INTERGOVERNMENTAL PANEL ON Climate Change Working Group III – Mitigation of Climate Change

Chapter 3

Social, Economic and Ethical Concepts and Methods

Do not cite, quote or distribute.

Chapter:	3	3						
Title:	Social, E	Social, Economic, and Ethical Concepts and Methods						
Authors:	CLAs:	Charles Kolstad, Kevin Urama						
	LAs:	John Broome, Annegrete Bruvoll, Micheline Cariño Olvera, Don Fullerton, Christian Gollier, William Michael Hanemann, Rashid Hassan, Frank Jotzo, Mizan R. Khan, Lukas Meyer, Luis Mundaca						
CAs:		Philippe Aghion, Hunt Allcott, Gregor Betz, Severin Borenstein, Andrew Brennan, Simon Caney, Dan Farber, Adam Jaffe, Gunnar Luderer, Axel Ockenfels, David Popp						
REs: Marlene Attzs, Daniel Bouille, Snorre Kverno		Marlene Attzs, Daniel Bouille, Snorre Kverndokk						
	CSAs:	Sheena Katai, Katy Maher, Lindsey Sarquilla						

2

1 Chapter 3: Social, Economic, and Ethical Concepts and Methods

2 Contents

3	Chapter 3: Social, Economic, and Ethical Concepts and Methods	2
4	Executive Summary	5
5	3.1 Introduction	9
6	3.2 Ethical and socio-economic concepts and principles	10
7	3.3 Justice, equity and responsibility	12
8	3.3.1 Causal and moral responsibility	12
9	3.3.2 Intergenerational justice and rights of future people	12
10	3.3.3 Intergenerational justice: distributive justice	13
11	3.3.4 Historical responsibility and distributive justice	14
12	3.3.5 Intra-generational justice: compensatory justice and historical responsibility	14
13	3.3.6 Legal concepts of historical responsibility	16
14	3.3.7 Geoengineering, ethics, and justice	17
15	3.4 Values and wellbeing	18
16	3.4.1 Non-human values	19
17	3.4.2 Cultural and social values	19
18	3.4.3 Wellbeing	20
19	3.4.4 Aggregation of wellbeing	21
20	3.4.5 Lifetime wellbeing	21
21	3.4.6 Social welfare functions	21
22	3.4.7 Valuing population	23
23	3.5 Economics, rights and duties	24
24	3.5.1 Limits of economics in guiding decision making	24
25	3.6 Aggregation of costs and benefits	26
26	3.6.1 Aggregating individual wellbeing	26
27	3.6.1.1 Monetary values	27
28	3.6.2 Aggregating costs and benefits across time	30
29	3.6.3 Co-benefits and adverse side effects	36
30	3.6.3.1 A general framework for evaluation of co-benefits and adverse side effects	36
31	3.6.3.2 The valuation of co-benefits and adverse side effects	37
32	3.6.3.3 The double dividend hypothesis	39
33	3.7 Assessing methods of policy choice	40
34	3.7.1 Policy objectives and evaluation criteria	40

1	3.7.1.1 Economic objectives	41
2	3.7.1.2 Distributional objectives	42
3	3.7.1.3 Environmental objectives	43
4	3.7.1.4 Institutional and political feasibility	44
5	3.7.2 Analytical methods for decision support	44
6	3.7.2.1 Quantitative-oriented approaches	44
7	3.7.2.2 Qualitative approaches	46
8	3.8 Policy instruments and regulations	46
9	3.8.1 Economic incentives	46
10	3.8.1.1 Emissions taxes and permit trading	46
11	3.8.1.2 Subsidies	47
12	3.8.2 Direct regulatory approaches	48
13	3.8.3 Information programmes	48
14	3.8.4 Government provision of public goods and services, and procurement	48
15	3.8.5 Voluntary actions	48
16	3.8.6 Policy interactions and complementarity	48
17	3.8.7 Government failure and policy failure	49
18	3.8.7.1 Rent-seeking	49
19	3.8.7.2 Policy uncertainty	49
20	3.9 Metrics of costs and benefits	50
21	3.9.1 The damages from climate change	51
22	3.9.2 Aggregate climate damages	54
23	3.9.3 The aggregate costs of mitigation	57
24	3.9.4 Social cost of carbon	59
25	3.9.5 The Rebound effect	60
26	3.9.6 Greenhouse gas emissions metrics	61
27	3.10 Behavioural economics and culture	64
28	3.10.1 Behavioural economics and the cost of emissions reduction	64
29	3.10.1.1 Consumer undervaluation of energy costs	65
30	3.10.1.2 Firm behaviour	65
31	3.10.1.3 Non-price interventions to induce behavioural change	66
32	3.10.1.4 Altruistic reductions of carbon emissions	66
33	3.10.1.5 Human ability to understand climate change	67
34	3.10.2 Social and cultural issues	68
35	3.10.2.1 Customs	68
36	3.10.2.2 Indigenous peoples	68

1	3.10.2.3 Women and Climate Change6	59
2	3.10.2.4 Social institutions for collective action6	59
3	3.11 Technological change ϵ	59
4	3.11.1 Market provision of TC	70
5	3.11.2 Induced innovation	70
6	3.11.3 Learning-by-doing and other structural models of TC	70
7	3.11.4 Endogenous and exogenous TC and growth	71
8	3.11.5 Policy measures for inducing R&D	72
9	3.11.6 Technology transfer (TT)	72
10	3.12 Gaps in knowledge and data	73
11	3.13 Frequently Asked Questions	74

1 Executive Summary

- 2 This framing Chapter describes the strengths and limitations of the most widely used concepts and
- 3 methods in economics ethics, and other social sciences that are relevant to climate change. It also
- 4 provides a reference resource for the other chapters in the Fifth Assessment Report (AR5), as well as
- 5 for decision makers.
- 6 The significance of the social dimension and the role of ethics and economics is underscored by
- 7 Article 2 of the United Nations Framework Convention on Climate Change, which indicates that an
- 8 ultimate objective of the Convention is to avoid dangerous anthropogenic interference with the
- 9 climate system. Two main issues confronting society (and the IPCC) are: what constitutes 'dangerous
- 10 interference' with the climate system and how to deal with it. Determining what is dangerous is not
- a matter for natural science alone; it also involves value judgements a subject matter of the theory
- 12 of value, which is treated in several disciplines, including ethics, economics and other social sciences.
- 13 Ethics involves questions of justice and value. Justice is concerned with equity and fairness, and, in
- 14 general, with the rights to which people are entitled. Value is a matter of worth, benefit or good.
- 15 Value can sometimes be measured quantitatively, for instance, through a social welfare function or
- 16 an index of human development.
- 17 Economic tools and methods can be used in assessing the positive and negative values that result
- 18 from particular decisions, policies and measures. They can also be essential in determining the
- 19 mitigation and adaptation actions to be undertaken as public policy, as well as the consequences of
- 20 different mitigation and adaptation strategies. Economic tools and methods have strengths and
- 21 limitations, both of which are detailed in this chapter.
- 22 **Economic tools can be useful in designing climate mitigation policies** (very high confidence). While
- 23 the limitations of economics and social welfare analysis, including cost-benefit analysis, are widely
- 24 documented, economics nevertheless provides useful tools for assessing the pros and cons of taking,
- or not taking, action on climate mitigation, as well as of adaptation measures in achieving competing
- societal goals. Understanding these pros and cons can help in making policy decisions on climate
 mitigation and can influence the actions taken by countries, institutions and individuals [3.2].
- 27 mitigation and can influence the actions taken by countries, institutions and individuals [3.2].
- 28 Mitigation is a public good; climate change is a case of 'the tragedy of the commons' (high
- 29 *confidence*). Effective climate change mitigation will not be achieved if each agent (individual,
- institution or country) acts independently in its own selfish interest, suggesting the need for
- collective action. Some adaptation actions, on the other hand, have characteristics of a private good
- 32 as benefits of actions may accrue more directly to the individuals, regions or countries which
- 33 undertake them, at least in the short term. Nevertheless, financing such adaptive activities remains
- 34 an issue, particularly for poor individuals and countries [3.1].
- 35 Analysis contained in the literature of moral and political philosophy can contribute to resolving
- **ethical questions that are raised by climate change** (medium confidence). These questions include
- 37 how much overall climate mitigation is needed to avoid 'dangerous interference', how the effort or
- cost of mitigating climate change should be shared among countries and between the present and
- future, how to account for such factors as historical responsibility for emissions, and how to choose
- 40 among alternative policies for mitigation and adaptation. Ethical issues of wellbeing, justice, fairness,
- 41 and rights are all involved [3.2, 3.3, 3.4].
- 42 Duties to pay for some climate damages can be grounded in compensatory justice and distributive
- 43 **justice** (medium confidence). If compensatory duties to pay for climate damages and adaptation
- 44 costs are not due from agents who have acted blamelessly, then principles of compensatory justice
- 45 will apply to only some of the harmful emissions [3.3.5]. This finding is also reflected in the
- 46 predominant global legal practice of attributing liability for harmful emissions [3.3.6]. Duties to pay
- 47 for climate damages can, however, also be grounded in distributive justice [3.3.4, 3.3.5].

- 1 **Distributional weights may be advisable in cost-benefit analysis** (medium confidence). Ethical
- 2 theories of value commonly imply that distributional weights should be applied to monetary
- 3 measures of benefits and harms [3.6.1]. Such weighting contrasts with much of the practice of cost-
- 4 benefit analysis.
- 5 The use of a temporal discount rate has a crucial impact on the evaluation of mitigation policies
- 6 **and measures.** The social discount rate is the minimum rate of expected social return that
- 7 compensates for the increased intergenerational inequalities and the potential increased collective
- 8 risk that an action generates. Even with disagreement on the level of the discount rate, a consensus
- 9 favours using declining risk-free discount rates over longer time horizons (high confidence) [3.6.2].
- 10 An appropriate social risk-free discount rate for consumption is between one and three times the
- 11 **anticipated growth rate in real per capita consumption** (*medium confidence*). This judgement is
- 12 based on an application of the Ramsey rule using typical values in the literature of normative
- 13 parameters in the rule. Ultimately, however, these are normative choices [3.6.2].
- 14 **Co-benefits may complement the direct benefits of mitigation** (medium confidence). While some
- direct benefits of mitigation are reductions in adverse climate change impacts, co-benefits can
- 16 include a broad range of environmental, economic and social effects, such as reductions in local air
- 17 pollution, less acid rain, and increased energy security. However, whether co-benefits are net
- 18 positive or negative in terms of wellbeing (welfare) can be difficult to determine because of
- 19 interaction between climate policies and pre-existing non-climate policies. The same results apply to
- 20 adverse side effects [3.6.3].
- 21 **Tax distortions change the cost of all abatement policies** (high confidence). A carbon tax or a
- 22 tradable emissions permit system can exacerbate tax distortions, or, in some cases, alleviate them;
- carbon tax or permit revenue can be used to moderate adverse effects by cutting other taxes.
- However, regulations that forgo revenue (e.g., by giving permits away) implicitly have higher social
- 25 costs because of the tax interaction effect. [3.6.3]
- 26 Many different analytic methods are available for evaluating policies. Methods may be
- 27 quantitative (for example, cost-benefit analysis, integrated assessment modelling and multi-criteria
- analysis) or qualitative (for example, sociological and participatory approaches). However, no single-
- 29 best method can provide a comprehensive analysis of policies. A mix of methods is often needed to
- 30 understand the broad effects, attributes, trade-offs and complexities of policy choices; moreover,
- 31 policies often address multiple objectives [3.7].
- 32 Four main criteria are frequently used in evaluating and choosing a mitigation policy (medium
- 33 *confidence).* They are: cost-effectiveness and economic efficiency (excluding environmental benefits,
- 34 but including transaction costs); environmental effectiveness (the extent to which the environmental
- 35 targets are achieved); distributional effects (impact on different subgroups within society); and
- 36 institutional feasibility, including political feasibility [3.7.1].
- A broad range of policy instruments for climate change mitigation is available to policymakers.
- 38 These include: economic incentives, direct regulatory approaches, information programmes,
- 39 government provision and voluntary actions. Interactions between policy instruments can enhance
- 40 or reduce the effectiveness and cost of mitigation action. Economic incentives will generally be more
- cost-effective than direct regulatory interventions. However, the performance and suitability of
- 42 policies depends on numerous conditions, including institutional capacity, the influence of rent-
- 43 seeking, and predictability or uncertainty about future policy settings. The enabling environment
- 44 may differ between countries, including between low-income and high-income countries. These
- differences can have implications for the suitability and performance of policy instruments [3.8].
- 46 Impacts of extreme events may be more important economically than impacts of average climate
- 47 **change** (high confidence). Risks associated with the entire probability distribution of outcomes in
- 48 terms of climate response [WG1] and climate impacts [WG2] are relevant to the assessment of

- 1 mitigation. Impacts from more extreme climate change may be more important economically (in
- 2 terms of the expectation of impacts) than impacts of average climate change, particularly if the
- 3 damage from extreme climate change increases more rapidly than the probability of such change
- 4 declines. This is important in economic analysis, where the *expected* benefit of mitigation may be
- 5 traded off against mitigation costs [3.9.2].
- 6 Impacts from climate change are both market and non-market. Market effects (where market
- 7 prices and quantities are observed) include impacts of storm damage on infrastructure, tourism and
- 8 increased energy demand. Non-market effects include many ecological impacts, as well as changed
- 9 cultural values, none of which are generally captured through market prices. The economic measure
- 10 of the value of either kind of impact is 'willingness-to-pay' to avoid damage, which can be estimated
- using methods of revealed preference and stated preference [3.9].
- Substitutability reduces the size of damages from climate change (high confidence). The monetary damage from a change in the climate will be lower if individuals can easily substitute for what is
- 14 damaged, compared to cases where such substitution is more difficult [3.9].
- 15 Damage functions in existing Integrated Assessment Models (IAMs) are of low reliability (high
- *confidence*). The economic assessments of damages from climate change as embodied in the
- 17 damage functions used by some existing IAMs (though not in the analysis embodied in WGIII) are
- 18 highly stylized with a weak empirical foundation. The empirical literature on monetized impacts is
- 19 growing but remains limited and often geographically narrow [3.9].
- 20 Negative private costs of mitigation arise in some cases, although they are sometimes overstated
- 21 **in the literature** (*medium confidence*). Sometimes mitigation can lower the private costs of
- 22 production and thus raise profits; for individuals, mitigation can raise wellbeing. Ex-post evidence
- 23 suggests that such 'negative cost opportunities' do indeed exist but are sometimes overstated in
- engineering analyses [3.9].
- 25 Exchange rates between GHGs with different atmospheric lifetimes are very sensitive to the choice
- of emission metric. The choice of an emission metric depends on the potential application and
- involves explicit or implicit value judgements; no consensus surrounds the question which metric is
 both conceptually best and practical to implement (high confidence). In terms of aggregate
- 29 mitigation costs alone, the Global Warming Potential, with a 100 year time horizon, may perform
- similarly to selected other metrics (such as the time-dependent Global Temperature Change
- Potential or the Global Cost Potential) of reaching a prescribed climate target; however, various
- metrics may differ significantly in terms of the implied distribution of costs across sectors, regions
- and over time (limited evidence, medium agreement) [3.9].
- 34 The behaviour of energy users and producers exhibits a variety of anomalies (high confidence).
- 35 Understanding climate change as a physical phenomenon with links to societal causes and impacts is
- a very complex process. To be fully effective, the conceptual frameworks and methodological tools
- 37 used in mitigation assessments need to take into account cognitive limitations and other-regarding
- preferences that frame the processes of economic decision making by people and firms [3.10].
- 39 **Perceived fairness can facilitate cooperation among individuals** (*high confidence*). Experimental
- 40 evidence suggests that reciprocal behaviour and perceptions of fair outcomes and procedures
- 41 facilitate voluntary cooperation among individual people in providing public goods; this finding may
- 42 have implications for the design of international agreements to coordinate climate mitigation [3.10].
- 43 Social institutions and culture can facilitate mitigation and adaptation (medium confidence). Social
- 44 institutions and culture can shape individual actions on mitigation and adaptation and be
- 45 complementary to more conventional methods for inducing mitigation and adaptation. They can
- 46 promote trust and reciprocity and contribute to the evolution of common rules. They also provide
- 47 structures for acting collectively to deal with common challenges [3.10].

- 1 Technological change that reduces mitigation costs can be encouraged by institutions and
- 2 **economic incentives** (*high confidence*). As pollution is not fully priced by the market, private
- 3 individuals and firms lack incentives to invest in the development and use of emissions-reducing
- 4 technologies in the absence of appropriate policy interventions. Moreover, imperfect appropriability
- 5 of the benefits of innovation further reduces incentives to develop new technologies [3.11].

1 3.1 Introduction

2 This framing Chapter has two primary purposes: to provide a framework for viewing and

³ understanding the human (social) perspective on climate change, focusing on ethics and economics;

and to define and discuss key concepts used in other chapters. It complements the two other

5 framing chapters: Chapter 2 on risk and uncertainty and Chapter 4 on sustainability. The audience

6 for this Chapter (indeed for this entire volume) is decision makers at many different levels.

7 The significance of the social dimension and the role of ethics and economics is underscored by

8 Article 2 of the Framework Convention on Climate Change, which indicates that the ultimate

9 objective of the Convention is to avoid dangerous anthropogenic interference with the climate

system. Two main issues confronting society are: what constitutes 'dangerous interference' with the

climate system and how to deal with it. Providing information to answer these inter-related guestions is a primary purpose of the IPCC. Although natural science helps us understand how

questions is a primary purpose of the IPCC. Although natural science helps us understand how emissions can change the climate, and, in turn, generate physical impacts on ecosystems, people

and the physical environment, determining what is dangerous involves judging the level of adverse

15 consequences, the steps necessary to mitigate these consequences and risk that humanity is willing

16 to tolerate. These are questions requiring value judgement. Although economics is essential to

17 evaluating the consequences and trade-offs associating with climate change, how society interprets

18 and values them is an ethical question.

19

20 **Box 3.1** Dangerous Interference with the Climate System

21 Article 2 of the United Nations Framework Convention on Climate Change states that "the ultimate

22 objective of the Convention . . . is to achieve . . . stabilization of greenhouse gas concentrations in

23 the atmosphere at a level that would prevent dangerous anthropogenic interference with the

24 climate system." Judging whether our interference in the climate system is dangerous, i.e., risks

25 causing a very bad outcome, involves two tasks: estimating the physical consequences of our

26 interference and their likelihood; and assessing their significance for people. The first falls to science,

27 but, as the Synthesis Report of the IPCC Fourth Assessment Report (AR4) states, "Determining what

28 constitutes 'dangerous anthropogenic interference with the climate system' in relation to Article 2 of

the UNFCCC involves value judgements" (IPCC, 2007, p. 42). Value judgements are governed by the

theory of value. In particular, valuing risk is covered by decision theory and is dealt with in Chapter 2.

31 Central questions of value that come within the scope of ethics, as well as economic methods for

32 measuring certain values are examined in this chapter.

Our discussion of ethics centres on two main considerations: justice and value. Justice requires that people and nations should receive what they are due, or have a right to. For some, an outcome is

35 just if the process that generated it is just. Others view justice in terms of the actual outcomes

as a new process that generated it is just. Others view justice in terms of the actual outcomes
 enjoyed by different people and groups and the values they place on those outcomes. Outcome-

37 based justice can range from maximizing economic measures of aggregate welfare to rights-based

views of justice, for example, believing that all countries have a right to clean air. Different views

have been expressed about what is valuable. All values may be anthropocentric or there may be

40 non-human values. Economic analysis can help to guide policy action, provided that appropriate,

41 adequate and transparent ethical assumptions are built into the economic methods.

42 The significance of economics in tackling climate change is widely recognized. For instance, central

43 to the politics of taking action on climate change are disagreements over how much mitigation the

44 world should undertake, and the economic costs of action (the costs of mitigation) and inaction (the

45 costs of adaptation and residual damage from a changed climate). Uncertainty remains about (1) the

46 costs of reducing emissions of greenhouse gases (GHGs), (2) the damage caused by a change in the 47 climate, and (3) the cost, practicality, and effectiveness of adaptation measures (and, potentially,

48 geoengineering). Prioritizing action on climate change over other significant social goals with more

1 near-term payoffs is particularly difficult in developing countries. Because social concerns and

- 2 objectives, such as the preservation of traditional values, cannot always be easily quantified or
- 3 monetized, economic costs and benefits are not the only input into decision-making about climate
- 4 change. But even where costs and benefits can be quantified and monetized, using methods of
- 5 economic analysis to steer social action implicitly involves significant ethical assumptions. This
- 6 Chapter explains the ethical assumptions that must be made for economic methods, including cost-
- ⁷ benefit analysis (CBA), to be valid, as well as the ethical assumptions that are implicitly being made
- 8 where economic analysis is used to inform a policy choice.
- 9 The perspective of economics can improve our understanding of the difficulties of acting on
- 10 mitigation. For an individual or firm, mitigation involves real costs, while the benefits to themselves
- of their own mitigation efforts are small and intangible. This reduces the incentives for individuals or
- 12 countries to unilaterally reduce emissions; free-riding on the actions of others is a dominant
- 13 strategy. Mitigating greenhouse gas (GHG) emissions is a public good, which inhibits mitigation. This
- also partly explains the failure of nations to agree on how to solve the problem.
- 15 In contrast, adaptation tends not to suffer from free-riding. Gains to climate change from
- 16 adaptation, such as planting more heat tolerant crops, are mainly realized by the parties who incur
- 17 the costs. Associated externalities tend to be more localized and contemporaneous than for GHG
- 18 mitigation. From a public goods perspective, global coordination may be less important for many
- 19 forms of adaptation than for mitigation. For autonomous adaptation in particular, the gains from
- 20 adaptation accrue to the party incurring the cost. However, public adaptation requires local or
- 21 regional coordination. Financial and other constraints may restrict the pursuit of attractive
- 22 adaptation opportunities, particularly in developing countries and for poorer individuals.
- 23 This Chapter addresses two questions: what *should be done* about action to mitigate climate change
- 24 (a normative issue) and how the world works in the multifaceted context of climate change (a
- 25 descriptive or positive issue). Typically, ethics deals with normative questions and economics with
- 26 descriptive or normative questions. Descriptive questions are primarily value-neutral, for example,
- how firms have reacted to cap-and-trade programmes to limit emissions, or how societies have dealt
- with responsibility for actions that were not known to be harmful when they were taken. Normative questions use economics and ethics to decide what *should* be done, for example, determining the
- questions use economics and ethics to decide what *should* be done, for example, determining the appropriate level of burden sharing among countries for current and future mitigation. In making
- decisions about issues with normative dimensions, it is important to understand the implicit
- assumptions involved. Most normative analyses of solutions to the climate problem implicitly
- involve contestable ethical assumptions.
- 34 This Chapter does not attempt to answer ethical questions, but rather provides policymakers with 35 the tools (concepts, principles, arguments and methods) to make decisions. Summarizing the role of 36 economics and ethics in climate change in a single chapter necessitates several caveats. While 37 recognizing the importance of certain non-economic social dimensions of the climate change 38 problem and solutions to it, space limitations and our mandate necessitated focusing primarily on 39 ethics and economics. Furthermore, many of the issues raised have already been addressed in 40 previous IPCC assessments, particularly AR2 (published in 1995). In the past, ethics has received less attention than economics, although aspects of both subjects are covered in AR2. The literature 41 42 reviewed here includes pre-AR4 literature in order to provide a more comprehensive understanding 43 of the concepts and methods. We highlight 'new' developments in the field since the last IPCC
- 44 assessment in 2007.

