc.) to programs that serve to prepare individuals for further studies at the uni-
versity level. To be eligible for high school, the student must have a passing grade in math,
English, and Swedish. Conditional on eligibility, the grade point average (GPA) when exiting
ninth grade is the sole merit-based criterion used for acceptance to high school.® The GPA
cutoff for admittance to a given program, in a given year, is determined by the lowest GPA
among admitted individuals (a subset of those who applied). There are no school fees (paid
by parents). At the end of high school, prospective university students apply to university
programs, with admittance determined in a similar fashion by thresholds in (high school)
GPA.

Nationwide tests All students in grade nine take nationwide tests in mathematics. The
test consists of three sub-tests, which are administered approximately one week apart. The
test dates are usually in the beginning of the Spring semester (February), approximately
four months before the teacher sets the final grade in mathematics.

The test is graded locally, either by the teacher or jointly by the teachers at a given school.
The test is graded according to a grading manual provided by The Swedish National Agency
for Education (Skolverket), which provides detailed instructions on how each question should
be graded. While some points are awarded based on objective and non-manipulable criteria
(e.g. providing a correct answer to a multiple choice question such as “which number is
larger?”), others involve a subjective assessment: a subset of the points may be awarded for
partially completed work, for “clarity,” for “beautiful expression,” and so on. This gives the
teacher leeway in raising a student’s test score somewhat, by grading up some questions.

The grading sheet also provides a step function ¢(r;), which specifies exact cutoffs in the
raw test score, r;, for awarding the student the grades Fail, Pass, and PwD on the test. In
addition, the grading sheet specifies a lower bound on r; that constitutes a necessary but
not sufficient condition for awarding the top grade, Excellent. The sufficient conditions for
obtaining the highest grade are highly subjective criteria; moreover, we cannot observe them

in the data. For this reason, our analysis considers the two lower test score thresholds only.

In particular, no other merit-based criterion (such as essays, school-specific entry tests, etc.) that are
commonly administered in the U.S. are used in admittance decisions; the only factors that may be taken into
account other than GPA are the distance to school and sibling preferences. The GPA reflects the average
grade in the 16 subjects that are taught in grades 7-9. The maximum ninth grade GPA is 320., and the
minimum GPA is zero.



Appendix D provides the exact step function from the grading sheet from 2004, along with
more detailed information about 7;.

When writing the test, a student knows how many points each question is worth; however,
the student does not know the step function #(r;). Thus, the student cannot write the test
targeting the grade cutoffs. Further, these cutoffs vary over time; thus, there is no exact
relationship between the cutoffs in one year and the corresponding cutoffs for earlier years.
Any bunching that we observe in the test score distribution is thus attributable to teachers’
grading leniency, and not to student sorting. In addition to the test in math, nationwide tests
are administered in English and Swedish. The test grades obtained on these two language
tests are not based on any numeric test scores, however; these test grades are awarded based
on assessments of the quality of the students” writing and reading. We therefore exploit only
the math test when recovering regions’ respective grading leniency — this test is ideal for the
purpose, as we observe the numeric score, and thereby can detect bunching in the test score

distribution.

Final grades The test grade is not binding for the final grade, which is the one that counts
towards the GPA. The final grade partly reflects the test grade, but the teacher also shall
take into account all other performance, e.g. on homework and in-class tests, when setting
the final grade.

This suggests that teachers can engage in two different types of manipulation: first, as
discussed above, the nationwide test can be graded leniently, so as to push the student
above a test score threshold. Second, teachers can simply decide to set a final grade that is
higher than the grade that the student deserves based on the student’s un-manipulated test
score and “everything else.” This effectively corresponds to granting a grade that is higher
than the deserved grade, which essentially can be thought of as inflating the student’s true,
underlying ability.

In practice, the final grade in math does deviate from the (potentially manipulated) test
grade, in both directions. Moreover, these deviations do not occur in a uniform fashion;
teachers are more likely to award a math grade that is higher than the (potentially manipu-
lated) test grade than they are to award a lower final grade (Vlachos, 2010). This suggests
that the nationwide test grade may be used as a “lower bound” on the final grade.

We focus on the first type of manipulation — of the nationwide test scores — and Section 4
formulates a simple but general theoretical framework that operationalizes teachers’ incen-
tives to engage in such test score manipulation. In Appendix A, we present a richer model
that incorporates the second type of manipulation as well — of the final grade — and where

teachers are allowed to trade off the two types of inflation. Ultimately, both models pinpoint



the same key parameter of interest for our empirical analysis of long-term effects of test score

manipulation; thus, restricting our attention to test score manipulation is innocuous.

2.2 Schools’ incentives to manipulate

Why would teachers manipulate their students’ test scores? On the one hand, as teachers to
some extent know their students personally, they may experience emotional discomfort when
awarding bad grades. On the other, awarding a higher grade than a student deserves may
constitute a devaluation of the teacher’s own professionalism. While these mechanisms, and
a myriad of others, likely are at play in all schools and institutional contexts, a combination
of two particular features of Sweden’s schooling system may make the country particularly
susceptible to inflation: First, municipal and voucher schools compete for students — or,
more to the point, for the per student voucher dollars that the municipality pays the school
for each admitted student.” Second, the key way for a grade 7-9 school to attract students
is to produce cohorts with a high average GPA in the cohort that exits from ninth grade.
Indeed, schools are often ranked, in newspapers and online, based on the GPA of the exiting
cohort of ninth graders (which is public information in Sweden). This in practice ties a
school’s reputation for quality to the average GPA of it’s exiting cohort, even though this
measure does not capture school value added. Put differently, if schools believe that parents,
especially those with high ability children, rely on these rankings when choosing a suitable
school for their child, schools face an incentive to produce cohorts with a high average GPA
in grade nine.

Taken together, these two features of Sweden’s schooling system provide an institutional
context where schools can compete either in the intended fashion, by providing a better
education, which justifiably may raise the grades of the exiting cohorts; or by engaging
in inflation, which artificially raises the school’s reputation for quality. This gives school

principals strong incentives to encourage their teachers to go easy on grading.®

"Nonvoucher tuition payments are forbidden in Sweden.

8In municipal schools, teachers are not compensated based on the performance of their students, either
on nationwide tests or on other performance measures (while voucher schools may engage in such practices).
Nonetheless, anecdotally, public school teachers have reported feeling pressure from the principals to “pro-
duce” high test grades, in order to satisfy parents and boost the school’s image in face of the competition
for students.



3 Data

3.1 Swedish administrative data

We leverage administrative population-level data from Sweden. We start from the universe
of students who attend ninth grade between 2004 to 2010.° For these children and their
families, we obtain information from various data sources, which we link through unique
individual identifiers. Taken together, these data sources provide information about each
student’s academic performance, subsequent medium- and longer-term outcomes, as well as

detailed demographic and socio-economic characteristics.

Grade nine academic performance and schooling information We observe precise
information on each student’s performance on the nationwide test in mathematics, English,
and Swedish. On the math test, we observe both the number of points obtained (after
possible manipulation by the teacher), and the test grade. On the English and Swedish
tests, we only observe the test grade. Because the English and Swedish nationwide tests are
taken before the math test, we can use them as a pre-determined measure of student ability.
In addition to results from the nationwide tests in grade nine, we observe the student’s
final grade in math. As explained in Section 2 above, this course grade partly reflects the
result on the nationwide test, but also performance on homework, etc. In addition, we
observe the grade point average (GPA) upon exit from grade nine.'
We observe the school that the student attends, as well as information about whether

the school is a municipal school or a voucher school.

Demographic and socio-economic characteristics For each child in our sample, we
have data on the exact date of birth; the municipality of residence when attending ninth
grade; and whether the student has a foreign background.!’ We also have variables re-
lated to parental socio-economic status: we observe each parent’s year of birth, educational

attainment, immigration status and annual taxable earnings.

Medium- and longer-term outcomes To trace economic outcomes after ninth grade and
throughout adolescence and into adulthood, we add information from high school records,

university records, and tax records. Our key outcome variables in the medium term capture

9Note that our data includes both children who are born in Sweden and children who are born outside
of Sweden but attended ninth grade in Sweden.

10Gee footnote 6 for more information about the GPA.

We define foreign background as having a father who is born outside of Sweden; thus, this incorporates
both first and second generation immigrants.



information about high school completion, performance in high school (high school GPA),
and the quality of the high school (measured by high school peer GPA).

At the university level, we observe whether an individual initiates university studies,
which is defined as attending university for two years or less. Moreover, we observe the length
of each individual’s studies (i.e., total educational attainment) by 2012, which corresponds
to the age of 24 for the oldest cohort in our sample.

We also observe the exact (employer-reported) taxable income for all years in which the
student is aged 16 and above. In 2012, the last year for which we observe income, the
individuals in our sample are up to 24 years old. FEarnings at age 23-24 likely captures
income from stable employment in the sub-population of individuals who do not attend
university. Among university enrollees, however, it is too early to capture income from stable
employments. Finally, we observe an indicator for teen birth by 2009, which corresponds to
the age of 21 for the oldest cohort in our sample.

In sum, we create a unique data set that enables us to follow the students from ninth
grade, throughout adolescence, and into adult life, all the while tracking key economic out-

comes.

3.2 Sample and Summary Statistics

Our sample consists of all students who attend ninth grade between 2004 to 2010 and both
took the national test (obtained a non-missing, positive test score) and obtained a final grade
in math.

This results in our sample consisting roughly 100000 test-taking students per year. Table
1 presents summary statistics. The first column presents summary statistics for the full
sample, the second and third columns for two distinct subsamples: students that obtain a
test score that is subject to potential manipulation around the threshold for Pass and PwD,
respectively. The definition of these three regions varies by year, county, and voucher status
of the school, and are derived from our estimates of the size of the manipulation regions,
which we discuss in detail in Section 5. In our full sample, 93 percent of the students receive
a final grade in math of Pass or better (i.e., seven percent receive the final grade Fail); and
18 percent obtain PwD or better. We let the final grade in math take the value of 0 if the
student fails; 1 if the grade is Pass; 2 for PwD; and 3 for Excellent. In the overall sample,
the average grade is 1.13.

In the full sample, the average test score is 28.3, and the averages (mechanically) increase

as we move from the lower to the higher threshold. 5.7 percent of all students attend a

10



voucher school. The mean GPA in the entire sample is 191.'2

Our key longer-term outcomes of interest are whether the student graduates from high
school, college attainment, and income earned at age 23. Income is estimated in 2011 and
2012 for the students who attended grade nine in 2004 and 2005. In the full sample, 76
percent of the students graduate from high school. Finally, 22 percent of the full sample of

students have a foreign background.

4 A model of test score manipulation

For simplicity, we model test score manipulation around a single threshold, which we will
refer to as Pass versus Fail. A richer but less general model, which more closely captures the
precise institutional features of the grading system in Sweden and which permits a structural
interpretation of the key parameter of interest (isolated below), is presented in Appendix A.

Student 7 is taught by teacher j. He attends class and has performed at level a; on class
assignments, other than the nationwide test. We refer to a; as student i’'s ability, and assume
that it is observable to the teacher.'?

Student 7 takes the nationwide test and, in the absence of any test score manipulation,

“raw” test score, to

receives a numeric test score r; = r(a;,¢;). We refer to this as the
underscore that it is un-manipulated. The raw test score depends on the student’s ability,
but also on an error term €;” F (g;) , which captures the fact that student i’s performance on
the test may deviate from her true ability; that is, the student can have a “good test day” (if
r; > a;) or a “bad test day” (if r; < a;), with the magnitude of the deviation reflecting just
how good or bad the test performance was relative to the student’s innate ability. Because
the teacher grades the test, she observes the raw test score r;.

The teacher may choose to inflate the raw test score by awarding some amount of addi-
tional test points to student i, A;, resulting in a manipulated test score of r; + A;.

The test grade, t;, is either Pass or Fail, and is given by the following indicator function

(for Pass):

Lif (r(as, &) + A > p) }

ti:t(aiagiaAi):{ 0 0/w

Intuitively, if student 4’s test score r (a;, ;) + A; is higher than the passing threshold p,

then he passes the test; otherwise he fails. The teacher chooses the amount of manipulation

12Gee footnote 6 for more information about the GPA.
13Strictly speaking, a; need not reflect student 4’s true, innate ability; it is sufficient that it reflects the
teacher’s perception of student i’s innate ability.
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of student i’s test score, A;, to maximize the per-student utility function:
uii(A;) = Bijt (ai, €4, Ai) — i (Ai)

4] Y]

Here, (3;; measures teacher j’s desire to raise student ¢’s grade from a Fail to a Pass. Its
dependence on j permits teachers to be heterogenous in their desire to inflate grades. Such
heterogeneity may stem from teacher-specific factors, such as a teacher’s aversion against
incorrectly assigning a test score below the threshold, or from factors stemming from the
school at which teacher j works, e.g., the competitive pressure that the school faces from other
schools to attract students, pressure from the school principal to “produce” higher grades, etc.
Moreover, the dependence of 3;; on ¢ permits a given teacher to place a heterogenous value
on raising different students’ grades from Fail to Pass. Importantly, this permits the teacher
to use her discretion both in a “corrective” and “discriminatory” fashion: For example, a
teacher may have corrective preferences if she places a higher value on inflating a student
who had a bad test day. But this formulation also permits the teacher to have discriminatory
preferences, e.g., placing a higher value on inflating students of a certain gender or from a
certain socioeconomic group (whose parents, for example, may impose stronger pressure on
the teacher). In Section 6, we empirically assess whether teachers appear to have corrective
or discriminatory preferences; here, we keep a general formulation that permits each of these
interpretations (as well as an interpretation where the teacher has a combination of corrective
and discriminatory preferences). Finally, although we have formulated a per-student utility
function above, note that the dependence of f3;; on ¢ permits the teacher’s desire to raise
student ¢’s grade from a Fail to a Pass to depend on the overall ability distribution in teacher
7’s class of students. Such preferences would entail if, for example, the teacher wants a certain
percentage of the students in the class to obtain a passing grade.

