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I. Analyse des Données

Abstraction Rules

• Bourbaki:

• Creation of a new triplet (X ,Q,D) and an algebraic and
geometric framework.
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Geometry of Data Analysis: Rows and Columns



Geometry and Algebra

A favorable review (Ramsay and de Leeuw)

Book Review (Psychometrika, 1983)
Quote:“This remarkable book treats multivariate linear analysis in
a manner that is with both distinctive and profoundly promising for
future work in this field. With an approach that is strictly algebraic
and geometric, it avoids almost all discussion of probabilistic
notions, introduces a formalism that transcends matrix algebra,
and offers a coherent treatment of topics not often found within
the same volume. Finally, it achieves these things while remaining
entirely accessible to nonmathematicians and including many
excellent practical examples.”
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In summary Introduction à l’Analyse des Données offers a
treatment of the multivariate linear model which is (a) metric and
basis free, (b) offers a unified survey of both quantitative and
certain qualitative procedures, (c) incorporates classical
multidimensional scaling in a natural way, and (d) invites through
its powerful formalism an extension in a number of valuable
directions. We hope it will not be long before an English language
counterpart appears.
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A Geometrical Approach

i. The data are p variables measured on n observations.

ii. X with n rows (the observations) and p columns (the
variables).

iii. Dn is an n× n matrix of weights on the “observations”, which
is most often diagonal.

iv Symmetric definite positive matrix Q,often

Q =


1
σ2

1
0 0 0 ...

0 1
σ2

2
0 0 ...

0 0 1
σ2

3
0 ...

... ... ... 0 1
σ2

p

 .
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Euclidean Spaces

These three matrices form the essential “triplet” (X,Q,D)
defining a multivariate data analysis.
Q and D define geometries or inner products in Rp and Rn,
respectively, through

x tQy =< x , y >Q x , y ∈ Rp

x tDy =< x , y >D x , y ∈ Rn.
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An Algebraic Approach

• Q can be seen as a linear function from Rp to Rp∗ = L(Rp),
the space of scalar linear functions on Rp.

• D can be seen as a linear function from Rn to Rn∗ = L(Rn).

•
Rp∗ −−−−→

X
Rn

Q

x yV D

y xW

Rp ←−−−−
X t

Rn∗
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An Algebraic Approach

Rp∗ −−−−→
X

Rn

Q

x yV D

y xW

Rp ←−−−−
X t

Rn∗

Duality diagram

i. Eigendecomposition of X tDXQ = VQ

ii. Eigendecomposition of XQX tD = WD

iii.
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Notes

(1) Suppose we have data and inner products defined by Q and D :

(x , y) ∈ Rp × Rp 7−→ x tQy = < x , y >Q∈ R

(x , y) ∈ Rn × Rn 7−→ x tDy = < x , y >D∈ R.

||x ||2Q =< x , x >Q=

p∑
j=1

qj(x .j)2 ||x ||2D =< x , x >D=

p∑
j=1

pi (xi .)
2

(2) We say an operator O is B-symmetric if
< x ,Oy >B=< Ox , y >B , or equivalently BO = OtB.
The duality diagram is equivalent to (X,Q,D) such that X is
n × p .
Escoufier (1977) defined as XQX tD = WD and X tDXQ = VQ as
the characteristic operators of the diagram.
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(3) V = X tDX will be the variance-covariance matrix, if X is
centered with regards to D (X ′D1n = 0).



Geometry and Algebra

Transposable Data

There is an important symmetry between the rows and columns of
X in the diagram, and one can imagine situations where the role of
observation or variable is not uniquely defined. For instance in
microarray studies the genes can be considered either as variables
or observations. This makes sense in many contemporary
situations which evade the more classical notion of n observations
seen as a random sample of a population. It is certainly not the
case that the 30,000 probes are a sample of genes since these
probes try to be an exhaustive set.
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Two Dual Geometries
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Properties of the Diagram

Rank of the diagram: X ,X t ,VQ and WD all have the same rank.
For Q and D symmetric matrices, VQ and WD are diagonalisable
and have the same eigenvalues.

λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λr ≥ 0 ≥ · · · ≥ 0.

Eigendecomposition of the diagram: VQ is Q symmetric, thus we
can find Z such that

VQZ = Z Λ,Z tQZ = Ip, where Λ = diag(λ1, λ2, . . . , λp). (1)
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Practical Computations

Cholesky decompositions of Q and D, (symmetric and positive
definite) HtH = Q and K tK = D.
Use the singular value decomposition of KXH:

KXH = UST t , with T tT = Ip,UtU = In,S diagonal.