45 **3.2 Ethical and socio-economic concepts and principles**

- 46 When a country emits GHGs, its emissions cause harm around the globe. The country itself suffers 47 only a part of the harm it causes. It is therefore rarely in the interests of a single country to reduce
- 48 its own emissions, even though a reduction in global emissions could benefit every country. That is

- 1 to say, the problem of climate change is a "tragedy of the commons" (Hardin, 1968). Effective
- mitigation of climate change will not be achieved if each person or country acts independently in its
 own interest.
- 4 Consequently, efforts are continuing to reach effective international agreement on mitigation. They
- 5 raise an ethical question that is widely recognized and much debated, namely, 'burden-sharing' or
- 6 'effort-sharing'. How should the burden of mitigating climate change be divided among countries? It
- 7 raises difficult issues of justice, fairness and rights, all of which lie within the sphere of ethics.
- 8 It is only one of the ethical questions that climate change raises.¹ Another is the question of how
- 9 much overall mitigation should take place. The United Nations Framework Convention on Climate
- 10 Change (UNFCCC) sets the aim of "avoiding dangerous anthropogenic interference with the climate
- 11 system", and judging what is dangerous is partly a task for ethics (see Box 3.1). Besides justice,
- 12 fairness and rights, a central concern of ethics is *value*. Judgements of value underlie the question of
- 13 what interference with the climate system would be dangerous.
- 14 Indeed, ethical judgements of value underlie almost every decision that is connected with climate
- 15 change, including decisions made by individuals, public and private organizations, governments and
- 16 groupings of governments. Some of these decisions are deliberately aimed at mitigating climate
- 17 change or adapting to it. Many others influence the progress of climate change or its impacts, so
- 18 they need to take climate change into account.
- 19 Ethics may be broadly divided into two branches: justice and value. Justice is concerned with
- 20 ensuring that people get what is *due* to them. If justice requires that a person should not be treated
- in a particular way uprooted from her home by climate change, for example then the person has
- a *right* not to be treated that way. Justice and rights are correlative concepts. On the other hand,
- criteria of value are concerned with improving the world: making it a better place. Synonyms for
- ²⁴ 'value' in this context are 'good', 'goodness' and 'benefit'. Antonyms are 'bad', 'harm' and 'cost'.
- To see the difference between justice and value, think of a transfer of wealth made by a rich country to a poor one. This may be an act of restitution. For example, it may be intended to compensate the
- 27 poor country for harm that has been done to it by the rich country's emissions of GHG. In this case,
- the transfer is made on grounds of justice. The payment is taken to be due to the poor country, and
- to satisfy a right that the poor country has to compensation. Alternatively, the rich country may
- 30 make the transfer to support the poor country's mitigation effort, because this is beneficial to
- 31 people in the poor country, the rich country and elsewhere. The rich country may not believe the 32 poor country has a right to the support, but makes the payment simply because it does good. This
- transfer is made on grounds of value. What would be good to do is not necessarily required as a
- matter of justice. Justice is concerned with what people are entitled to as a matter of their rights.
- The division between justice and value is contested within moral philosophy, and so is the nature of
- the interaction between the two. Some authors treat justice as inviolable (Nozick, 1974): justice sets
- 37 limits on what we may do and we may promote value only within those limits. An opposite view –
- called 'teleological' by Rawls (1971) is that the right decision to make is always determined by the
- 39 value of the alternatives, so justice has no role. But despite the complexity of their relationship and
- 40 the controversies it raises, the division between justice and value provides a useful basis for
- 41 organizing the discussion of ethical concepts and principles. We have adopted it in this Chapter:
- 42 Sections 3.3 and 3.4 cover justice and value, respectively. One topic appears in both Sections
- 43 because it bridges the divide: this topic is distributive justice viewed one way and the value of
- 44 equality viewed the other. Subsection 3.3.7 on geoengineering is also in an intermediate position
- 45 because it raises ethical issues of both sorts. Section 3.6 explains how some ethical values can be

¹ A survey of the ethics of climate change is Gardiner (2004), pp. 555-600.

1 measured by economic methods of valuation. Section 3.5 describes the scope and limitations of

2 these methods. Later sections develop the concepts and methods of economics in more detail.

3 Practical ways to take account of different values in policy-making are discussed in Subsection

4 3.7.1 .

5 **3.3** Justice, equity and responsibility

Justice, fairness, equity and responsibility are important in international climate negotiations, as well
 as in climate-related political decision-making within countries and for individuals.

8 In this Section we examine distributive justice, which, for the purpose of this review, is about

9 outcomes, and procedural justice or the way in which outcomes are brought about. We also discuss

10 compensation for damage and historic responsibility for harm. In the context of climate change,

11 considerations of justice, equity and responsibility concern the relations between individuals, as well

12 as groups of individuals (e.g., countries), both at a single point in time and across time. Accordingly

13 we distinguish intra-generational from intergenerational justice. The literature has no agreement on

14 a correct answer to the question, what is just? We indicate where opinions differ.

15 **3.3.1 Causal and moral responsibility**

16 From the perspective of countries rather than individuals or groups of individuals, the developed

- 17 countries bear much of the causal responsibility for climate change because of their historical
- emissions (den Elzen et al., 2005; Lamarque et al., 2010; Höhne et al., 2011). Furthermore, many
- 19 developed countries are expected to suffer relatively modest physical damage and some are even
- 20 expected to realize benefits from future climate change (see Tol, 2002a; b). On the other hand, many
- 21 developing countries bear less causal responsibility, but they could suffer significant physical damage
- from climate change (IPCC, 2007 WG II AR4 SPM). This asymmetry gives rise to the following
- 23 questions of justice and moral responsibility: do considerations of justice provide guidance in
- determining the appropriate level of present and future global emissions; the distribution of
- emissions among those presently living; and the role of historical emissions in distributing global
 obligations? The question also arises of who might be considered morally responsible for achieving
- 27 justice, and, thus, a bearer of duties towards others. The question of moral responsibility is also key
- to determining whether anyone owes compensation for the damage caused by emissions.

29 **3.3.2** Intergenerational justice and rights of future people

30 Intergenerational justice encompasses some of the moral duties owed by present to future people

- and the rights that future people hold against present people.² A legitimate acknowledgment that
- future or past generations have rights relative to present generations is indicative of a broad
- understanding of justice.³ While justice considerations so understood are relevant, they cannot
- cover all our concerns regarding future and past people, including the continued existence of
- 35 humankind and with a high level of wellbeing.⁴
- 36 What duties do present generations owe future generations given that current emissions will affect 37 their quality of life? Some justice theorists have offered the following argument to justify a cap on

² In the philosophical literature, "justice between generations" typically refers to the relations between people whose lifetimes do not overlap (Barry, 1977). In contrast, "justice between age groups" refers to the relations of people whose lifetimes do overlap (Laslett and Fishkin, 1992). See also Gardiner (2011), pp 145-48.

³ See Rawls (1971, 1999), Barry (1977), Sikora and Barry (1978), Partridge (1981), Parfit (1986), Birnbacher (1988) and Heyd (1992).

⁴ See Baier (1981), De-Shalit (1995), Meyer (2005), and for African philosophical perspectives see, Behrens (2012). See section 3.4 on the wellbeing of future people.

- emissions (Shue, 1993, 1999; Caney, 2006a; Meyer and Roser, 2009; Wolf, 2009). If future people's
- 2 basic rights include the right to survival, health and subsistence, these basic rights are likely to be
- 3 violated when temperatures rise above a certain level. However, currently living people can slow the
- 4 rise in temperature by limiting their emissions at a reasonable cost to themselves. Therefore, living
- 5 people should reduce their emissions in order to fulfil their minimal duties of justice to future
- generations. Normative theorists dispute the standard of living that corresponds to people's basic
 rights (Page, 2007; Huseby, 2010). It is also in dispute what level of harm imposed on future people
- is morally objectionable. Some argue that currently living people wrongfully harm future people if
- 9 they cause them to have a lower level of wellbeing than their own (e.g., Barry, 1999); others that
- 10 currently living people owe future people a decent level of wellbeing, which might be lower than
- 11 their own (Wolf, 2009). This argument raises objections on grounds of justice since it presupposes
- 12 that present people can violate the rights of future people, and that the protection of future
- 13 people's rights is practically relevant for how present people ought to act.
- 14 Some theorists claim that future people cannot hold rights against present people owing to special
- 15 features of intergenerational relations: some claim that future people cannot have rights because
- they cannot exercise them today (Steiner, 1983; Wellman, 1995, ch. 4). Others point out that
- interaction between non-contemporaries is impossible (Barry, 1977, pp. 243–244, 1989, p. 189).
- 18 However, some justice theorists argue that neither the ability to, nor the possibility of, mutual
- interaction are necessary in attributing rights to people (Barry, 1989; Buchanan, 2004). They hold
- 20 that rights are attributed to beings whose interests are important enough to justify imposing duties
- 21 on others.
- 22 The main source of scepticism about the rights of future people and the duties we owe them is the
- 23 so-called 'non-identity problem'. Actions we take to reduce our emissions will change people's way
- of life and so affect new people born. They alter the identities of future people. Consequently, our
- 25 emissions do not make future people worse off than they would otherwise have been, since those
- future people would not exist if we took action to prevent our emissions. This makes it hard to claim
- 27 that our emissions harm future people, or that we owe it to them as a matter of their rights to
- 28 reduce our emissions.⁵
- 29 It is often argued that the non-identity problem can be overcome (McMahan, 1998; Shiffrin, 1999;
- Kumar, 2003; Meyer, 2003; Harman, 2004; Reiman, 2007; Shue, 2010). In any case, duties of justice
- do not include all the moral concerns we should have for future people. Other concerns are matters
- 32 of value rather than justice, and they too can be understood in such a way that they are not affected
- 33 by the non-identity problem. They are considered in Section 3.4 .
- 34 If present people have a duty to protect future people's basic rights, this duty is complicated by
- 35 uncertainty. Present people's actions or omissions do not necessarily violate future people's rights;
- 36 they create a risk of their rights being violated (Bell, 2011). To determine what currently living
- 37 people owe future people one has to weigh such uncertain consequences against other
- 38 consequences of their actions, including the certain or likely violation of the rights of currently living
- 39 people (Oberdiek, 2012; Temkin, 2012). This is important in assessing many long-term policies,
- 40 including on geoengineering (see Subsection 3.3.7), that risk violating the rights of many
- 41 generations of people (Crutzen, 2006; Schneider, 2008; Victor et al., 2009; Baer, 2010; Ott, 2012).

42 **3.3.3** Intergenerational justice: distributive justice

- 43 Suppose that a global emissions ceiling that is intergenerationally just has been determined
- 44 (recognizing that a ceiling is not the only way to deal with climate change), the question then arises
- 45 of how the ceiling ought to be divided among states (and, ultimately, their individual members)

⁵ For an overview of the issue see Meyer (2010). See also Schwartz (1978), Parfit (1986), and Heyd (1992). For a different perspective see Perrett (2003).

- 1 (Jamieson, 2001; Singer, 2002; Meyer and Roser, 2006; Caney, 2006a). Distributing emission permits
- 2 is a way of arriving at a globally just division. Among the widely discussed views on distributive
- 3 justice are strict egalitarianism (Temkin, 1993), indirect egalitarian views including prioritarianism
- 4 (Parfit, 1997), and sufficientarianism (Frankfurt, 1999). Strict egalitarianism holds that equality has
- 5 value in itself. Prioritarianism gives greater weight to a person's wellbeing the less well off she is, as
- described in Section 3.4 . Sufficientarianism recommends that everyone should be able to enjoy a
 particular level of wellbeing.
- 8 Two options can help apply prioritarianism to the distribution of freely allocated and globally
- 9 tradeable emission permits. The first is to ignore the distribution of other goods. Then strict
- 10 egalitarianism or prioritarianism will require emission permits to be distributed equally, since they
- 11 will have one price and are thus equivalent to income. The second is to take into account the
- 12 unequal distribution of other assets. Since people in the developing world are less well off than in
- 13 the developed world, strict egalitarianism or prioritarianism would require most or all permits to go
- 14 to the developing world. However, it is questionable whether it is appropriate to bring the overall
- distribution of goods closer to the prioritarian ideal through the distribution of just one good (Wolff
- 16 and de-Shalit, 2007; Caney, 2009, 2012).

17 **3.3.4** Historical responsibility and distributive justice

- 18 Historical responsibility for climate change depends on countries' contributions to the stock of
- 19 GHGs. The UNFCCC refers to "common but differentiated responsibilities" among countries of the
- 20 world. This is sometimes taken to imply that current and historical causal responsibility for climate
- change should play a role in determining the obligations of different countries in reducing emissions
- and paying for adaptation measures globally (Rajamani, 2000; Rive et al., 2006; Friman, 2007).
- A number of objections have been raised against the view that historical emissions should play a role
- 24 (see, e.g., Gosseries, 2004; Caney, 2005; Meyer and Roser, 2006; Posner and Weisbach, 2010). First,
- as currently living people had no influence over the actions of their ancestors, they cannot be held
- responsible for them. Second, previously living people may be excused from responsibility on the grounds that they could not be expected to know that their emissions would have harmful
- grounds that they could not be expected to know that their emissions would have harmful
 consequences. Thirdly, present individuals with their particular identities are not worse off as a
- result of the emission-generating activities of earlier generations because, owing to the non-identity
- 30 problem, they would not exist as the individuals they are had earlier generations not acted as they
- . 31 did.
- 32 From the perspective of distributive justice, however, these objections need not prevent past
- emissions and their consequences being taken into account (Meyer and Roser, 2010; Meyer, 2013).
- 34 If we are only concerned with the distribution of benefits from emission-generating activities during
- an individual's lifespan, we should include the benefits present people have received from their own
- 36 emission-generating activities. Furthermore, present people have benefited since birth or
- 37 conception from past people's emission-producing actions. They are therefore better off as a result
- of past emissions, and any principle of distributive justice should take that into account. Some
- 39 suggest that taking account of the consequences of some past emissions in this way should not be
- 40 subject to the objections mentioned in the previous paragraph (see Shue, 2010). Other concepts
- 41 associated with historical responsibility are discussed in Chapter 4.

42 **3.3.5** Intra-generational justice: compensatory justice and historical responsibility

- 43 Do those who suffer disproportionately from the consequences of climate change have just claims to
- 44 compensation against the main perpetrators or beneficiaries of climate change (see, e.g., Neumayer,
 45 2000; Gosseries, 2004; Caney, 2006b)?
- 46 One way of distinguishing compensatory from distributive claims is to rely on the idea of a just
- 47 baseline distribution that is determined by a criterion of distributive justice. Under this approach,
- 48 compensation for climate damage and adaptation costs is owed only by people who have acted

- 1 wrongfully according to normative theory (Feinberg, 1984; Coleman, 1992; McKinnon, 2011). Other
- 2 deviations from the baseline may warrant redistributive measures to redress undeserved benefits or
- 3 harms, but not as compensation. Some deviations, such as those that result from free choice, may
- 4 not call for any redistribution at all.
- 5 The duty to make compensatory payments (Gosseries, 2004; Caney, 2006b) may fall on those who
- 6 emit or benefit from wrongful emissions or who belong to a community that produced such
- 7 emissions. Accordingly, three principles of compensatory justice have been suggested: the polluter
- 8 pays principle (PPP), the beneficiary pays principle (BPP) and the community pays principle (CPP)
- 9 (Meyer and Roser, 2010; Meyer, 2013), of which the PPP is more widely accepted than the others.
- 10 The PPP requires the emitter to pay compensation if the agent emitted more than her fair share
- 11 (determined as outlined in Subsection 3.3.2) and she either knew, or could reasonably be expected
- to know, that her emissions were harmful. The victim should be able to show that the emissions
 either made her worse off than before or pushed her below a specified threshold of harm, or both.
- 14 The right to compensatory payments for wrongful emissions under PPP has at least three basic
- 15 limitations. Two have already been mentioned in Subsection 3.3.4 . Emissions that took place while
- 16 it was permissible to be ignorant of climate change (when people neither did know nor could be
- 17 reasonably be expected to know about the harmful consequences of emissions) may be excused
- 18 (Gosseries, 2004, pp. 39–41). See also Subsection 3.3.6 . The non-identity problem (see Subsection
- 19 3.3.2) implies that earlier emissions do not harm many of the people who come into existence
- 20 later. Potential duty bearers may be dead and cannot therefore have a duty to supply compensatory
- 21 measures. It may therefore be difficult to use PPP in ascribing compensatory duties and identifying
- wronged persons. The first and third limitations restrict the assignment of duties of compensation to currently living people for their most recent emissions, even though many more people are causally
- responsible for the harmful effects of climate change. For future emissions, the third limitation could
- 25 be overcome through a climate change compensation fund into which agents pay levies for imposing
- the risk of harm on future people (McKinnon, 2011).
- 27 According to BPP, a person who is wrongfully better off relative to a just baseline is required to 28 compensate those who are worse off. Past emissions benefit some and impose costs on others. If 29 currently living people accept the benefits of wrongful past emissions, it has been argued that they 30 take on some of the past wrongdoer's duty of compensation (Gosseries, 2004). Also we have a duty 31 to condemn injustice, which may entail a duty not to benefit from an injustice that causes harm to 32 others (Butt, 2007). However, BPP is open to at least two objections. First, duties of compensation 33 arise only from past emissions that have benefited present people; no compensation is owed for 34 other past emissions. Second, if voluntary acceptance of benefits is a condition of their giving rise to 35 compensatory duties, the bearers of the duties must be able to forgo the benefits in question at a 36 reasonable cost.
- 37 Under CPP moral duties can be attributed to people as members of groups whose identity persists 38 over generations (De-Shalit, 1995; Thompson, 2009). The principle claims that members of a 39 community, including a country, can have collective responsibility for the wrongful actions of other 40 past and present members of the community, even though they are not morally or causally 41 responsible for those actions (Thompson, 2001; Miller, 2004; Meyer, 2005). It is a matter of debate 42 under what conditions present people can be said to have inherited compensatory duties. Although 43 CPP purports to overcome the problem that a polluter might be dead, it can justify compensatory 44 measures only for emissions that are made wrongfully. It does not cover emissions caused by agents 45 who were permissibly ignorant of their harmfulness. (The agent in this case may be the community 46 or state).
- 47 The practical relevance of principles of compensatory justice is limited. Insofar as the harms and
- 48 benefits of climate change are undeserved, distributive justice will require them to be evened out,
- 49 independently of compensatory justice. Duties of distributive justice do not presuppose any

- wrongdoing (see Subsection 3.3.4). For example, it has been suggested on grounds of distributive 1
- 2 justice that the duty to pay for adaptation should be allocated on the basis of people's ability to pay,
- 3 which partly reflects the benefit they have received from past emissions (Jamieson, 1997; Shue,
- 4 1999; Caney, 2010; Gardiner, 2011). However, present people and governments can be said to know
- 5 about both the seriously harmful consequences of their emission-generating activities for future
- 6 people and effective measures to prevent those consequences. If so and if they can implement these
- 7 measures at a reasonable cost to themselves to protect future people's basic rights (see, e.g., 8 Birnbacher, 2009; Gardiner, 2011), they might be viewed as owing intergenerational duties of justice
- 9
- to future people (see Section 3.3.2).

Legal concepts of historical responsibility 10 3.3.6

11 Legal systems have struggled to define the boundaries of responsibility for harmful actions and are

12 only now beginning to do so for climate change. It remains unclear whether national courts will

13 accept lawsuits against GHG emitters, and legal scholars vigorously debate whether liability exists

14 under current law (Mank, 2007; Burns and Osofsky, 2009; Faure and Peeters, 2011; Haritz, 2011; 15 Kosolapova, 2011; Kysar, 2011; Gerrard and Wannier, 2012). This Section is concerned with moral

16 responsibility, which is not the same as legal responsibility. But moral thinking can draw useful

- 17 lessons from legal ideas.
- 18 Harmful conduct is generally a basis for liability only if it breaches some legal norm (Tunc, 1983),
- 19 such as negligence, or if it interferes unreasonably with the rights of either the public or property
- 20 owners (Mank, 2007; Grossman, 2009; Kysar, 2011; Brunée et al., 2012; Goldberg and Lord, 2012;

21 Koch et al., 2012). Liability for nuisance does not exist if the agent did not know, or have reason to

- 22 know, the effects of her conduct (Antolini and Rechtschaffen, 2008). The law in connection with
- 23 liability for environmental damage still has to be settled. The European Union, but not the United
- 24 States, recognizes exemption from liability for lack of scientific knowledge (United States Congress,
- 25 1980; European Union, 2004). Under European law, and in some US states, defendants are not
- 26 responsible if a product defect had not yet been discovered (European Commission, 1985; Dana, 27 2009). Some legal scholars suggest that assigning blame for GHG emissions dates back to 1990 when
- 28 the harmfulness of such emissions was established internationally, but others argue in favour of an
- 29 earlier date (Faure and Nollkaemper, 2007; Hunter and Salzman, 2007; Haritz, 2011). Legal systems
- 30 also require a causal link between a defendant's conduct and some identified harm to the plaintiff,
- 31 in this case from climate change (Tunc, 1983; Faure and Nollkaemper, 2007; Kosolapova, 2011;
- 32 Kysar, 2011; Brunée et al., 2012; Ewing and Kysar, 2012; Goldberg and Lord, 2012). A causal link
- 33 might be easier to establish between emissions and adaptation costs (Farber, 2007). Legal systems
- 34 generally also require causal foreseeability or directness (Mank, 2007; Kosolapova, 2011; van Dijk,
- 35 2011; Ewing and Kysar, 2012), although some statutes relax this requirement in specific cases (such
- 36 as the US CERCLA/Superfund). Emitters might argue that their contribution to GHG levels was too
- 37 small and the harmful effects too indirect and diffuse to satisfy the legal requirements (Sinnot-
- 38 Armstrong, 2010; Faure and Peeters, 2011; Hiller, 2011; Kysar, 2011; van Dijk, 2011; Gerrard and
- 39 Wannier, 2012).
- 40 Climate change claims could also be classified as unjust enrichment (Kull, 1995; Birks, 2005), but
- 41 legal systems do not remedy all forms of enrichment that might be regarded as ethically unjust
- 42 (Zimmermann, 1995; American Law Institute, 2011; Laycock, 2012). Under some legal systems,
- 43 liability depends on whether benefits were conferred without legal obligation or through a
- 44 transaction with no clear change of ownership (Zimmermann, 1995; American Law Institute, 2011;
- 45 Laycock, 2012). It is not clear that these principles apply to climate change.
- 46 As indicated, legal systems do not recognize liability just because a positive or negative externality
- 47 exists. Their response depends on the behaviour that caused the externality and the nature of the
- 48 causal link between the agent's behaviour and the resulting gain or loss to another.

