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Systemic Risk

‘system’ ≡ collection of ‘entities’

Examples:

firms in an economy

business units in a company

suppliers, sub-contractors, etc. in a supply chain network

generating stations, transmission facilities, etc. in a power network

flood walls, pumping stations, etc. in a levee system

Systemic risk refers to the risk of catastrophic collapse of the entire system.
Involves:

the simultaneous analysis of outcomes across all entities in a system

the possibility of complex interactions between components

2
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Joint Distribution of Outcomes

3 firms in 3 future scenarios (equally likely)

Loss matrix:

Scenario

ω1

ω2

ω3

Firm 1

+50

−40

+20

Firm 2

−40

+50

+20

Firm 3

+20

−40

+50

1/3

1/3

1/3

(+ ‘loss’; − ‘profit’)
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Complex Interactions

Complex interactions between entities can create contagion, or cascades of
failures.

In financial markets, structural mechanisms for contagion include:

Interbank loans

Interbank derivatives exposures (e.g., AIG)

Transmission of illiquidity, ‘bank runs’ (e.g., Lehman)

Fire sales, asset price contagion (e.g., CDOs)
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Contributions

A general, axiomatic framework for coherent systemic risk
analyzes joint distribution of outcomes
allows for some endogenous mechanisms of contagion
subsumes many recently proposed systemic risk measures

A structural decomposition of systemic risk

A dual representation for systemic risk measures
‘shadow price of risk’

A mechanism for systemic risk attribution & decentralization

Methodology extends to a much broader class of risk functions
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Literature Review

Axiomatic theory of single-firm risk measures:
Artzner et al., (2000); see survey of Schied (2006)

Systemic risk measures: portfolio approach
Gauthier et al., (2010); Tarashev et al., (2010); Acharya et al., (2010);
Brownlees & Engle (2010); Adrian & Brunnermeier (2009)

Systemic risk measures: deposit insurance / credit approach
Lehar (2005); Huang et al., (2009); Giesecke & Kim (2011)

Structural models of contagion & systemic risk:
Acharya et al., (2010); Staum (2011); Liu & Staum (2010); Cont et al.,
(2011); Bimpikis & Tahbaz-Salehi (2012)

Portfolio attribution:
Denault (2001); Buch & Dorfleitner (2008)
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Single-Firm Risk Measures

Scenario

ω1

ω2

...

ω|Ω|

0 T

Loss

xω1

xω2

...

xω|Ω|

Ω = set of scenarios

x ∈ RΩ

xω = loss in scenario ω
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Coherent Risk Measures

Definition. A coherent single-firm risk measure is a function ρ : RΩ → R
that satisfies, for all x, y ∈ RΩ:

(i) Monotonicity: if x ≥ y, then ρ(x) ≥ ρ(y)

(ii) Positive homogeneity: for all α ≥ 0, ρ(αx) = αρ(x)

(iii) Convexity: for all 0 ≤ α ≤ 1,

ρ
(
αx + (1− αy)

)
≤ αρ(x) + (1− α)ρ(y)

(iv) Cash-invariance: for all α ∈ R,
ρ(x + α1Ω) = ρ(x) + α

[Artzner et al., 2000]
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Systemic Risk Measures

Scenario

ω1

ω2

...

ω|Ω|

0 T

Firm 1

X1,ω1

X1,ω2

...

X1,ω|Ω|

Firm 2

X2,ω1

X2,ω2

...

X2,ω|Ω|

· · ·

· · ·

. . .

· · ·

Firm |F|

X|F|,ω1

X|F|,ω2,

...

X|F|,ω|Ω|

Ω = set of scenarios F = set of firms (entities in the system)

X ∈ RΩ×F Xi,ω = loss for firm i in scenario ω
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Systemic Risk Measures: Definition

Ω = set of scenarios, F = set of entities in the system, X ∈ RΩ×F

Xi,ω = loss for firm i in scenario ω, Xω = loss vector in scenario ω

Definition. A systemic risk measure is a function ρ : RΩ×F → R that
satisfies, for all economies X ,Y ,Z ∈ RΩ×F :

(i) Monotonicity: if X ≥ Y , then

ρ(X) ≥ ρ(Y )