In order to inflate a student’s test grade by A;, the teacher must pay a cost, ¢;; (A;).
¢;; (A;) is assumed to be strictly increasing and convex. This captures the fact that it is
increasingly hard for a teacher to add an additional test point as she inflates the test score
more and more.

We now explore properties of the model above that will be useful for estimation. For now,

For example, as discussed in Section 2 above, there are some points awarded on the math test that require
subjective grading, while others are clearly right or wrong answers. Inflating a test score by a few points
would only require somewhat generous grading on the subjective parts of the test, while a large amount of
manipulation would require awarding points for more clearly incorrect answers. These costs are also convex
due to the possibility that a school might get audited and have to justify their grading, which is harder to
do with larger amounts of manipulation.
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we assume that when the teacher chooses A;, she is free to pick any (positive) value that

she wishes.!?

Before analyzing the teacher’s decision to use her discretion to manipulate
a student’s test score, we discuss what happens if 3;; = 0. Then, trivially, there are no
incentives to engage in costly manipulation. Thus, all students with r; below p fail the
nationwide test (¢; = 0), and all students with r; above p pass the nationwide test (¢; = 1).

Our understanding of the outcome in the absence of manipulation immediately highlights
that, even if we were to raise f3;; from zero, the teacher would never inflate any student who
obtains a test grade of Pass (g; = 1) without manipulation. Now consider the case when

Bz’j > 0:

Proposition 1. The teacher’s manipulation of student i’s test score satisfies AF € {0,p —r;} .
That is, the teacher either leaves student i’s test score un-manipulated, or inflates the stu-

dent’s final numeric grade to exactly p.

If the teacher chooses to engage in any manipulation of student ¢’s raw test score, then
she puts the student’s final numeric score exactly at p, where the student (just) receives a
passing final grade, t; = 1. Intuitively, the teacher never inflates a student’s test score less
than up to p because any amount of manipulation is costly; hence, a necessary condition for
manipulation is that it alters the student’s test grade from Fail (¢; = 0) to Pass (t; = 1). Put
differently, the teacher engages in manipulation only if it brings her an added utility of f;;.
Similarly, as ¢; (4;) is strictly increasing, the teacher never engages in more inflation than
what puts the student’s final numeric grade at p.

This immediately implies that the teacher’s decision of whether to inflate a given student
i who would fail in the absence of manipulation (r; < p) hinges on whether 3;;, the teacher’s
utility from raising the final grade from Fail to Pass, (weakly) exceeds the cost of the manip-
ulation that is required to push the student just up to the passing threshold p. This required
amount of manipulation is given by (p — r;). Thus, the teacher inflates student ¢ if and only

if he would fail in the absence of manipulation and
Bij = cij (b — 1) (1)

Proposition 2. For each teacher, there exists a lowest test score at which test score manip-
ulation occurs, 1jmin. Consequently, students whose raw test score r; falls below 1 min have
a zero probability of being inflated. Students whose raw test score r; falls above 7;min have a

weakly positive probability of being inflated (to p).

15Tn reality, sometimes grading a question more generously may lead to lumpy amounts of test points (e.g.
either the teacher must assign 3 extra points or 0, as she may not be able to give 1 point, given the structure
of the test.)

13



To see this, consider the condition that determines whether teacher j inflates student ¢,
(1). The left-hand side, f;;, is a constant and the right-hand side, ¢;; (p — 7;), is increasing
in p — r; (decreasing in r;). Hence, equation (1) can equivalently be formulated as follows:
Teacher j inflates student ¢ if and only if he would fail in the absence of manipulation and
T4 > Tijmin, Where 7 min is implicitly defined by 8i; = ¢ij (P — 7ijmin)-*°

For each teacher j, the minimum test score at which any of her students get manipulated

is thus given by the smallest 7;; min of all her students,
Tjmin = ml,ill(ﬁ'j,mm)- (2)

As we discuss in detail in Section 6 below, the existence of a minimum test score at which
manipulation occurs will be at the heart of our estimation methods for identifying the long-
run impact of receiving test score manipulation, as it implies that we can exploit whether a
student’s raw test score r; falls below 1j mn as a source of quasi-experimental variation in the
likelihood that a student receives manipulation: Among the students whose test scores fall
below 7;min, the probability of receiving manipulation is zero; among the students whose

test scores fall above 7} min, (but below p), the probability is weakly greater than zero.'”

Corollary 1. For each school s, there exists a lowest test score at which test score manipu-
lation occurs, Tsmin. Stmilarly, for each geographical region g, there exists a lowest test score

at which test score manipulation occurs, g min-

This result follows immediately from Proposition 2: the lowest test score at which any
manipulation occurs in a school s, 74 min, is simply given by the minimum 7, i, among all
teachers 7 at school s. In a similar vein, the lowest test score at which any manipulation
occurs in a geographical region g, 74 min, is given by the minimum r ,;, among all schools
s within geographical region g. This previews what we discuss in Section 6 in more detail;
namely, that we can use the lowest test score at which any manipulation takes place as
a source of quasi-experimental variation in the probability of receiving a manipulated test
score at any level of aggregation of our data — at the teacher level, the school level, at the
level of a geographical region (or even at the national level).

The central insight from the framework presented in this Section is that the key parameter

of interest in the data, which will provide us with quasi-experimental variation that we

16Because student ¢ would fail in the absence of manipulation so long as r; < p, the teacher inflates student
i if and only if his raw test score falls in the interval 7; € [i; min, D)

1"Specifically, among the students whose test scores fall above r;jmin: (i) the probability of receiving
inflation is one for students whose raw test score satisfies r; € [rijmin, p) — these can be thought of as
“compliers;” and (ii) the probability of receiving inflation is zero for students whose raw test score satisfies
7 € [I'jmin, Tij,min) — these can be thought of as “never-takers.” This is discussed further in Section 6 below.
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can use to analyze the long-term consequences of receiving test score manipulation, is the
minimum test score at which manipulation occurs.

In Appendix A, we present a slightly less general model that places some restrictions
on the teacher’s utility function, but which more closely captures the precise institutional
features of the grading system in Sweden. In this alternative setting, we show the same
result, namely, that the key parameter of interest is the lowest test score at which manip-
ulation occurs. In addition, the framework presented in Appendix A permits a structural
interpretation of this parameter: The lowest test score at which test score manipulation
occurs in a school, 7 min, identifies the school’s desire to engage in test score manipulation.
More precisely, if school A has a lower 7, i, than school B, then school A has a stronger
inclination to engage in test score manipulation (regardless of whether, say, the underlying
ability distributions of school A and B differ). The simpler and more general framework pre-
sented in this Section, however, highlights that the existence of 74 1,y requires only minimal
assumptions, and that we do not need any structural interpretation of this parameter to be
able to use it as a source of quasi-experimental variation in the likelihood of receiving test
score manipulation. Put differently, for quantifying the impact of test score manipulation on
long-term outcomes, we do not need to interpret the parameter 7, as capturing grading

leniency.

5 Quantifying the extent of test score manipulation

5.1 Estimation of grading leniency

As shown in Section 4, the key parameter of interest in the data, which will provide us
with quasi-experimental variation that we can use to analyze the long-term consequences of
receiving test score manipulation, is the minimum test score at which manipulation occurs.
Since the parameter s min (7gmin) is closely related to a school’s (region’s) overall desire to
manipulate, we will henceforth use the term “grading leniency” to refer to this parameter.
We are unable to estimate separate grading leniency parameters at the individual school
level since there are too few students in a school to give us sufficient statistical power. We
instead estimate grading leniency in each county, separately for voucher and non voucher
schools, in each year from 2004 to 2010.'® For each county*voucher*year, we estimate two
grading leniency parameters, capturing the width of the manipulation window around the

Pass and PwD thresholds, respectively.

18We aggregate voucher schools in counties where fewer than 200 students are in voucher school in 2004.
We maintain the definition of this “aggregate voucher*county” throughout the time period 2004-2010.
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To do this, we analyze the histogram of the test score distribution for each county-voucher
school-year. We want to estimate the point, below each of the two test grade thresholds, at
which there begins to be missing mass in the test score distribution (and where this missing
mass instead is shifted above the test grade threshold, into the “bunching region”).!” Let
the two thresholds — for Pass and PwD — be indexed by k.

Refining existing bunching methodologies Previous bunching estimators have relied
on visual inspection for determining where the manipulation region begins and /or ends (Saez,
2010; Chetty et al., 2011b; Kleven and Waseem, 2012). Most closely related to our setup is
Kleven and Waseem (2012) (henceforth KW), the first paper to develop a method to estimate
where the manipulated region of a histogram around a notch begins. KW’s method relies on
visual inspection of where manipulation of the analyzed distribution ends. In our setting, we
cannot manually choose any parameter that defines the width of the manipulation window,
for two reasons: First, we analyze a large number of distributions, which makes relying on
visual inspection tedious. Second, and most importantly, we want to allow for the possibility
that there is no manipulation in some locations. We therefore refine the methods of KW to
create a “fully automatic” estimator, which does not require “eyeballing” any parameters.

More specifically, because we want an estimator that can identify zero manipulation,
we first must make some assumption on the shape of the un-manipulated density. This is
because, without a restriction on the shape of the un-manipulated test score distribution, one
could not reject that any observed bunching simply represents an unusual looking test score
distribution without manipulation. To rule out this possibility, we assume that the test score
distribution is log concave in the absence of grade inflation. Log concavity is an appealing
assumption because it is a sufficient condition for a single peaked and continuous test score
distribution, and it is easy to mathematically implement. Further, many commonly used
probability distributions are log concave (normal, gumbel, gamma, beta, logistic).

Having specified the shape of the un-manipulated distribution permits the second novel
feature of our estimator, namely, that it iterates over all possible widths of the manipulation
region (including zero) — as well as over a number of other parameters to be specified below.
It then uses a mean squared error criterion function to compare different possible estimates

of the width of the manipulation region and the shape of the un-manipulated distribution.?’

19Some bunching may occur above the Pass threshold, instead of exactly at the Pass threshold, due to
teachers being imprecise with their grading or the test points being structured in a way where the points
awarded for questions are lumpy, forcing teachers to sometimes give more points than what is needed to pass
the test.

20The KW method instead selects the narrowest manipulation region which could be consistent with the
data, and does not systematically compare all possible widths of the manipulation regions and their overall
model fit. Our method thus provides a broader search of possible estimates and uses a criterion function to
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In addition, we make a number of assumptions that are common for our estimator and that
of KW, such as imposing that the missing mass below the test grade threshold must equal

the excess mass above the test grade threshold.

Our estimator Specifying the log concave un-manipulated distribution. Let hj(r) equal
the frequency of students in region j in year ¢ that would receive a test score of r in the

absence of test score inflation.”’ We parameterize hj;(r) as:

hj(r) = exp(dr;1) (3)
s.t.
57“jt - 5r—1jt S 5r—1jt - 5r—2jt- (4)

0rj+ are parameters to be estimated, with the restriction that 6,;: — 0,—1jt < 0p—1jt — Or—2js,
which ensure that the estimated distribution is log concave.?? Finally, we impose that the
estimated un-maipulated distribution sums to one, to ensure that it is a valid probability

distribution:

Zexp (0rje) = 1. (5)

Missing and excess mass. We assume that, in the regions where some test scores are
inflated above the test grade threshold, the missing mass below the test grade threshold

must equal the excess mass above the test grade threshold. This is simply an adding up

condition.?? Let m' w’k(r) equal the amount of missing mass below grade threshold £ at test

gt
. . o high,k
score r in region j and year ¢t. Similarly define m7;?""(r) as the amount of excess mass above

7t
grade threshold k at test score r in region j in year t. We parameterize mmgh’k(ﬁﬁgh’k,r)

gt
,) each as polynomials, where (679" 912F) are the coefficients of the

low,k ; plow,k
(9 It » Vgt

and my, it

compare them.

21 As mentioned above, we will estimate grading leniency at the county*voucher*year level. From now on,
we let j indicate a county*voucher, and will for simplicity refer to it as a “region.”

22To see that this restriction implies log concavity, note that 0rj¢ is equal to the log of the share of
students who would receive a test score of r in the absence of manipulation. To verify concavity, we ensure
that the change in the log share of students receiving the un-manipulated testscore r ( 0, —d,—_1,¢) is weakly
decreasing in r.