Then Z = (H−1)tT satisfies

VQZ = Z Λ,Z tQZ = Ip

with Λ = S2.
The renormalized columns of Z , A = SZ are called the principal
axes and satisfy:

AtQA = Λ.
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Practical Computations

Similarly, we can define L = K−1U that satisfies

WDL = LΛ, LtDL = In, where Λ = diag(λ1, λ2, . . . , λr , 0, . . . , 0).
(2)

C = LS is usually called the matrix of principal components. It is
normed so that

C tDC = Λ.
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Transition Formulæ:

Of the four matrices Z ,A, L and C we only have to compute one,
all others are obtained by the transition formulæ provided by the
duality property of the diagram:

XQZ = LS = C X tDL = ZS = A
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French Features

Inertia: Trace(VQ) = Trace(WD)
(inertia in the sense of Huyghens inertia formula for instance).
Huygens, C. (1657),
De ratiociniis in ludo alea, printed in Exercitationium
mathematicaram by F. van Schooten. Elsevirii, Leiden.

n∑
i=1

pid
2(xi , a)

Inertia with regards to a point a of a cloud of pi -weighted points.
PCA with Q = Ip, D = 1

nIn, and the variables are centered, the
inertia is the sum of the variances of all the variables.
If the variables are standardized (Q is the diagonal matrix of
inverse variances), then the inertia is the number of variables p.
For correspondence analysis the inertia is the Chi-squared statistic.
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Dimension Reduction: Eckart-Young

X [k] = US [k]V ′

is the best k rank approximation to X.
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Geometric Interpretations of Statistical Quantities

•
x̄ = x ′D1n call X̃ = (I− 1nD1′n)X

•
σ̂x

2 =
∑

i

pi (xi − x̄) = ||x̃ ||2D

•
covariance cov(x , y) =< x̃ , ỹ >D

•
correlation rxy =

< x̃ , ỹ >D

||x̃ ||D ||ỹ ||D
= cos(x̃ , ỹ)
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Quality of Representations

• The cosine again, cos(x , y) = <x ,y>
||x ||||y ||

•

cos2α =
||x̂ ||2

||x ||2

tells us how well x is represented by its projection.
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Inertia and Contributions

•

In(X ) = ||X ||2 =
∑

i

pi ||xi .||2 =
∑

j

qj ||x .j ||2 =

p∑
`=1

λ`

• Contribution of an observation to the total inertia:pi ||xi.||2
||X ||2

• Contribution of a variable to the total inertia:
qj ||x .j ||2
||X ||2



Visualization Tools

Inertia and Contributions

• Contribution of the kth axis to variable j :
λkv2

kj

||x j ||2D
• Contribution of variable j to the kth axis qjv

2
kj .

• Contribution of the kth axis to observation i :
λku2

ik

||xi ||2Q
• Contribution of observation i to the kth axis piu

2
ik .
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Comparing Two Diagrams: the RV coefficient

Many problems can be rephrased in terms of comparison of two
“duality diagrams” or put more simply, two characterizing
operators, built from two “triplets”, usually with one of the triplets
being a response or having constraints imposed on it. Most often
what is done is to compare two such diagrams, and try to get one
to match the other in some optimal way.
To compare two symmetric operators, there is either a vector
covariance as inner product
covV (O1,O2) = Tr(O1O2) =< O1,O2 > or a vector correlation
[Escoufier, 1977]

RV (O1,O2) =
Tr(O1O2)√

Tr(Ot
1O1)tr(Ot

2O2)
.

If we were to compare the two triplets
(
Xn×1, 1,

1
n In
)

and(
Yn×1, 1,

1
n In
)

we would have RV = ρ2.
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PCA: Special case

PCA can be seen as finding the matrix Y which maximizes the RV
coefficient between characterizing operators, that is, between
(Xn×p,Q,D) and (Yn×q, I ,D), under the constraint that Y be of
rank q < p .

RV
(
XQX tD,YY tD

)
=

Tr (XQX tDYY tD)√
Tr (XQX tD)2 Tr (YY tD)2

.
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This maximum is attained where Y is chosen as the first q
eigenvectors of XQX tD normed so that Y tDY = Λq. The
maximum RV is

RVmax =

∑q
i=1 λ

2
i∑p

i=1 λ
2
i

.

Of course, classical PCA has D = 1
nI, Q = I, but the extra

flexibility is often useful. We define the distance between triplets
(X ,Q,D) and (Z ,Q,M) where Z is also n × p, as the distance
deduced from the RV inner product between operators XQX tD
and ZMZ tD.
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One Diagram to replace Two Diagrams

Canonical correlation analysis was introduced by
Hotelling[Hotelling, 1936] to find the common structure in two sets
of variables X1 and X2 measured on the same observations. This is
equivalent to merging the two matrices columnwise to form a large
matrix with n rows and p1 + p2 columns and taking as the
weighting of the variables the matrix defined by the two diagonal
blocks (X t

1 DX1)−1 and (X t
2 DX2)−1

Q =


(X t

1 DX1)−1 0

0 (X t
2 DX2)−1
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Rp1∗ −−−−→
X1

Rn

Ip1

x yV1 D

y xW1

Rp1 ←−−−−
X t

1

Rn∗

Rp2∗ −−−−→
X2

Rn

Ip2

x yV2 D

y xW2

Rp2 ←−−−−
X t

2

Rn∗

Rp1+p2∗ −−−−→
[X1;X2]

Rn

Q

x yV D

y xW

Rp1+p2 ←−−−−−
[X1;X2]t

Rn∗

This analysis gives the same eigenvectors as the analysis of the
triple
(X t

2 DX1, (X t
1 DX1)−1, (X t

2 DX2)−1), also known as the canonical
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correlation analysis of X1 and X2.
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Circle of Correlations
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Circle of Correlations for Score data

 mec 

 vec 

 alg 

 ana 
 sta 
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Part IV

Perturbation for Validation and Discovery



Pertubative Methods

Internal and External Methods

• Cross Validation: Leave one variable out, or leave one
observation out, or both.