(ii) Positive homogeneity: for all α ≥ 0,

ρ(αX) = αρ(X)

(iii) Normalization: ρ
(
1E) = |F|
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Systemic Risk Measures: Definition

Definition. (con’t.) Given x, y ∈ RF , define the ordering x �ρ y by
x �ρ y ⇐⇒ ρ(x, . . . , x) ≥ ρ(y, . . . , y)

(iv) Preference consistency: if Xω �ρ Yω for all scenarios ω, then

ρ
(
X
)
≥ ρ

(
Y
)

Scenario ω1 . . . ω . . . ω|Ω|
Firm 1 X1,ω1 X1,ω X1,ω|Ω|...

...
...

... = X
Firm |F| X|F|,ω1 X|F|,ω X|F|,|Ω|

Xω �ρ Yω ∀ ω ⇒ ρ(X) ≥ ρ(Y )

Firm 1 Y1,ω1 Y1,ω Y1,ω|Ω|...
...

...
... = Y

Firm |F| Y|F|,ω1 Y|F|,ω Y|F|,|Ω|
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Systemic Risk Measures: Definition

Definition. (con’t.)

(v) Convexity: for all 0 ≤ α ≤ 1, ᾱ = 1− α
(a) Outcome convexity: if

Z = αX + ᾱY

then, ρ
(
Z
)
≤ αρ(X) + ᾱρ(Y )

(b) Risk convexity: if for all scenarios ω ∈ Ω,

ρ(Zω, . . . ,Zω) = αρ(Xω, . . . ,Xω) + ᾱρ(Yω, . . . ,Yω)

then, ρ
(
Z
)
≤ αρ(X) + ᾱρ(Y )

Two different notions of diversity
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then, ρ
(
Z
)
≤ αρ(X) + ᾱρ(Y )
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Systemic Risk Measures: Definition

Definition. (con’t.)

1. Outcome convexity: Increasing diversification reduces risk

Xω

Yω

⊕ Zω ⇒ ρ
(
Z
)
≤ αρ(X) + ᾱρ(Y )

α

ᾱ

2. Risk convexity: Removing randomness reduces risk

◦ ρ
(
Xω1>Ω

)

◦ ρ
(
Yω1>Ω

)ρ
(
Zω1>Ω

)
◦ ⇒ ρ

(
Z
)
≤ αρ(X) + ᾱρ(Y )

α

ᾱ
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Structural Decomposition

Definition. An aggregation function is a function Λ: RF → R that is
monotonic, positively homogeneous, convex, and normalized so that
Λ(1F ) = |F|.

Aggregation function: aggregates risk across firms in a given scenario

Theorem. A function ρ : RΩ×F → R is a systemic risk measure with
ρ(−1E) < 0 iff there exists

an aggregation function Λ
coherent single-firm base risk measure ρ0 such that

ρ(X) = (ρ0 ◦ Λ)(X) , ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
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Example: Economic Systemic Risk Measures

F = firms in the economy

Xi,ω = loss of a firm i in scenario ω

Example. (Systemic Expected Shortfall)

Λtotal(x) ,
∑
i∈F

xi , ρSES(X) , (CVaRα ◦ Λtotal)(X)

[Acharya et al., 2010; Brownlees, Engle 2010]

Example. (Deposit Insurance)

Λloss(x) ,
∑
i∈F

x+
i , ρDI(X) , E [Λloss(Xω)] = E

[∑
i∈F

X+
i,ω

]
[e.g., Lehar, 2005; Huang et al., 2009]
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Example: Investing with Performance Fees

F = a collection of hedge funds or portfolio managers

Xi,ω = loss of hedge fund i in scenario ω

γi ∈ [0, 1] is the performance fee of fund i

Example. (Hedge Fund Investor)

ΛHF(x) ,
∑
i∈F

(
xi + γix−i

)

γFoF ∈ [0, 1] is the performance fee of the fund-of-funds manager

Example. (Fund-of-Funds Investor)

ΛFoF(x) ,
∑
i∈F

(
xi + γix−i

)
+ γFoF

(∑
i∈F

(
xi + γix−i

))−
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Example: Resource Allocation

A = a set of activities

F = a set of capacitated resources

xi = shortage of resource i

Consider the aggregation function:

