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Systemic risk refers to the risk of catastrophic collapse of the entire system.
Involves:

o the simultaneous analysis of outcomes across all entities in a system

¢ the possibility of complex interactions between components




Joint Distribution of Outcomes

e 3 firms in 3 future scenarios (equally likely)

o | oss matrix:

Scenario Firm 1 Firm 2 Firm 3
3, wi +50 +20
1/3
w2 +50
1/3
w3 +20 +20 +50

v

(+ ‘loss’; — ‘profit’)
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Complex Interactions

Comeplex interactions between entities can create contagion, or cascades of
failures.

In financial markets, structural mechanisms for contagion include:

Interbank loans

Interbank derivatives exposures (e.g., AlG)

e Transmission of illiquidity, ‘bank runs’ (e.g., Lehman)

Fire sales, asset price contagion (e.g., CDOs)




Contributions

A general, axiomatic framework for coherent systemic risk
analyzes joint distribution of outcomes

allows for some endogenous mechanisms of contagion
subsumes many recently proposed systemic risk measures

¢ A structural decomposition of systemic risk

¢ A dual representation for systemic risk measures
‘shadow price of risk’

¢ A mechanism for systemic risk attribution & decentralization

e Methodology extends to a much broader class of risk functions




Literature Review

¢ Axiomatic theory of single-firm risk measures:
Artzner et al., (2000); see survey of Schied (2006)

e Systemic risk measures: portfolio approach
Gauthier et al., (2010); Tarashev et al.,, (2010); Acharya et al., (2010);
Brownlees & Engle (2010); Adrian & Brunnermeier (2009)

e Systemic risk measures: deposit insurance / credit approach
Lehar (2005); Huang et al., (2009); Giesecke & Kim (2011)

e Structural models of contagion & systemic risk:
Acharya et al.,, (2010); Staum (201 1); Liu & Staum (2010); Cont et al,,
(2011); Bimpikis & Tahbaz-Salehi (2012)

e Portfolio attribution:
Denault (2001); Buch & Dorfleitner (2008)




Single-Firm Risk Measures

Scenario Loss

w1 Ty
w2 Lo ) = set of scenarios
z € R%
T, = loss in scenario w
wig| Twiq




Coherent Risk Measures

Definition. A coherent single-firm risk measure is a function p: R — R
that satisfies, for all z, y € R

(i) Monotonicity: if z > y, then p(z) > p(y)
(i) Positive homogeneity: for all « > 0, p(az) = ap(z)

(i) Convexity: forall0 < a <1,
plaz + (1 —ay)) < ap(z) + (1 - a)p(y)

(iv) Cash-invariance: for all o € R,
plz+alg) =p(z) + «

[Artzner et al., 2000]




Systemic Risk Measures

Scenario Firm 1 Firm 2 Firm | F
w1 X1 X201 e X Flwn
w2 Xl,wz X2,w2 ce *X|.7:|,cu27
UJ‘Q‘ XLUJ‘Q‘ X2,W‘Q‘ M X|_/—“,W‘Q|
f }
0 T
) = set of scenarios F = set of firms (entities in the system)

X € ROXF Xiw = loss for firm 7 in scenario w
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e () = set of scenarios, F = set of entities in the system, X € ROXF

® X;. = loss for firm 7 in scenario w, X,, = loss vector in scenario w

Definition. A systemic risk measure is a function p: R?* — R that
satisfies, for all economies X, Y, Z € R*/:

(i) Monotonicity: if X > Y, then
p(X) = p(Y)
(i) Positive homogeneity: for all o > 0,
plaX) = ap(X)

(iii) Normalization: p(1¢) = |F|
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Definition. (con’t) Given z,y € R/, define the ordering z =, y by
r=,y = plx,...,2) > p(y,...,y)

(iv) Preference consistency: if X, =, Y,, for all scenarios w, then

p(X) = p(Y)
Scenario w1 S w - wiq|
Firrp 1 X1_,w1 wa le_“’\ﬁ\
Firm | 7] X|F (o, X 710 XFu *
X, =, Y, Yuw = p(X) = p(Y)
Frm1 Yy, Vi Vi
Firm: val Y‘}iwl Y|]:-‘\,w Y\]'—:Hm -
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(b) Risk convexity: if for all scenarios w € €2,

P Zasr o 20) = ap(Kegy - X) + Gl Y .
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Two different notions of diversity




Systemic Risk Measures: Definition

Definition. (con’t)

I. Outcome convexity: Increasing diversification reduces risk

X, o
) >a69H Zw = p(Z) <ap(X)+ap(Y)

2. Risk convexity: Removing randomness reduces risk
o' p(Xuld)
p(Z.1g) = p(2) <ap(X)+ap(Y)
@ Mo p(Yolg)




Structural Decomposition

Definition. An aggregation function is a function A : R — R that is
monotonic, positively homogeneous, convex, and normalized so that
ALF) = |F]