23n the language of the “bunching literature,” this condition rules out an “extensive margin” response
(Persson, 2014). In our setting, this is very intuitive: the presence of grade inflation moves students around
in the test score distribution, but it does not make any student disappear from the test score distribution
altogether. Consequently, all students that are moved up from below the threshold, must be located above
the threshold in the manipulated distribution.
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polynomials, under the constraint:

high,k / phigh,k low,k / plow,k
om0 ) =m0 ). (6)

T T

In addition to the adding up condition constraint, we impose that m?fgh’k(eﬁgh’k, r) and
low,k

low,k :
(057, r) are non-negative at all test scores 7

For all 7 : m?fgh’k(H?fgh’k, r) >0, (7)

For all r : mé-‘;w’k(eﬁw’k, r) > 0. (8)

This guarantees that there can only be missing mass below each threshold &, and not excess
mass. Similarly, there can only be excess mass above the test score threshold, and not
missing mass.

Key parameter of interest. Third, we define i, as the difference between the test grade
threshold k£ and the minimum test score to ever receive inflation in region j in year ¢t. Test
scores below k — [j;; will never be inflated up to k or higher. This gives us our final
restrictions: the amount of missing mass below k — [+ is equal to 0 and the amount of
excess mass above k — B — 1 is zero. [Bi;; is our key parameter of interest, as it measures
how many points below the test score threshold a student has any chance of receiving test

score manipulation:**

If r < (k— Brje) : mé-otw’k(ﬁé-iw’k, r) =0, (9)
Iifr>(k-1): méiw’k(ﬁégw’k,r) =0, (10)
Ifr>(k+Be—1): m?fgh’k(ﬁggh’k,r) =0, (11)
Ifr < (k): m?fgh’k(Q?Zgh’k, r)=0. (12)

Full test score distribution. Combining these gives us the full test score distribution,
including test score manipulation. Let R,j; equal the observed test score frequency in the

data of test score r within region j in year t. Our model predicts:
Rrjt _ exp((;rjt) + Z m;‘(zw,k(eﬁw,k7 7“) + Z m?tigh,k<9§blfgh,k7 7’) + €rits
k k

such that equations (4), (5), (6), (7), (8), (9), (10), (11), and (12) hold.

2 Brj¢ is the largest amount of test score manipulation that ever occurs in region j. Thus, if a student was
1 point below the k test grade threshold, the most this student would ever be inflated would be k — 8;: — 1,
which gives us a bound on where the excess mass must stop.

18



Estimation. We estimate the model using constrained nonlinear-least squares and use
k-fold (k=5) cross-validation to prevent overfitting.?” The parameters to estimate are:

(Buje, Baje, Baje, 057", 0™t gla2 0lam2 glaws ghions 5, 1, ..., Ogmazji_1). We estimate
the model separately for voucher and municipal schools within each county in each year.
This allows us to recover the maximum amount of test score manipulation that occurs
around each of the test grade thresholds: (51¢, B2jt)-

Intuition for identification of key parameters of interest. To give some intuition behind
how our estimator identifies 8; and (5, Figure 1a plots what our model would estimate for the
manipulated and un-manipulated test score distributions if 3; were set to 1 and 3 were set
to 0. These data are for municipal schools in Stockholm in 2005. Note how this fits the data
very poorly around the PwD cutoff of 41 and does not match well the test score distribution
for low scores below 20. In contrast, Figure 1b shows the estimated distributions if 3; is set
to 4 and [, is set to 1. This allows the estimator to match the observed distribution of test

scores in the data much better; and in fact, for municipal schools in Stockholm in 2005, we
obtain the estimates ﬂAl =4 and 32 = 1.

5.2 Estimates of grading leniency

The estimation strategy outlined above yields estimates of grading leniency at the county
by voucher level, for each year between 2004 and 2010. Figure 2 displays histograms of Bljt
(upper panel) and Bth (lower panel) — that is, of the estimated sizes of the manipulation
region around the thresholds for Pass and PwD, respectively. While there is more manipula-
tion around the Pass threshold, there is considerable variation around the higher threshold
as well. Further, the estimates show considerable heterogeneity across counties (by voucher)
in grading leniency: some students’ test scores are virtually un-manipulated, while other
(marginal) students’ test scores are by as much as 7 test score points, which amounts to
about 10% of the total number of test points.

Figure 3 illustrates the estimated counterfactual aggregate national density in year ¢ =
2010. The blue connected line plots the actual distribution of test scores, and the red con-
nected line shows the estimated counterfactual density in the absence of manipulation. This
“eyeball” check shows that our log-concavity assumption appears reasonable and highlights

where manipulation begins and ends in the aggregate distribution of test scores.

25This is implemented by splitting the histogram for each county-voucher year into 5 subsamples of data.
We minimize the mean-squared error over 4 of the subsamples, and predict out of sample using the estimated
parameters on the 5th “hold out” sample and calculate the out-of-sample mean squared error. We do this
for each of the 5 subsamples and sum them together each of the 5 out-of-sample mean squared errors.
We pick the 8 and 2 estimates, as well as the orders of the polynomials, to minimize this out-of-sample
mean-squared error. We do this separately for each county-voucher-year.
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6 The impacts of teacher discretion

We develop an instrumental variables estimation strategy that allows us to harness quasi-
experimental variation in whether a student receives test score manipulation — that is, falls
below the lowest test score where any manipulation occurs — to identify its effect on students’

longer-term outcomes.

6.1 Identifying the causal impact of test score manipulation

Equipped with the grading leniency parameters (51, 52;1) estimated in Section 5, we can

use these cutoffs in the test score distribution as a source of quasi-experimental variation
in whether a student receives test score manipulation. Intuitively, students who fall below
the lowest test score where manipulation occurs (in the proximity of a given notch) face a
zero probability of being graded up, whereas students who reach the test score manipulation
window face a weakly positive probability of being inflated. This allows us to use “having
a raw test score that reaches the manipulation region” as an instrument for test score ma-
nipulation. Among students who reach the test score manipulation window, those who de
facto are graded up are akin to compliers; whereas those who are left un-manipulated can
be thought of as never-takers.

Figure 4 illustrates the construction of our instrument in the context of an example
where the Pass threshold is 21 and the manipulation region starts at 14. The instrument
is turned off for students whose observed test score is 13 or lower, but turned on for those
whose observed score falls within the manipulation region. Among the students whose raw
test scores fall into the interval 14 — 20, teachers choose to grade up a subset; these are
the compliers, who are “missing” below 21 in the observed test score distribution. The
students whose observed test scores lie in the interval 14 — 20 are never-takers (of a higher
test grade), as they are left un-manipulated even though the instrument is switched on.
Finally, the students whose raw and observed test scores lie at or above 21 (but remain
within the manipulation region around the Pass threshold) are always-takers. In the data,
we can identify the never-takers; however, we cannot distinguish the compliers from the
always-takers, as both groups’ observed test scores fall at or above 21 and we do not observe
the raw test scores.

Equipped with our division of the test score distribution into one manipulated region for
each notch, and two un-manipulated regions surrounding each notch, our Wald estimator
uses students outside of each manipulation region to create a “control group” for the students
inside the manipulated region. Intuitively, this control group captures how the manipulated

students would have fared, had they not received test score manipulation.
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The “first stage.” First, we identify the impact of test score manipulation on students’
final grades in math. This can be thought of as the first stage regression of our Wald
estimation. To do this, we proceed in two steps.

The first step is to estimate the relationship between students’ final math grades and
their un-inflated test scores. We start by estimating this relationship using data only from
the un-manipulated parts of the test score distribution. We then predict the test score
inwards into the “donut” (manipulated region), extrapolating from the predicted grades at
un-manipulated test scores to the left and right of the manipulated region.

Specifically, recall that g;;; is student i’s observed final math grade (who is enrolled in

region j in year t). We estimate:
Gijt = Jrjt (Tijt, 9%?“) + agge * (rije > k) + Ezgjt’ (13)

where: (rij; < k — Byje or rije >k + PBrje — 1)
and

Tijt > (k — 1) + ﬁk—ljt +1 and Tijt < (k’ + 1) — Bk}-&—ljt'

Grjt (Tijt, 0 de) is a third order polynomial with coefficients 67 9 which captures the

smooth relationship between students’ un-manipulated test scores, 7;;, and their expected
final grades. (rij; < k — Bgje or rijy > k + Prje — 1) ensures that the data used to estimate
equation (13) is outside of the test score inflated region around test grade threshold k.
rijp > (kK —1) + Br_1e + L and 5 < (K + 1) — Bt ensures that the data is also not
within the test score inflated regions around the higher (k + 1) or lower (k — 1) test grade
thresholds. We allow there to be a discrete jump in students’ expected final grade at the
test grade cut-off k, represented by ayjt * (55 > k). Indeed, oy represents the regression
discontinuity estimate of barely passing the math test without receiving manipulation on
the student’s final math grade. This allows us to not only recover the impact of teachers’
discretionary inflation, but all the “high stakes test” impact of students barely passing the
test.

Thus, in the first step in our first stage estimation, equation (13) yields the expected
final math grade at each point in the manipulated region had students not received test score
manipulation. Figure 5 illustrates this in the context of the example setting described in
Figure 4. The solid red vertical lines mark the contours of the manipulation region (around
the Pass threshold), and the dark (blue) solid line shows the average observed grades at
each test score. Using data only from the un-manipulated parts of the test score distribution

(below 14; and above 26 but below the start of the manipulation region around PwD), we
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then predict inwards into the manipulation region around the Pass threshold. The expected
final math grade at each point in the manipulated region had students not received test score
manipulation — i.e., if all students were never-takers or always-takers — is illustrated by the
light (gray) line.

Note that this does not correspond to the expected final math grade, absent test score
manipulation, for all students whom we observe in the data to actually receive that spe-
cific test score in the manipulation region. This is because we only observe the compliers’
manipulated test scores, not their un-manipulated test scores.

In the second step of the first stage estimation, we now use two pieces of information to
compute the expected final grades across the entire set of students in the manipulation region
of the test score distribution. First, from equation (13), we have the expected final grade at
each test score inside the manipulation region, in the counterfactual scenario with no test
score manipulation. Second, we can combine this with our estimates of the counterfactual
test score distribution, that is, the share of students who would have received each test
score, had there been no test score manipulation, ﬁjt(r). We recovered this counterfactual
distribution of test scores during the estimation of the grading leniency parameters in Section
5. We use these two pieces of information to calculate the expected average final math grade
for students within the manipulation region of the test score distribution had there been no

test score manipulation:

~

kt-Brji—1
gjt (k) = / BW {f]kjt (7", éz;?de) + Qpjp * (1 > k)] s hjy(1)dr. (14)
k—Pr;jt
For students inside the manipulation region, we now compare the estimated counterfactual
average grade, had there been no test score manipulation, calculated in (14), with the actual
average final math grade for students in the manipulation region (observed in the data), g;;.
This difference is entirely driven by the fact that compliers inside the manipulation region
received test score manipulation. Thus, this difference is our “intent-to-treat” estimate of
the average increase in a student’s final grade due to the student having a raw test score

that falls within the manipulated region of the test score distribution:

~ 1 _
ejt = manip Z Gijt — Gjt (k> )

kjt temanip region k

where Nﬁfamp is the number of students in the manipulation region around threshold k in
region(*voucher) j in year t. Figure 6 illustrates this first stage estimate in the context of

the example used in Figure 5.
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The “reduced form” and LATE estimates. The two-step procedure above can be repeated
with a different outcome variable, such as income at age 23, to identify the reduced-form
effect of falling into the manipulation region on future income. The ratio of this reduced-form
effect to the first-stage effect, in turn, identifies the local average treatment effect (LATE)

of receiving an inflated final math grade on future income.?°

6.2 Identifying the beneficiaries of test score manipulation

We develop new methods to recover observable summary statistics of the types of students
that teachers select to grade up, i.e., the compliers. These methods can be used more
generally for any type of bunching estimation to recover observable characteristics of those
responding to the incentive to bunch at the threshold.

For any observable characteristic of the students, Y, we can apply the same type of
method as in equation (13) to use students outside the manipulation region to estimate

E(Y|r) at any test score r inside the manipulated region.
Yije = 00 (rige- 0050°) + e (15)
where: (rijt < k- Bkjt or Tijt >k + Bkjt — 1)
and
Tijt > (l{i — 1) + Bk_h‘t + 1 and Tijr < (k’ + 1) — Bk—&—ljt‘

For example, if Y were a dummy variable for being an immigrant, we could estimate the
expected share of immigrant children at each test score, had there been no test score manip-
ulation. We can then calculate the actual share of immigrant children in the manipulation
region, above the cutoff threshold, Y**~% and below the cutoff threshold, Y down—all.27

\Up__a 1
yup—all = Niol > Y, (16)

up it

where: k <t <k+ B — 1,

. 1
Ydoum_all — Z }/;:jty (17>

tot
down it

26We block bootstrap the entire procedure to calculate standard errors, sampling at the county by year
level. This is the same level at which we estimated the widths of the manipulation regions.

27N5‘;f is the number of students who fall the manipulated region of the distribution above the passing
threshold. N2 is the number of students who fall the manipulated region of the distribution below the

passing threshold.
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where: k& — Bije < tijp < k—1.