1 **3.3.7** Geoengineering, ethics, and justice

Geoengineering (also known as climate engineering (CE)), is large-scale technical intervention in the
 climate system that aims to cancel some of the effects of GHG emissions (for more details see WGI
 6.5 and WGIII 6.9). It represents a third kind of response to climate change, besides mitigation and

5 adaptation. Various options for geoengineering have been proposed, including different types of

- 6 solar radiation management (SRM) and carbon dioxide removal (CDR). This Section reviews the
- 7 major moral arguments for and against geoengineering technologies (for surveys see Robock, 2008;
- 8 Corner and Pidgeon, 2010; Gardiner, 2010; Ott, 2010; Betz and Cacean, 2012; Preston, 2013). These
- 9 moral arguments do not apply equally to all proposed geoengineering methods and have to be
- 10 assessed on a case-specific basis.⁶
- 11 Three lines of argument support the view that geoengineering technologies might be desirable to 12 deploy at some point in the future. First, that humanity could end up in a situation where deploying
- 13 geoengineering, particularly SRM, appears as a lesser evil than unmitigated climate change (Crutzen,
- 14 2006; Gardiner, 2010; Keith et al., 2010; Svoboda, 2012a; Betz, 2012). Second, that geoengineering
- 15 could be a more cost-effective response to climate change than mitigation or adaptation (Keith,
- 16 2000; Barrett, 2008). Such efficiency arguments have been criticized in the ethical literature for
- 17 neglecting issues such as side-effects, uncertainties or fairness (Gardiner, 2010, 2011; Buck, 2012).
- 18 Thirdly, that some aggressive climate stabilization targets cannot be achieved through mitigation
- 19 measures alone and thus must be complemented by either CDR or SRM (Greene et al., 2010;
- 20 Sandler, 2012).
- 21 Geoengineering technologies face several distinct sets of objections. Some authors have stressed the
- 22 substantial uncertainties of large-scale deployment (for overviews of geoengineering risks see also
- 23 Schneider (2008) and Sardemann and Grunwald (2010)), while others have argued that some
- intended and unintended effects of both CDR and SRM could be irreversible (Jamieson, 1996) and
- that some current uncertainties are unresolvable (Bunzl, 2009). Furthermore, it has been pointed out
- that geoengineering could make the situation worse rather than better (Hegerl and Solomon, 2009;
- 27 Fleming, 2010; Hamilton, 2013) and that several technologies lack a viable exit option: SRM in
- particular would have to be maintained as long as GHG concentrations remain elevated (The Royal
 Society, 2009).
- 30 Arguments against geoengineering on the basis of fairness and justice deal with the intra-
- 31 generational and intergenerational distributional effects. SRM schemes could aggravate some
- 32 inequalities if, as expected, they modify regional precipitation and temperature patterns with
- unequal social impacts (Bunzl, 2008; The Royal Society, 2009; Svoboda et al., 2011; Preston, 2012).
- 34 Furthermore, some CDR methods would require large-scale land transformations, potentially
- 35 competing with agricultural land-use, with uncertain distributive consequences. Other arguments
- 36 against geoengineering deal with issues including the geopolitics of SRM, such as international
- 37 conflicts that may arise from the ability to control the "global thermostat" (Schelling, 1996; Hulme,
- 2009), ethics (Hale and Grundy, 2009; Preston, 2011; Hale and Dilling, 2011; Svoboda, 2012b; Hale,
- 2012b), and a critical assessment of technology and modern civilization in general (Fleming, 2010;
- 40 Scott, 2012).
- 41 One of the most prominent arguments against geoengineering suggests that geoengineering
- 42 research activities might hamper mitigation efforts (e.g., Jamieson, 1996; Keith, 2000; Gardiner,
- 43 2010), which presumes that geoengineering should not be considered an acceptable substitute for

⁶ While the literature typically associates some arguments with particular types of methods (e.g., the termination problem with SRM), it is not clear that there are two groups of moral arguments: those applicable to all SRM methods on the one side and those applicable to all CDR methods on the other side. In other words, the moral assessment hinges on aspects of geoengineering that are not connected to the distinction between SRM and CDR.

- 1 mitigation. The central idea is that research increases the prospect of geoengineering being
- 2 regarded as a serious alternative to emission reduction (for a discussion of different versions of this
- argument see Hale, 2012a; Hourdequin, 2012). Other authors have argued, based on historical
- 4 evidence and analogies to other technologies, that geoengineering research might make deployment
- 5 inevitable (Jamieson, 1996; Bunzl, 2009), or that large-scale field tests could amount to full-fledged
- deployment (Robock et al., 2010). It has also been argued that geoengineering would constitute an
 unjust imposition of risks on future generations, because the underlying problem would not be
- solved but only counteracted with risky technologies (Gardiner, 2010; Ott, 2012; Smith, 2012). The
- 9 latter argument is particularly relevant to SRM technologies that would not affect greenhouse gas
- 10 concentrations, but it would also apply to some CDR methods as there may be issues of long-term
- 11 safety and capacity of storage.

Arguments in favour of research on geoengineering point out that research does not necessarily
 prepare for future deployment, but can, on the contrary, uncover major flaws in proposed schemes,
 avoid premature CE deployment and eventually foster mitigation efforts (e.g., Keith et al., 2010).
 Another justification for R&D is that it is required to help decision-makers take informed decisions

16 (Leisner and Müller-Klieser, 2010).

17 **3.4 Values and wellbeing**

18 One branch of ethics is the theory of value. Many different sorts of value can arise, and climate

19 change impinges on many of them. It affects nature and many aspects of human life. This Section

20 surveys some of the values at stake in climate change, and examines how far these values can be

21 measured, combined or weighed against each other. Each value is subject to debate and

- 22 disagreement. For example, it is debatable whether nature has value in its own right, apart from the
- 23 benefit it brings to human beings. Decision making about climate change is therefore likely to be
- 24 contentious.

25 Since values constitute only one part of ethics, if an action will increase value overall it by no means

follows that it should be done. Many actions benefit some people at the cost of harming others. This raises a question of justice even if the benefits in total exceed the costs. Whereas a cost to a person

can be compensated for by a benefit to that same person, a cost to a person cannot be

compensated for by a benefit to someone else. To suppose it can is not to "take seriously the

distinction between persons", as John Rawls puts it (1971, p. 27). Harming a person may infringe her

rights, or it may be unfair to her. For example, when a nation's economic activities emit GHG, they

- 32 may benefit the nation itself, but may harm people in other nations. Even if the benefits are greater
- in value than the harms, these activities may infringe other nations' rights. Other nations may
- 34 therefore be entitled to object to them on grounds of justice.

35 Any decision about climate change is likely to promote some values and damage others. These may 36 be values of very different sorts. In decision making, different values must therefore be put together 37 or balanced against each other. Some pairs of values differ so radically from each other that they 38 cannot be determinately weighed together. For example, it may be impossible to weigh the value of 39 preserving a traditional culture against the material income of the people whose culture it is, or to 40 weigh the value of biodiversity against human wellbeing. Some economists claim that one person's 41 wellbeing cannot be weighed against another's (Robbins, 1937; Arrow, 1963). When values cannot 42 be determinately weighed, they are said to be 'incommensurable' or 'incomparable' (Chang, 1997). 43 Multi-Criteria Analysis (MCA) (discussed in Subsection 3.7.2.1) is a technique that is designed to 44 take account of several incommensurable values (De Montis et al., 2005; Zeleny and Cochrane, 45 1982).

1 **3.4.1** Non-human values

2 Nature provides great benefits to human beings, in ways that range from absorbing our waste, to

beautifying the world we inhabit. An increasing number of philosophers have argued in recent years

4 that nature also has value in its own right, independently of its benefits to human beings (Leopold,

5 1949; Palmer, 2011). They have argued that we should recognize animal values, the value of life

6 itself and even the value of natural systems and nature itself.

7 In moral theory, rational adult humans, who are self-conscious subjects of a life, are often taken

8 (following Kant, 1956) to have a kind of unconditional moral worth – sometimes called 'dignity' –

9 that is not found elsewhere on earth. Others believe that moral worth can be found elsewhere

10 (Dryzek, 1997). Many human beings themselves lack rationality or subjectivity, yet still have moral

11 worth – the very young, the very old and people with various kinds of impairment among them.

12 Given that, why deny moral worth to those animals that are to some extent subjects of a life, who

- 13 show emotional sophistication (Regan, 2004), and who experience pleasure, pain, suffering and joy
- 14 (Singer, 1993)?
- 15 An argument for recognizing value in plants as well as animals was proposed by Richard Routley
- 16 (1973). Routley gives the name 'human chauvinism' to the view that humans are the sole possessors
- of intrinsic value. He asks us to imagine that the last man on earth sets out to destroy every living
- 18 thing, animal or plant. Most people believe this would be wrong, but human chauvinists are unable
- 19 to explain why. Human chauvinism appears to be simply a prejudice in favour of the human species
- 20 (Routley and Routley, 1980). In contrast, some philosophers argue that value exists in the lives of all
- organisms, to the extent that they have the capacity to flourish (Taylor, 1986; Agar, 2001).
- 22 Going further, other philosophers have argued that biological communities and holistic ecological
- 23 entities also have value in their own right. Some have argued that a species has more value than all
- of its individuals have together, and that an ecosystem has still more value (Rolston, 1988, 1999;
- compare discussion in Brennan and Lo, 2010). It has further been proposed that, just as domination
- 26 of one human group by another is a moral evil, showing disrespect for the value of others, then so is
- 27 the domination of nature by humans in general. If nature and its systems have moral worth, then the
- domination of nature is also a kind of disrespect (Jamieson, 2010).
- 29 If animals, plants, species and ecosystems do have value in their own right, then the moral impact of

30 climate change cannot be gauged by its effects on human beings alone. If climate change leads to

- 31 the loss of environmental diversity, the extinction of plant and animal species, and the suffering of
- 32 animal populations, then it will cause great harms beyond those it does to human beings. Its effects
- 33 on species numbers, biodiversity and ecosystems may persist for a very long time, perhaps even
- 34 longer than the lifetime of the human species (Nolt, 2011).
- 35 It is very difficult to measure non-human values in a way that makes them commensurate with
- 36 human values. Economists address this issue by dividing value into use value (associated with actual
- use of nature instrumental value) and nonuse or existence value (intrinsic value of nature). As an
- example, biodiversity might have value because of the medical drugs which might be discovered
- among the diverse biota (use value). Or biodiversity might be valued by individuals simply because
- 40 they believe that biologic diversity is important, over and above any use to people that might occur.
- 41 The total amount people are willing to pay has sometimes been used as an economic measure of the
- 42 total value (instrumental and intrinsic) of these features (Aldred, 1994). As the discussion of the past
- 43 few paragraphs has suggested, nature may have additional value, over and above the values placed
- 44 by individual humans (Broome, 2009; Spash et al., 2009).

45 3.4.2 Cultural and social values

- 46 The value of human wellbeing is considered in Subsection 3.4.3 , but the human world may also
- 47 possess other values that do not form part of the wellbeing of individual humans. Living in a
- 48 flourishing culture and society contributes to a person's wellbeing (Kymlicka, 1995; Appiah, 2010),

- 1 but some authors claim that cultures and societies also possess values in their own right, over and
- above the contribution they make to wellbeing (Taylor, 1995). Climate change threatens damage to
- 3 cultural artefacts and to cultures themselves (Adger et al., 2012). Evidence suggests that it may
- 4 already be damaging the culture of Arctic indigenous peoples (Ford et al., 2006, 2008; Crate, 2008;
- 5 Hassol, 2004; see also WGII Chapter 12). Cultural values and indigenous peoples are discussed in
- 6 Subsection 3.10.2 .
- 7 The degree of equality in a society may also be treated as a value that belongs to a society as a
- 8 whole, rather than to any of the individuals who make up the society. Various measures of this value
- 9 are available, including the Gini coefficient and the Atkinson measure (Gini, 1912; Atkinson, 1970);
- 10 for an assessment see (Sen, 1973). Section 3.5 explains that the value of equality can alternatively
- be treated as a feature of the aggregation of individual people's wellbeings, rather than as social
- 12 value separate from wellbeing.

13 3.4.3 Wellbeing

- 14 Most policy concerned with climate change aims ultimately at making the world better for people to
- live in. That is to say, it aims to promote people's wellbeing. A person's wellbeing, as the term is
- used here, includes everything that is good or bad for the person everything that contributes to
- 17 making her life go well or badly. What things are those what constitutes a person's wellbeing? This
- 18 question has been the subject of an extensive literature since ancient times.⁷ One view is that a
- 19 person's wellbeing is the satisfaction of her preferences. Another is that it consists in good feelings
- 20 such as pleasure. A third is that wellbeing consists in possessing the ordinary good things of life, such
- as health, wealth, a long life, and participating well in a good community. The 'capabilities approach'
- in economics (Sen, 1999) embodies this last view. It treats the good things of life as 'functionings'
- and 'capabilities' things that a person does and things that she has a real opportunity of doing,
- such as living to old age, having a good job and having freedom of choice.
- A person's wellbeing will be affected by many of the other values that are mentioned above, and by
- 26 many of the considerations of justice mentioned in Section 3.3 . It is bad for a person to have her 27 rights infringed or to be treated unfairly, and it is good for a person to live within a healthy culture
- 27 rights infringed or to be treated unfairly, and it is good for a persor28 and society, surrounded by flourishing nature.
- 29 Various concrete measures of wellbeing are in use (Fleurbaey, 2009; Stiglitz et al., 2009). Each
- 30 reflects a particular view about what wellbeing consists in. For example, many measures of
- 31 'subjective wellbeing' (Oswald and Wu, 2010; Kahneman and Deaton, 2010) assume that wellbeing
- 32 consists in good feelings. Monetary measures of wellbeing, which are considered in Section 3.6,
- 33 assume that wellbeing consists in the satisfaction of preferences. Other measures assume wellbeing
- 34 consists in possessing a number of specific good things. The Human Development Index (HDI) is
- 35 intended to be an approximate measure of wellbeing understood as capabilities and functionings
- 36 (UNDP, 2010). It is based on three components: life expectancy, education and income. The
- 37 capabilities approach has inspired other measures of wellbeing too (Dervis and Klugman, 2011). In
- the context of climate change, many different metrics of value are intended to measure particular
- components of wellbeing: among them are the numbers of people at risk from hunger, infectious
- 40 diseases, coastal flooding, or water scarcity. These metrics may be combined to create a more
- 41 general measure. Schneider et al. (2000) advocates the use of a suite of five metrics: (1) monetary
- 42 loss, (2) loss of life, (3) quality of life (taking account of forced migration, conflict over resources,
- 43 cultural diversity and loss of cultural heritage sites), (4) species or biodiversity loss, and (5)
- 44 distribution and equity.

⁷For example: Aristotle, *Nicomachean Ethics*. Recent work includes: Griffin (1986); Sumner (1999); Kraut (2007).

1 **3.4.4 Aggregation of wellbeing**

2 Whatever wellbeing consists of, policy making must take into account the wellbeing of everyone in

3 the society. So the wellbeings of different people have somehow to be aggregated together. How do

4 they combine to make up an aggregate value of wellbeing for a society as a whole? Social choice

- 5 theory takes up this problem (Arrow, 1963; Sen, 1970). Section 3.6 will explain that the aim of
- 6 economic valuation is to measure aggregate wellbeing.
- 7 Assume that each person has a level of wellbeing at each time she is alive, and call this her 'temporal
- 8 wellbeing' at that time. In a society, temporal wellbeing is distributed across times and across the
- 9 people. When a choice is to be made, each of the options leads to a particular distribution. Our aim
- 10 is to assess the value of such distributions. Doing so involves aggregating wellbeings across times
- and across people, to arrive at an overall, social value for the distribution.

12 3.4.5 Lifetime wellbeing

- 13 Next let us assume that each person's temporal wellbeings can be aggregated to determine a
- 14 'lifetime wellbeing' for the person, and that the social value of the distribution depends only on
- 15 these lifetime wellbeings. This is the assumption that each person's wellbeing is 'separable', to use a
- 16 technical term. It allows us to split aggregation into two steps. First, we aggregate each person's
- 17 temporal wellbeings across the times in her life in order to determine her lifetime wellbeing. The
- 18 second step in the next subsection is to aggregate across individuals using a social welfare function.
- 19 On one account, a person's lifetime wellbeing is simply the total of her temporal wellbeings at each
- 20 time she is alive. If a person's wellbeing depended only on the state of her health, this formula
- would be equivalent to 'qalys' or 'dalys' (quality-adjusted life years or disability-adjusted life years),
- which are commonly used in the analysis of public health (Murray, 1994; Sassi, 2006). These
- 23 measures take a person's lifetime wellbeing to be the total number of years she lives, adjusted for
- her health in each year. Since wellbeing actually depends on other things as well as health, qalys or
- 25 dalys provide at best an approximate measure of lifetime wellbeing. If they are aggregated across
- 26 people by simple addition, it assumes implicitly that a year of healthy life is equally as valuable to
- 27 one person as it is to another. That may be an acceptable approximation for the broad evaluation of
- climate change impacts and policies, especially for evaluating their effects on health (Nord et al.,
- 29 1999; Mathers et al., 2009; but also see Currie et al., 2008).
- 30 Other accounts give either increasing, (Velleman, 1991) or alternatively decreasing, (Kaplow et al.,
- 2010) weight to wellbeing that comes in later years of life, in determining a person's lifetimewellbeing.
- 33 **3.4.6 Social welfare functions**
- 34 Once we have a lifetime wellbeing for each person, the next step is to aggregate these lifetime
- 35 wellbeings across people, to determine an overall value for society. This involves comparing one
- 36 person's wellbeing with another's. Many economists have claimed that interpersonal comparisons of
- 37 wellbeing are impossible.⁸ If they are right, the wellbeings of different people are incommensurable
- and cannot be aggregated. In this Section we set this view aside, and assume that temporal
- 39 wellbeings are measured in a way that is comparable across people.⁹ This allows us to aggregate

⁸ Examples are: Robbins (1937), Archibald (1959), Arrow (1963). A survey and discussion of this sceptical view appears in Hammond (1993).

⁹ Potential bases of interpersonal comparisons are examined in: Fleurbaey and Hammond (2004); Sen (1982); Elster and Roemer (1993); Mirrlees (1982); Broome, (2004); Arrow (1977); Harsanyi (1977); Adler (2011).

- different people's lifetime wellbeings through a social welfare function (SWF) to arrive at an overall 1 value or 'social welfare'.¹⁰ 2
- 3 We shall first consider SWFs under the simplifying but unrealistic assumption that the decisions that
- are to be made do not affect how many people exist or which people exist: all the options contain 4
- 5 the same people. A theorem of Harsanyi's (1955) gives some grounds for thinking that, given this
- 6 assumption, the SWF is additively separable between people. This means it has the form:
- 7 $V = v_1(w_1) + v_2(w_2) + \dots + v_j(w_j).$ Equation 3.4.1.
- 8 Here w_i is person i's lifetime wellbeing. This formula says that each person's wellbeing can be
- 9 assigned a value $v_i(w_i)$, and all these values – one for each person – are added up to determine the 10 social value of the distribution.
- 11 The proof of Harsanyi's Theorem depends on assumptions that can be challenged (Diamond, 1967;
- 12 Broome, 2004; Fleurbaey, 2010). So, although the additively separable form shown in Equation 3.4.1
- 13 is commonly assumed in economic valuations, it is not entirely secure. In particular, this form makes
- 14 it impossible to give any value to equality except indirectly through prioritarianism, which was
- 15 introduced in Subsection 3.3.2 and is defined below. The value of inequality cannot be measured
- 16 by the Gini coefficient, for example, since this measure is not additively separable (Sen, 1973).
- 17 It is often assumed that the functions v_i () all have the same form, which means that each person's 18 wellbeing is valued in the same way:

19 Equation 3.4.2. $V = v(w_1) + v(w_2) + \dots + v(w_j)$

- 20 Alternatively, the wellbeing of people who live later is sometimes discounted relative to the
- 21 wellbeing of people who live earlier; this implies that the functional form of $v_i()$ varies according to
- 22 the date when people live. Discounting of later wellbeing is often called 'pure' discounting. It is
- 23 discussed in Subsection 3.6.2 .
- 24 Even if we accept Equation 3.4.2, different ethical theories imply different SWFs. Utilitarianism 25 values only the total of people's wellbeing. The SWF may be written:
- 26 Equation 3.4.3. $V = W_1 + W_2 + \dots + W_l$
- 27 Utilitarianism gives no value to equality in the distribution of wellbeing: a given total of wellbeing 28 has the same value however unequally it is distributed among people.
- 29 But the idea of distributive justice mentioned in Subsection 3.3.3 suggests that equality of
- 30 wellbeing does have value. Equation 3.4.2 will give value to equality if the function v() is strictly
- 31 concave. This means the graph of v() curves downwards, as Figure 3.1 illustrates. (Subsection 3.6.1.1
- 32 explains that a person's wellbeing w_i is commonly assumed to be a strictly concave function of her
- 33 consumption, but this is a different point.) The resulting ethical theory is called prioritarianism. As
- 34 Figure 3.1 shows, according to prioritarianism, improving a person's wellbeing contributes more to
- 35 social welfare if the person is badly off than if she is well off. The prioritarian slogan is 'priority to the
- 36 worse off'. Prioritarianism indirectly gives value to equality: it implies that a given total of wellbeing 37
- is more valuable the more equally it is distributed (Sen, 1973; Weirich, 1983; Parfit, 1997). In
- 38 judgements about climate change, a prioritarian function will give relatively more importance to the
- 39 interests of poorer people and poorer countries.

¹⁰ A recent major study is Adler (2011).

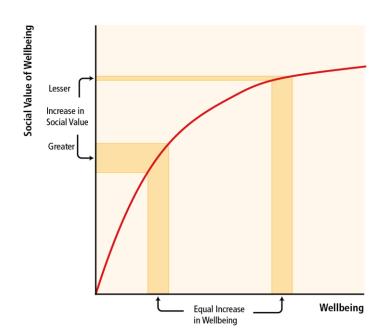


Figure 3.1. The prioritarian view of social welfare. The figure compares the social values of increases
in wellbeing for a better-off and a worse-off person.

5 3.4.7 Valuing population

The next problem in aggregating wellbeing is to take account of changes in population. Climate
change can be expected to affect the world's human population. Severe climate change might even
lead to a catastrophic collapse of the population (Weitzman, 2009), and even to the extinction of
human beings. Any valuation of the impact of climate change and of policies to mitigate climate
change should therefore take changes in population into account.

11 The utilitarian and prioritarian SWFs for a fixed population may be extended in a variety of ways to a 12 variable population. For example, the utilitarian function may be extended to 'average utilitarianism' 13 (Hurka, 1982), whose SWF is the average of people's wellbeing. Average utilitarianism gives no value 14 to increasing numbers of people. The implicit or explicit goal of a great deal of policy-making is to 15 promote per capita wellbeing (Hardin, 1968). This is to adopt average utilitarianism. This goal tends 16 to favour anti-natalist policies, aimed at limiting population. It would strongly favour population 17 control as a means of mitigating climate change, and it would not take a collapse of population to 18 be, in itself, a bad thing.

- 19 The utilitarian function may alternatively be extended to 'critical-level utilitarianism', whose SWF is 20 the total of the amount by which each person's wellbeing exceeds some fixed critical level. It is
- 21 Equation 3.4.4. $V = (w_1 c) + (w_2 c) + ... + (w_J c)$

where *c* is the critical level (Broome, 2004; Blackorby et al., 2005). Other things being equal, critical
 level utilitarianism favours adding people to the population if their wellbeing is above the critical
 level.

- ²⁵ 'Total utilitarianism' (Sidgwick, 1907) is critical-level utilitarianism with the critical level set to zero.
- 26 Its SWF is the total of people's wellbeing. Total utilitarianism is implicit in many Integrated
- 27 Assessment Models (IAMs) of climate change (e.g., Nordhaus, 2008). Its meaning is indeterminate
- 28 until it is settled which level of lifetime wellbeing to count as zero. Many total utilitarians set the
- 29 zero at the level of a life that has no good or bad experiences that is lived in a coma throughout,
- 30 for instance (Arrhenius, forthcoming). Since people on average lead better lives than this, total
- utilitarianism with this zero tends to be less anti-natalist than average utilitarianism. However, it
- does not necessarily favour increasing population. Each new person damages the wellbeing of

- 1 existing people, through her emissions of GHG, her other demands on Earth's limited resources, and
- 2 the emissions of her progeny. If the damage an average person does to others in total exceeds her
- 3 own wellbeing, total utilitarianism, like average utilitarianism, favours population control as a means
- 4 of mitigating climate change.¹¹
- 5 Each of the existing ethical theories about the value of population has intuitively unattractive
- 6 implications (Parfit, 1986). Average utilitarianism is subject to particularly severe objections.
- 7 Arrhenius (forthcoming) crystallizes the problems of population ethics in the form of impossibility
- 8 theorems. So far, no consensus has emerged about the value of population. Yet climate-change
- 9 policies are expected to affect the size of the world's population, and different theories of value
- 10 imply very different conclusions about the value of these policies. This is a serious difficulty for
- 11 evaluating policies aimed at mitigating climate change, which has largely been ignored in the
- 12 literature (Broome, 2012).