Aggregation function: aggregates risk across firms in a given scenario




Structural Decomposition

Definition. An aggregation function is a function A : R — R that is
monotonic, positively homogeneous, convex, and normalized so that
ALF) = |F]

Aggregation function: aggregates risk across firms in a given scenario

Theorem. A function p: R»*7 — R is a systemic risk measure with
p(—1g) < 0 iff there exists

® an aggregation function A

e coherent single-firm base risk measure pg such that
p(X) = (po o A)(X) 2 po (A(X1), A(X2), ., A(Xjqy))
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Example: Economic Systemic Risk Measures

e F = firms in the economy

e X; . = loss of a firm i in scenario w

Example. (Systemic Expected Shortfall)

Atotal Z Zi, PSES(X ) £ (CVaRa ° Atotal)(X )
ieF

[Acharya et al., 2010; Brownlees, Engle 2010]

Example. (Deposit Insurance)

AIoss Z zl > ,ODI( ) =E [A|°SS w =E [Z ]

ieF ieF
[e.g., Lehar, 2005; Huang et al., 2009]

‘IS



Example: Investing with Performance Fees

e F = a collection of hedge funds or portfolio managers
® X; . = loss of hedge fund 7 in scenario w

e ~; € [0, 1] is the performance fee of fund i
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Example: Investing with Performance Fees

e F = a collection of hedge funds or portfolio managers
® X; . = loss of hedge fund 7 in scenario w

e ~; € [0, 1] is the performance fee of fund i
Example. (Hedge Fund Investor)

Ane(z) £ (i + vizy)
ieF

® “rof € [0, 1] is the performance fee of the fund-of-funds manager

Example. (Fund-of-Funds Investor)

Aror(7) £ (2 +7im; ) + YroF <Z (2 + WZ))

iEF 1EF




Example: Resource Allocation

o A = a set of activities
e F = a set of capacitated resources

e 1; = shortage of resource ¢




Example: Resource Allocation

o A = a set of activities
e F = a set of capacitated resources

e 1; = shortage of resource i
Consider the aggregation function:

A « s .
Ara(z) = minimize Z Callg
acA
subject to Z biatg > x;, VieF
acA
u e RA

where
¢ u, = reduction in level of activity a (decision variable)

® ¢, = per-unit cost of reductions in activity a

e b;, = per-unit consumption of resource ¢ by activity a




Example: Interbank Contagion Model

e F = firms, who have assets and obligations to each other
e II;; = fraction of the debt of firm ¢ owed to firm j

e 1; = losses in excess of obligations of firm ¢




Example: Interbank Contagion Model

e F = firms, who have assets and obligations to each other
e II;; = fraction of the debt of firm ¢ owed to firm j

e 1; = losses in excess of obligations of firm ¢

Consider the aggregation function:

Acm(z) = minimize Z v+ Z b;

yeRT, beRT 7 i€F
subject to bz +y; >z + Z Hjiyj, VieF
jeF
where

® loss x; is covered by firm ¢ reducing the payments by an amount y;,
or relying on an injection from the regulator in the amount b;

e reminiscent of Eisenberg & Noe (2001)




“General” Aggregation Function

Given:
o ccRY, A c REXF, B e REXN
e K C R a convex cone, such that 3 5 € K with By > 0

Define:
Aopr(z) £ minimize ¢'y
Y

subject to Az < By
yek

® Aopr is monotonic, positively homogeneous, and convex

e if Aopr(1£) > 0, it can also be normalized

e allows for general endogenous mechanisms for ‘co-operative’ contagion




Structural Decomposition: Proof Sketch
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Structural Decomposition: Proof Sketch

‘If’ part is not hard. ‘Only if’ part:
e Define A(z) = p(z1f)), Vz € RT
e Define po(z) £ p(X), V 2z € Q% for some X: A(X,,) = 2z, Y w

e Step I: pg is well-defined. Suppose X, Y have
A(Xy) = A(Y,), Yw € Q. Preference consistency of p implies

(Xo) > A
(Xo) <A
Thus, p(X) = p(Y)

A (Y.),VweQ —  p(X)=p(Y),
A (Y.),VweQ — p(X)<p(Y).

e Step 2: Derive other properties: monotonicity, convexity,
homogeneity of A and py.

p=(po o N)(X) 2 po (A(X1), A(Xa), ..., A(Xjq))




Acceptance Sets and Primal Representation

Theorem. Any systemic risk measure p = (pp o A) can be expressed as

p(X) = miningize m
(PRIMAL) subject to  (m,{) € A,
(EW7X(U) GB, VUJEQ,
meR, £ € RY,

where acceptance sets A and B can be taken as the epigraphs of py and A,
i.e.,

Aé{(m,z)GRXRQ : mzpo(z)},
BE{(t,z) eRxRT : £>A(n)}.
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Dual Representation