VP~ is an average of those who were inflated to these scores (“compliers”), as well as

students who naturally received a passing test score absent manipulation (“always-takers”):

N, Y% Ncom iers = ;
up % YuP 4 pl * Ycomplze'rs‘ (18)

}_/upiall —
Nup + Ncompliers Nup + Ncompliers

Similarly, Y%wn—all is an average of those who selectively not were inflated to passing scores

(“never-takers”):

Ndown

Ndown - Ncompliers Ndown - Ncompliers

Ydowniall — % }_/down o Ncompliers % }_/compliers. (19)

We can recover the expected share of immigrant students within these regions of the
distribution, using our extrapolation from equation (15) and the estimated un-manipulated
distribution, A (r):

- k+Bjt—1 . A
YW — Z (Nj/k §,’€/jt (7", Gi;f e) * hjt(r)dr> (20)

J
k—1
ydown = %" (Nj/k , Ot (7“, 6’%?“) * hjt(r)dr>. (21)
J ek

Finally, the number of students within each region can be calculated as:
Nfg;t = Nup + Ncomplz’ers;

tot _
Ndown - Ndown - Ncomplier57

k+Bjt—1
Ny =3 <Nj /k hjt(r)dr>,

J
k=1
Ndown = Z (N]/ hjt<7’)d7”> .
j k—pBjt
Plugging these into equations (20) and (21) and solving for the mean immigrant share of

the compliers gives:

_ . Ntot _ N, _
Ycomplzers —0. up Yupiall . up yup
o (Ni;;t—N " Nz — N
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tot

+0.5 % ( Ndown Ydown o Ndown % Ydownall) '

down __ tot down __ tot
N N down

down

Intuitively, if teachers are disproportionately choosing to manipulate the test scores of
immigrant children, there will be unexpectedly high shares of immigrants right above the
grade cutoff, and unexpectedly low shares of immigrants right below the grade cutoff, relative
to what we would have expected using the immigrant share outside of the manipulation

region.

7 Results

7.1 Who receives test score manipulation?

There are number of criteria that teachers may use to select which students’ test scores to
inflate above the grade thresholds. They may choose students whom they deem would have
the largest benefit; they may choose students who come from disadvantaged backgrounds;
or they may choose the students who simply had a bad day on the test, but who have
performed at a higher level in class. It also possible that teachers inflate the most pushy or
grade grubbing students, in order to minimize future disagreement with those students (or
their parents). To shed light on teachers’ selection criteria, we use the methods described in
the previous section to analyze the observable characteristics of students who are actually
chosen to be graded up, and compare them to all students who fall right below the relevant
test grade cutoff and could be chosen by teachers to receive an inflated grade.

Table 2 compares the grade on the national test in English earned by the complier
students (those inflated up) with the grade earned by the average student who is eligible
for inflation. The national tests in Swedish and English are taken before the national test
in math, so they cannot be influenced by the outcome on the math test. (In the next
subsection, we perform a “sanity check” that verifies that the national math test indeed has
no impact on the results on the national tests in English and Swedish ). Around the Pass
margin, we see that inflated students are 7.4 percentage points more likely (than the average
student eligible for inflation) to have passed their national test in English. Around the the
PwD margin, inflated students are 33 percentage points more likely than those eligible for
inflation to have received a high grade on the test in English. In Table 3, we see a similar
pattern when we look at the students’ Swedish test grades: Inflated students are positively
selected on their pre-determined Swedish test grade.

If teachers were grading up students who had a bad test day, we would expect them to

choose to inflate students who have higher grades on other, pre-determined tests than the
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average student who is eligible for inflation. This is consistent with the selection of students
for inflation documented in Tables 2 and 3. Teacher discretion thus appears to be correcting
for idiosyncratically poor performance on the math test, given what can be expected based
on previous achievement. This may be a desirable outcome, compared to a high-stakes
testing environment that sorts students who fall close to the Pass and PwD margins solely
based on their idiosyncratic performance on the test day. This suggests that, to the extent
that the math test grade carries long-term consequences — a question that we analyze in the
next subsection — this type of teacher discretion may be desirable.

Turning to whether teachers’ inflation choices are related to students’ demographics,
Table 4 compares the male share of inflated students with the male share of students eligible
for inflation. We see a very precisely estimated zero effect around both thresholds, showing
that teachers treat boys and girls equally when choosing whom to inflate. Similarly, Table 5
shows that inflated students are not selected based on whether they come from an immigrant
household. These results are reassuring in that teachers do not appear to bias their math
test grading based on race or gender.

Next, we turn to whether inflated students come from disadvantaged backgrounds. Table
6 shows that around the Pass margin, inflated students are positively selected on household
income: inflated students’ household income is 3.9 percent higher than the household income
of the average student who is eligible for inflation. Around the PwD margin, in contrast,
the point estimate implies that household incomes of inflated students are 3.2 percent lower
than the household income of the average student who is eligible for inflation; however, the
effect is not statistically significant. We similar patterns of selection on fathers’ years of
education, presented in table 7. Inflated students around the Pass margin have fathers with
0.072 more years of education; however, there is no statistically significant selection effect
around the PwD margin. The selection on income and education around the Pass margin is
somewhat worrying, as it could exacerbate inequality of opportunity between rich and poor
students. However, the point estimate is economically quite small. Moreover, it could be
driven by the fact that the teachers grade up students who had a bad day on the test; as
shown above, these students are higher achievers on previous tests. Thus, to the extent that
higher achievement is correlated with income, the estimated effect on parental income may
reflect the fact that teachers are targeting students who are truly higher achievers — which
happens to be correlated with parental income — rather than targeting income per se.

To analyze whether teachers inflate students whose parents may have more free time
to pressure teachers into giving their children high grades, we look at whether inflation
is selected on whether students have a stay at home parent. Table 8 shows a zero effect

of selectively inflating students with a stay at home parent around both thresholds, with
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negative point estimates. This suggests that if anything, the teachers are more likely to
inflate students without a stay at home parent.

Taking all of these dimensions of selection together, it appears that, both at the low and
high ends of the ability distribution, teachers primarily help students who had a bad day on
the test, as indicated by their achievement on predetermined tests. This suggests that the

teachers use their discretion to “undo” having a bad day on the test.

7.2 The long-term consequences of test score manipulation

Table 9 presents results from our first stage, where we compare the expected final math grade
absent manipulation to the average observed math grade, inside the manipulation region of
the test score distribution. The variation in our instrument stems from whether a student’s
raw test score falls in the manipulation region of the test score distribution versus outside of
it, within a given county*voucher*year. Consequently, the coefficient quantifies how much
“getting a raw test score that falls into the manipulation region” raises the probability of
receiving a higher final math grade (due to test score manipulation).

Around the Pass threshold, falling into the manipulation region of the test score distri-
bution raises the probability of obtaining a higher final grade by 5.5 percentage points.?®
Around the PwD threshold, falling into the manipulation region raises the probability of
getting a higher final grade by 10 percentage points. All estimates are statistically signifi-
cant at the 1 percent level. The F-statistic is far above the conventional level of 10, ruling
out any concerns about a weak instrument problem.

These estimates represent the average effects of manipulation on students within the
manipulation region; hence, they represent intent-to-treat effects on the final grade. But
as predicted by our model in Section 4, only a subset of the students in these regions are
de facto manipulated; thus, the students that receive manipulation (“the compliers”) are
experiencing a larger gain in the final grade than the intent-to-treat estimate. Below, when
we turn to our sanity checks and main outcomes, we present the LATE estimates, which
capture the treatment effect of manipulation on the subset of students who are graded up,
that is, on the compliers. The last row of the table presents the F-statistic for the excluded
instrument.

Before turning to the sanity checks and results on our main outcomes, however, we

28We recall that the final grade in math takes the value of 0 if the student’s grade is Fail; 1 if the grade
is Pass; 2 for PwD; and 3 for Excellent. In the overall sample, the average grade is 1.13. Around the Pass
threshold, the average grade is .99, reflecting the fact that most of the variation around this threshold stems
from whether of not the student receives a Pass. We have also run our first stage using an indicator variable
for whether the student receives a grade of Pass or higher (and PwD or higher and Excellent or higher,
respectively), and the results look similar.
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discuss an alternative first stage specification. Test score manipulation leads to a direct
change in the math test grade (awarded in February), which ultimately can lead to a change
in the student’s final math grade (awarded in June). We use the final math grade as the
endogenous variable of interest when analyzing longer-term outcomes — so, the estimates
presented in Table 9 represent our first stage estimates — but one could also use the math
test grade (awarded in February). Table 10 estimates the impact of receiving an inflated
math test grade on the final math grade. Around the Pass margin, receiving an inflated test
grade leads to a 35 percentage point increase in the probability of receiving a passing final
grade, and around the PwD margin, an inflated test grade raises the likelihood of receiving a
higher final math grade by 87 percentage points. These effects are not 100 percent because,
as discussed in Section 2 above, the teacher shall take into account more than the math
test grade when assigning the final grade, including students’ classroom performance. If the
reader prefers to view the endogenous variable of interest as the math test grade, instead
of the final grade in math, then simply multiply the treatment effects by these estimated
effects.

Before turning to the long-term outcomes, we perform sanity checks to validate our
methodology. We first estimate the causal effect of receiving a higher math grade (through
teachers’ discretion) on characteristics of the students that are pre-determined at the time
of the math test. Clearly, we know that grade inflation cannot cause a student to be from
an immigrant household or change their grades on previous tests. We expect to see that our
estimator finds this to hold. Table 11 shows that for both the Pass and PwD thresholds, there
is no causal effect of grade inflation on the probability of being of foreign background. We find
similar zero effects on students’ (predetermined) English test grades (Table 12) and Swedish
test grades (Table 13). Panel B of these tables report the simple OLS relationship between
these outcomes and dummy variables indicating students’ final math grades, controlling for
county*voucher*year fixed effects. Unlike in our placebo tests, we see very strong correlations
between students’ final math grades and both their test grades in other subjects and the
indicator for having an immigrant background. The fact that our IV strategy breaks these
very strong OLS correlations in the data provide confidence in our estimation methods.

The first outcome that we consider, grade nine GPA, captures student performance in
the immediate future following the nationwide math test. GPA in grade nine is calculated
based on the average of the final grade in math and other subjects, and is awarded in June
of the final year before high school, i.e., within four months of the nationwide math test.
Grade nine GPA ranges from zero to 320. Table 14 presents the LATE for the outcome GPA.
Around the Pass threshold, exposure to inflation raises the GPA by 10.6 points for those who
are graded up, or by roughly 6 percent of the mean GPA around the threshold (177). Around
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the PwD threshold, inflation raises GPA by 21.4 points for those who are graded up, or by
approximately 9 percent. The direct effect of receiving a higher math grade mechanically
increases a student’s GPA by 10 points when moving from Fail to Pass, and by 5 points
when moving from Pass to PwD. Around the Pass threshold, we cannot reject that the effect
is equal to a 10 point increase in the student’s GPA. Around the PwD threshold, however,
the results suggest that there is a motivational effect, since inflation raises the student’s
performance substantially over and above the mechanical effect induced by the test score
manipulation. Receiving a PwD on the math test thus either encourages the students to
work harder in their other classes, or their other teachers to choose to inflate them as well,
on future tests and assignments. This highlights that their is a strong signaling value from
the math test grade, especially at the higher end of the ability distribution. Receiving a
higher grade signals to the student and potentially to his or her teachers that the student’s
ability is higher, and this appears to be complementary with increased effort on the part
of the student, or more generous grading in other subjects on the part of other teachers.
Panel B compares these estimates to the OLS relationship between math grades and overall
GPA. These point estimates are much bigger, showing students who pass math have 82.2
higher GPAs than those who fail. Going from Pass to PwD is associated with 50.6 more
GPA points. These OLS results further highlight how endogenous math grades are in the
cross-section.

We then examine a set of outcomes measured at the end of high school, three years
after test score manipulation. Table 15 presents results on high school graduation by age
19 (i.e., “on time”). We find that test score manipulation that pushes a student above the
Pass threshold raises his or her probability of finishing high school on time (by age 19)
by 20 percentage points. The large impact at the lower end of the ability distribution is
consistent with our finding that test score manipulation around the lower threshold raises
the student’s likelihood of receiving a passing final grade in math (awarded in June in the last
year before high school), which is a necessary condition for admittance to any high school
(other than one-year remedial programs that serve to get the student ready for a three-year
high school program with a one year delay). However, this magnitude is smaller than the
OLS relationship in the cross-section: Panel B shows that passing math class is associated
with a 53.8 percentage point increase in on time high school graduation. Around the PwD
threshold, grade inflation increases the probability of on time high school graduation by 5.5
percentage points, a 6 percent increase over the base mean of 87 percent. This much smaller
effect is likely driven by the fact that most of the students at this higher point in the ability
distribution would proceed to high school directly after grade nine, regardless of whether

they get a Pass or PwD in math. Further, this point estimate is smaller than the observed
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OLS relationship of 11.8 percentage point increase.

To analyze whether inflated students perform better in high school, Table 16 reports
effects on high school GPA (measured in the last year of high school), among students who
complete high school. This is interesting to analyze because a student who is inflated in ninth
grade may be at risk of obtaining lower grades in high school, as the student may be tracked
with better high school peers(Malamud and Pop-Eleches, 2011). Interestingly, however, we
do not find any statistically significant negative effects of test score manipulation in grade
nine on high school GPA. On the contrary, among students at the lower end of the ability
distribution, test score manipulation appears to raise high school GPA. Specifically, we find
that inflation over the Pass threshold causes a 1.4 point higher high school GPA, relative
to a base of 11.9. Inflation over the PwD threshold has a similar effect, with the point
estimate suggesting an increase in GPA of 1 point, relative to a mean of 14. This further
highlights the fact that the signaling value of a higher math test grade in the last year before
high school can substantially change future human capital investment decisions. A possible
alternative explanation is that inflated students have enrolled in different high schools that
give all students better grades. To test this, we analyze whether receiving an inflated math
grade causes a higher peer high school GPA. Table 17 shows that receiving an inflated math
grade in grade nine does not increase the GPA of one’s peers in high school. This further
substantiates that the positive impacts on one’s own GPA likely arises through an effort and
human capital investment margin.