13 **3.5 Economics, rights and duties**

- 14 Sections 3.2, 3.3 and 3.4 have outlined some of the ethical principles that can guide decision-
- 15 making for climate change. The remainder of this Chapter is largely concerned with the concepts and
- 16 methods of economics. They can be used to aggregate values at different times and places, and
- 17 weigh aggregate value for different policy actions. They can also be used to draw information about
- value from the data provided by prices and markets. Economics can measure diverse benefits and
- 19 harms, taking account of uncertainty, to arrive at overall judgements of value. It also has much to
- 20 contribute to the choice and design of policy mechanisms, as Section 3.8 and later chapters show.
- 21 Valuations provided by economics can be used on a large scale: IAMs can be used to simulate the
- 22 evolution of the world's economy under different climate regimes and determine an economically
- 23 efficient reduction in GHG emissions. On a smaller scale, economic methods of CBA can be used in
- 24 choosing between particular policies and technologies for mitigation.
- 25 Economics is much more than a method of valuation. For example, it shows how decision making
- 26 can be decentralized through market mechanisms. This has important applications in policy
- 27 instruments for mitigation with potential for cost-effectiveness and efficiency (Chapters 6 and 15).
- 28 Economic analysis can also give guidance on how policy mechanisms for international cooperation
- on mitigation can be designed to overcome free-rider problems (Chapters 13 and 14). However, the
- 30 methods of economics are limited in what they can do. They can be based on ethical principles, as
- 31 Section 3.6 explains. But they cannot take account of every ethical principle. They are suited to
- 32 measuring and aggregating the wellbeing of humans, but not to taking account of justice and rights
- 33 (with the exception of distributive justice see below), or other values apart from human wellbeing.
- 34 Moreover, even in measuring and aggregating wellbeing, they depend on certain specific ethical
- assumptions. This Section describes the limits of economic methods.
- 36 Because of their limitations, economic valuations are often not on their own a good basis for
- 37 decision making. They frequently need to be supplemented by other ethical considerations. It is then
- 38 appropriate to apply techniques of multi-criteria analysis (MCA), discussed in Subsection 3.7.2.1
- 39 (Zeleny and Cochrane, 1982; Keeney and Raiffa, 1993; De Montis et al., 2005).

40 **3.5.1** Limits of economics in guiding decision making

- 41 Economics can measure and aggregate human wellbeing, but Sections 3.2, 3.3 and 3.4 explain
- 42 that wellbeing may be only one of several criteria for choosing among alternative mitigation policies.

¹¹ Harford (1998) shows that an additional person causes damage from her own emissions and the emissions of her children (and of their children, etc.). Kelly and Kolstad (2001) examine this issue in the specific context of climate change.

1 Other ethical considerations are not reflected in economic valuations, and those considerations may

- 2 be extremely important for particular decisions that have to be made. For example, some have
- 3 contended that countries that have emitted a great deal of GHG in the past owe restitution to
- 4 countries that have been harmed by their emissions. If so, this is an important consideration in
- 5 determining how much finance rich countries should provide to poorer countries to help with their
- 6 mitigation efforts. It suggests that economics alone cannot be used to determine who should bear 7
- the burden of mitigation.
- 8 What ethical considerations can economics cover satisfactorily? Since the methods of economics are 9 concerned with value, they do not take account of justice and rights in general. However,
- 10 distributive justice can be accommodated within economics, because it can be understood as a
- 11 value: specifically the value of equality. The theory of fairness within economics (Fleurbaey, 2008) is
- 12 an account of distributive justice. It assumes that the level of distributive justice within a society is a
- 13 function of the wellbeings of individuals, which means it can be reflected in the aggregation of
- 14 wellbeing. In particular, it may be measured by the degree of inequality in wellbeing, using one of
- 15 the standard measures of inequality such as the Gini coefficient (Gini, 1912), as discussed in the
- 16 previous Section. The Atkinson measure of inequality (Atkinson, 1970) is based on an additively
- 17 separable SWF, and is therefore particularly appropriate for representing the prioritarian theory
- 18 described in Subsection 3.4.6 . Furthermore, distributive justice can be reflected in weights
- 19 incorporated into economic evaluations as Section 3.6 explains.
- 20 Economics is not well suited to taking into account many other aspects of justice, including
- 21 compensatory justice. For example, a CBA might not show the drowning of a Pacific island as a big
- 22 loss, since the island has few inhabitants and relatively little economic activity. It might conclude
- 23 that more good would be done in total by allowing the island to drown: the cost of the radical action
- 24 that would be required to save the island by mitigating climate change globally would be much
- 25 greater than the benefit of saving the island. This might be the correct conclusion in terms of overall
- 26 aggregation of costs and benefits. But the island's inhabitants might have a right not to have their
- 27 homes and livelihoods destroyed as a result of the GHG emissions of richer nations far away. If that
- 28 is so, their right may override the conclusions of CBA. It may give those nations who emit GHG a duty
- 29 to protect the people who suffer from it, or at least to make restitution to them for any harms they
- 30 suffer.
- 31 Even in areas where the methods of economics can be applied in principle, they cannot be accepted
- 32 without question (Jamieson, 1992; Sagoff, 2008). Particular simplifying assumptions are always 33
- required, as shown throughout this Chapter. These assumptions are not always accurate or 34
- appropriate, and decision-makers need to keep in mind the resulting limitations of the economic
- 35 analyses. For example, climate change will shorten many people's lives. This harm may in principle
- 36 be included within a CBA, but it remains highly contentious how that should be done. Another
- 37 problem is that, because economics can provide concrete, quantitative estimates of some but not all
- 38 values, less quantifiable considerations may receive less attention than they deserve.
- 39 The extraordinary scope and scale of climate change raises particular difficulties for economic
- 40 methods (Stern, forthcoming). First, many of the common methods of valuation in economics are
- 41 best designed for marginal changes, whereas some of the impacts of climate change and efforts at
- 42 mitigation are not marginal (Howarth and Norgaard, 1992). Second, the very long time scale of
- 43 climate change makes the discount rate crucial at the same time as it makes it highly controversial
- 44 (see Subsection 3.6.2). Third, the scope of the problem means it encompasses the world's
- 45 extremes of wealth and poverty, so questions of distribution become especially important and
- 46 especially difficult. Fourth, measuring non-market values - such as the existence of species, natural
- 47 environments, or traditional ways of life of local societies – is fraught with difficulty. Fifth, the
- 48 uncertainty that surrounds climate change is very great. It includes the likelihood of irreversible
- 49 changes to societies and to nature, and even a small chance of catastrophe. This degree of
- 50 uncertainty sets special problems for economics (Nelson, 2013).

2 **Box 3.2** Who mitigates versus who pays?

3 To mitigate climate change, emissions of GHG will need to be reduced to a greater or lesser extent

4 world-wide. Economic analysis tells us that, for the sake of cost-effectiveness, the greatest

5 reductions should be made where they can be made most cheaply. Ideally, emissions should be

6 reduced in each place to just the extent that makes the marginal cost of further reductions the same

everywhere. One way of achieving this result is to have a carbon price that is uniform across the
 world; or it might be approximated by a mix of policy instruments (see Section 3.8).

9 Since, for efficiency, mitigation should take place where it is cheapest, emissions of GHG should be

10 reduced in many developing countries, as well as in rich ones. However, it does not follow that

11 mitigation must be paid for by those developing countries; rich countries may pay for mitigation that

- 12 takes place in poor countries. Financial flows between countries make it possible to separate the
- 13 question of where mitigation should take place from the question of who should pay for it. Because
- 14 mitigating climate change demands very large-scale action, if put in place these transfers might

15 become a significant factor in the international distribution of wealth. Provided appropriate financial

16 transfers are made, the question of where mitigation should take place is largely a matter for the

economic theory of efficiency, tempered by ethical considerations. But the distribution of wealth is a
 matter of justice among countries, and a major issue in the politics of climate change (Stanton,

19 2011).

20 It is partly a matter of distributive justice, which economics can take into account, but compensatory

21 justice may also be involved, an issue for ethics (Section 3.3).

22 **3.6 Aggregation of costs and benefits**

23 3.6.1 Aggregating individual wellbeing

24 Policies that respond to climate change almost always have some good and some bad effects; we say 25 they have 'benefits' and 'costs'. In choosing a policy, we may treat one of the available options as a 26 standard of comparison - for instance, the status quo. Other options will have costs and benefits 27 relative to this standard. Most mitigation strategies have costs in the present and yield benefits in 28 the future. Policy-making involves assessing the values of these benefits and costs and weighing 29 them against each other. Chapter 6 contains an example in which different mitigation strategies 30 yielding different temporal allocations of climate impacts are compared. The weighing of costs and 31 benefits need not be a precise process. Sections 3.2 and 3.4 explain that costs and benefits may be 32 values of very different sorts, which cannot be precisely weighed against each other. They may also 33 be very uncertain. 34 Nevertheless, the discipline of economics has developed methods for measuring numerically values

of one particular sort: human wellbeing. In this Section, we describe these methods; Section 3.5

36 explains their serious limitations. Economists often use money as their unit of measurement for

values, but not always. In health economics, for example, the unit of benefit for health care is often

the 'quality-adjusted life year' (qaly) (see Box 3.3). In economics, monetary measures of value are

used in cost-effectiveness analysis (see Weimer and Vining, 2010), in estimating the social cost of

40 carbon (see Subsection 3.9.4), in inter-temporal optimization within IAMs (e.g., Stern, 2007;

- 41 Nordhaus, 2008), in CBA and elsewhere.
- 42 Generally the overall value of aggregate wellbeing needs to be measured, and not merely the
- 43 wellbeing of each individual. A numerical measure of overall wellbeing may be based on ethical
- analysis, through a SWF of the sort introduced in Section 3.4 . This basis of valuation is described
- 45 here. The literature contains a putative alternative basis built on the 'potential Pareto criterion', but
- this is subject to severe objections (De Scitovszky, 1941; Gorman, 1955; Arrow, 1963, ch. 4; Boadway
- 47 and Bruce, 1984; Blackorby and Donaldson, 1990).

1 We take as our point of departure the formulation of the SWF in Equation 3.4.2, which is based on

2 assumptions described in Subsection 3.4.6. To these we now add a further assumption that times

are separable, meaning that the distribution of wellbeing can be evaluated at each time separately

- and its overall value is an aggregate of these separate 'snap-shot' values. A theorem of Gorman's
 (1968) ensures that social welfare then takes the fully additively separable form:
- 6 **Equation 3.6.1.** $V = \delta_1 V_1 + \delta_2 V_2 + ... + \delta_7 V_7$

7 where each V_t is the value of wellbeing at time t and is the total of the values of individual wellbeings 8 at that time. That is:

9 Equation 3.6.2. $V_t = v(w_{1t}) + v(w_{2t}) + \ldots + v(w_{lt})$.

10 Each w_{it} is the temporal wellbeing of person i at time t. Each δ_t is a 'discount factor', which shows 11 how wellbeing at time t is valued relative to wellbeing at other times.

12 The assumption that times are separable has some unsatisfactory consequences. First, it cannot give 13 value to equality between people's lives taken as a whole, but only to equality at each particular

14 time. Second, Equation 3.6.1 is inconsistent with average utilitarianism, or with valuing per capita

15 temporal wellbeing at any time, whereas per capita wellbeing is a common object of climate-change

- 16 policy. Third, Equation 3.6.1 makes no distinction between discounting within a single person's life
- 17 and intergenerational discounting. Yet a case can be made for treating these two sorts of
- discounting differently (Kaplow et al., 2010). Nevertheless, this assumption and the resulting
- 19 equation Equation 3.6.1 underlies the usual practice of economists when making valuations. First
- 20 they aggregate temporal wellbeing across people at each time to determine a snap-shot social value
- for each time. Then all these values are aggregated across times. This Section and the next describe
- the usual practice based on these equations.¹² The second step aggregation across time is
- considered in Subsection 3.6.1 . The rest of this Section considers the first step aggregation at
 time.

25 **3.6.1.1** *Monetary values*

- 26 Climate policies affect the wellbeing of individuals by changing their environment and their
- 27 individual consumption. The first step in a practical economic valuation is to assign a monetary value
- to the costs and benefits that come to each person at each time from the change. This value may be
- 29 either the amount of money the person is willing to pay for the change, or the amount she is willing
- 30 to accept as compensation for it. If the change is a marginal increase or decrease in the person's
- 31 consumption of a marketed commodity, it will be equal to the price of the commodity.
- 32 The effect of a change on the person's wellbeing is the monetary value of the change multiplied by
- 33 the rate at which money contributes to the person's wellbeing. This rate is the marginal benefit of
- 34 money or marginal utility of money to the person. It is generally assumed to diminish with increasing
- 35 income (Marshall, 1890; Dalton, 1920; Pigou, 1932, p. 89; Atkinson, 1970).
- 36 The effects of the change on each person's wellbeing at each time must next be aggregated across
- people to determine the effect on social value. Equation 3.6.2 shows how each person's wellbeing
- contributes to social value through the value function v(). The change in wellbeing must therefore be
- 39 multiplied by the marginal social value of wellbeing, which is the first derivative of this function. It is
- 40 an ethical parameter. According to utilitarianism, it is constant and the same for everyone.
- 41 According to prioritarianism, it diminishes with increasing wellbeing.

¹² An alternative approach does not assume separability of times. First it determines a lifetime wellbeing for each person in the way described in Subsection 3.4.5 . For instance, *i*'s lifetime wellbeing might be a discounted total of her temporal wellbeings. Then this approach aggregates across people using Equation 3.4.2. See Fullerton and Rogers (1993), Murphy and Topel (2006) and Kaplow et al. (2010).

In sum, the effect of a change in social value at a particular time is calculated by aggregating the 1 2 monetary value of the change to each person, weighted by the social marginal value of money to the 3 person, which is the product of the marginal benefit of money to her and the marginal social value of

- 4 her wellbeing (Fleurbaey, 2009). Since the marginal benefit of money is generally assumed to
- 5 diminish with increasing income, the marginal social value of money can be assumed to do the same.
- 6 Many practical CBAs value costs and benefits according to aggregated monetary values without any
- 7 weighting. The implicit assumption is that the marginal social value of money is the same for each
- 8 person. The consequence of omitting weights is particularly marked when applying CBA to climate 9
- change, where extreme differences in wealth between rich and poor countries need to be taken into 10 account. An example appeared in the Second Assessment Report of the IPCC (1995), where it
- considered the value of human life (see Box 3.3). The Report showed that the effect of ignoring 11
- 12 weighting factors would be to assign perhaps twenty times more value to an American life than to
- 13 an Indian life. Even within a single country, weighting makes a big difference. Drèze (1998) examines
- 14 the benefits of reducing pollution in Delhi and contrasts New Delhi, which is relatively rich, with
- 15 Delhi, which is relatively poorer. If the criterion is reducing pollution for the greatest number of
- 16 people, then projects in Delhi will be favoured; whereas projects in New Delhi will be favoured if the
- 17 criterion is unweighted net benefits.
- 18
- 19 Box 3.3 The value of life.
- 20 Climate change may shorten many people's lives, and mitigating climate change may extend many
- 21 people's lives. Lives must therefore be included in any CBA that is concerned with climate change.
- 22 The literature contains two different approaches to valuing a person's life. One is based on the
- 23 length of time the person gains if her life is saved, adjusted according to the quality of her life during
- 24 that time. This gives a measure of the value of life known as the galy (Sassi, 2006, pp. 402–408),
- 25 widely used to value lives in health economics and public health. For assessing the impact of climate
- 26 on human health and longevity, the World Health Organization uses the 'disability-adjusted life year'
- 27 (daly), which is similar (Mathers et al., 2009; for dalys see, Murray, 1994).
- 28 The other approach values the extension of a person's life on the basis of what she would be willing
- 29 to pay for it. In practice, this figure is usually derived from what she would be willing to pay for an
- 30 increased chance of having an extended life. If, say, a person is willing to pay \$100 to reduce her
- 31 chance of dying in a road accident from 2 in 10,000 to 1 in 10,000, then her willingness to pay (WTP)
- 32 for extending her life is $100 \times 10,000 = 1$ million. A WTP measure of the value of life is widely used in environmental economics (e.g., U.S. Environmental Protection Agency, 2010 Appendix B); it is 33
- 34 often known as a 'value of statistical life' (Viscusi and Aldy, 2003).
 - 35 The main differences between these approaches are:
 - 36 1. Since WTP is measured in money, it is immediately comparable with other values measured in 37 money. Qalys need to be assigned a monetary value to make them comparable (Mason et al., 38 2009).
- 39 2. The use of galys implies a theoretical assumption about the value of extending a life – that it is 40 proportional to the length of the extension, adjusted for quality – whereas WTP methods 41 generally leave it entirely to the individual to set a value on extending her own life (Broome, 42 1994).
- 43 3. Each measure implies a different basis for interpersonal comparisons of value. When galys are 44 aggregated across people by addition, the implicit assumption is that a year of healthy life has 45 the same value for each person. When WTP is aggregated across people by addition (without 46
- distributional weights), the implicit assumption is that a dollar has the same value for each

person. Neither assumption is accurate, but for comparisons involving very rich countries and
 very poor ones, the former seems nearer the truth (Broome, 2012, ch. 9).

3 The two approaches can converge. The text explains that distributional weights should be applied to

- 4 monetary values before they are aggregated, and this is true of WTP for extending life. If appropriate
- 5 weights are applied, WTP becomes more nearly proportional to galys. Indeed, if we adopt the
- assumption that a qaly has the same value for each person, we may use it to give us a basis for
- 7 calculating distributional weights to apply to money values (Somanathan, 2006). For example,
- 8 suppose WTP for a 30-year extension to healthy life in the United States is \$5 million, and in India it
- 9 is \$250,000; then, on this assumption, \$1 to an Indian has the same value as \$20 to an American.
- 10 Another example of a monetary measure of value that does not incorporate distributional weights is
- 11 GDP. To evaluate changes by their effect on GDP is, once again, to assume that the value of a dollar
- 12 to a rich person is the same as its value to a poor person (Schneider et al., 2000).
- 13 It is sometimes assumed that CBA is conducted against the background of efficient markets and an
- optimal redistributive taxation system, so that the distribution of income can be taken as ideal from
- society's point of view. If that were true, it might remove the need for distributional weights. But
- this is not an acceptable assumption for most projects aimed at climate change. Credit and risk-
- 17 sharing markets are imperfect at the world level, global coordination is limited by agency problems,
- 18 information is asymmetric, and no supra-national tax authority can reduce worldwide inequalities.
- 19 Furthermore, intergenerational transfers are difficult. In any case, the power of taxation to
- 20 redistribute income is limited because redistributive taxes create inefficiency (Mirrlees, 1971). Even
- 21 optimal taxation would therefore not remove the need for distributional weights. Thus, the
- 22 assumption that incomes are (second-best) optimally redistributed does not neutralize the argument
- 23 for welfare weights in aggregating costs and benefits.
- 24 The need for weights makes valuation more complicated in practice. The data available for costs and
- 25 benefits is generally aggregated across people, rather than separated for particular individuals. This
- 26 means that weights cannot be applied directly to individuals' costs and benefits, as they ideally
- 27 should be. This difficulty can be overcome by applying suitably calculated weights to the prices of
- commodities, calculated on the basis of income distribution of each commodity's consumers.¹³
- 29
- 30 **Box 3.4** Optimality versus Pareto improvement in climate change
- 31 The assessment of a change normally requires benefits to be weighed against costs. An exception is
- 32 a change known as a 'Pareto improvement' that benefits some people without harming anyone.
- 33 Climate change provides one possible example. GHG is an externality: a person whose activities emit
- GHG does not bear the full cost of her activities; some of the costs are borne by those who are
- harmed by the emissions. Consequently, climate change causes Pareto inefficiency, which means
- that a Pareto improvement would in principle be possible. Indeed it would be possible to remove the
- inefficiency in a way that requires no sacrifice by anyone in any generation, compared to Business-
- As-Usual. To achieve this result, the present generation must reallocate investment towards projects
- that reduce emissions of GHG, while maintaining its own consumption. Because it maintains its own
- 40 consumption, it makes no sacrifice. Because it reduces its conventional investment, it bequeaths less
- 41 conventional capital to future generations. Other things being equal, this would make future
- 42 generations less well off, but the reduction in emissions will more than compensate them for that
- 43 loss (Stern, forthcoming; Foley, 2009; Rezai et al., 2011).

¹³ The method is presented in Drèze and Stern (1989, pp. 909–989). Applications of distributional weights to climate change appear in Azar and Sterner (1996); and Fankhauser et al. (1997).

- 1 It is commonly assumed that climate change calls for sacrifices by the present generation for the
- 2 sake of future generations. The diagram illustrates why. The possibility frontier shows what
- 3 combinations of consumption are possible for present and future generations. Because of the
- 4 externality, Business-As-Usual lies below this frontier. The frontier can be reached by a Pareto
- 5 improvement. Contours of two different SWFs are shown. One SWF places more value than the
- 6 other on future consumption relative to present consumption. The two contours reflect in a purely
- 7 illustrative way SWFs that are implicit in Stern (2007) and Nordhaus (2008) respectively. The point
- 8 where a contour touches the possibility frontier is the social optimum according to that function.
- 9 Neither optimum is a Pareto improvement on Business as Usual. Although the inefficiency could be
- 10 removed without any sacrifices, the best outcomes described by both Stern and Nordhaus do
- 11 require a sacrifice by the present generation.
- 12 From an international rather than an intergenerational perspective, it is also true on the same
- 13 grounds that the inefficiency of climate change can be removed without any nation making a
- sacrifice (Posner and Weisbach, 2010). But it does not follow that this would be the best outcome.

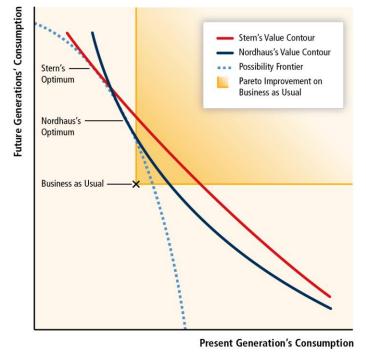


Figure 3.2. Illustrating optimality versus Pareto improvement in climate change.

17 **3.6.2** Aggregating costs and benefits across time

- 18 In climate change decisions, aggregating the pros and cons of alternative actions is particularly
- difficult because most benefits of mitigation will materialize only in the distant future. On the other
- 20 hand, the costs of mitigation are borne today. Using a discount rate can therefore make a big
- 21 difference in evaluating long-term projects or investments for climate change mitigation. For
- example, a benefit of \$1 million occurring in 100 years has a present value of \$369,000 if the
- discount rate is 1%, \$52,000 if it is 3%, and \$1,152 if it is 7%. An important debate in economics since
- AR4, spawned in part by the Stern (2007) Review, has centred on the discount rate that should be
- applied in evaluating climate change impacts and mitigation costs (Nordhaus, 2007; Stern, 2008;
- 26 Dasgupta, 2008; Smith, 2010; see also Quiggin, 2008).
- 27 A descriptive approach to discounting examines how human beings trade-off the present against
- 28 their own futures. It focuses on how individuals and markets make inter-temporal financial
- 29 decisions, as revealed by the market interest rate. A simple arbitrage argument favours using the
- 30 interest rate as the discount rate for climate policy decisions: if one reallocates capital from a safe
- 31 but marginal project (whose return must be equal to the interest rate) to a safe project with the

- 1 same maturity whose return is smaller than the interest rate, the net impact is null for the current
- 2 generation, and is negative for future generations. Thus, when projects are financed by a
- 3 reallocation of capital rather than an increase in aggregate saving (reducing consumption), the

4 discount rate should be equal to the shadow cost of capital.