ΛRA(x) , minimize
u

∑
a∈A

caua

subject to
∑
a∈A

biaua ≥ xi , ∀ i ∈ F

u ∈ RA

where

ua = reduction in level of activity a (decision variable)

ca = per-unit cost of reductions in activity a
bia = per-unit consumption of resource i by activity a

17
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Example: Interbank Contagion Model

F = firms, who have assets and obligations to each other

Πij = fraction of the debt of firm i owed to firm j
xi = losses in excess of obligations of firm i

Consider the aggregation function:

ΛCM(x) , minimize
y∈RF

+ , b∈RF
+

∑
i∈F

yi + γ
∑
i∈F

bi

subject to bi + yi ≥ xi +
∑
j∈F

Πjiyj , ∀ i ∈ F

where

loss xi is covered by firm i reducing the payments by an amount yi ,
or relying on an injection from the regulator in the amount bi

reminiscent of Eisenberg & Noe (2001)
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“General” Aggregation Function

Given:

c ∈ RN
+ , A ∈ RK×F

+ , B ∈ RK×N

K ⊂ RN a convex cone, such that ∃ ȳ ∈ K with Bȳ > 0

Define:
ΛOPT(x) , minimize

y
c>y

subject to Ax ≤ By
y ∈ K

ΛOPT is monotonic, positively homogeneous, and convex

if ΛOPT(1F ) > 0, it can also be normalized

allows for general endogenous mechanisms for ‘co-operative’ contagion
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Structural Decomposition: Proof Sketch

‘If ’ part is not hard. ‘Only if ’ part:

Define Λ(x) , ρ(x1>Ω), ∀ x ∈ RF

Define ρ0(z) , ρ(X), ∀ z ∈ QΩ, for some X : Λ(Xω) = zω, ∀ ω

Step 1: ρ0 is well-defined. Suppose X ,Y have
Λ(Xω) = Λ(Yω), ∀ ω ∈ Ω. Preference consistency of ρ implies

Λ(Xω) ≥ Λ(Yω), ∀ ω ∈ Ω =⇒ ρ(X) ≥ ρ(Y ),

Λ(Xω) ≤ Λ(Yω), ∀ ω ∈ Ω =⇒ ρ(X) ≤ ρ(Y ).
Thus, ρ(X) = ρ(Y )

Step 2: Derive other properties: monotonicity, convexity,
homogeneity of Λ and ρ0.

ρ = (ρ0 ◦ Λ)(X) , ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
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Acceptance Sets and Primal Representation

Theorem. Any systemic risk measure ρ = (ρ0 ◦ Λ) can be expressed as

(PRIMAL)

ρ(X) = minimize
m,`

m

subject to (m, `) ∈ A,
(`ω,Xω) ∈ B, ∀ ω ∈ Ω,
m ∈ R, ` ∈ RΩ.

where acceptance sets A and B can be taken as the epigraphs of ρ0 and Λ,
i.e.,

A ,
{

(m, z) ∈ R× RΩ : m ≥ ρ0(z)
}
,

B ,
{

(`, x) ∈ R× RF : ` ≥ Λ(x)
}
.

Interpretation:

` = regulator’s position required to support the cross-sectional profile

m = cash position required to support `

21
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Dual Representation
Theorem. Any systemic risk measure ρ can be expressed as

(DUAL)

ρ(X) = maximize
π̄,Ξ

∑
i∈F

∑
ω∈Ω

Ξi,ωXi,ω

subject to (1, π̄) ∈ A∗

(π̄ω,Ξω) ∈ B∗, ∀ ω ∈ Ω

π̄ ∈ RΩ, Ξ ∈ RF×Ω

where A∗ ⊂ R×RΩ, B∗ ⊂ R×RF are (up to a sign change) the dual cones
to epi(ρ0), epi(Λ).
Further, (π̄,Ξ) must satisfy

π̄ ≥ 0Ω, 1>Ω π̄ ≤ 1, Ξ ≥ 0E , 1>FΞ ≤ |F|π̄>

Robust optimization interpretation: ρ(X) is worst-case expected
loss of a rescaled economy over a set of probability distributions and scaling
functions
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Shadow Price of Risk

(DUAL)

ρ(X) = maximize
π̄,Ξ

∑
i∈F

∑
ω∈Ω

Ξi,ωXi,ω

subject to (1, π̄) ∈ A∗
(π̄ω,Ξω) ∈ B∗, ∀ ω ∈ Ω
π̄ ∈ RΩ, Ξ ∈ RF×Ω

Corollary. If (π̄∗,Ξ∗) is an optimal solution to (DUAL), then Ξ∗ is a
subgradient of ρ at X .