Theorem. Any systemic risk measure p can be expressed as

p(X) = maximize Z Z Ei,sz',w
o= ieF weQ
subjectto  (1,7) € A*

(Tw, Zw) € B*, Yw € Q

7 eRY = e RFXY

(DUAL)

where A* C R x R%, B* € R x R’ are (up to a sign change) the dual cones
to epi(po), epi(A).
Further, (7, Z) must satisfy

T>0q, 147<1, Z>0g 1;=2<|F|7’

Robust optimization interpretation: p(X) is worst-case expected
loss of a rescaled economy over a set of probability distributions and scaling
functions

‘22



Shadow Price of Risk

p(X): rglze ZZsz 1w

T 1EF well
(DUAL) subjectto (1,7) € A*
(T, Zw) € B*, Yw € Q
7 eRY ZeRFXY

Corollary. If (7", =") is an optimal solution to (DUAL), then =" is a

subgradient of p at X.

is the shadow price of risk = the minimum marginal rate of increase of
systemic risk given an increase of losses for firm ¢ in scenario w




Risk Attribution

Suppose p is a systemic risk measure, and =* is an optimal solution to
(DUAL) at X. Define the risk attribution of firm 7 as

X ,:,* )
Y = E : ‘—",wX%W
we

p(X)=>y

ieF

By strong duality,




Risk Attribution

Suppose p is a systemic risk measure, and =* is an optimal solution to
(DUAL) at X. Define the risk attribution of firm 7 as

* =k .
Y = E : ‘—",wX%W
weN

p(X)=>y

ieF

By strong duality,

Theorem. (No Undercut) Given a € R, define

T(O‘) = p(a1x1; cee §Oé|]:‘$‘]:|)
Then,

Generalization of attribution scheme of Aumann & Shapley (1974) or
Denault (2001); Buch & Dorfleitner (2008).




Decentralization

e X9 = outcomes of firm i, X £ (X(l);X(Q);...;XW:D)
o 7. = set of outcomes of firm 7, 7 =T x Ty ... ><7"]_—‘

Definition. (Social Optimality)
An economy X € T is socially optimal if it maximizes risk-adjusted welfare

imi Us(XD) — 7p(X
maximize 2 (X)) — 7p(X)

Here, 7 > 0 captures the systemic risk externality.




Decentralization

Theorem. Suppose that X € 7 is a socially optimal economy.
There exists =* that is an optimal solution to the dual problem for p(X) so
that if we define, for each firm i, the tax function

RESII=TRH

weN
then, X is an optimal outcome for firm 4, i.e.,

X()Eargmax U;(X —TZHW W
X @) e (i) wen

e Decentralized computation of optimal taxes possible




Decentralization

Planner’s problem:

imi (XY — p(X).
maximize Z%;:U( ) — p(X)

Decentralization scheme: apply proximal gradient method

maximize U(X@) < )+ Z Z) TonlX ) + E||X - XH%)

XeT ox@ 2
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Decentralization

Planner’s problem:

imi (XY — p(X).
maximize Z%;:U( ) — p(X)

Decentralization scheme: apply proximal gradient method

(¢ Tap( ) t Y12
ma)>(<|€njr|ze U(X@) < —i—Z X @) X —|—§||X—X||2

i
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Decentralization

Planner’s problem:

imi (XY — p(X).
maximize Z%;:U( ) — p(X)

Decentralization scheme: apply proximal gradient method

maximize U(X@) < )+ Z Z) TonlX ) + E||X - XH%)

XeT ox@ 2

i
Individual firm’s problem:

X} = argmax { Ui(XDy — (x@ — Xi)Tap(X) ~hxo - X<f>||§}
XDeT;

Information sent by the planner: 5=

Information sent by the firm: X




Decentralization

Communication between the planner and firms




Extensions

Homogeneous Systemic Risk Measures:
® monotone, +vely homogeneous, preference consistent, not convex

e structural decomposition exists
homogeneous single-firm base risk measure
homogeneous aggregation function

Convex Systemic Risk Measures:
® monotone, convex, preference consistent, not +vely homogeneous

e structural decomposition exists
convex single-firm base risk measure
convex aggregation function

Key idea: Preference consistency allows for the structural decomposition

3



Conclusions / Future Directions

¢ A general, axiomatic framework for coherent systemic risk
analyzes joint distribution of outcomes
allows for ‘cooperative’ endogenous forms of contagion
potential applications in a broad array of engineering & economic
systems

¢ A structural decomposition of systemic risk

® Mechanisms for systemic risk attribution & decentralization




Conclusions / Future Directions

¢ A general, axiomatic framework for coherent systemic risk
analyzes joint distribution of outcomes
allows for ‘cooperative’ endogenous forms of contagion
potential applications in a broad array of engineering & economic
systems

¢ A structural decomposition of systemic risk

® Mechanisms for systemic risk attribution & decentralization

Future Directions:

e Statistical estimation of systemic risk
e Strategic mechanisms of contagion

¢ Is network structure important for systemic risk in financial markets?
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