- 5 Table 3.1 documents real returns on different classes of assets in western countries, including
- 6 government bonds, which are usually considered to be the safest, most risk-free assets. As can be

7 seen, these rates are close to zero.

Table 3.1: Real returns of financial assets. Source: Updated data from (Dimson, 2002), in Gollier
 (2012).

	Government Bills (maturity <1 year)			ent Bonds =10 years)	Equity	
	1900-2006	1971-2006	1900-2006	1971-2006	1900-2006	1971-2006
Australia	0.6%	2.5%	1.3%	2.8%	7.8%	6.3%
France	-2.9%	1.2%	-0.3%	6.6%	3.7%	7.8%
Japan	-2.0%	0.4%	-1.3%	3.9%	4.5%	5.0%
United Kingdom	1.0%	1.9%	1.3%	3.9%	5.6%	7.1%
USA	1.0%	1.3%	1.9%	4.0%	6.6%	6.6%

10 The same arbitrage argument could be used to discount risky projects. In that case, the discount rate

11 should be equal to the expected rate of return of traded assets with the same risk profile. For

12 example, if the project has the same risk profile as a diversified portfolio of equity, one should use

13 the expected rate of return of equity, as documented in

14 Table 3.1. It contains a relatively large equity premium.

- 15 This descriptive approach to the discount rate has many drawbacks. First, we should not expect
- 16 markets to aggregate preferences efficiently when some agents are not able to trade, as is the case
- 17 for future generations (Diamond, 1977). Second, current interest rates are driven by the potentially
- 18 impatient attitude of current consumers towards transferring their *own* consumption to the future.
- 19 But climate change is about transferring consumption across different people and generations, so
- 20 that determining the appropriate social discount rate is mostly a normative problem. Thirdly, we do
- 21 not observe safe assets with maturities similar to those of climate impacts, so the arbitrage
- 22 argument cannot be applied.
- 23 We now examine the problem of a social policy-maker who must make climate policy choices using a
- 24 SWF discussed earlier. In aggregating damages and costs over time, in order to make things
- comparable across long periods we value consumption changes in the future by equivalent changes
- in consumption today. These changes in the structure of consumption should be evaluated in
- 27 monetary terms using values described in Subsection 3.6.1.1 . The incorporation of the
- 28 intergenerational equity objective has challenged the traditional CBA approach for the evaluation of
- 29 climate change policies. Practitioners of CBA and evaluators are expected to use discount rates that
- are consistent with the pre-specified SWF that represents the society's intergenerational values, as
- in AR2 (1995). We simplify the model used in Subsection 3.6.1.1 by assuming only one generation
- 32 per period and only one consumer good. In an uncertain context, an action is socially desirable if it 33 raises the SWF given by Equation 3.6.1:
- 34 Equation 3.6.3. $V = \int_{t=0}^{\infty} e^{-\delta t} E u c_t ,$
- where $u c_t = v w c_t = V_t$ is the contribution to the SWF of generation t consuming c_t . Because c_t is uncertain, one should take the expectation $Eu c_t$ of this uncertain contribution. The concavity of
- function *u* combines prioritarism (inequality aversion) and risk aversion. Parameter δ measures our
- collective pure preference for the present, so that the discount factor $d = e^{-\delta t}$ decreases
- exponentially. δ is an ethical parameter that is not related to the level of impatience shown by

- 1 individuals in weighting their own future wellbeing (Frederick et al., 2002). Many authors have
- argued for a rate of zero or near-zero (Ramsey, 1928; Pigou, 1932; Harrod, 1949; Parfit, 1986;
- 3 Cowen, 1992; Schelling, 1995; Broome, 2004; Stern, 2008). Assuming δ >0 would penalize future
- 4 generations just because they are born later. Many regard such 'datism' to be as ethically
- 5 unacceptable as sexism or racism. Cowen (1992) points out that discounting violates the Pareto
- 6 principle for a person who might live either at one time or at a later time. Some have argued for a
- 7 positive rate (Dasgupta and Heal, 1980; Arrow, 1999). A traditional argument against a zero rate is
- 8 that it places an extremely heavy moral burden on the current generation (see, e.g., Dasgupta,
- 9 2007). But even when $\delta=0$, as we see below, we still end up with a discount rate of about 4%, which
- 10 is higher than it was during the last century. Stern (2008) used δ =0.1% to account for risk of
- extinction. We conclude that a broad consensus is for a zero or near-zero pure rate of time
 preference for the present.
- In a growing economy ($c_t > c_0$), investing for the future in a safe project has the undesirable effect
- 14 of transferring consumption from the poor (current generations) to the wealthy (future
- 15 generations). Thus, investing in safe projects raises intergenerational inequalities. The discount rate
- 16 can then be interpreted as the minimum rate of return that is necessary to compensate for this
- adverse effect on the SWF of investing for the future. This is summarized by the Ramsey rule (i.e. the
- 18 consumption approach to discounting) (Ramsey, 1928). Assuming a standard constant elasticity in
- 19 the consumption utility function (e.g., $u(c)=c^{1-\eta}/(1-\eta)$), and no uncertainty,¹⁴ the minimum rate of
- return ρ_t of a project that marginally transfers consumption from 0 to t and that guarantees an
- 21 increase of intergenerational welfare V is defined as follows:

22 Equation 3.6.4. $\rho_t = \delta + \eta g_t$

- 23 where δ represents the pure rate at which society discounts the utility of future generations, and g_t
- is the annualized growth rate of monetized consumption anticipated at date *t*, and $\eta > 0$ measures
- inequality aversion. The greater the anticipated economic growth rate g_t , the higher the social
- discount rate ρ_t . The growth rate g_t is an empirical variable that represents our collective beliefs
- about prospective economic growth. In Box 3.5, we discuss plausible values for the inequality
- 28 aversion parameter η .

¹⁴ For alternative assumptions, see Gollier (2002) .

Box 3.5 Plausible values for collective inequality aversion (η)

3 Consider the following thought experiment. A country has two equally populated social groups. The

4 wealthy group consumes twice as many goods and services as the poor group. Consider also an

- 5 economic policy whose aim is to increase consumption by 1 unit for every person in the poor group.
- 6 This implies a reduction of consumption for every wealthy person by x units, which may not be equal
- 7 to 1 owing to inherent inefficiencies in the tax system. If one is neutral about inequalities, one would
- 8 not accept this policy if x is larger than 1. Inequality aversion justifies accepting some productive
- 9 inefficiency, so that an x larger than 1 may be allowed. What is the maximum value of x that one
- would accept to implement the policy? Answering this question tells us something about inequality aversion, with a large x being associated with a larger n. If one is collectively ready to sacrifice as
- 12 aversion, with a large x being associated with a larger I. If one is conjectively ready to sacrifice as 12 much as x=2 units of consumption from the rich to provide one unit of consumption to the poor, this
- is compatible with an inequality aversion index η =1. An x of 4 or 8 would correspond to an index of
- 14 inequality aversion of 2 and 3, respectively.
- 15 Behind the veil of ignorance (Rawls, 1971), our collective preferences towards inequality should be
- 16 identified as our individual risk aversion. The economic literature in finance and macroeconomics
- 17 usually assumes a η between 1 and 5 to explain observed behaviours towards risk, as well as asset
- 18 prices (Kocherlakota, 1996).

19 By using a near-zero time discount rate, the Stern Report (2007, see also 2008) advanced the debate

in the literature. Despite disagreement on the empirical approach to estimating the discount rate,

21 the literature suggests consensus for using declining discount rates over time. Different prominent

authors and committees have taken different positions on the values of δ , η and g, making different

recommendations for the social discount rate *p*. We summarize them in Table 3.2.

- Rate of pure Implied Inequality Growth Author preference social aversion rate discount rate for present Cline (1992) 1% 1.5 0% 1.5% IPCC (1996) 0% 1.5-2 1.6% - 8% 2.4% - 16% Arrow (1999) 0% 2 2% 4% UK: Green Book (HM Treasury, 2003) 1.5% 1 2% 3.5% US UMB (2003)** 3% - 7% France: Rapport Lebègue (2005) 0% 2 2% 4%* Stern (2007) 0.1% 1 1.3% 1.4% Arrow (2007) 2-3 2-4 Dasgupta (2007) 0.1% 2 Weitzman (2007a) 2% 2% 6% 2 1% Nordhaus (2008) 2% 5%
- 24 **Table 3.2.** Calibration of the discount rate based on the Ramsey rule (Equation 3.6.4.)

25

*Decreasing with the time horizon. **OMB uses a descriptive approach.

- In Table 3.2, the Ramsey formula can be seen to yield a wide range of discount rates, although most
- 27 or all of the estimates reflect developed country experience. From this table and Box 3.5, a relative
- 28 consensus emerges in favour of δ =0 and η between 1 and 3, although they are prescriptive
- 29 parameters. This means that the normative Ramsey rule leads to a recommendation for a social
- discount rate of between one and three times the estimated growth rate in consumption between
- today and the relevant safe benefit or cost to be discounted. The social discount rate is normative
- 32 because it relies on the intensity of our collective inequality aversion. However, the practical
- coherence of our ethical principles requires that if one has high inequality aversion, one should also
- redistribute wealth more assiduously from the currently rich to the currently poor. Furthermore, it is
- 35 ultimately a judgement by the policymaker on the appropriate value of the parameters of the
- 36 Ramsey rule, and thus the social discount rate.

- 1 The discount rate described here should be used to discount risk-free costs and benefits (Anthoff et
- al., 2009). The rates that appear in Table 3.2 are higher than real interest rates observed on financial
- 3 markets, as documented in
- 4 Table 3.1. This discrepancy defines the risk-free rate puzzle (Weil, 1989). The recent literature on
- 5 discounting has tried to solve this puzzle by taking into account the uncertainty surrounding
- 6 economic growth. Prudent agents should care more about the future if the future is more uncertain,
- 7 in line with the concept of sustainable development. Assuming a random walk for the growth rate of
- 8 consumption per capita, this argument applied to Equation 3.6.4 leads to an extended Ramsey rule
- 9 in which a negative precautionary effect is added:

10 Equation 3.6.5. $\rho_t = \delta + \eta g_t - 0.5 \eta (\eta + 1) \sigma_t^2$

- 11 where σ_t is the annualized volatility of the growth rate of GDP/cap, and g_t is now the expected
- 12 annualized growth rate until time horizon *t*. In Table 3.3, we calibrate this formula for different
- 13 countries by using the estimation of the trend and volatility parameters of observed growth rates of
- 14 consumption per capita over the period 1969–2010, using η =2. We learn from this Table that the
- 15 Ramsey rule (Equation 3.4.1) often provides a good approximation of the social discount rate to be
- applied to consumption. It also shows that because of differences in growth expectations, nations
- 17 may have different attitudes towards reducing present consumption for the benefit of future
- 18 generations. This is also a further source of international disagreement on the strength of GHG
- 19 mitigation efforts. The global discount rate for evaluating global actions will therefore depend on
- 20 how costs and benefits are allocated across countries.¹⁵
- **Table 3.3.** Country-specific discount rate computed from the Ramsey rule (Equation 3.6.5) using the
- historical mean g and standard deviation σ of growth rates of real GDP/cap 1969-2010, together with

				Discount rate		
	Country	g	ь	Ramsey rule Equation 3.6.4	Extended Ramsey rule Equation 3.6.5	
Developed	United States	1.74%	2.11%	3.48%	3.35%	
Developed countries	United Kingdom	1.86%	2.18%	3.72%	3.58%	
	Japan	2.34%	2.61%	4.68%	4.48%	
-	China	7.60%	3.53%	15.20%	14.83%	
Emerging countries	India	3.34%	3.03%	6.68%	6.40%	
	Russia	1.54%	5.59%	3.08%	2.14%	
	Gabon	1.29%	9.63%	2.58%	-0.20%	
Africa	Zaire (RDC)	-2.76%	5.31%	-5.52%	-6.37%	
Ainca	Zambia	-0.69%	4.01%	-1.38%	-1.86%	
	Zimbabwe	-0.26%	6.50%	-0.52%	-1.79%	

23 $\delta = 0$, and $\eta = 2$. (Source: Gollier, 2012)

24

¹⁵ Table 3.3 is based on the assumption that the growth process is a random walk, so that the average growth rate converges to its mean in the very long run. It would be more realistic to recognize that economic growth has a much more uncertain nature in the long run: shocks on growth rates are often persistent, economies faces long-term cycles of uncertain length, and some parameters of the growth process are uncertain. Because these phenomena generate a positive correlation in future annual growth rates, they tend to magnify the uncertainty affecting the wellbeing of distant generations, compared to the random walk hypothesis of the extended Ramsey rule (Equation 3.6.5).

1 A prudent society should favour actions that generate more benefits for the generations that face

- 2 greater uncertainty, which justifies a decreasing term structure for risk-free discount rates (Gollier,
- 3 2012; Arrow et al., 2013; Weitzman, 2013). These results are related to the literature on Gamma
- discounting (Weitzman, 1998, 2001, 2010b; Newell and Pizer, 2003; Gollier and Weitzman, 2010). A
- 5 simple guideline emerging from this literature is that the long-maturity discount rate is equal to the
- 6 smallest discount rate computed from Equation 3.6.5 with the different plausible levels of its 7 parameters. For example, assuming n=2, if the trend of growth q_t is unknown but somewhere
- between 1% and 3%, a discount rate around 2 x mean (1%,3%)=4% is socially desirable in the short
- 9 term, although a discount rate of only 2 x min (1%,3%)=2% is desirable for very long maturities.
- 10 Accurate a constant rate of numerican for the present (actually ξ_{0}) these recommendations
- 10 Assuming a constant rate of pure preference for the present (actually δ =0), these recommendations
- 11 yield a perfectly time-consistent valuation strategy, although the resulting discount rates decrease
- with maturity. A time inconsistency problem arises only if we assume that the rate of pure
 preference for the present varies according to the time horizon. Economists have tended to focus on
- hyperbolic discounting and time inconsistency (Laibson, 1997) and the separation between risk
- aversion and consumption aversion fluctuations over time (Epstein and Zin, 1991). See Subsection
- 16 3.10.1 and Chapter 2.

17 The literature deals mainly with the rate at which safe projects should be discounted. In most cases, 18 however, actions with long-lasting impacts are highly uncertain, something that must be taken into 19 account in their evaluation. Actions that reduce the aggregated risk borne by individuals should be 20 rewarded and those that increase risk should be penalized. This has traditionally been done by 21 raising the discount rate of a project by a risk premium $\pi = \beta \pi_g$ that is equal to the project-specific risk 22 measure β times a global risk premium π_{g} . The project-specific beta is defined as the expected 23 increase in the benefit of the project when the consumption per capita increases by 1%. It measures 24 the additional risk that the action imposes on the community. On average, it should be around 1. As 25 we see from Table 3.3, the risk premium as measured by the difference between the rate of return 26 on bonds and the rate of return on equity is between 3% and 6%. A more normative approach 27 described by the consumption-based capital asset pricing model (Cochrane, 2001) would lead to a much smaller risk premium equalling $\pi_{qt} = \eta \sigma_t^2$ if calibrated on the volatility of growth in western 28 29 economies.¹⁶ However, Barro (2006, 2009) and Martin (2013) recently showed that the introduction 30 of rare catastrophic events – similar to those observed in some developing countries during the last 31 century - can justify using a low safe discount rate of around 1% and a large aggregate risk premium 32 of around 4% at the same time. The true discount rate to be used in the context of climate change 33 will then rely heavily on the climate beta. So far, almost no research has been conducted on the 34 value of the climate beta, that is, the statistical relationship between the level of climate damage 35 and the level of consumption per capita in the future. The exception is Sandsmark and Vennemo 36 (2006), who suggest that it is almost zero. But existing Integrated Assessment Models (IAMs) show 37 that more climate damage is incurred in scenarios with higher economic growth, suggesting that 38 combating climate change does not provide a hedge against the global risk borne by future 39 generations. Nordhaus (2011b) assumes that the actual damages borne by future generations are 40 increasing, so that the climate beta is positive, and the discount rate for climate change should be 41 larger than just applying the extended Ramsey rule. 42

Several authors (Malinvaud, 1953; Guesnerie, 2004; Weikard and Zhu, 2005; Hoel and Sterner, 2007;
Sterner and Persson, 2008; Gollier, 2010; Traeger, 2011; Guéant et al., 2012) emphasize the need to
take into account the evolution of relative prices in CBAs involving the distant future. In a growing
economy, non-reproducible goods like environmental assets will become relatively scarcer in the
future, thereby implying an increasing social value.

¹⁶ With a volatility in the growth rate of consumption per capita around $\sigma_t = 4\%$ (see Table 3.3), and a degree of inequality aversion of $\eta = 2$, we obtain a risk premium of only $\pi_{gt} = 0.32\%$.

1 **3.6.3 Co-benefits and adverse side effects**

2 This Section defines the concept of co-benefits and provides a general framework for analysis in

- 3 other chapters (a negative co-benefit is labelled an 'adverse side effect'). A good example of a co-
- 4 benefit in the literature is the reduction of local pollutants resulting from a carbon policy that
- 5 reduces the use of fossil fuels and fossil-fuel-related local pollutants (see sections 5.7 and 6.6.2.1). It
- 6 is also important to distinguish between co-benefits and the societal welfare consequences of
- 7 generated co-benefits. To use the same example, if local pollutants are already heavily regulated,
- 8 then the net welfare benefits of further reductions in local pollutants may be small or even negative.

9 **3.6.3.1** A general framework for evaluation of co-benefits and adverse side effects

10 As a simple example, suppose social welfare V is a function of different goods or objectives z_i 11 (i = 1, ..., m), and that each of those objectives might be influenced by some policy instrument, p_1 .¹⁷ 12 The policy may have an impact on several objectives at the same time. Now consider a marginal 13 change dp_1 in the policy. The welfare effect is given by:

14 Equation 3.6.6. $dV = \prod_{i=1}^{m} \frac{\partial V}{\partial z_i} \frac{\partial z_i}{\partial p_1} dp_1$

For example, suppose $dp_1 > 0$ is additional GHG abatement (tightening the cap on CO₂ emissions).

16 Then the 'direct' benefits of that climate policy might include effects on climate objectives, such as

- 17 mean global temperature (z_1) , sea level rise (z_2) , lost agricultural productivity (z_3) , lost biodiversity
- 18 (z_4) , and health effects of global warming (z_5) . The 'co-benefits' of that climate policy might include
- 19 changes in a set of objectives such as SO₂ emissions (z_6), energy security (z_7), labour supply and
- employment (z_8), the distribution of income (z_9), the degree of urban sprawl (z_{10}), and the
- sustainability of the growth of developing countries (z_{11}) . See Table 15.1 for an overview of objectives discussed in the sector chapters in the context of co-benefits and adverse side-effects.
- objectives discussed in the sector chapters in the context of co-benefits and adverse side-effects.
 The few studies that attempt a full evaluation of the global welfare effects of mitigation co-benefits
- focus only on a few objectives because of methodological challenges (as assessed in Section 6.6). For
- discussion of income distribution objectives, see the 'social welfare functions' in Subsection 3.4.6
- 26 Because this problem inherently involves multiple objectives, it can be analysed using Multi-Criteria
- 27 Analysis (MCA) that "requires policymakers to state explicit reasons for choosing policies, with

reference to the multiple objectives that each policy seeks to achieve" (Dubash et al., 2013, p. 47).

- 29 See also Subsection 3.7.2.1, Section 6.6 and (McCollum et al., 2012).
- 30 Even external effects on public health could turn out to be either direct benefits of climate policy or
- 31 co-benefits. The social cost of carbon includes the increased future incidence of heat stroke, heart
- 32 attacks, malaria and other warm climate diseases. Any reduction in such health-related costs of
- 33 climate change is therefore a direct benefit of climate policy. The definition of a co-benefit is limited
- to the effect of reductions in health effects caused by non-climate impacts of mitigation efforts.
- Use of the terminology should be clear and consistent. CBAs need to include *all* gains and losses
- from the climate policy being analysed as shown in Equation 3.6.6 the sum of welfare effects
- 37 from direct benefits net of costs, plus the welfare effects of co-benefits and adverse side-effects.
- Here, the co-benefit is defined as the effect on a non-climate objective $(\partial z_i / \partial p_1)$, leaving aside
- social welfare (not multiplied by $\partial V/\partial z_i$). In contrast, the 'value' of the co-benefit is the effect on
- 40 social welfare $(\partial V/\partial z_i)$, which could be evaluated by economists using valuation methods discussed
- 41 elsewhere in this Chapter.¹⁸ It may require use of a 'second-best' analysis that accounts for multiple

¹⁷ This *V* is a loose interpretation of a social welfare function, such as defined in Equation 3.6.2, insofar as welfare is not usually represented a function of policy objectives or aggregate quantities of goods.

¹⁸ We distinguish here between the welfare effect of the co-benefit $(\partial V/\partial z_i)$ and the welfare effect of the policy operating through a particular co-benefit $(\frac{\partial V}{\partial z_i} \frac{\partial z_i}{\partial p_1} dp_1)$.

- 1 market distortions (Lipsey and Lancaster, 1956). This is not a minor issue. In particular, $\partial V/\partial z_i$ may 2 be positive or negative.
- 3 The full evaluation of dV in the equation above involves four steps: first, identify the various
- 4 multiple objectives z_i (i = 1, ..., m) (see, e.g., Table 4.8.1 for a particular climate policy such as a CO₂
- 5 emissions cap); second, identify all significant effects on all those objectives (direct effects and co-
- 6 effects $\frac{\partial z_i}{\partial v_1}$, for i = 1, ..., m) (see Chapters 7–12); third, evaluate each effect on social welfare
- 7 (multiply each $\partial z_i / \partial p_1$ by $\partial V / \partial z_i$); and fourth, aggregate them as in Equation 3.6.6. Of course,
- 8 computing social welfare also has normative dimensions (see Subsection 3.4.6).

9 **3.6.3.2** The valuation of co-benefits and adverse side effects

10 The list of goods or objectives z_i (i = 1, ..., m) could include any commodity, but some formulations 11 allow the omission of goods sold in markets with no market failure or distortion, where the social 12 marginal benefit (all to the consumer) is equal to the social marginal cost (all on the producer). With 13 no distortion in a market for good i, a small change in quantity has no net effect on welfare 14 $(\partial V/\partial z_i = 0)$. The effect on welfare is *not* zero, however, if climate policy affects the quantity of a 15 good sold in a market with a 'market failure', such as non-competitive market power, an externality, 16 or any pre-existing tax. In general, either monopoly power or a tax would raise the price paid by 17 consumers relative to the marginal cost faced by producers. In such cases, any increase in the 18 commodity would have a social marginal benefit higher than social marginal cost (a net gain in

- 19 welfare).
- 20 We now describe a set of studies that have evaluated some co-benefits and adverse side effects
- 21 (many more studies are reviewed in sections 5.7, 7.9, 8.7, 9.7, 10.8, 11.7, 12.8 and synthesized in
- section 6.6). First, oligopolies may exert market power and raise prices above marginal cost in large
- industries such as natural resource extraction, iron and steel, or cement. And climate policy may
- affect that market power. Ryan (2012) finds that a prominent environmental policy in the United
- 25 States actually increased the market power of incumbent cement manufactures, because it
- 26 decreased competition from potential entrants that faced higher sunk costs. That is, it created
- barriers to entry. That effect led to a significant loss in consumer surplus that was not incorporated
- in the policy's initial benefit-cost analysis.
- 29 Second, Ren et al. (2011) point out that a climate policy to reduce CO₂ emissions may increase the
- 30 use of biofuels, but that "corn-based ethanol production discharges nitrogen into the water
- 31 environment ... [which] ... can cause respiratory problems in infants and exacerbate algae growth
- 32 and hypoxia in water bodies" (p. 498). In other words, a change in climate policy (dp_1) affects the
- use of nitrogen fertilizer and its runoff $(\partial z_i/\partial p_1)$. The effect is an 'adverse side effect.' If nitrogen
- runoff regulation is less than optimal, the effect on social welfare is negative $(\partial V / \partial z_i < 0)$.