The final outcome measured at the end of high school, three years after test score manipu-
lation, seeks to shed light on whether test score manipulation boost students’ own perception
of their math ability. To test this, we analyze whether inflated students are more likely to
choose a natural sciences track in high school. Table 18 shows, indeed, that students pushed
into receiving a passing math grade in ninth grade are 2.7 percentage points more likely to
choose a math high school major, relative to a mean of 1.4. This is very a large increase,
and much larger than the OLS relationship of 0.4 percentage points. We see a similarly large
effect around the PwD threshold, 5.2 percentage points; however the PwD estimate is noisy
and we cannot rule out a zero effect. Thus, students who receive the signal of a higher math
grade in the last year before high school appear to be updating their beliefs on their math
ability, and subsequently choosing to become high school math majors.

Our last set of outcomes captures student well-being eight years after test score manipu-
lation. Table 19 report impacts of test score manipulation on the probability of enrolling and
initiating college by age 23. Our point estimates are economically significant, with inflation
around the Pass threshold leading to a 12 percentage point increase (which represents a 86%

increase, relative to the mean of 14%) in the probability of initiating college. Interestingly,
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we find a similar estimate of 16 percentage points in the OLS cross-section between pass-
ing math and college initiation. We cannot reject that the two effects are equal. Around
the PwD threshold, we find a slightly smaller effect, 7.9 percentage points; however, this
estimate is noisy and we cannot reject zero. Nonetheless, the point estimate of 7.9 is eco-
nomically meaningful, relative to a mean of 38%; moreover, it is much smaller than the OLS
relationship of 25.8.

When looking at total years of completed education, we find effects around both thresh-
olds. Table 20 shows that students who get inflated to a Pass (PwD) have 0.33 (0.48) more
years of education by age 23. This is equivalent to a 3-4% increase relative to the mean
years of education for these groups. This is a much smaller effect than the observed OLS
relationship of a passing grade leading to 1.3 more years of schooling and a PwD leading to
an additional 0.77 years of schooling (relative to a passing grade).

Thus, around both margins, inflated students are more likely to remain in school for
longer. Through this channel, test score manipulation in grade nine may also help students
“stay on track” and avoid outcomes that force them to drop out of school, such a teen
pregnancy. Table 21 shows that, indeed, inflated students around the Pass threshold are
0.027 percentage points less likely to have a teen birth. This is a large (although marginally
insignificant) effect, relative to the mean of 0.014, suggesting that the students chosen for
inflation were particularly at risk for having a teen birth. We see a similar relationship in
the OLS estimates. We see similar, large and statistically significant effects around the PwD
threshold, where test score manipulation lowers the teen birth rate by 3.5 percentage points.

Our final long-term outcome captures income at age 23 (the end of our sample period).
Table 22 shows that being graded up above the Pass threshold in grade nine raises age 23
income, with a point estimate of 340 SEK, relative to a mean of 1580. This is a large,
20% increase in earnings at age 23, and it is quite similar to the OLS relationship of 370.
Further, some of these students may still be in school at age 23, and may therefore not have
realized their full earnings potential. Students inflated over the PwD margin receive a 448
SEK higher age 23 income, relative to a base mean of 1461. This is quite different than the
OLS relationship which shows an income decrease of 193 SEK. This discrepancy highlights
that many of these students are still in school, which depresses the group’s average labor
market earnings. However, since the increase in years of education due to manipulation is
quite small, this “still in school”-effect is likely less reflected in the LATE estimates than in
the OLS estimates.
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8 Conclusion

Despite the fact that test score manipulation does not, per se, raise human capital, this paper
demonstrates that its beneficiaries receive large, long-term gains in educational attainment
and earnings. The mechanism at play suggests important dynamic complementarities: Get-
ting a higher grade on a high-stakes test can serve as an immediate signaling mechanism
within the educational system, motivating students and potentially teachers; this, in turn,
can raise human capital; and the combination of higher effort and higher human capital can
ultimately generate substantial labor market gains.

The large benefits that accrue to the beneficiaries of test score manipulation of those who
have “a bad test day” suggest that teachers may find it privately desirable to err on the side
of giving their students higher grades, and to thereby improve their students’ outcomes. But
although each teacher’s adjustments to his or her students’ test scores would not affect the
nationwide grade distribution, the combined effect of many teachers’ manipulation may shift
the grade distribution upwards. This suggests that this paper may have identified a micro-
mechanism contributing to grade inflation, an increasingly pervasive problem in Scandinavia
as well as in the U.S.. This suggests that, while test score manipulation may be privately
optimal from the perspective of each teacher, it may be socially undesirable if grade inflation
induces distortionary general equilibrium effects.

Moreover, the fact that we see large regional variation in test score manipulation, and
some differences between municipal and voucher schools, suggests that teacher discretion
undermines the equality of opportunity in Swedish schools: students who live in a region with
substantial test score manipulation are more likely to get inflated, and thereby more likely
to enjoy the benefits shown in this paper. Exploring the roots of these differences in grading
leniency, as well as exploring the general equilibrium effects of test score manipulation, are

left for future work.
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9 Figures and Tables

Figure 1: Examples of Estimates of Unmanipulated Distributions for Different Guesses of 5; and
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Note: In each subfigure, the red plus signs display the raw data; the blue solid line displays the estimated distribution includ-
ing manipulation; and the turquoise solid line displays the estimated counterfactual (un-manipulated) distribution (which
only deviates from the blue solid line where manipulation occurs). While the raw data is the same in both subfigures, the
estimated distribution including manipulation, as well as the estimated counterfactual distribution, differ in the two subfig-
ures. In Figure la, we display our estimate of the manipulated and un-manipulated distribution under the hypotheses that
B1 =1 and [y = 0. In Figure 1b , we display our estimate of the manipulated and un-manipulated distribution under the
hypotheses that 8, = 4 and By = 1. Note how $; = 4 and [, = 1 fit the data much better. These data are for municipal
schools in Stockholm county in 2005.



Figure 2: Distribution of Grading Leniency around the Two Thresholds
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Note: The figure illustrates the distribution of the estimated sizes of the manipulation
region, around the thresholds for Pass and PwD, respectively, by county*voucher*year,
from 2004 to 2010.
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Figure 3: National Test Score Distribution and Estimated Counterfactual, 2010

0 20 40 60
Math Test Score

——e—— Actual Distribution Observed in Data
——e—— Estimated Counterfactual Distribution

Note: The figure illustrates the national test score distribution and the estimated coun-
terfactual (aggregated from the county*voucher estimated counterfactuals) in 2010. The
estimation of the counterfactual density is described in Section 5. The blue connected
line plots the actual distribution of test scores, and the red connected line shows the
estimated counterfactual density in the absence of manipulation.
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Figure 4: Wald estimator: Construction of instrument

Legend:

I Compliers

Always-takers
(of a higher
test grade)

Density

Never-takers
(of a higher
test grade)

T
40
Math Test Score

\ }
|

Instrument: “exposed to inflation” switched on

Note: The figure illustrates our Wald estimator in an example where the Pass thresh-
old is 21 and the manipulation region starts at 14. Students who receive a raw (un-
manipulated) test score of 13 face a zero probability of being graded up, whereas stu-
dents who receive a raw test score of 14 (or higher) face a weakly positive probability of
being graded up. The instrument “falling into the manipulation region” is thus turned
off for students whose observed test score is 13 or lower, but turned on for those whose
observed score falls within the manipulation region. Among the students whose raw test
scores fall into the interval 14 — 20, teachers choose to grade up a subset; these are the
compliers, who are “missing” below 21 in the observed test score distribution. The stu-
dents whose observed test scores lie in the interval 14 — 20 are never-takers (of a higher
test grade), as they are left un-manipulated even though their raw test scores put them
into the manipulation region. Finally, the students whose raw and observed test scores
lie at or above 21 are always takers. In the data, we can observe the never-takers; how-
ever, we cannot distinguish the compliers from the always-takers, as both groups’ ob-
served test scores fall at or above 21 and we do not observe the raw test scores.
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Figure 5: Wald estimator: Construction of “control group” in the first stage
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Note: We estimate the relationship between students’ final math grades and un-inflated test
grades by first estimating the relationship using data only from the un-manipulated parts
of the test score distribution. We then predict the test score inwards into the “donut”
(manipulated region), extrapolating from the predicted grades at un-manipulated test
scores to the left and right of the manipulated region. This Figure illustrates this in the
context of the example setting described in Figure 4. The solid, red vertical lines mark
the contours of the manipulation region (around the Pass threshold), and the dark (blue)
solid line shows the average observed grades at each test score. Using data only from
the un-manipulated parts of the test score distribution (below 14; and above 26 but be-
low the start of the manipulation region around PwD), we then predict inwards into the
manipulated Pass region. The expected final math grade at each point in the manipu-
lated region had students not received test score manipulation — i.e., if all students were
never-takers or always-takers — is illustrated by the bright (gray) line.
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Figure 6: Wald estimator: First stage (intent-to-treat effect)
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Note: Figure 6 illustrates the intent-to-treat (first stage) estimate. Inside the manipula-
tion region, the blue solid line displays the average observed grade (in the data). Inside
the manipulation region, the red solid line displays the average predicted grade, had
there been no test score manipulation. This prediction is obtained by using two pieces
of information: First, the expected final math grade at each point in the manipulation
region had students not received test score manipulation, displayed by the gray line in
Figure 5. Second, our estimates of the counterfactual test score distribution, that is,
the share of students that had received each test score within the manipulation region
if there had been no test score manipulation. We recovered this counterfactual distribu-
tion of test scores during the estimation of the grading leniency parameters in Section
5. The difference between the blue and red solid lines inside the manipulation region is
entirely driven by the fact that compliers inside the manipulation region received test
score manipulation. Thus, this difference is our “intent-to-treat” estimate, capturing the
average increase in a student’s final grade due to the student having a raw test score
within the manipulated region of the test score distribution.
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Table 1: Summary Statistics

Overall Pass Region PWD Region

Math Test Score 28.4 22.6 40.6
Father Foreign Born 0.22 0.23 0.18
Household Income 4772.2 4421.3 5561.2
Male 0.51 0.52 0.50
Father’s Years of Education 11.8 11.6 12.2
Has Non-Working Parent 0.25 0.27 0.21
Math Final Grade 1.13 0.99 1.62
Math Test Grade 0.88 0.71 1.39
English Test Grade 1.50 1.32 1.88
Swedish Test Grade 1.33 1.18 1.67
Overall Grade Point Average 191.6 177.1 227.2
High School Graduate (for 2004-2006 Pupils) 0.76 0.73 0.87
Initiated College (for 2004-2005 Pupils) 0.061 0.040 0.099
Years of Education (for 2004-2005 Pupils) 12.0 11.8 12.5
High School GPA 12.8 11.9 14.0
Attend Voucher High School 0.11 0.091 0.14
Math Track in High School 0.0055 0.0040 0.0080
Teen Birth 0.0057 0.0073 0.0021
Age-23 Labor Income(for 2004-2005 Pupils) 1517.8 1579.9 1461.2
Observations 490519 114049 64397

Note: The sample includes all students who attend ninth grade between 2004 and 2010,
except for the variables that are measured at a certain duration after graduation from
ninth grade, which only include students who were 16 in 2004 and 2005. Income is
measured in 100 SEK (roughly $10). See text for further details defining the two sub-
populations around the two test score grading thresholds.

Table 2: Compliers’ English Test Grade

Eligible for Inflation Inflated Difference

Pass/Fail Margin 1.07 1.15 0.074%**
(0.064) (0.055) (0.017)
Pass/PWD Margin 1.40 1.73 0.33**
(0.14) (0.068) (0.14)

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: This table compares the average English test grade of all students whose un-manipulated math test
score falls in the manipulation region of the test score distribution with the average English test grade of
the compliers, i.e., of the students who in fact are selected to receive test score manipulation. Standard
errors that are block bootstrapped at the county*voucher*year level in parentheses.
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Table 3: Compliers’ Swedish Test Grade

Eligible for Inflation Inflated Difference

Pass/Fail Margin 0.96 1.02 0.060%**
(0.057) (0.051) (0.014)
Pass/PWD Margin 1.24 1.60 0.35%**
(0.13) (0.068) (0.13)

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: This table compares the average Swedish test grade of all students whose un-manipulated math
test score falls in the manipulation region of the test score distribution with the average Swedish test
grade of the compliers, i.e., of the students who in fact are selected to receive test score manipulation.
Standard errors that are block bootstrapped at the county*voucher*year level in parentheses.

Table 4: Compliers’ Share Male

Eligible for Inflation Inflated Difference
Pass/Fail Margin 0.51 0.51 -0.0045
(0.0030) (0.0081) (0.0097)
PWD /Pass Margin 0.51 0.49 -0.019
(0.0028) (0.030) (0.032)

Note: This table compares the percent of students who are male among all students whose un-manipulated
math test score falls in the manipulation region of the test score distribution with the percent of stu-
dents who are male among the compliers, i.e., among the students who in fact are selected to receive
test score manipulation. Standard errors that are block bootstrapped at the county*voucher*year level
in parentheses.