• Bootstrap, bootstrap rows or columns, partial bootstrap,
where can we compare them?

• Convex Hulls.

• Procrustes solutions for data cubes (STATIS).



Pertubative Methods

Successful Perturbative Method for Non-hierarchical
Clustering

Dynamical Clusters: Edwin Diday, 1970, 1972. [Diday, 1973]

• Repeated k-means with fixed class sizes.
• Choose a set of k nuclei (usually from the data).
• Partition the data as the nearest neighbors to each of the k

points.
• For each partition define its centroid.
• Iterate the above 2 steps until convergence.

• This process gives a set of clusters.

• Organize these clusters according to sets of ‘strong forms” the
ones that were always together (or mostly) together.
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Part V

Conclusions: Data Analysis and Data Integration



Conclusions

Computer Intensive Data Analysis Today

i. Interactive.

ii. Iteration.

iii. Nonparametric.

iv Heterogeneous Data.

v Kernel Methods.

No more in statistics departments at Universities in France
All in institutes, INRA, INRIA, INSERM,ENSET,ENSAEE, ......à
suivre...
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Reading
Few references in English explaining the duality/operator point of
view.
H. 2006, Multivariate Data Analysis: the French
way.[Holmes, 2006]
French: Escoufier [Escoufier, 1987, Escoufier, 1977]. Fréderique
Glaçon’s PhD thesis [Glaçon, 1981] (in French) on data cubes.
Masters level textbooks on the subject for many details and
examples:
• Brigitte Escofier and Jérôme Pagès [Escofier and Pagès, 1998]

do not delve into the Duality Diagram
• [Lebart et al., 2000] is one of the broader books on

multivariate analyses
• Cailliez and Pagès [Cailliez and Pages., 1976] is hard to find,

but was the first textbook completely based on the diagram
approach, as was the case in the earlier literature they use
transposed matrices.

• Stability studies: [Holmes, 1985],[Lebart et al., 2000].



Software

The methods described in this article are all available in the form
of R packages which I recommend.

• ade4 [Chessel et al., 2004] However, a complete
understanding of the duality diagram terminology and
philosophy is necessary.
One of the most important features in all the ‘dudi.*’
functions is that when the argument scannf is at its default
value TRUE, the first step imposed on the user is the perusal
of the scree plot of eigenvalues.

• vegan ecological community



Functions

• Principal Components Analysis (PCA) is available in prcomp
and princomp in the standard package stats as pca in
vegan and as dudi.pca in ade4.

• Two versions of PCAIV are available, one is called
Redundancy Analysis (RDA) and is available as rda in vegan
and pcaiv in ade4.

• Correspondence Analysis (CA) is available in cca in vegan
and as dudi.coa in ade4.

• Discriminant analysis is available as lda in stats, as
discrimin in ade4

• Canonical Correlation Analysis is available in cancor in stats
(Beware cca in ade4 is Canonical Correspondence Analysis).

• STATIS (Conjoint analysis of several tables) is available in
ade4.
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et interprétation.
Dunod.

Escoufier, Y. (1977).
Operators related to a data matrix.



In Barra, J. e. a., editor, Recent developments in Statistics.,
pages 125–131. North Holland,.

Escoufier, Y. (1987).
The duality diagram: a means of better practical applications.
In In Legendre, P. and Legendre, L., editors, Development. in
numerical ecology., pages 139–156.
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PhD thesis, Grenoble.

Holmes, S. (1985).
Outils Informatiques pour l’Evaluation de la Pertinence d’un
Resultat en Analyse des Données.
PhD thesis, Montpellier, USTL.

Holmes, S. (2006).
Multivariate analysis: The french way.
Feschrift for David Freedman, IMS.



Hotelling, H. (1936).
Relations between two sets of variables.
Biometrika, 28:321–327.

Lebart, L., Piron, M., and Morineau, A. (2000).
Statistique exploratoire multidimensionnelle.
Dunod, Paris, France.



Acknowledgements

Chessel, Thioulouse, ADE4 team.
Persi Diaconis.
Elisabeth Purdom.
Yves Escoufier.
NSF-DMS award 02-41246 to SH.


	Introduction: History
	I. Analyse des Données

	Diagrams and Duality
	Geometry and Algebra 

	Geometrical Tricks
	Visualization Tools

	Perturbation for Validation and Discovery
	Pertubative Methods

	 Conclusions: Data Analysis and Data Integration
	 Conclusions

	V. References