35 Third, arguably the most studied co-benefits of climate policy are the effects on local air pollutant

- emissions, air quality, and health effects of ground-level ozone (see section 6.6 for a synthesis of
- findings from scenario literature and sector-specific measures). Burtraw et al. (2003) conclude that a
- 38 \$25 per tonne carbon tax in the United States would reduce NO_x emissions and thereby provide
- health improvements. Further, the researchers valued these health co-benefits at \$8 per tonne of
- 40 carbon reduction in the year 2010 (in 1997 dollars). More recently, Groosman et al. (2011) model a
- 41 specific U.S. climate policy proposal (Warner-Lieberman (S.2191)). They calculate effects on health
- 42 from changes in local flow pollutants (a co-benefit). These health co-benefits mainly come from
- 43 reductions in particulates and ozone, attributable to reductions in use of coal-fired power plants (Burthese at al. 2002, Greenware at al. 2014) ¹⁹ The authors also value that as here after a first (102 hillion
- 44 (Burtraw et al., 2003; Groosman et al., 2011).¹⁹ The authors also value that co-benefit at \$103 billion

¹⁹ Both of the cited studies estimate the dollar value of health improvements, but these are "'gross'" benefits that may or may not correctly account for the offsetting effects of existing controls on these local pollution emissions, which is necessary to determine the net welfare effects.

- 1 to \$1.2 trillion for the years 2010–2030 (in present value 2006 dollars). That total amount
- 2 corresponds to \$1 to \$77 per tonne of CO₂ (depending on model assumptions and year; see section
- 3 5.7 for a review of a broader set of studies with higher values particularly for developing countries).
- 4 Researchers have calculated climate policy co-benefits in many other countries; for instance,
- 5 Sweden (Riekkola et al., 2011), China (Aunan et al., 2004), and Chile (Dessus and O'Connor, 2003).
- 6 A complete analysis of climate policy would measure all such direct or side effects $(\partial z_i/\partial p_1)$ while
- 7 recognizing that other markets may be functioning properly or be partially regulated (for optimal
- 8 regulation, $\partial V/\partial z_i = 0$). If the externality from SO₂ is already partly corrected by a tax or permit
- 9 price that is less than the marginal environmental damage (MED) of SO₂, for example, then the
- 10 welfare gain from a small reduction in SO_2 may be less than its MED. Or, if the price per tonne of SO_2
- is equal to its MED, and climate policy causes a small reduction in SO₂, then the social value of that
 co-benefit is zero.²⁰ Similarly, if the labour market is functioning properly with no involuntary
- 13 unemployment, then climate policy may have direct costs from use of that labour but no welfare
- 14 gain from changes in employment. In other words, in measuring the welfare effects of co-benefits, it
- is not generally appropriate simply to use the gross marginal value associated with a co-benefit.
- 16 In the context of externalities and taxes, this point can be formalized by the following extension of 17 Fullerton and Metcalf (2001):

18 Equation 3.6.7. $dV = \prod_{i=1}^{m} (t_i - \mu_i) \frac{\partial z_i}{\partial p_1} dp_1$

- On the right side of the equation, μ_i is the MED from the i^{th} commodity; and t_i is its tax rate (or 19 20 permit price, or the effect of a mandate that makes an input such as emissions more costly). The 21 effect of each good on welfare $(\partial V/\partial z_i)$ in Equation 3.6.6 above) is reduced in this model to just 22 $(t_i - \mu_i)$. The intuition is simple: t_i is the buyer's social marginal benefit minus the seller's cost; the 23 externality μ_i is the social marginal cost minus the seller's cost. Therefore, $(t_i - \mu_i)$ is the social 24 marginal benefit minus social marginal cost. It is the net effect on welfare from a change in that 25 commodity. If every externality μ_i is corrected by a tax rate or price exactly equal to μ_i , then the 26 outcome is 'first best'. In that case, dV in Equation 3.6.7 is equal to zero, which means welfare 27 cannot be improved by any change in any policy. If any t_i is not equal to μ_i , however, then the 28 outcome is not optimal, and a 'second best' policy might improve welfare if it has any direct or 29 indirect effect on the amount of that good.
- 30 Although the model underlying Equation 3.6.7 is static and climate change is inherently dynamic, the
- 31 concepts represented in the static model can be used to understand the application to climate.
- 32 Climate policy reduces carbon emissions, but Equation 3.6.7 shows that this 'direct' effect does not
- add to social welfare unless the damage per tonne of carbon (μ_c) exceeds the tax on carbon (t_c).
- 34 The social cost of carbon is discussed in Subsection 3.9.4 . To see a co-benefit in this equation,
- suppose z_s is the quantity of SO₂ emissions, t_s is the tax per tonne, and μ_s is the MED of additional
- SO₂. If the tax on SO₂ is too small to correct for the externality ($t_s \mu_s < 0$), then the market provides 'too much' of it, and any policy such as a carbon tax that reduces the amount of SO₂
- provides 'too much' of it, and any policy such as a carbon tax that reduces the amount of SO₂ $(\partial z_s/\partial p_1 < 0)$ would increase economic welfare. The equation sums over all such effects in all
- 39 markets for all other inputs, outputs and pollutants.
- 40 If those local pollution externalities are already completely corrected by a tax or other policy 41 $(t_s = \mu_s)$, however, then a reduction in SO₂ adds nothing to welfare. The existing policy raises the 42 firm's cost of SO₂ emissions by exactly the MED. That firm's consumers reap the full social marginal 43 benefit per tonne of SO₂ through consumption of the output, but those consumers also pay the full
- 44 social marginal cost per tonne of SO_2 . In that case, one additional tonne of SO_2 has social costs

²⁰ This "marginal" analysis contemplates a small change in either CO_2 or SO_2 . If either of those changes are large, however, then the analysis is somewhat different.

- 1 exactly equal to social benefits, so any small increase or decrease in SO₂ emissions caused by climate
- 2 policy provides no net social gain. In fact, if $t_S > \mu_S$, then those emissions are already over-
- 3 corrected, and any decrease in SO₂ would reduce welfare.

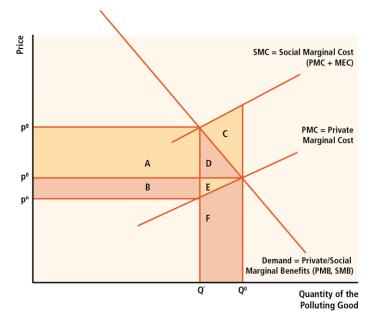
4 **3.6.3.3** The double dividend hypothesis

- 5 Another good example of a co-benefit arises from the interaction between carbon policies and other
- 6 policies (Parry, 1997; Parry and Williams, 1999). Though enacted to reduce GHG emissions, a climate
- 7 policy may also raise product prices and thus interact with other taxes that also raise product prices.
- 8 Since the excess burden of taxation rises more than proportionately with the size of the overall
- 9 effective marginal tax rate, the carbon policy's addition to excess burden may be much larger if it is
- 10 added into a system with high taxes on output or inputs.
- 11 This logic has given rise to the 'double dividend hypothesis' that an emissions tax can both improve
- 12 the environment and provide revenue to reduce other distorting taxes and thus improve efficiency
- 13 of the tax system (e.g., Oates and Schwab, 1988; Pearce, 1991; Parry, 1995; Stern, 2009).²¹ Parry
- 14 (1997) and Goulder et al. (1997) conclude that the implementation of a carbon tax or emissions
- trading can increase the deadweight loss of pre-existing labour tax distortions (the 'tax interaction effect'), but revenue can be used to offset distortionary taxes (the 'revenue recycling effect'). Parry
- effect'), but revenue can be used to offset distortionary taxes (the 'revenue recycling effect'). Parry and Williams (1999) investigate the impacts of existing tax distortions in the labour market for eight
- climate policy instruments (including energy taxes and performance standards) for the United States
- in 1995. They conclude that pre-existing tax distortions raise the costs of all abatement policies, so
- the co-benefits of carbon taxes or emissions trading depend on whether generated revenues can be
- directed to reduce other distortionary taxes. A lesson is that forgoing revenue raising opportunities
- 22 from a GHG regulation can significantly increase inefficiencies. The European Union is auctioning an
- 23 increasing share of permits with revenue going to Member States (see 14.4.2). Australia is using a
- 24 large share of carbon pricing revenue to reduce income tax (Jotzo, 2012).
- To put this discussion into the context of co-benefits, note that Fullerton and Metcalf (2001) use
- their version of Equation 3.6.7 to consider labour (z_L), taxed at a pre-existing rate t_L (with marginal
- external damages of zero, so $\mu_L = 0$). Suppose the only other distortion is from carbon emissions
- 28 (z_c), with MED of μ_c . Thus the economy has 'too little' labour supply, and 'too much' pollution. The
- combination 'policy change' is a small carbon tax with revenue used to cut the tax rate t_L . Other
- taxes and damages are zero ($t_i = \mu_i = 0$) for all goods other than z_L and z_C . Thus, Equation 3.6.7
- above simplifies further, to show that the two key outcomes are just the net effect on pollution (dz_c) and the net effect on labour (dz_L) :

33 Equation 3.6.8. $dV = t_L dz_L + (t_C - \mu_C) dz_C$

- 34 Therefore, an increase in the carbon tax that reduces emissions ($dz_c < 0$) has a direct benefit of increased economic welfare through the second term, but only to the extent that emissions 35 36 damages exceed the tax rate ($\mu_c > t_c$). If the labour tax cut increases labour supply, then the first 37 term also increases welfare (a double dividend). But the carbon tax also raises the cost of production 38 and the equilibrium output price, which itself reduces the real net wage (the tax interaction effect). 39 If that effect dominates the reduction in the labour tax rate (from the revenue recycling effect), then 40 labour supply may fall ($dz_L < 0$). In that case, the first term has a negative effect on wellbeing. In 41 other words, the double-dividend is possible under some circumstances and not others. If the 42 revenue is not used to cut the labour tax rate, then the real net wage does fall, and the labour supply 43 may fall.
 - ²¹ The literature contains two versions of the double dividend hypothesis. A "strong" version says that efficiency gains from diminishing distortionary taxes can more than compensate the costs of pollution taxes. Another "weak" version says that those gains compensate only part of the costs of pollution taxes (Goulder, 1995).

3.7 Assessing methods of policy choice


- 2 Specific climate policies are discussed in Section 3.8; in this Section, we discuss methods for
- evaluating the relative merits of different policies. See also Alkin (2004), Pawson and Tilley (1997),
- 4 Bardach (2005), Majchrzak (1984), Scriven (1991) Rossi et al. (2005) and Chen (1990). The design and
- 5 choice of a specific climate policy instrument (or mix of instruments) depends on many economic,
- 6 social, cultural, ethical, institutional and political contexts. Different methods for ex-ante and ex-post
- analysis are available and different types of analytical approaches may be used in tandem to provide
- 8 perspectives to policymakers.

9 3.7.1 Policy objectives and evaluation criteria

10 In addition to reducing GHG emissions, climate policy may have other objectives. Following AR4

- 11 (Gupta et al., 2007), these objectives are organized below in four broad categories: economic,
- 12 distributional/fairness, environmental, and institutional/political feasibility.22 The relative
- 13 importance of these policy objectives differs among countries, especially between developed and
- 14 developing countries.
- 15 In this Subsection we discuss elements of these four categories and expand on recent policy
- 16 evaluation studies (e.g., Opschoor and Turner, 1994; Ostrom, 1999; Faure and Skogh, 2003; Sterner,
- 17 2003; Mickwitz, 2003; Blok, 2007), leaving details of applications and evidence to Chapters 8–11 and
- 18 13–15.
- 19 The basic economic framework for policy analysis is depicted in Figure 3.3 (adapted from Fullerton
- 20 (2011)). This diagram illustrates both the impacts of policies and the criteria for evaluating them in
- 21 the context of the production of a polluting good (i.e., emissions associated with producing a good).
- 22 The focus is stylized, but we note that many 'non-economic' values can still be incorporated, to the
- 23 extent that values can be placed on other considerations, such as effects on nature, culture,
- biodiversity and 'dignity' (see Subsections 3.4.1 and 3.4.2).
- As shown in Figure 3.3, the quantity of GHG emissions from producing a good, such as electricity, is
- shown on the horizontal axis, and the price or cost per unit of that good is shown on the vertical axis.
- 27 The demand for the emissions is derived from the demand for electricity, as shown by the curve
- called Private Marginal Benefit (PMB). The private market supply curve is the Private Marginal Cost
- (PMC) of production, and so the unfettered equilibrium quantity would be Q^0 at equilibrium price P^0 .
- 30 This polluting activity generates external costs, however, and so each unit of output has a Social
- 31 Marginal Cost (SMC) measured by the vertical sum of PMC plus Marginal External Cost (MEC). With
- 32 no externalities on the demand side, PMB=SMB.

²² Political factors have often been more important than economic ones in explaining instrument choice (Hepburn, 2006). Redistribution to low-income households is an important feature in Australia's emissions pricing policy (Jotzo and Hatfield-Dodds, 2011).

1

Figure 3.3. A partial equilibrium model of the costs and benefits of a market output, assuming perfect competition, perfect information, perfect mobility, full employment and many identical consumers (so all individuals equally benefit from production and they equally bear the external cost of pollution).

5 Under the stated simplifying assumptions, the social optimum is where SMC=PMB, at Q'. The first

6 point here, then, is that the optimal quantity can be achieved by several different policies under

7 these simple conditions. A simple regulatory quota could restrict output from Q0 to Q', or a fixed

8 number of tradeable permits could restrict pollution to the quantity Q'. In that case, Pn is the

9 equilibrium price net of permit cost (the price received by the firm), while Pg is the price gross of

permit cost (paid by the consumer). The permit price is the difference, Pg - Pn. Alternatively, a tax of (Pg - Pn) per unit of pollution would raise the firm's cost to SMC and result in equilibrium quantity

12 Q'.

13 This diagram will be used below to show how the equivalence of these instruments breaks down

14 under more general circumstances, as well as gains and losses to various groups. In other words, we

use this diagram to discuss economic as well as distributional, other environmental and cultural

16 objectives, and institutional/political feasibility.

17 **3.7.1.1** Economic objectives

Economic efficiency. Consider an economy's allocation of resources (goods, services, inputs and productive activities). An allocation is efficient if it is not possible to reallocate resources so as to make at least one person better off without making someone else worse off. This is also known as

- the Pareto criterion for efficiency (discussed in Subsection 3.6.1) (see e.g., Sterner, 2003;
- Harrington et al., 2004; Tietenberg, 2006). In Figure 3.3, any reduction in output from Q⁰ improves
- efficiency because it saves costs (height of SMC) that exceed the benefits of that output (height of
- PMB).²³ This reduction can be achieved by a tax levied on the externality (a carbon tax), or by
- 25 tradeable emission permits. Further reductions in output generate further net gains, by the extent to
- which SMC exceeds SMB, until output is reduced to Q' (where SMC=SMB). Hence, the gain in
- economic efficiency is area C. Perfect efficiency is difficult to achieve, for practical reasons, but initial
- steps from Q^0 achieve a larger gain (SMC>SMB) than the last step to Q' (because SMC \approx SMB near the
- 29 left point of triangle C).

²³ Other approaches are discussed in Section 3.11.

- 1 An aspect of economic efficiency over time is the extent to which a carbon policy encourages the
- 2 right amount of investment in research, innovation and technological change, in order to reduce
- 3 GHG emissions more cheaply (Jung et al., 1996; Mundaca and Neij, 2009). See Section 3.11.
- 4 **Cost-effectiveness.** Pollution per unit of output in Figure 3.3 is fixed, but actual technologies provide
- 5 different ways of reducing pollution per unit of output. A policy is cost-effective if it reduces
- 6 pollution (given a climate target) at lowest cost. An important condition of cost-effectiveness is that
- 7 marginal compliance costs should be equal among parties (ignoring other distortions such as
- 8 regulations) (Babiker et al., 2004)).
- 9 **Transaction costs.** In addition to the price paid or received, market actors face other costs in
- 10 initiating and completing transactions. These costs alter the performance and relative effectiveness
- of different policies and need to be considered in their design, implementation and assessment
- 12 (Mundaca et al., 2013; see also Matthews, 1986, p. 906).

13 3.7.1.2 Distributional objectives

- 14 **Six distributional effects.** A policy may generate gains to some and losses to others. The fairness or
- 15 overall welfare consequences of these distributional effects is important to many people and can be
- 16 evaluated using a SWF, as discussed in Subsection 3.4.6 . They fall into six categories (Fullerton,
- 17 2011). In Figure 3.3, any policy instrument might reduce the quantity of polluting output, such as
- from Q^0 to Q', which reduces emissions, raises the equilibrium price paid by consumers (from P^0 to
- P^g), and reduces the price received by firms (from P^0 to P^n). The six effects are illustrated in Box 3.6.
- 20 The framework can be applied to any environmental problem and any policy to correct it.
- 21
- Box 3.6 Six distributional effects of climate policy, illustrated for a permit obligation or emissions tax
 on coal-fired electricity, under the assumption of perfectly competitive electricity markets.
- 24 First, the policy raises the cost of generating electricity and if cost increases are passed through to
- 25 consumers, for example through competitive markets or changes in regulated prices, the consumer's
- 26 price (from P⁰ to P^g), so it reduces consumer surplus. In Figure 3.3, the loss to consumers is the sum
- 27 of areas A+D. Losses are greater for those who spend more on electricity.
- 28 Second, it reduces the net price received by the firm (from P⁰ to Pⁿ), so it reduces producer surplus
- 29 by the sum of areas B+E. The effect is reduced payments to factors of production, such as labour and
- 30 capital. Losses are greater for those who receive more income from the displaced factor.
- 31 Third, pollution and output are restricted, so the policy generates 'scarcity rents' such as the value of
- 32 a restricted number of permits (areas A+B). If the permits are given to firms, these rents accrue to
- shareholders. The government could partly or fully capture the rents by selling the permits or by a
 tax per unit of emissions (Fullerton and Metcalf, 2001).
- Fourth, because the policy restricts GHG emissions, it confers benefits on those who would otherwise suffer from climate change. The value of those benefits is areas C+D+E.
- 37 Fifth, the electricity sector uses less labour, capital and other resources. It no longer pays them
- 38 (areas E+F). With perfect mobility, these factors are immediately redeployed elsewhere, with no
- loss. In practice however, social costs may be substantial, including transaction costs of shifting to
- other industries or regions, transitional or permanent unemployment, and social and psychological
 displacement.
- 42 Sixth, any gain or loss described above can be capitalized into asset prices, with substantial
- 43 immediate effects for current owners. For example, the value of a corporation that owns coal-fired
- 44 generation assets may fall, in line with the expected present value of the policy change, while the
- 45 value of corporations that own low-emissions generation technologies may rise.

- 1 The connection between these distributional effects and 'economic efficiency' is revealed by adding
- 2 up all the gains and losses just described: the consumer surplus loss is A+D; producer surplus loss is
- 3 B+E; the gain in scarcity rents is A+B; and the environmental gain is C+D+E, assuming the gainers and
- 4 losers receive equal weights. The net sum of the gains and losses is area C, described above as the
- 5 net gain in economic efficiency.
- 6 In many cases, a distributional implication of imposing efficient externality pricing (e.g., area A+B) is
- 7 much larger than the efficiency gains (area C). This illustrates the importance of distributional
- 8 considerations in discussions on emissions-reducing policies, and it indicates why distributional
- 9 considerations often loom large in debates about climate policy.
- 10 With reference to Box 3.6, the first effect of a carbon policy on consumers is generally regressive
- 11 (though most analyses are for developed countries), because the higher price of electricity imposes a
- 12 heavier burden on lower income groups who spend more of their income on electricity (Metcalf,
- 13 1999; Grainger and Kolstad, 2010). However, fuel taxes tend to be progressive in developing
- 14 countries (Sterner, 2011). The sign of the second effect, on factors of production, is generally
- ambiguous. The third effect is regressive if permits are given to firms, because then profits accrue to
- shareholders who tend to be in high-income brackets (Parry, 2004). But if government captures the
- 17 scarcity rents by selling permits or through a carbon tax, the funds can be used to offset burdens on
- 18 low-income consumers and make the overall effect progressive instead of regressive. Other effects
- are quite difficult to measure.
- 20 Much of the literature on 'environmental justice' discusses the potential effects of a pollution policy
- 21 on neighbourhoods with residents from different income or ethnic groups (Sieg et al., 2004). Climate
- 22 policies affect both GHG emissions and other local pollutants such as SO₂ or NO_x, whose
- 23 concentrations vary widely. Furthermore, the cost of GHG mitigation may not be shared equally
- 24 among all income or ethnic groups. And even 'global' climate change can have different temperature
- 25 impacts on different areas, or other differential effects (e.g., on coastal areas via rise in sea level).
- 26 The distributional impacts of policies include aspects such as fairness/ equity (Gupta et al., 2007). A
- perceived unfair distribution of costs and benefits could prove politically challenging (see below),
 since efficiency may be gained at the expense of equity objectives.

29 3.7.1.3 Environmental objectives

- 30 Environmental effectiveness. A policy is environmentally effective if it achieves its expected
- environmental target (e.g., GHG emission reduction). The simple policies mentioned above might be equally effective in reducing pollution (from Q^0 to Q' in Figure 3.3), but actual policies differ in terms
- 33 of ambition levels, enforcement and compliance.
- 34 **Co-benefits.** Climate policy may reduce both GHG emissions and local pollutants, such as SO₂
- emissions that cause acid rain, or NO_x emissions that contribute to ground level ozone. As described
- 36 in Subsection 3.6.3, reductions in other pollutants may not yield any net gain to society if they are
- 37 already optimally regulated (where their marginal abatement costs and their marginal damages are
- equal). If pollutants are inefficiently regulated, however, climate regulations can yield positive or
- 39 negative net social gains by reducing them.
- 40 Climate policy is also likely to affect other national objectives, such as energy security. For countries
- 41 that want to reduce their dependence on imported fossil fuels, climate policy can bolster energy
- 42 efficiency and the domestic renewable energy supply, while cutting GHG emissions. See Subsection
- 43 3.6.3 on co-benefits.
- 44 **Carbon leakage.** The effectiveness of a national policy to reduce emissions can be undermined if it
- 45 results in increased emissions in other countries, for example, because of trading advantages in
- 46 countries with more relaxed policies (see Subsection 3.9.5). Another type of leakage occurs within

emission trading systems. Unilateral emission reductions by one party will release emission permits
 and be outweighed by new emissions within the trading regime.

3 **3.7.1.4** Institutional and political feasibility

4 **Administrative burden.** This depends on how a policy is implemented, monitored, and enforced

5 (Nordhaus and Danish, 2003). The size of the burden reflects, inter alia, the institutional framework,

6 human and financial costs and policy objectives (Nordhaus and Danish, 2003; Mundaca et al., 2010).

7 Administrative costs in public policy are often overlooked (Tietenberg, 2006)

8 **Political feasibility** is the likelihood of a policy gaining acceptance and being adopted and

9 implemented (Gupta et al., 2007, p. 785). It covers the obstacles faced and key design features that

10 can generate or reduce resistance among political parties (Nordhaus and Danish, 2003). Political

11 feasibility may also depend on environmental effectiveness and whether regulatory and other costs

12 are equitably distributed across society (Rist, 1998). The ability of governments to implement

- 13 political decisions may be hampered by interest groups; policies will be more feasible if the benefits
- 14 can be used to buy the support of a winning coalition (Compston, 2010). *Ex ante*, these criteria can
- 15 be used in assessing and improving policies. *Ex post*, they can be used to verify results, withdraw
- 16 inefficient policies and correct policy performance. For specific applications, see Chapters 7-15.