Table 5: Compliers’ Share Immigrant

Eligible for Inflation Inflated Difference
Pass/Fail Margin 0.25 0.24 -0.0065
(0.0072) (0.0094) (0.0077)
Pass/PWD Margin 0.18 0.13 -0.046
(0.0068) (0.038) (0.037)

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: This table compares the immigrant share of all students whose un-manipulated math test score
falls in the manipulation region of the test score distribution with the immigrant share of the compliers,
i.e., of the students who in fact are selected to receive test score manipulation. Standard errors that are
block bootstrapped at the county*voucher*year level in parentheses.
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Table 6: Compliers’” Household Income

Eligible for Inflation Inflated Difference

Pass/Fail Margin 4272.3 4439.4 167.1%%*
(57.3) (70.2) (45.6)
PWD/Pass Margin 5389.6 5218.8 -170.7
(96.3) (482.0) (477.1)

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: This table compares the average household income of all students whose un-manipulated math test
score falls in the manipulation region of the test score distribution with the average household income of
the compliers, i.e., of the students who in fact are selected to receive test score manipulation. Standard
errors that are block bootstrapped at the county*voucher*year level in parentheses.

Table 7: Compliers’ Father’s Years of Education

Eligible for Inflation Inflated Difference
Pass/Fail Margin 11.5 11.6 0.072*
(0.023) (0.047) (0.043)
PWD/Pass Margin 12.1 12.3 0.20
(0.034) (0.23) (0.24)

Note: This table compares the average paternal years of education of all students whose un-manipulated
math test score falls in the manipulation region of the test score distribution with the average paternal
years of education of the compliers, i.e., of the students who in fact are selected to receive test score ma-
nipulation. Standard errors that are block bootstrapped at the county*voucher*year level in parentheses.

Table 8: Compliers’ Have Stay at Home Parent

Eligible for Inflation Inflated Difference
Pass/Fail Margin 0.28 0.27 -0.011
(0.0050) (0.0075) (0.0070)
PWD /Pass Margin 0.22 0.16 -0.056
(0.0065) (0.035) (0.040)

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: This table compares the share of students with a stay-at-home parent among all students whose
un-manipulated math test score falls in the manipulation region of the test score distribution with the
share of students with a stay-at-home parent among the compliers, i.e., of the students who in fact
are selected to receive test score manipulation. Standard errors that are block bootstrapped at the
county*voucher*year level in parentheses.
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Table 9: First stage: Impact of Inflation on Final Math Grade

Pass PWD

Change in Final Math Grade 0.055%** 0.10%**
(0.0031) (0.0085)

Fstat 317.3 141.6

*p < 0.10, ¥* p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of exposure to inflation on the math grade (on every-
one in the manipulation region; though this estimate is in practice driven by the impact on those who
are graded up, i.e., the compliers). The sample includes all cohorts in our sample, i.e., all students who
attend ninth grade between 2004 and 2010. The predicted final grade absent manipulation is estimated
from regressions of students’ final grades on a dummy for whether the test score is above the cutoff and
3rd order polynomials in the test score, for each year and county*voucher. These regressions only use
data from students outside of the manipulation regions of the test score distribution. See the text for
more details. Standard errors block bootstrapped at the county*voucher*year level in parentheses.

Table 10: Impact of Inflated Test Grade on Final Math Grade

Panel A. Causal Impact Estimate

Pass PWD
A Math Test Grade 0.35*** 0.87***
(0.020) (0.064)
F Stat 1683.7 133.1
Dep Varaible Mean 0.99 1.62

Panel B. OLS Estimate

Pass 0.412%**
(0.00465)

PWD 1.235%**
(0.00867)

Observations 478675

*p < 0.10, ¥* p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving an inflated math test grade on the final math
grade (on everyone in the manipulation region; though this estimate is in practice driven by the impact
on those who are graded up, i.e., the compliers). The sample includes all cohorts in our sample, i.e., all
students who attend ninth grade between 2004 and 2010. The predicted final grade absent manipulation
is estimated from regressions of students’ final grades on a dummy for whether the test score is above the
cutoff and 3rd order polynomials in the test score, for each year and county*voucher. These regressions
only use data from students outside of the manipulation regions of the test score distribution. See the text
for more details. Standard errors block bootstrapped at the county*voucher*year level in parentheses.
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Table 11: “Sanity Check”: Impact of Grade Inflation on Pr of Being Foreign (LATE)

Panel A. Causal Impact Estimate

Pass PWD

A Final Math Grade -0.011 -0.034

(0.031) (0.036)

F Stat 317.3 141.6
Dep Varaible Mean 0.23 0.18

Panel B. OLS Estimate

Pass -0.135%%*
(0.00642)

PWD -0.158%**
(0.00754)

Observations 488707

*p < 0.10, ¥ p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ dis-
cretionary grading on the probability that the student is of a foreign background. This should be equal
to 0, since test score manipulation cannot cause a student to be foreign. Thus, this is a sanity check of
our instrument. Panel B displays the OLS estimate. The sample includes all cohorts in our sample, i.e.,
all students who attend ninth grade between 2004 and 2010. Standard errors block bootstrapped at the
county*voucher*year level in parentheses.
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Table 12: “Sanity Check”: Impact of Grade Inflation on English Test Grade (LATE)

Panel A. Causal Impact Estimate

Pass PWD

A Final Math Grade -0.019 -0.021

(0.062) (0.067)

F Stat 317.3 141.6
Dep Varaible Mean 1.32 1.88

Panel B. OLS Estimate

Pass 0.626%**
(0.00621)

PWD 1.028%%*
(0.00751)

Observations 399221

*p < 0.10, ¥ p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ discre-
tionary grading on the student’s English test grade. The English test is taken before the math test, so it
cannot be affected by the outcome of the math test. Thus, this is a sanity check of our instrument. Panel
B displays the OLS estimate. The sample includes all cohorts in our sample, i.e., all students who attend
ninth grade between 2004 and 2010. Standard errors block bootstrapped at the county*voucher*year
level in parentheses.
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Table 13: “Sanity Check”: Impact of Grade Inflation on Swedish Test Grade (LATE)

Panel A. Causal Impact Estimate

Pass PWD

A Final Math Grade 0.036 0.072

(0.055) (0.071)

F Stat 317.3 141.6
Dep Varaible Mean 1.18 1.67

Panel B. OLS Estimate

Pass 0.556***
(0.00591)

PWD 0.986%**
(0.00636)

Observations 399711

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ dis-
cretionary grading on the student’s Swedish test grade. The Swedish test is taken before the math
test, so it cannot be affected by the outcome of the math test. Thus, this is a sanity check of our in-
strument. Panel B displays the OLS estimate. The sample includes all cohorts in our sample, i.e., all
students who attend ninth grade between 2004 and 2010. Standard errors block bootstrapped at the
county*voucher*year level in parentheses.
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Table 14: Impact of Grade Inflation on GPA (LATE)

Panel A. Causal Impact Estimate

Pass PWD
A Final Math Grade 10.6*** 20.4***

(4.10) (5.47)
F Stat 317.3 141.6
Dep Varaible Mean 177.1 227.2

Panel B. OLS Estimate

Pass 82.19%**
(0.558)

PWD 139.8%**
(0.699)

Observations 488707

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ dis-
cretionary grading on GPA in grade nine. This should, mechanically, be equal to 10 around the Pass
margin and 5 around the PwD margin if all that test score manipulation does is to raise the final grade
in math (given how the GPA is calculated in Sweden) and manipulation does not encourage or discour-
age student effort or teacher grading in other subjects. Panel B displays the OLS estimate. The sample
includes all cohorts in our sample, i.e., all students who attend ninth grade between 2004 and 2010.
Standard errors block bootstrapped at the county*voucher*year level in parentheses.
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Table 15: Impact of Grade Inflation on High School Graduation (LATE)

Panel A. Causal Impact Estimate

Pass PWD

A Final Math Grade 0.20%** 0.055*

(0.044) (0.034)

F Stat 308.6 185.4
Dep Varaible Mean 0.73 0.87

Panel B. OLS Estimate

Pass 0.538***
(0.00641)

PWD 0.656%**
(0.00709)

Observations 409295

*p < 0.10, ¥ p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ discre-
tionary grading on the likelihood of high school graduation on time, i.e., within 3 years of ninth grade.
Panel B displays the OLS estimate. The sample includes all students who attend ninth grade between
2004 and 2005, who are 18-19 years old in 2007-2008, respectively (and hence have had the opportunity
to graduate from high school within 3 years of completing ninth grade in our sample). Standard errors
block bootstrapped at the county*voucher*year level in parentheses.

Table 16: Impact of Grade Inflation on High School GPA (LATE)

Panel A. Causal Impact Estimate

Pass PWD
A Final Math Grade 1.36%** 1.01%*
(0.49) (0.61)
F Stat 308.6 185.4
Dep Varaible Mean 11.9 14.0

Panel B. OLS Estimate

Pass 2 06TF**
(0.0455)

PWD 4.169%%*
(0.0575)

Observations 141426

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ discre-
tionary grading on high school GPA at graduation. The sample includes all students who attend ninth
grade in 2004 through 2006. Panel B displays the OLS estimate. Standard errors block bootstrapped at
the county*voucher*year level in parentheses.
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Table 17: Impact of Grade Inflation on High School Peers” GPA (LATE)

Panel A. Causal Impact Estimate

Pass PWD
A Final Math Grade -0.14 0.012
(0.14) (0.18)
F Stat 123.1 51.6
Dep Varaible Mean 12.7 13.0
Panel B. OLS Estimate
Pass 0.260***
(0.0283)
PWD 0.554%%*
(0.0493)
Observations 141426

*p < 0.10, ¥ p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ discre-
tionary grading on peer GPA in high school. The sample includes all students who attend ninth grade
in 2004 through 2006. Panel B displays the OLS estimate. Standard errors block bootstrapped at the

county*voucher*year level in parentheses.

Table 18: Impact of Grade Inflation on Math Track in High School (LATE)

Panel A. Causal Impact Estimate

Pass PWD
A Final Math Grade 0.027* 0.052
(0.016) (0.052)
F Stat 67.3 57.9
Dep Varaible Mean 0.014 0.031
Panel B. OLS Estimate
Pass 0.00417***
(0.00128)
PWD 0.0174%**
(0.00297)
Observations 134448

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of exposure to inflation on whether the student chooses
the natural sciences track in high school. The sample includes all students who attend ninth grade in
2004 and 2005, who are 22-23 years old in 2011 and and 2012, respectively. Panel B contains the OLS
estimate. Standard errors block bootstrapped at the county*voucher*year level in parentheses.
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Table 19: Impact of Grade Inflation on Initiating College (LATE)

Panel A. Causal Impact Estimate

Pass PWD

A Final Math Grade 0.12%* 0.079
(0.052) (0.12)

F Stat 67.3 57.9
Dep Varaible Mean 0.14 0.38

Panel B. OLS Estimate

Pass 0.1 60** *
(0.00278)

PWD 0.418%**
(0.00478)

Observations 134448

*p < 0.10, ¥ p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ discre-
tionary grading on the likelihood of enrolling in college within 7 years of completing ninth grade. The
sample includes all students who attend ninth grade between 2004 and 2005, who are 22-23 years old in
2011 and 2012, respectively (and hence we observe whether they initiate college within 7 years of com-
pleting ninth grade). Panel B displays the OLS estimate. Standard errors block bootstrapped at the
county*voucher*year level in parentheses.

Table 20: Impact of Grade Inflation on Years of Education (LATE)

Panel A. Causal Impact Estimate

Pass PWD
A Final Math Grade 0.33* 0.48%*
(0.20) (0.30)
F Stat 67.3 57.9
Dep Varaible Mean 11.8 12.5

Panel B. OLS Estimate

Pass 1.261***
(0.0199)

PWD 2 (3]***
(0.0222)

Observations 131756

*p < 0.10, ** p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ dis-
cretionary grading on educational attainment within 7 years of ninth grade. The sample includes all
students who attend ninth grade in 2004 and 2005. Panel B displays the OLS estimate. Standard errors
block bootstrapped at the county*voucher*year level in parentheses.
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Table 21: Impact of Grade Inflation on Pr of Teenage Birth (LATE)

Panel A. Causal Impact Estimate

Pass PWD
A Final Math Grade -0.027 -0.035**
(0.019) (0.017)

F Stat 67.3 57.9
Dep Varaible Mean 0.014 0.0048

Panel B. OLS Estimate

Pass -0.0226***
(0.00201)

PWD -0.0303***
(0.00218)

Observations 134428

*p < 0.10, ¥ p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ dis-
cretionary grading on the probability of having a child before age 20. The sample includes all students
who attend ninth grade in 2004-2006. Panel B displays the OLS estimate. Standard errors block boot-
strapped at the county*voucher*year level in parentheses.

Table 22: Impact of Grade Inflation on Income (LATE)

Panel A. Causal Impact Estimate

Pass PWD
A Final Math Grade 340.4%* 448.5%*
(183.0) (215.0)

F Stat 67.3 57.9
Dep Varaible Mean 1579.9 1461.2

Panel B. OLS Estimate

Pass 369.8%**
(18.46)

PWD 176.8%**
(22.85)

Observations 131756

*p < 0.10, ¥* p < 0.05, *** p < 0.01.