Ξ∗i,ω is the shadow price of risk ≡ the minimum marginal rate of increase of
systemic risk given an increase of losses for firm i in scenario ω
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Risk Attribution

Suppose ρ is a systemic risk measure, and Ξ∗ is an optimal solution to
(DUAL) at X . Define the risk attribution of firm i as

y∗i =
∑
ω∈Ω

Ξ∗i,ωXi,ω

By strong duality,
ρ(X) =

∑
i∈F

y∗i

Theorem. (No Undercut) Given α ∈ RF+ , define

r(α) , ρ
(
α1x1; . . . ;α|F|x|F|

)
Then,

α>y∗ ≤ r(α)

Generalization of attribution scheme of Aumann & Shapley (1974) or
Denault (2001); Buch & Dorfleitner (2008).
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Decentralization

X (i) = outcomes of firm i , X , (X (1); X (2); . . . ; X (|F|))
Ti = set of outcomes of firm i , T = T1 × T2 . . .× T|F|

Definition. (Social Optimality)
An economy X̄ ∈ T is socially optimal if it maximizes risk-adjusted welfare

maximize
X∈T

∑
i∈F

Ui(X (i))− τρ(X)

Here, τ > 0 captures the systemic risk externality.
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Decentralization

Theorem. Suppose that X̄ ∈ T is a socially optimal economy.
There exists Ξ∗ that is an optimal solution to the dual problem for ρ(X̄) so
that if we define, for each firm i , the tax function

ti(X (i)) , τ
∑
ω∈Ω

Ξ∗i,ωXi,ω

then, X̄ (i) is an optimal outcome for firm i , i.e.,

X̄ (i) ∈ argmax
X(i)∈T (i)

Ui(X (i))− τ
∑
ω∈Ω

Ξ∗i,ωXi,ω

Decentralized computation of optimal taxes possible
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Decentralization

Planner’s problem:

maximize
X∈T

∑
i∈F

Ui(X (i))− ρ(X).

Decentralization scheme: apply proximal gradient method

maximize
X∈T

∑
i

Ui(X (i))−
(
ρ(X̄) +

∑
i

(
X (i) − X̄ (i))>∂ρ(X̄)

∂X (i) + t
2‖X − X̄‖22

)

Individual firm’s problem:

X∗i = argmax
X(i)∈Ti

{
Ui(X (i))−

(
X (i) − X̄ i)>∂ρ(X̄)

∂X (i) −
t
2‖X

(i) − X̄ (i)‖22

}

Information sent by the planner: ∂ρ(X̄)
∂X(i)

Information sent by the firm: X̄ (i)
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Decentralization

Communication between the planner and firms

Planner

Firm 1
...

Firm k
...
...

Firm n

∂ρ
∂X(1)

X̄ (1)

∂ρ
∂X(n)

X̄ (n)
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Extensions

Homogeneous Systemic Risk Measures:

monotone, +vely homogeneous, preference consistent, not convex

structural decomposition exists
homogeneous single-firm base risk measure
homogeneous aggregation function

Convex Systemic Risk Measures:

monotone, convex, preference consistent, not +vely homogeneous

structural decomposition exists
convex single-firm base risk measure
convex aggregation function

Key idea: Preference consistency allows for the structural decomposition

29



Conclusions / Future Directions

A general, axiomatic framework for coherent systemic risk
analyzes joint distribution of outcomes
allows for ‘cooperative’ endogenous forms of contagion
potential applications in a broad array of engineering & economic
systems

A structural decomposition of systemic risk

Mechanisms for systemic risk attribution & decentralization

Future Directions:

Statistical estimation of systemic risk

Strategic mechanisms of contagion

Is network structure important for systemic risk in financial markets?
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