17 **3.7.2** Analytical methods for decision support

18 Previous IPCC Assessment Reports have addressed analytical methods to support decision-making,

including both numerical and case-based methods. Bruce et al. (1996, chap. 2 and 10) focus heavily

20 on quantitative methods and IAMs. Metz et al. (2001) provide a wider review of approaches,

21 including emerging participatory forms of decision-making. Metz et al. (2007) briefly elaborate on

22 quantitative methods and list sociological analytical frameworks. In this Subsection, we summarize

23 the core information on methodologies separated into quantitative- and qualitative-oriented

24 approaches.

25 3.7.2.1 Quantitative-oriented approaches

26 In decision-making, quantitative methods can be used to organize and manage numerical

27 information, provide structured analytical frameworks, and generate alternative scenarios – with

different levels of uncertainty (Majchrzak, 1984). An approach that attempts to estimate and

aggregate monetized values of all costs and benefits that could result from a policy is CBA. It may

30 require estimating non-market values, and choosing a discount rate to express all costs and benefits

31 in present value. When benefits are difficult to estimate in monetary terms, a Cost-Effectiveness

32 Analysis (CEA) may be preferable. A CEA can be used to compare the costs of different policy options

33 (Tietenberg, 2006) for achieving a well-defined goal. It can also estimate and identify the lowest

possible compliance costs, thereby generating a ranking of policy alternatives (Levin and McEwan,

35 2001). Both CEA and CBA are similarly limited in their ability to generate data, measure and value

36 future intangible costs.

37 Various types of model can provide information for CBA, including energy-economy-environment

38 models that study energy systems and transitions towards more sustainable technology. A common

39 classification of model methodologies includes 'bottom-up' and 'top-down' approaches. 'Hybrids' of

40 the two can compensate for some known limitations and inherent uncertainties (Rivers and Jaccard,

41 **2006**):²⁴

²⁴ The literature acknowledges that it is difficult to make a clear classification among modelling approaches, as variations among categories and also alternative simulation methodologies do exist (e.g. macroeconometric Keynesian models, agent-based approaches) (Hourcade et al., 2006; Mundaca et al., 2010; Scrieciu et al., 2013).

 Given exogenously defined macroeconomic and demographic scenarios, 'bottom-up' models can provide detailed representations of supply- and demand-side technology paths that combine both cost and performance data. Conventional bottom-up models may lack a realistic representation of behaviour (e.g. heterogeneity) and may overlook critical market imperfections, such as transaction costs and information asymmetries (e.g.,Craig et al., 2002; DeCanio, 2003; Greening and Bernow, 2004).

7 By contrast, 'top-down' models, such as computable general equilibrium (CGE), represent 8 technology and behaviour using an aggregate production function for each sector to analyse 9 effects of policies on economic growth, trade, employment and public revenues (see, e.g., 10 DeCanio, 2003). They are often calibrated on real data from the economy. However, such 11 models may not represent all markets, all separate policies, all technological flexibility, and all 12 market imperfections (Laitner et al., 2003). Parameters are estimated from historical data, so 13 forecasts may not predict a future that is fundamentally different from past experience (i.e., 14 path dependency) (Scheraga, 1994; Hourcade et al., 2006). For potential technology change, 15 many models use sub-models of specific supply or end-use devices based on engineering data 16 (Jacoby et al., 2006; Richels and Blanford, 2008; Lüken et al., 2011; Karplus et al., 2013).

17 With CBA, it is difficult to reduce all social objectives to a single metric. One approach to dealing with 18 the multiple evaluation criteria is Multi-Criteria Analysis, or MCA (Keeney and Raiffa, 1993; Greening 19 and Bernow, 2004). Some argue that analysing environmental and energy policies is a multi-criteria 20 problem, involving numerous decision makers with diverse objectives and levels of understanding of 21 the science and complexity of analytical tools (Sterner, 2003; Greening and Bernow, 2004). The 22 advantage of MCA is that the analyst does not have to determine how outcomes are traded off by 23 the policy maker. For instance, costs can be separated from ecosystem losses. But even with MCA, 24 one must ultimately determine the appropriate trade-off rates among the different objectives. 25 Nevertheless, it can be a useful way of analysing problems where being restricted to one metric is 26 problematic, either politically or practically. CGE models can specify consumer and producer 27 behaviour and 'simulate' effects of climate policy on various outcomes, including real gains and 28 losses to different groups (e.g., households that differ in income, region or demographic 29 characteristics). With behavioural reactions, direct burdens are shifted from one taxpayer to another 30 through changes in prices paid for various outputs and received for various inputs. A significant 31 challenge is the definition of a 'welfare baseline' (i.e., identifying each welfare level without a 32 specific policy).

33 Integrated Assessment Models (IAMs) or simply Integrated Models (IAs) combine some or all of the 34 relevant components necessary to evaluate the consequences of mitigation policies on economic 35 activity, the global climate, the impacts of associated climate change and the relevance of that 36 change to people, societies and economies. Some models may only be able to represent how the 37 economy responds to mitigation policy and no more; some models may include a physical model of 38 the climate and be able to translate changes in emissions into changes in global temperature; some 39 models may also include a representation of the impacts of climate change; and some models may 40 translate those impacts into damage to society and economies. Models can be highly aggregate 41 (often termed "top-down") or detailed process analysis models ("bottom-up"), or a combination of 42 both (see also Chapter 6). Some IAMs relate climate change variables with other physical and 43 biological variables like crop yield, food prices, premature death, flooding or drought events, or land use change (Reilly et al., 2013). Computational limits may preclude the scales required for some 44 climate processes (Donner and Large, 2008),²⁵ but recent attempts are directed towards integrating 45 human activities with full Earth System models (Jones et al., 2013). All of the models used in WGIII 46

²⁵ Stanton et al. (2009) also place climate change models into categories (welfare maximization, general equilibrium, partial equilibrium, cost minimization and simulation models).

- 1 (primarily Chapter 6) focus on how mitigation policies translate into emissions; none of those models
- 2 have a representation of climate damages. IAMs have been criticized in recent years (e.g., Ackerman
- 3 et al., 2009; Pindyck, 2013). Much of the most recent criticism is directed at models that include a
- 4 representation of climate damage; none of the models used in Chapter 6 fall into this category. Refer
- 5 to Chapter 6 for more detail in this regard.
- 6 Other quantitative-oriented approaches to support policy evaluation include tolerable windows
- 7 (Bruckner et al., 1999), safe-landing/guard rail (Alcamo and Kreileman, 1996), and portfolio theory
- 8 (Howarth, 1996). Outside economics, those who study decision sciences emphasize the importance
- 9 of facing difficult value-based trade-offs across objectives, and the relevance of various techniques
- 10 to help stakeholders address trade-offs (see, e.g., Keeney and Raiffa, 1993).

11 **3.7.2.2** *Qualitative approaches*

- 12 Various qualitative policy evaluation approaches focus on the social, ethical and cultural dimensions
- 13 of climate policy. They sometimes complement quantitative approaches by considering contextual
- 14 differences, multiple decision makers, bounded rationality, information asymmetries and political
- and negotiation processes (Toth et al., 2001; Halsnæs et al., 2007). Sociological analytical
- approaches examine human behaviour and climate change (Blumer, 1956), including beliefs,
- 17 attitudes, values, norms and social structures (Rosa and Dietz, 1998). Focus groups can capture the
- 18 fact that "people often need to listen to others' opinions and understandings to form their own"
- 19 (Marshall and Rossman, 2006, p. 114). Participatory approaches focus on process, involving the
- active participation of various actors in a given decision-making process (van den Hove, 2000).
- 21 Participatory approaches in support of decision-making include appreciation-influence-control, goal
- oriented project planning, participatory rural appraisal, and beneficiary assessment. MCA can also
- take a purely qualitative form. For the pros and cons of participatory approaches, see Toth et al.
- 24 (2001, p. 652). Other qualitative-oriented approaches include systematic client consultation, social
- assessment and team up (Toth et al., 2001; Halsnæs et al., 2007).

26 **3.8 Policy instruments and regulations**

- 27 A broad range of policy instruments for climate change mitigation is available to policymakers. These
- 28 include economic incentives, such as taxes, tradeable allowances, subsidies; direct regulatory
- approaches, such as technology or performance standards; information programs; government
- 30 provision, of technologies or products; and voluntary actions.
- 31 Chapter 13 of AR4 provided a typology and definition of mitigation policy instruments. Here we
- 32 present an update on the basis of new research on the design, applicability, interaction and political
- economy of policy instruments, as well as on applicability of policy instruments in developed and
- 34 developing countries. For details about applications and empirical assessments of mitigation policy
- instruments, see Chapters 7–12 (sectoral level), Chapter 13 (international cooperation), Chapter 14
- 36 (regional cooperation) and Chapter 15 (national and sub-national policies).

37 3.8.1 Economic incentives

- 38 Economic (or market) instruments include incentives that alter the conditions or behaviour of target
- 39 participants and lead to a reduction in aggregate emissions. In economic policy instruments a
- 40 distinction is made between 'price' and 'quantity'. A tradeable allowance or permit system
- represents a quantity policy whereby the total quantity of pollution (a cap) is defined, and trading in
- 42 emission rights under that cap is allowed. A price instrument requires polluters to pay a fixed price
- 43 per unit of emissions (tax or charge), regardless of the quantity of emissions.

44 **3.8.1.1** Emissions taxes and permit trading

- 45 Both the approaches described above create a price signal as an incentive to reducing emissions,
- 46 which can extend throughout the economy. Economic instruments will tend to be more cost-

effective than regulatory interventions and may be less susceptible to rent seeking by interest
 groups. The empirical evidence is that economic instruments have, on the whole, performed better
 than regulatory instruments, but that in many cases improvements could have been made through

- 4 better policy design (Hahn, 1989; Anthoff and Hahn, 2010).
- 5
- 6 **Box 3.7** Equivalence of emissions taxes and permit trading schemes

7 Price-based and quantity-based instruments are equivalent under certainty, but differ in the extent 8 of mitigation and costs if emissions and abatement costs are uncertain to the regulator (Weitzman, 9 1974). Hybrid instruments, where a quantity constraint can be overridden if the price is higher or 10 lower than a threshold, have been shown to be more efficient under uncertainty (Roberts and 11 Spence, 1976; McKibbin and Wilcoxen, 2002; Pizer, 2002). Variants of hybrid approaches featuring 12 price ceilings and price floors have been implemented in recent emissions trading schemes 13 (Chapters 14 and 15). The possibility of periodic adjustments to tax rates and caps and their 14 implementation under permit schemes further breaks down the distinction between price-based 15 and quantity-based market-based instruments. 16 Equivalence also exists for fiscal effects and the costs imposed on emitters. Until recently, most of 17 the literature has assumed that emissions taxes and permit trading differ in the revenue they yield 18 for governments and the costs imposed on emitters, assuming that emissions tax revenue fully 19 accrues to governments while under emissions trading schemes permits are given freely to emitters. 20 This was also the case in early policy practice (Chapters 14 and 15). It has been widely assumed that 21 permit schemes are easier to implement politically because permits are allocated free to emitters. However, recognition has grown that permits can be wholly or partly auctioned, and that an 22 23 emissions tax need not apply to the total amount of emissions covered (e.g. Aldy J.E et al., 2010; 24 Goulder, 2013). Tax thresholds could exempt part of the overall amount of an emitter's liabilities, 25 while charging the full tax rate on any extra emissions, analogous to free permits (Pezzey, 2003; 26 Pezzey and Jotzo, 2012). Conversely, governments could auction some or all permits in an emissions 27 trading scheme, and use the revenue to reduce other more distorting taxes and charges (Subsection 28 3.6.3.3), assist consumers, or pay for complementary policies.

29 **3.8.1.2** Subsidies

- 30 Subsidies can be used as an instrument of mitigation policy by correcting market failures in the
- 31 provision of low-carbon technologies and products. They have a particular role in supporting new
- 32 technologies. Empirical research has shown that social rates of return on R&D can be higher than
- 33 private rates of return, since spillovers are not fully internalized by the firms (see 3.11).
- 34 Subsidies are also used to stimulate energy efficiency and renewable energy production. Such
- 35 subsidies do generally not fully correct negative externalities but rather support the alternatives, and
- 36 are less efficient alternatives to carbon taxes and emission trading for inducing mitigation. Energy
- 37 subsidies are often provided for fossil fuel production or consumption, and prove to increase
- emissions and put heavy burdens on public budgets (Lin and Jiang, 2011; Arze del Granado et al.,
- 2012; Gunningham, 2013). Lowering or removing such subsidies would contribute to global
- 40 mitigation, but this has proved difficult (IEA et al., 2011).
- 41 Subsidies to renewable energy and other forms of government expenditure on mitigation also have
- 42 other drawbacks. First, public funds need to be raised to finance the expenditures, with well-known
- 43 economic inefficiencies arising from taxation (Ballard and Fullerton, 1992). Second, subsidies, if not
- 44 correcting market failures, can lead to excessive entry into, or insufficient exit from, an industry
- 45 (Stigler, 1971). Third, subsidies can become politically entrenched, with the beneficiaries lobbying
- 46 governments for their retention at the expense of society overall (Tullock, 1975).

- 1 Hybrids of fees and subsidies are also in use. A renewable energy certificate system can be viewed as
- 2 a hybrid with a fee on energy consumption and a subsidy to renewable production (e.g., Amundsen
- 3 and Mortensen, 2001). Feebates (Greene et al., 2005) involve setting an objective, such as average
- 4 vehicle fuel economy; then firms or individuals that under-perform pay a fee per unit of under-
- 5 performance and over-performers receive a subsidy. The incentives may be structured to generate
- 6 no net revenue the fees collected finance the subsidy.

7 3.8.2 Direct regulatory approaches

- 8 Prescriptive regulation involves rules that must be fulfilled by polluters who face a penalty in case of
- 9 non-compliance. Examples are performance standards that specify the maximum allowable GHG
- 10 emissions from particular processes or activities; technology standards that mandate specific
- 11 pollution abatement technologies or production methods; and product standards that define the
- 12 characteristics of potentially polluting products, including labelling of appliances in buildings,
- 13 industry and the transport sector (Freeman and Kolstad, 2006).
- 14 These regulatory approaches will tend to be more suitable in circumstances where the reach or
- 15 effectiveness of market-based instruments is constrained because of institutional factors, including
- 16 lack of markets in emissions intensive sectors such as energy. In 'mixed economies', where parts of
- 17 the economy are based on command-and-control approaches while others rely on markets, effective
- 18 climate change mitigation policy will generally require a mix of market and non-market instruments.

19 3.8.3 Information programmes

- 20 Reductions in GHG emissions can also be achieved by providing accurate and comprehensive
- 21 information to producers and consumers on the costs and benefits of alternative options.
- 22 Information instruments include governmental financing of research and public statistics, and
- awareness-raising campaigns on consumption and production choices (Mont and Dalhammar, 2005).

24 **3.8.4** Government provision of public goods and services, and procurement

- 25 Government funding of public goods and services may be aimed directly at reducing GHG emissions,
- 26 for example, by providing infrastructures and public transport services that use energy more
- 27 efficiently; promoting R&D on innovative approaches to mitigation; and removing legal barriers
- 28 (Creutzig et al., 2011).

29 3.8.5 Voluntary actions

- 30 Voluntary agreements can be made between governments and private parties in order to achieve
- 31 environmental objectives or improve environmental performance beyond compliance with
- 32 regulatory obligations. They include industry agreements, self-certification, environmental
- 33 management systems, and self-imposed targets. The literature is ambiguous about whether any
- 34 additional environmental gains are obtained through voluntary agreements (Koehler, 2007; Lyon and
- 35 Maxwell, 2007; Borck and Coglianese, 2009).

36 **3.8.6 Policy interactions and complementarity**

- 37 Most of the literature deals with the use and assessment of one instrument, or compares alternative
- 38 options, whereas, in reality, numerous, often overlapping instruments are in operation (see Chapters
- 39 7–16). Multiple objectives in addition to climate change mitigation, such as energy security and
- 40 affordability and technological and industrial development, may call for multiple policy instruments.
- 41 Another question is whether and to what extent emissions pricing policies need to be
- 42 complemented by regulatory and other instruments to achieve cost-effective mitigation, for
- 43 example, because of additional market failures, as in the case of energy efficiency (Box 3.10) and
- 44 technological development (3.11.1).
- 45 However, the coexistence of different instruments creates synergies, overlaps and interactions that
- 46 may influence the effectiveness and costs of policies relative to a theoretical optimum (Kolstad et al.,

- 1 1990; see also section 3.6 above). Recent studies have analysed interactions between tradeable
- 2 quotas or certificates for renewable energy and emission trading (e.g., Möst and Fichtner, 2010;
- 3 Böhringer and Rosendahl, 2010) and emissions trading and tradeable certificates for energy
- 4 efficiency improvements (e.g., Mundaca, 2008; Sorrell et al., 2009) (see also Chapters 9 and 15).
- 5 Similar effects occur in the overlay of other selective policy instruments with comprehensive pricing
- 6 instruments. Policy interactions can also create implementation and enforcement challenges when
- 7 policies are concurrently pursued by different legal or administrative jurisdictions (Goulder and
- 8 Parry, 2008; Goulder and Stavins, 2011).

9 **3.8.7** Government failure and policy failure

10 To achieve large emissions reductions, policy interventions will be needed. But failure is always a

- possibility, as shown by recent experiences involving mitigation policies (Chapters 13–16). The
- 12 literature is beginning to reflect this. The failure of such policies tends to be associated with the
- 13 translation of individual preferences into government action.

14 3.8.7.1 Rent-seeking

- 15 Policy interventions create rents, including subsidies, price changes arising from taxation or
- 16 regulation and emissions permits. Private interests lobby governments for policies that maximize the
- 17 value of their assets and profits. The sums involved in mitigating climate change provide incentives
- 18 to the owners of assets in GHG intensive industries or technologies for low-carbon production to
- 19 engage in rent-seeking.²⁶
- 20 The political economy of interest group lobbying (Olson, 1971) is apparent in the implementation of
- 21 climate change mitigation policies. Examples include lobbying for allocations of free permits under
- the emissions trading schemes in Europe (Hepburn et al., 2006; Sijm et al., 2006; Ellerman, 2010)
- and Australia (Pezzey et al., 2010) as well as renewable energy support policies in several countries
 (Helm, 2010).
- 25 To minimize the influence of rent-seeking and the risk of regulatory capture, two basic approaches
- 26 have been identified (Helm, 2010). One is to give independent institutions a strong role, for example,
- 27 the United Kingdom's Committee on Climate Change (McGregor et al., 2012) and Australia's Climate
- 28 Change Authority (Keenan R.J et al., 2012) (see also Chapter 15).
- 29 Another approach to reducing rent-seeking is to rely less on regulatory approaches and more on
- 30 market mechanisms, which are less prone to capture by special interests because the value and
- distribution of rents is more transparent. This may of course lead to other problems associated with
- 32 regulatory design.

33 **3.8.7.2** Policy uncertainty

- 34 One aim of climate change mitigation policy is to promote emissions-reducing investments in sectors
- where assets have a long economic lifespan, such as energy (Chapter 7), buildings (Chapter 9) and
- transport (Chapter 8). Investment decisions are mainly based on expectations about future costs and
- 37 revenues. Therefore, expectations about future policy settings can be more important than current
- 38 policies in determining the nature and extent of investment for mitigation (Ulph, 2013).
- 39 Uncertainty over future policy directions, including changes in existing policies arising from, say,
- 40 political change, can affect investment decisions and inhibit mitigation, as well as create economic
- 41 costs (Weitzman, 1980; see also Chapter 2). To achieve cost-effective mitigation actions, a stable and
- 42 predictable policy framework is required.

²⁶ CBA takes into account that governments are social-profit maximizers, which may not necessarily be the case.

1 2

3

Box 3.8 Different conditions in developed and developing countries and implications for suitability of policy instruments

4 Differences in economic structure, institutions and policy objectives between low-income and high-5 income countries can mean differences in the suitability and performance of policy instruments. 6 Overriding policy objectives in most developing countries tend to be strongly oriented towards 7 facilitating development (Kok et al., 2008), increasing access to energy and alleviating poverty (see 8 Chapters 4 and 14). In general, they have fewer human and financial resources, less advanced 9 technology, and poorer institutional and administrative capacity than developed countries. This may 10 constrain their ability to evaluate, implement and enforce policies. Further, the prerequisites for 11 effectiveness, such as liberalized energy markets to underpin price-based emissions reduction 12 instruments, are often lacking. Thus, the use of some policy instruments, including carbon trading 13 schemes, can pose greater institutional hurdles and implementation costs, or not be feasible. Capacity building is therefore critical in creating mechanisms to support policy choices and 14 15 implementation. Economic reform may also be needed in order to remove distortions in regulatory 16 and pricing mechanisms and enable effective mitigation policies to be devised and implemented.

17 The opportunity cost of capital, and of government resources in particular, may be higher in

developing countries than in developed countries. Consequently, the payoff from mitigation policies

19 needs to be higher than in developed countries in order for mitigation investment to be judged

20 worthwhile. Thus, developing countries may require international financial assistance in order to

21 support their mitigation activities or make them economically viable.

22 **3.9 Metrics of costs and benefits**

23 This Section focuses on conceptual issues that arise in the quantification and measurement, using a 24 common metric, of the pros and cons associated with mitigation and adaptation (i.e., benefits and 25 costs). How costs are balanced against benefits in evaluating a climate policy is a matter for ethics, 26 as has repeatedly been emphasized in this Chapter. The discussion is largely based on the economic 27 paradigm of balancing costs against benefits, with both measured in monetary units. But leaving 28 aside monetary units, the underlying information can be helpful for policy makers who adopt other 29 ethical perspectives. This Section is also relevant for methods that reduce performance to a small 30 number of metrics rather than a single one (such as MCA).

- 31 We begin with the chain of cause and effect. The chain starts with human activity that generates 32 emissions which may be reduced with mitigation (recognizing that nature also contributes to 33 emissions of GHGs). The global emissions of GHGs lead to changes in atmospheric concentrations, 34 then to changes in radiative forcing, and finally to changes in climate. The latter affect biological and 35 physical systems in good as well as bad ways (including through impacts on agriculture, forests, 36 ecosystems, energy generation, fire and floods). These changes in turn affect human wellbeing, negatively or positively, with both monetary and other consequences.²⁷ Each link in the chain has a 37 38 time dimension, since emissions at a particular point in time lead to radiative forcing at future points 39 in time, which later lead to more impacts and damages. The links also have spatial dimensions. 40 Models play a key role in defining the relationships between the links in the chain. Global Climate 41 Models (GCMs) translate emissions through atmospheric concentrations and radiative forcing into 42 changes in climate. Other models - including crop, forest growth and hydrology models - translate
- 43 changes in climate into physical impacts. Economic models translate those impacts into measures

²⁷ We refer to effects on biological and physical systems as 'impacts', and effects of those impacts on human wellbeing as 'damages', whether positive or negative. These effects may include non-human impacts that are of concern to humans (see also Subsections 3.4.1 and 3.4.3).

- 1 that reflect a human perspective, typically monetary measures of welfare loss or gain. GCMs
- 2 aggregate emissions of various gases into an overall level of radiative forcing; hydrology models
- 3 aggregate precipitation at multiple locations within a watershed into stream flow at a given location;
- 4 economic models aggregate impacts into an overall measure of welfare loss.
- 5 Much of the literature on impacts focuses on particular types of impacts at particular locations.
- 6 Another aspect involves metrics that allow differential regulation of different GHGs. For instance,
- 7 the relative weight that regulators should place on CH_4 and CO_2 in mitigation strategies. Because
- 8 impacts and damages are so poorly known it has proved surprisingly difficult to provide a rigorous
- 9 answer to that question.