Note: The table presents estimates of the impact of receiving a higher math grade due to teachers’ dis-
cretionary grading on age-23 earnings. The sample includes all students who attend ninth grade in 2004
and 2005, who are 22-23 years old in 2011 and and 2012, respectively. Panel B displays the OLS esti-
mate. Standard errors block bootstrapped at the county*voucher*year level in parentheses.
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ONLINE APPENDIX

A A model of teachers’ grading behavior

All proofs are presented in Online Appendix Section C below.

A.1 A Model of Grade Inflation

Student ¢ is enrolled in school j. He attends class and has performed at level a; on class
assignments, other than the nationwide test. We will refer to a; as student ¢’s ability. Student
1 takes the nationwide test and receives a numeric test score r; and a test grade of ¢; as defined
by:

i =1 (a, €5, Ai1) = a; + & + Ag,

pif (r(a;, e, An) > D) }

ti:t(a’iag’hAl): { OO/W

If the student does not receive any grade inflation, student ¢ earns a test score equal to his
true performance on the test: a; + ¢;, where ;" F (g;) and E(g;) = 0. We refer to a; + ¢;, as
student i's raw test score, as it is what he would receive if there was no grade inflation. &;
represents that student ¢ could have a “good day” or a “bad day” on the test. The teacher
may also choose to inflate the test score by awarding some amount of additional test points,
A;r. If student #'s numeric test score is above p, then he passes the test and receives a grade
of p, otherwise he fails the test and receives a grade of 0.

The teacher also assign student i's final grade g; for the class. g; is defined as:

Lif |wt (a;, €, A 1— AR > D
gizg(ai,sz-,Aﬂ,An):{ if [wt (@i, e, An) + (1 —w) (a; + Ai2)] p}'

0o/w

Student ¢’s final numeric grade is a weighted average of his test grade, ¢ (a;,&;, A1), and his
grade on all other class assignments, (a; + Ajz). w measures the weight placed on the test
grade in computing the final numeric grade. We refer to the grade on all class assignments
excluding the nationwide test, (a; + A;2), as student 7’s homework grade. The teacher may
also choose to inflate the homework grade, as measured by A;,. Student ¢ passes the class
(and receives a final grade of 1) if his numeric final grade is above p, otherwise he fails the
class.

The teachers assign test grade t; and final grade ¢; to maximize the school’s utility
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function:

U(Aib Ai2) = ng (ai, SIPAGE Ai2) —C (Ail) — Cy (Am) )
Cll (Azl) > 0, 6/2 (Aﬁ) > 0,
Clll (Azl) > 0, 6/2/ (Alz) > 0.

Schools are heterogenous in their desire to inflate grades, as measured by 3;. 3; could repre-
sent pressure from parents to give higher grades or competitive pressures between schools to
attract students to enroll in school j. In order to inflate a student’s test grade or homework
grade, the teacher must pay a cost ¢1 (A1) or ¢a (Ay2), respectively. ¢; (Ay1) and g (Ay2) are
assumed to be increasing and convex. This captures the fact that it is increasingly hard for
a teacher to justify the higher grade as she inflates the grade more and more.?” The teacher
chooses A; and A, to maximize the school’s utility function.

We now explore properties of the model above that will be useful for estimation. For
now, we assume that when the teacher chooses A; and Aj, she is free to pick any (positive)
value that she wishes. In reality, sometimes grading a question more generously may lead
to lumpy amounts of test points (e.g. either the teacher assigns 3 extra points or 0, as she
may not be able to give 1 point, given the structure of the test.) We explore this extension
of the model in Appendix C.

Before analyzing the teacher’s decision to inflate, we illustrate what happens if 3; = 0.
Then, there are no incentives to engage in any type of manipulation (neither of Type I or
of Type II). Figure Bl illustrates the outcome when the distribution of student ability a;,
displayed on the x-axis, is assumed to be Uniform over [0,1] and the distribution of errors ¢;,
displayed on the y-axis, is assumed to be Uniform over [-0.5,0.5]. In the Figure, a diagonal
“line” distinguishes the two lower, blue fields from the two upper, green and yellow fields.
Along this diagonal line, all combinations of a; and ¢; yield the same test score, r; = a; + &,
which is assumed to be the required score for passing the test, p. Thus, all students with
(a;, ;) that yield test scores that fall below p are in the light blue and dark blue regions; they
fail the nationwide test (t; = 0). Similarly, all students with (a;,¢;) that yield test scores
above p are in the green and yellow regions; they pass the nationwide test (¢; = p).

Among the students that fail the test (i.e., those with (a;,¢;) in the light and dark blue

areas), the subset of students with sufficiently high innate ability obtains a passing final

29For example, as discussed in Section 2 above, there are some points awarded on the math test which
require subjective grading, while others are clearly right or wrong answers. Inflating a grade by a few points
would only require somewhat generous grading on the subjective parts of the test, while a large amount of
grade inflation would require awarding points for more clearly incorrect answers. These costs are also convex
due to the possibility that a school might get audited and have to justify their grading, which is harder to
do with large amounts of grade inflation.

%)



grade in math even though they failed the nationwide test. Specifically, all students in the
right, lower region (colored light blue) fail the nationwide test (t; = 0) but obtain a passing
final grade (g; = 1)). In contrast, students in the left, lower region (colored dark blue) fail
both the nationwide test (¢; = 0) and obtain a failing final grade (¢g; = 0).

Similarly, among the students that pass the test (i.e., those with (a;, ;) in the green and
yellow areas), the subset with sufficiently high innate ability (yellow region) pass both the
nationwide test and obtain a passing final grade, whereas students with insufficient ability
(in the green region) pass the nationwide test but nonetheless obtain a failing final grade.

Our understanding of the outcome in the absence of manipulation immediately highlights
that, even if we were to raise 3; from zero, the teacher would never inflate any student who
obtains a final grade of Pass (g; = 1) without manipulation. In Figure B1, regardless of the
value of 3;, the teacher would never engage in any type of manipulation of students in the
yellow and light blue regions; they obtain a passing final grade (and yield a utility of 5; to
the teacher) even without the teacher engaging in any costly inflation. Now consider the

case when 3; > 0:

Proposition A.1. The teacher plays one of four actions, (Al, Af) €
= A p—wt(a;,ei,Ni1) o = A p—wt(a;,ei,Ni1) o
{(0, 0),(p—a; —¢€;,0), (O, = Oél) , (p a; — &, e al)} )

Proposition A.1 states that if the teacher chooses to engage in any manipulation, she puts
the student’s final numeric grade exactly at p, where the student (just) receives a passing
final grade, g; = 1. Intuitively, inflation is costly to the teacher, so she only engages in
manipulation if this alters the student’s final grade from fail (¢; = 0) to Pass (¢; = 1). Put
differently, the teacher only engages in manipulation if it brings her an added utility of
Bj. Clearly, the teacher never engages in more inflation than what puts the student’s final
numeric grade at p.

The teacher’s decision of whether to inflate a given student hinges on whether j;, the
teacher’s utility from raising the final grade from Fail to Pass, (weakly) exceeds the cost of
the cheapest combination of Type I and Type II inflation that enables the student to pass.
Depending on the student’s (a;,¢;), the cost-minimizing strategy is one of the following
three strategies: (i) use only Type I inflation by raising the test grade to p, (A, A%) =
(p — a; — €;,0); (ii) use only type IT manipulation by inflating the homework grade such that
the final grade is p, (Af,Af) = (O, % - ai>; or (iii) use a combination of both
Type I and Type II inflation, (A}, A%) = (}5 —a; — €, % — ai) .

Figure B2a illustrates the teacher’s strategy space when we maintain the same assump-
tions on the distributions of a; and ¢; as in Figure B1, but assume that 3; takes on a strictly

positive value. The teacher’s strategy is (A;1, An) = (0,0) unless indicated otherwise. In
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Figure B2b, we display the corresponding distribution of raw test scores r; = a; + ¢; in
the absence of manipulation (lower subgraph) as well as the observed test score distribution
after Type I manipulation of the test scores (upper subgraph). In Figure B2a, we see that
Type I manipulation occurs in two regions, colored brown and orange, respectively. In both
regions, the (a;,€;) pairs are such that the un-manipulated test score r; = a; +¢; lies close to,
but below, the passing threshold, p (in one of the two regions, Type II manipulation occurs
as well). In the upper subgraph of Figure B2b, we see that it is precisely the test scores
in these brown and orange regions that are bunched at the passing threshold (we assume
p = 62). Finally, Figure B2a also indicates the regions where Type II manipulation occurs;
this manipulation is not visible in the test score distribution (Figure B2b).

Finally, Figures B2a and B2b illustrate that not all students with a given raw test score
r; close to p are inflated to p. There are many different types of students who earn the same
raw test score r = a; + ¢;. Some students had a “bad day” when taking the nationwide test
(drew a low ¢), but have very high homework scores, a. These students would be able to
pass the class even if they failed the nationwide test, even in the absence of manipulation.
As discussed above, these students do not receive grade inflation on their test grade — and
consequently (A;1, Ayz) = (0,0) — although they pass the class overall. In Figure B2a, these
students are located in the lower, far right, part of the area plot. Other students might have
had a very “good day” when taking the nationwide test (drew a high ). However, if their
homework grade (a;) is very low, the amount of grade inflation they would need to pass
the class it too costly, and they would receive no grade inflation on their test grade. These
students would fail the class overall. In Figure B2a, students that pass the nationwide test

(due to “luck”) but fail the class are in the upper, left corner.

Identification of 5; We now turn to the question of identification of 3;. In this context,
we cannot identify 5; from the amount of excess mass at the passing test score, p. To see this
intuitively, again consider Figure B2a. It displays the teacher’s strategy for any pair (a;, &;).
Thus, if we were to assume another distribution of student ability a;, or of the student error
distribution ¢;, we would obtain more mass in the bunching region in Figure B2a, even if (3,
were held constant. In other words, the amount of excess mass not only varies with 3;, but
also with the distributions of student ability and test taking errors. Consequently, we cannot
quantify a school’s leniency by the magnitude of excess mass at the Pass threshold. If we
were to use the amount of excess mass, we would risk to erroneously infer that schools have
different grading leniency when, in fact, it is their student ability distributions that differ.
Instead, we theoretically show that the lowest test score at which test score manipulation

occurs in a school identifies the school’s inclination to grade leniently.
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Proposition A.2. Let 1jmin be the minimum raw test score which school j gets inflated to

D. Tjmin 18 Strictly decreasing in ;.

Proposition A.2 refers to to students with the minimum raw test score at which the
teacher would ever inflate their test score. At this minimum raw test score which receive
test grade inflation, the teacher is indifferent to inflating the test score and not. Assuming
that the costs of grade inflation are the same across schools, if one school’s threshold for test
grade inflation is lower than that of another school, then the school with the lower threshold
for grade inflation must have a higher desire to inflate grades.

To illustrate this, Figures B3a and B3b display the teacher’s strategy space when we
maintain the same assumptions on the distributions of a; and ¢; as in Figure B1, but allow
B; to take on two different positive values. Figure B3a

This result will be at the heart of our estimation methods, as it implies that we can
identify a school’s desire to grade inflate by measuring the minimum test score at which
manipulation occurs. 'This is illustrated in Figures B4a and Figure B4b. In particular,
Figure B4a reproduces Figure B3a, and Figure B4b displays the corresponding distribution
of raw test scores r; = a; + €; in the absence of manipulation (lower subgraph) as well
as the observed test score distribution after Type I manipulation of the test scores (upper
subgraph). Both Figures B4a and B4b illustrate the lowest test score at which manipulation
occurs. Figure B4b illustrates that, to quantify grading leniency, we must estimate, from the

manipulated test score distribution, the lowest test score at which manipulation takes place.
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B Supplemental figures and tables

Figure B1: Student outcomes in the absence of manipulation

0.8 I—

Note: The figure displays the teacher’s strategy when 3; = 0, i.e., in the absence of any
manipulation. The student ability distribution, displayed on the z-axis is assumed to
be Uniform over [0,1] and the student error distribution, displayed on the y-axis, is as-
sumed to be Uniform over [-0.5,0.5]. A diagonal “line” distinguishes the two lower, blue
fields from the two upper, green and yellow fields. Along this diagonal line, all combi-
nations of a; and ¢; yield the same test score, r; = a; + ¢;, which is assumed to be the
passing score. Thus, all students with (a;,¢;) that yield test scores that fall below the
Pass threshold are in the light blue and dark blue regions; they fail the nationwide test.
Similarly, all students with (a;, €;) that yield test scores above the Pass threshold are in
the green and yellow regions; they pass the nationwide test. Among students that fail
the nationwide tests (i.e., those with (a;, &;) in the light blue and dark blue areas), stu-
dents with sufficiently high innate ability will obtain a passing final grade in math even
though they failed the nationwide test. Specifically, all students in the right, lower region
(colored light blue) will fail the nationwide test but obtain a passing final grade, whereas
students in the left, lower region (colored dark blue) will fail both the nationwide test
and obtain a failing final grade. Similarly, among students that pass the nationwide
tests (i.e., those with (a;,&;) in the green and yellow areas), students with sufficiently
high innate ability (yellow region) will pass both the nationwide test and obtain a pass-
ing final grade, whereas students with insufficient ability (in the green region) will pass
the nationwide test but nonetheless obtain a failing final grade.
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Figure B2: Student outcomes and the teacher’s strategy in the presence of manipulation

(a) Outcomes for various (a;,&;) (b) Distribution of r; = a; + ¢;

Note: In Figure B2a, we display student outcomes and the teacher’s strategy for all possi-
ble pairs (a;,&;). The teacher’s strategy is (A1, Ai2) = (0,0) unless indicated otherwise.
In Figure B2b, we display the distribution of raw test scores r; = a; +¢; in the absence of
manipulation (lower subgraph) as well as the observed test score distribution after Type
I manipulation of the test scores (upper subgraph). As in Figure B1, we assume that the
student ability distribution is Uniform over [0,1] and that the student error distribution
is Uniform over [-0.5,0.5]. In Figure B2a, we see that Type I manipulation occurs in two
regions, colored brown and orange, respectively. In both regions, the (a;,¢;) pairs are
such that the un-manipulated test score r; = a; + ¢; lies close to, but below, the passing
threshold, p (in one of the two regions, Type II manipulation occurs as well). In the up-
per subgraph of Figure B2b, we see that it is precisely the test scores in these brown and
orange regions that are bunched at the passing threshold (we assume p = 62). Finally,
Figure B2a also indicates the regions where Type II manipulation occurs; this manipu-
lation is not visible in the test score distribution (Figure B2b).
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Figure B3: Student outcomes for different levels of grading leniency, 3;

(a) Outcomes for various (a;,¢;), higher j; (b) Outcomes for various (a;,¢;), lower f3;

Note: The Figures display student outcomes and the teacher’s strategy for all possible
pairs (a;, €;), for two different levels of grading leniency, ;. All other assumptions are as
in Figure B1. We observe that the lowest test score where manipulation occurs is lower
in Figure B3a than in Figure B3b, consistent with the fact that teachers grade more
leniently in Figure B3a.

Figure B4: Identifying grading leniency, /3;, from the empirical test score distribution

(a) Outcomes for various (a;,€;) (b) Distribution of 7; = a; +¢;

Note: In Figure B4a, we display student outcomes for all possible pairs (a;, ;). In Figure
B4b, we display the distribution of raw test scores r; = a; + ¢; in the absence of ma-
nipulation (lower subgraph) as well as the observed test score distribution after Type I
manipulation of the test scores (upper subgraph). All assumptions are as in Figure B1.
Both Figures illustrate the lowest test score at which manipulation occurs. Figure B4b
illustrates that, to quantify grading leniency, we must estimate, from the manipulated
test score distribution, the lowest test score at which manipulation takes place.
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C Mathematical proofs

C.1 Proof of Proposition Al

We derive results under a general cost function ¢ (Aq, As) which is increasing and convex in

each argument.

o If inflate test grade, then inflate to exactly p.A; = p — a; — ;. Otherwise, A; = 0.

_ p—wt(asei A1)

o If inflate final grade, inflate exactly to p : Ay = (o) — q;, otherwise Ay = 0.

Thus, possible strategies are:

* * — ’—wt(a,-,ei,A ) — p—wt(a;,eq,A1)
(A7, A}) € {(0,0),(p—a,- —¢;,0), (0,77(1%10)1 —ai) : (p—ai — &, —ai)}.
This defines a set of inequalities where each strategy is optimal. First partition the (a;,&;)
space where the student passes the test and/or class without the help of inflation. These

are:
1. t(a;,e:,0) =p & g (ai,e;,0,0) = 1. In other words, a; +¢&; > p, a; > p
2. If t(a;,€,0) =0 & g (a;,€;,0,0) = 1 :In other words, a; +&; < p, a; (1 —w) > p
3. If t (a;,€,0) =p & g(a;,€;,0,0) = 0. In other words, a; +¢; > p, a; <p
4. If t(a;,€;,0) =0 & g (ai,e;,0,0) = 0.In other words, a; +¢&; <p, a; (1 —w) <p
We now partition the space into where each possible strategy is optimal:
1w (0,0) < u (0, 2=efesb) — )

(a) If t (a;,€4,0) = p & g (a;,€4,0,0) = 1. In other words, a; +¢; > p, a; > p:

c 07p_wt(ai7€i7Al) — SO
(1 —w)

This region does not exist.

(b) If t (a;,&;,0) =0 & g (as,;,0,0) = 1 :In other words, a; +¢; < p, a; (1 —w) > p:

c O’P—w’f(aiy%ﬁl) —o;| <0
(1 —w)

This region does not exist.

(c) If t(as,,0) =p & g(as,€:,0,0) = 0. In other words, a; +&; > p, a; < p:
BZC(O,];—CM)-
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(d) If t(a;,€;,0) =0 & g (as,€;,0,0) = 0.In other words, a; +&; < p, a; (1 —w) < p:

2. u(0,0) <u(p—a;—e;0).
(a) If t (a;,e4,0) = p & g (a;,€4,0,0) = 1. In other words, a; +&; > p, a; > p:
c(p—a; —e;,0) <0

This region does not exist.

(b) If t (a;,&;,0) =0 & g (as,;,0,0) = 1 :In other words, a; +¢; < p, a; (1 —w) > p:
c(p—a;—¢e;,0) <0

This region does not exist.
(c) If t(ai,ei,0) =p & g(as,€;,0,0) = 0. In other words, a; +&; > p, a; < p :
c(p—a; —e;,0) <0
This region does not exist.
(d) If t (ai,€i,0) =0 & g (as,€4,0,0) = 0.In other words, a; +¢; < p, a; (1 —w) < p:
B>c(p—a;—¢e;,0) if a; > p.
0> c(ﬁ—ai—ai,O) if a; < p,
This region where a; < p does not exist.
= ﬁ—wt(ai,ai,Al) . )
3. u(0,0) < (p a; — €, ot az)

(a) If t (a;,e4,0) = p & g (as,€;,0,0) = 1. In other words, a; +&; > p, a; > p:

p — wt (a;, €, Ar)
— Q).
(1 —w)

020<p_az‘_5i7

This region does not exist.
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(b) If t(a;,£;,0) =0 & g (a;,£;,0,0) =1 :In other words, a; +¢; < p, a; (1 —w) > p:

ﬁ_wt(aﬂhgi?AI) OZ>

0> p — 1T Sy
—C<p R

This region does not exist.

(c) If t(a;,e;,0) =p & g(a;,€;,0,0) = 0. In other words, a; +¢;, > p, a; < p :
B>c(p—ai—e,p—a).

(d) If t(a;,&;,0) =0 & g (as,;,0,0) = 0.In other words, a; +¢&; < p, a; (1 —w) < p:
B>c(p—ai—e,p— ).

4. u(O,W—ai) <u(p—a;—e;0)

(a) Region where u (O, % — ai) beats no inflation, and

t (07 % - ai) =p,.g (ai, &, 0, % - ai) = 1. In other words: a;+

g >p,a; <p,B>c(0,p—a;). This regions does not intersect with any regions

where (p — a; — €;,0) was preferred to (0,0). Thus, this region does not exist.
(b) Region where u (O, %ﬁ’m — ai) beats no inflation, and

t(&%—ai) 2079(%,51‘,0,%—%) =Laite; <p,a; (1 —w) <

p.Bz (0.5l —ar).

c<0, (11—5w) —a,») >c(p—a; —¢g;,0).

5. u(p—a;—¢€;,0) < u (}5 —a; — &4, % - ozi) . This could only be the case if

u(p — a; — €;,0) resulted in a failing grade.

a<p

6. U(O,}W—Ozi) Su(ﬁ—ai—ei,%—ai)

(a) Region where (O, w - ai) beats no inflation and ¢ (O, pwhasciby) _ Oéi) =

0. That is: a; +¢&; < p, ai(l—w)<ﬁ,620(0,ﬁ—ai).

5ZC<07M—Gi> >c(p—ai—ei,p—a).
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Combining the inequalities above:

e The region where where the teach inflates both the test and final grade, u (]5 —a; — &, % —

is played is where:

B > c(p—a;,—ei,D—a;),
a;+¢ < p,
a; S ﬁu
g > C<07@—ai>ZC(p—Gi—%?i,p—az‘)-

e The region where the teacher only inflates the test grade, u (p — a; — €;,0) is played is

when:

a; +& < p,
a; (1—w) < p,
a = p

B > c(p—a—e;,0),

v

c(p—a;—¢;0)

p
0, —— —a;
‘ ( =) )
t(ai,ei,A1) _ )
(073

e The region where the teacher only inflates the final grade , u (0, %

when either:
1. Students who natually pass the test:
a; +¢&; 2 p,

aiSﬁ?
6 Z 0(07]5_&1')

2. Students who natually fail the test:

a; +¢&; < p,

a; (1 —w) < p,

626(0,29—0/1‘),
1—w

p _ _
0,—— —a;) > —a; — &, P —
c(,l ” a> c(p—a;—ei,p—a;)
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C.2 Proof of Proposition A2

First, consider the region where u (p — a; — €;,0) is optimal. Define ;' (b, A,) as the inverse
type 1 cost function where b is total cost and A, is amount of type 2 inflation. The minimum

r within this region is:

_ . wp _
Tl,min = _02 (67 )1fC<0,1_w> 20<021(ﬁ70)70>
= p—ocy" (c (O, wp),O) otherwise.
1—w

Now consider the region where (p — a; — €;,p — «;) is optimal. The minimum r within

this region is:
_ . P —
72 min = —62 (ﬁ, ) lfC(O 121)) 2 C<021(/8, 0)70) .

Ifc(O,%) < c(cgl (6,0),0) , then

c(O,(lpw)—az) — c(p—rp—a)=p.

Implicity define a* (r) as the function which satisfies:

c(O, (1;—510) —a* (r)) =c(p—r,p—a*(r)).

Implicitly differentiating the expression above and rearranging, we get:

@ Cl(ﬁ—’l“,p—a)

dr _cz(o,ﬁ—@—@(ﬁ—r,p—a).

Now, implicitly differentiate ¢ (p — r,p — a) = 8 with respect to 3 :

dr -1

dp a(p—rp—a)tc(—rp—a) P
cg(ﬁ—r,p—a)—cg((),f—a)
cl(ﬁ—r,p—a)*CQ(O,%—a)

Since the cost function is weaklin increasing, the denominator is negative. For the numerator
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to be negative, we need: cy (O £ — a) > ¢y (p—1,p— a). Specifically, we need:

P l—w

cg<0,p—a> 2@(011 <c<0,p—a>,p—a),p—a>.
1—w 1—w

If we assumed the cross partial of ¢ (Aq, Ay) is zero, then ¢o (p — r,p —a) = 2 (0,p — a) <
Co (0, % — a) because ¢ (Aq, Ay) is convex and % —a > p—a. Thus, the minimun inflated

testscore is strictly decreasing in 3, the payoff from grade inflation.

D More information on the nationwide tests

The test is comprised of four subtests, or parts: A, B1, B2, and C. Each subtest has a certain
number of questions, and each question is worth a certain number of “Pass points,” P and a
certain number of “Pass with Distinction points,” PwD. (Easier questions are awarded only
P-points; harder questions are awarded both P- and PwD-points, or only PwD-points.)

A grading sheet is distributed to teachers with detailed instructions regarding the grading
of each question. The P-points are awarded based on objective and hard-to-manipulate
criteria (such as “which of the following five numbers are higher?”). The the PwD-points
often involve a subjective assessment, however: points are awarded for partially completed
work, for “clarity,” for “beautiful expression,” and so on. The grading sheet thus effectively
provides a short list of correct answers to the P-points, and longer descriptions of how to
award PwD-points.

A student’s test score thus consists of a pair, (P;, PwD;). In 2004, the maximum number
of P-points was 38, and the maximum number of PwD-points was 32. The highest sum of
points that a student could achieve was thus S; = P, + PwD; = 70.

In addition to providing guidance on the grading of each question, the grading sheet de-
fines the test grade as a step function of the number of P- and Pw D-points; or, equivalently,

as a function of S; and PwD;:

Pass if S; > 23
ti = PwD if S; > 43 and PwD;>12 ;,
FExcellent if PwD;>21 and E=1

S; > 23 is a necessary and sufficient condition for obtaining the test grade Pass. Moreover,
for the vast majority of students who are on the margin between Pass and PwD, S; > 43 is
the binding constraint (as opposed to PwD; > 12); thus, again, the necessary and sufficient

condition for obtaining PwD can be expressed in terms of the sum of Pass and PwD points.

67



In the paper, we therefore define the raw test score r; as the sum of Pass and PwD points
(S; above).

A subset of the test questions, marked by the symbol #, allow the teacher to judge criteria
that capture that the student’s answers are worthy of the grade “Excellent” (£ = 1). We do
not observe the teachers’ judgements of these criteria — they are awarded based on highly
subjective criteria — but we can infer it based on the awarded test grade.®’ In contrast to
Pass and PwD, however, the test score that we observe in the data does not provide anything
resembling a sufficient condition for receiving the test grade Excellent — a substantial share
of the students whose test score satisfies PwD; > 21 are not awarded the grade Excellent in
the data. Because the test score only provides a necessary but not sufficient condition for
the grade Excellent, we disregard this third threshold in the data.

30These criteria include (i) using general strategies when planning and executing the exercise; (ii) com-
paring and evaluating the pros and cons of different solution methods; (iii) displaying certainty in the
calculations; (iv) displaying structured mathematical language; and (v) displaying an ability to interpret
and analyze. In order to be awarded the grade Excellent on the test, a student must have demonstrated
“most of” these five qualities, on at least three of the six questions marked by an asterisk.
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