10 **3.9.1** The damages from climate change

11 The impacts of climate change may benefit some people and harm others. It can affect their

- 12 livelihood, health, access to food, water and other amenities, and natural environment. While many
- 13 non-monetary metrics can be used to characterize components of impacts, they provide no
- unambiguous aggregation methods for characterizing overall changes in welfare. In principle, the
- economic theory of monetary valuation provides a way, albeit an imperfect one, of performing this
- 16 aggregation and supporting associated policy-making processes.
- 17 Changes that affect human wellbeing can be 'market' or 'non-market' changes. Market effects
- involve changes in prices, revenue and net income, as well as in the quantity, quality or availability of
- 19 market commodities. Key is the ability to observe both prices and how people respond to them
- when choosing quantities to consume. Non-market changes involve the quantity, quality or
- availability of things that matter to people and which are not obtained through the market (e.g.,
- 22 quality of life, culture and environmental quality). A change in a physical or biological system can
- 23 generate both market and non-market damage to human wellbeing. For example, an episode of
- 24 extreme heat in a rural area may cause farm labourers heat stress and dry up a wetland that serves
- as a refuge for migratory birds, while killing some crops and impairing the quality of others. From an
- 26 economic perspective, damages would be conceptualized as a loss of income for farmers and farm
- 27 workers, an increase in crop prices for consumers and a reduction in their quality; and non-market
- impacts might include the impairment of the ecosystem and human health (though some health
- 29 effects may be captured in the wages of farm workers).
- Economists define value in terms of a 'trade-off'. As discussed in Subsection 3.6.1 , the economic value of an item, measured in money terms, is defined as the amount of income that would make a
- 32 person whole, either in lieu of the environmental change or in conjunction with the environmental
- 33 change; that is, its 'income equivalent'. This equivalence is evaluated through the Willingness To Pay
- 34 (WTP) and Willingness To Accept (WTA) compensation measures (see also Willig, 1976; Hanemann,
- 1991). The item in question may or may not be a marketed commodity: it can be *anything* that the
- 36 person values. Thus, the economic value of an item is *not* in general the same as its price or the total
- 37 expenditure on it. The economic concept of value based on a trade-off has some critics. The item
- being valued may be seen as incommensurable with money, such that no trade-off is possible. Or,
- the trade-off may be deemed inappropriate or unethical (e.g., Kelman, 1981; see also Jamieson,
- 40 1992; Sagoff, 2008). In addition, while the economic concept of value is defined for an individual, it is
- 41 typically measured for aggregates of individuals, and the issue of equity-weighting is often
- 42 disregarded (Nyborg, 2012 see also Subsection 3.5.1.3).²⁸

²⁸ The use of the term "willingness" in WTP and WTA should not be taken literally. For instance, individuals may have a willingness to pay for cleaner air (the reduction in income that would be equivalent in welfare terms to an increase in air quality) but they may be very unwilling to make that payment, believing that clean air is a right that should not have to be purchased.

- 1 The methods used to measure WTP and WTA fall into two categories, known as 'revealed
- 2 preference' and 'stated preference' methods. For a marketed item, an individual's purchase
- 3 behaviour reveals information about his value of it. Observation of purchase behaviour in the
- 4 marketplace is the basis of the revealed preference approaches. One can estimate a demand
- 5 function from data on observed choice behaviour. Then, from the estimated demand function, one
- 6 can infer the purchaser's WTP or WTA values for changes in the price, quantity, quality or availability
- of the commodity. Another revealed preference approach, known as the hedonic pricing method, is
 based on finding an observed relationship between the quality characteristics of marketed items and
- 9 the price at which they are sold (e.g., between the price of farmland and the condition and location
- 10 of the farmland). From this approach, one can infer the 'marginal' value of a change in
- 11 characteristics.²⁹ For instance, some have attempted to measure climate damages using an hedonic
- 12 approach based on the correlation of residential house prices and climate in different areas (Cragg
- and Kahn, 1997; Maddison, 2001, 2003; Maddison and Bigano, 2003; Rehdanz and Maddison, 2009).
- 14 The primary limitation of revealed preference methods is the frequent lack of a market associated
- 15 with the environmental good being valued.
- 16 With stated preference, the analyst employs a survey or experiment through which subjects are
- 17 confronted with a trade-off. With contingent valuation, for example, they are asked to choose
- 18 whether or not to make a payment, such as a tax increase that allows the government to undertake
- an action that accomplishes a specific outcome (e.g., protecting a particular ecosystem). By varying
- 20 the cost across subjects and then correlating the cost offered with the percentage of 'yes' responses,
- 21 the analyst traces out a form of demand function from which the WTP (or WTA) measure can be
- derived. With choice experiments, subjects are asked to make repeated choices among alternative
- 23 options that combine different outcomes with different levels of cost.³⁰ Although a growing number
- of researchers use stated preference studies to measure the public's WTP for climate mitigation, one
- 25 prominent criticism is the hypothetical nature of the choices involved.³¹
- 26 All these methods have been applied to valuing the damages from climate change.³² AR2 contained a
- 27 review of the literature on the economic valuation of climate change impacts. Since then, the
- 28 literature has grown exponentially. The economic methodology has changed little (except for more
- 29 coverage of non-market impacts and more use of stated preference). The main change is in the
- 30 spatial representation of climate change impacts; whereas the older literature tended to measure
- 31 the economic consequences of a uniform increase of, say 2.5°C across the United States, the recent
- 32 literature uses downscaling to measure impacts on a fine spatial scale. Most of the recent literature

²⁹ Details of these methods can be found in Becht (1995), chapters by McConnell and Bockstael (2006), Palmquist (2006), Phaneuf and Smith (2006), Mäler and Vincent (2005), or in textbooks such as Kolstad (2010), Champ, Boyle and Brown (2003), Haab and McConnell (2002) or Bockstael and McConnell (2007).

³⁰ Details can be found in Carson and Hanemann (2005), or in textbooks such as Champ, Boyle and Brown (2003), Haab and McConnell (2002) and Bennett and Blamey (2001).

³¹Examples include Berrens et al. (2004), Lee and Cameron (2008), Solomon and Johnson (2009), and Aldy et al. (2012) for the U.S.; Akter and Bennett (2011) for Australia; Longo et al. (2012) for Spain; Lee et al. (2010) for Korea; Adaman et al. (2011) for Turkey; and Carlsson et al. (2012) for a comparative study of WTP in China, Sweden and the US.

³² Other economic measures of damage are sometimes used that may not be appropriate. The economic damage is, in principle, the lesser of the value of what was lost or the cost of replacing it (assuming a suitable and appropriate replacement exists). Therefore, the replacement cost itself may or may not be a relevant measure. Similarly, if the cost of mitigation is actually incurred, it is a lower bound on the value placed on the damage avoided. Otherwise, the mitigation cost is irrelevant if nobody is willing to incur it.

on the economic valuations of climate change has focused on market impacts, especially impacts on 1 agriculture, forestry, sea level, energy, water and tourism.³³ 2

3 The most extensive economic literature pertains to agriculture. The demand for many such

4 commodities is often inelastic, so the short-run consequence of a negative supply shock is a price

- 5 increase; while a benefit to producers, it is harmful for consumers (Roberts and Schlenker, 2010;
- Lobell et al., 2011). Some studies measure the effect of weather on current profits, rather than that 6
- 7 of climate on long-term profitability (e.g., Deschênes and Greenstone, 2007), and some explore the
- 8 effect of both weather and climate on current profits (Kelly et al., 2005). Examining weather and
- 9 climate simultaneously leads to difficulties in identifying the separate effects of weather and climate
- 10 (Deschênes and Kolstad, 2011), as well as in dealing with the confounding effects of price changes
- 11 (Fisher et al., 2012). While some recent studies have found that extreme climate events have a
- 12 disproportionate impact on agricultural systems (Schlenker and Roberts, 2009; Lobell et al., 2011;
- 13 Deschênes and Kolstad, 2011; see also WGII, sec. 7.3.2.1), the relatively high degree of spatial or 14 temporal aggregation means that those events are not well captured in many existing economic
- 15 analyses. Another difficulty is the welfare significance of shifts in location of agricultural production
- 16 caused by climate. Markets for agricultural commodities are national or international in scope, so
- 17 some economic analyses focus on aggregate international producer and consumer welfare. Under
- 18 the potential Pareto criterion, transfers of income from one region to another are of no welfare
- 19 significance, though of real policy significance.³⁴
- 20 With other market sectors, the literature is both sparse and highly fragmented, but includes some
- 21 estimates of economic impacts of climate change on energy, water, sea level rise, tourism and
- 22 health in particular locations. With regard to energy, climate change is expected to reduce demand
- 23 for heating and increase demand for cooling (see WGII AR5, ch. 10). Even if those two effects offset
- 24 one another, the economic cost need not be negligible. With water supply, what matters in many
- 25 cases is not total annual precipitation but the match between the timing of precipitation and the
- 26 timing of water use (Strzepek and Boehlert, 2010). Those questions require analysis on a finer
- 27 temporal or spatial scale than has typically been employed in the economic damage literature.
- 28 Estimates of the economic costs of a rise in sea level generally focus on either the property damage 29
- from flooding or on the economic costs of prevention, for example, sea wall construction (Hallegatte
- 30 et al., 2007; Hallegatte, 2008; 2012). They sometimes include costs associated with the temporary 31 disruption of economic activity. They typically do not measure the loss of wellbeing for people
- harmed or displaced by flooding.³⁵ Similarly, the economic analyses of climate change impacts on 32
- 33 tourism have focused on changes, for example, in the choice of destination and the income from
- 34 tourism activities attributable to an increase in temperature, but not on the impacts on participants'
- wellbeing.36 35

³³While there is a large literature covering physical and biological impacts, except for agriculture and forestry only a tiny portion of the literature carries the analysis to the point of measuring an economic value. However, the literature is expanding. A Web of Knowledge search on the terms ("climate change" or "global warming") and "damage" and "economic impacts" returns 39 papers for pre-2000, 136 papers for 2000-2009 and 209 papers for 2010 through September 2013.

³⁴The same issue arises with the effects on timber production in a global timber market; see for example, Sohngen et al. (2001).

³⁵ Exceptions include Daniel et al. (2009) and Botzen and van den Bergh (2012). Cardoso and Benhin (2011) provide a stated preference valuation of protecting the Columbian Caribbean coast from sea level rise.

³⁶Exceptions include Pendleton and Mendelsohn (1998), Loomis and Richardson (2006), Richardson and Loomis (2004), Pendleton et al. (2011), Tseng and Chen (2008), and for commercial fishing, Narita et al (2012).

- 1 The economic metrics conventionally used in the assessment of non-climate health outcomes have
- also been used to measure the impact of climate on health (e.g., Deschênes and Greenstone, 2011;
- 3 Watkiss and Hunt, 2012). Measures to reduce GHGs may also reduce other pollutants associated
- 4 with fossil fuel combustion, such as NO_x and particulates, which lead to time lost from work and
- 5 reduced productivity (Östblom and Samakovlis, 2007). Exposure to high ambient temperatures is
- 6 known to diminish work capacity and reduce labour productivity.³⁷

7 3.9.2 Aggregate climate damages

- 8 This Subsection focuses on the aggregate regional and global economic damages from climate
- 9 change as used in IAMs to balance the benefits and costs of mitigation on a global scale.
- 10 The first estimates of the economic damage associated with a specific degree of climate change
- were made for the United States (Smith and Tirpak, 1989; Nordhaus, 1991; Cline, 1992; Titus, 1992;
- 12 Fankhauser, 1994). These studies involved static analyses estimating the damage associated with a
- particular climate end-point, variously taken to be a 1°C, 2.5°C or 3°C increase in global average
- annual temperature. This approach gave way to dynamic analyses in IAMs that track economic
- 15 output, emissions, atmospheric CO_2 concentration and damages. Because IAMs examine costs and
- 16 benefits for different levels of emissions, they need damage 'functions' rather than point estimates.
- 17 Three IAMs have received most attention in the literature, all developed in the 1990s. The DICE
- 18 model was first published in Nordhaus (1993a; b) but had its genesis in Nordhaus (1977); its
- 19 regionally disaggregated sibling RICE was first published by Nordhaus and Yang (1996).³⁸ The FUND
- 20 model was first published in Tol (1995). And the PAGE model, developed for European decision
- makers, was first published in Hope et al. (1993) and was used in the Stern (2007) review.³⁹ The
- 22 models have undergone various refinements and updates.⁴⁰ While details have changed, their
- 23 general structure has stayed the same, and questions remain about the validity of their damage
- 24 functions (see Pindyck, 2013).
- 25 The IAMs use a highly aggregated representation of damages. The spatial unit of analysis in DICE is
- the entire world, whereas it is divided into 12 broad regions in RICE, 16 regions in FUND, and eight in
- PAGE. DICE and RICE have a single aggregate damage function for the change in global or regional
- GDP as a function of the increase in global average temperature, here denoted ΔT_t , and sea-level rise
- 29 (which in turn is modelled as a function of ΔT_t). PAGE has four separate damage functions for 30 different turns of damages in each region comparison and set and set of the set o
- different types of damages in each region: economic, non-economic, sea-level rise, and climate discontinuity (as a function of ΔT_t and the derivative rise in sea level). FUND has eight sectoral
- discontinuity (as a function of ΔT_t and the derivative rise in sea level). FUND has eight sectoral
- 32 damage functions for each region, with each damage dependent on the regional ΔT_t and, in some 33 cases, the rate of change in ΔT_t . Adaptation and catastrophic damage are included in a very simple
- 34 way in some models (Greenstone et al., 2013).

⁴⁰ The most recent versions are: DICE2013 (Nordhaus and Sztorc, 2013); RICE2010 (Nordhaus, 2010); PAGE 2009 (Hope, 2011, 2013); FUND 3.7 (Anthoff and Tol, 2013).

³⁷ See Kjellstrom et al. (2009), Zivin and Neidell (2010), or Dunne et al (2013). Some recent studies have focused on the correlation between high temperatures and poverty (Nordhaus, 2006), the link between fluctuations in temperature, cyclones and fluctuations in economic activity (Dell et al., 2009, 2012; Hsiang, 2010), and the connection between climate change and human conflict (Hsiang et al., 2013).

³⁸ There are many extensions of DICE, including AD-DICE (de Bruin et al., 2009), with a more explicit treatment of adaptation.

³⁹ Some other IAMs have damage functions, including the MERGE Model (Manne and Richels, 1992, 1995, 2004a); the CETA model (Peck and Teisberg, 1992, 1994); and, more recently, several IAMs developed by European researchers including the WITCH model (Bosetti et al., 2006), its extension the AD-WITCH model (Bosello et al., 2010), the ENVISAGE model (Roson and Mensbrugghe, 2012), and a model developed by Eboli et al. (2010) and Bosello et al. (2012).

- Let D_{jkt} denote damages of type *j* in year *t* and region *k*, expressed as a proportion of per capita GDP in that year and region, Y_{kt} . The damage functions, say $D_{jkt} = D_{jkt}(\Delta T_t)$ are calibrated based on: (1) the modeller's choice of a particular algebraic formula for $D_{jkt}(\Delta T_t)$: (2) the common assumption of zero damage at the origin $[D_{jkt}(0)=0]$; and (3) the modeller's estimate of damages at a benchmark change
- 5 in global average temperature, ΔT^* (typically associated with a doubling of atmospheric CO₂). For
- 6 example, in PAGE and DICE the damage function resolves into a power function:

7 Equation 3.9.1. $D_{jt} = a_j [\Delta T_t / \Delta T^*]^b Y_t$

- 8 where *b* is a coefficient estimated or specified by the modeller, and a_j is the modeller's estimate of
- 9 the economic damage for the benchmark temperature change.⁴¹ In DICE, b = 2 is chosen.⁴² In PAGE,
- 10 *b* is a random variable between 1.5 and 3. In FUND, the damage functions are deterministic but have

a slightly more complicated structure and calibration than in Equation 3.9.1.

- 12 Because each damage function is convex (with increasing marginal damage), the high degree of
- 13 spatial and temporal aggregation causes the model to understate aggregate damages. This can be 14 seen by representing the spatial or temporal distribution of warming by a mean and variance, and
- 15 writing expected damages in a second order expansion around the mean.
- 16 A concern may be whether the curvature reflected in Equation 3.9.1 is adequate. The functions are
- calibrated to the typical warming associated with a doubling of CO₂ concentration, along with
- associated damage. The aggregate damage is based on heroic extrapolations to a regional or global
- 19 scale from a sparse set of studies (some from the 1990s) done at particular geographic locations. The
- impacts literature is now paying somewhat more attention to higher levels of warming (New et al.
- (2011), World Bank (2012), and WG2 sec. 19.5.1), though estimates of monetary damage remain
 scarce (however, the literature is expanding rapidly). Another concern is the possibility of tipping
- points and extreme events (Lenton et al., 2008), possibly including increases in global temperature
- 24 as large as $10-12^{\circ}$ C that are not always reflected in the calibration (Sherwood and Huber, 2010).
- 25 The economic loss or gain from warming in a given year typically depends on the level of warming in
- that same year, with no lagged effects (at least for damages other than sea-level rise in DICE, the
- 27 non-catastrophe component of damages in PAGE, and some sectors of FUND). Thus, impacts are (a)
- reversible, and (b) independent of the prior trajectory of temperatures. This assumption simplifies
- the computations, but some impacts and damages may actually depend on the rate of increase in temperature.⁴³ The optimal trajectory of mitigation and the level of damages could also depend on
- the cumulative amount of warming in previous years (measured, say, in degree years).
- DICE, FUND and PAGE represent damage as a change in production of market commodities that is
 proportional to output (a 'multiplicative' formulation). Weitzman (2010a) finds that this specification
- matters with high levels of warming because an additive formulation leads to more drastic emission
- reduction. Besides affecting current market production, climate change could damage natural,
- human or physical capital (e.g., through wildfires or floods). Damage to capital stocks may last
- 37 beyond a year and have lingering impacts that are not captured in current formulations (Wu et al.,
- 2011). Economic consequences depend on what is assumed about the elasticity of substitution in
- 39 the utility function between market commodities and non-market climate impacts. An elasticity of
- 40 substitution of unity is equivalent to the conventional multiplicative formulation, but a value less
- than unity, generates a more drastic trajectory of emission reductions (Krutilla, 1967; Sterner and
- 42 Persson, 2008).
 - ⁴¹ Typically, ΔT^* is 2.5 or 3 °C. When $\Delta T_t = \Delta T^*$ in this equation, then $D_{jt} = a_j Y_t$.
 - ⁴² This formulation is also used by Kandlikar (1996a) and Hammitt et al. (1996a) with b = 1, 2 or 3.
 - ⁴³ This rate of change was considered by Manne and Richels (2004a) in MERGE and by Peck and Teisberg (1994) in CETA. The latter found that it can have quite a large effect on the size of the optimal carbon tax.

- 1 The utility function in these three IAMs does not distinguish between the welfare gains deriving from
- 2 risk reduction when people are risk averse versus the gains from smoothing consumption over time
- when people have declining marginal utility of income: both preferences are captured by the
- 4 curvature of the utility function as measured by η , in Equation 3.6.4. However, Kreps and Porteus
- 5 (1978) and Epstein and Zin (1991) show that two separate functions can have separate parameters 6 for risk aversion and inter-temporal substitution. This formulation is used successfully in the finance
- for risk aversion and inter-temporal substitution. This formulation is used successfully in the finance
 literature to explain anomalies in the market pricing of financial assets, including the equity premium
- (Campbell, 1996; Bansal and Yaron, 2004). The insight from this literature is that the standard model
- 9 of discounted expected utility, used in DICE, FUND and PAGE, sets the risk premium too low and the
- discount rate too high, a result confirmed by Ackerman et al. (2013) and Crost and Traeger (2013).
- 11 Our general conclusion is that the reliability of damage functions in current IAMs is low. Users should
- 12 be cautious in relying on them for policy analysis: some damages are omitted, some estimates may
- 13 not reflect the most recent information on physical impacts; the empirical basis of estimates is
- sparse and not necessarily up-to-date; and adaptation is difficult to properly represent.
- 15 Furthermore, the literature on economic impacts has been growing rapidly and is often not well
- 16 represented in damage functions used in IAMs. Some authors (e.g., WGII, ch. 19) conclude these
- 17 damage functions are biased downwards. It should be underscored that most IAMs used in Chapter
- 18 6 of this volume do not consider damage functions so this particular criticism does not apply to
- 19 Chapter 6 analyses.
- 20

21 Box 3.9 Uncertainty and damages: the fat tails problem

- 22 Weitzman (2009, 2011) has drawn attention to what has become known as the fat-tails problem. He
- 23 emphasized the existence of a chain of structural uncertainties affecting both the climate system
- response to radiative forcing and the possibility of some resulting impacts on human wellbeing that
- 25 could be catastrophic. Uncertainties relate to both means of distribution and variances. The resulting
- compounded probability distribution of possible economic damage could have a fat bad tail: i.e., the
- 27 likelihood of an extremely large reduction in wellbeing does not go quickly to zero.⁴⁴ With or without
- risk aversion, the expected marginal reduction in wellbeing associated with an increment in
- emissions today could be very large, even infinite^{.45} See also Section 2.5.3.3.
- 30 A policy implication of this is that tail events can become much more important in determining
- 31 expected damage than would be the case with probability distributions with thinner tails. Weitzman
- 32 (2011) illustrates this for the distribution of temperature consequences of a doubling of atmospheric
- 33 CO₂ (climate sensitivity), using IPCC WG1 estimates to calibrate two distributions, one fat-tailed and
- 34 one thin-tailed, to have a median temperature change of 3°C and a 15% probability of a temperature
- 35 change in excess of 4.5°C. With this calibration, the probability of temperatures in excess of 8°C is
- 36 nearly ten times greater with the fat-tailed distribution than the thin-tailed distribution. If high
- 37 consequence, low probability events become more likely at higher temperatures, then tail events
- can dominate the computation of expected damages from climate change, depending on the nature
- of the probability distribution and other features of the problem (including timing and discounting).

⁴⁴ Weitzman (2009) defines a fat tailed distribution as one with an infinite moment generating function (a thintailed distribution has a finite moment generating function); more intuitively, for a fat-tailed distribution, the tail probability approaches zero more slowly than exponentially. For example, the normal (and any distribution with finite support) would be thin-tailed whereas the Pareto distribution (a power law distribution) would be fat-tailed.

⁴⁵ Weitzman (2007b, 2009) argued that it could be infinite. His results have been challenged by some as too pessimistic, e.g., Nordhaus (2011a), Pindyck (2011) and Costello et al. (2010).

- 1 At a more technical level, with some fat-tailed distributions and certain types of utility functions
- 2 (constant relative risk aversion), the expectation of a marginal reduction in wellbeing associated with
- 3 an increment in emissions is infinite. This is because in these cases, marginal utility becomes infinite
- 4 as consumption goes to zero. This is a troubling result since infinite marginal damage implies all
- 5 available resources should be dedicated to reducing the effects of climate change. But as Weitzman
- 6 himself and other authors have pointed out, this extreme result is primarily a technical problem
- 7 which can be solved by bounding the utility function or using a different functional form.
- 8 The primary conclusion from this debate is the importance of understanding the impacts associated
- 9 with low probability, high climate change scenarios. These may in fact dominate the expected10 benefits of mitigation.
- 11 The policy implication of this is that the nature of uncertainty can profoundly change how climate
- 12 policy is framed and analysed with respect to the benefits of mitigation. Specifically, fatter tails on
- 13 probability distributions of climate outcomes increase the importance in understanding and
- 14 quantifying the impacts and economic value associated with tail events (such as 8°C warming). It is
- 15 natural to focus research attention on most likely outcomes (such as a 3°C warming from a CO₂
- 16 doubling), but it may be that less likely outcomes will dominate the expected value of mitigation.

17 **3.9.3** The aggregate costs of mitigation

- 18 Reductions in GHG emission often impose costs on firms, households and governments as a result of
- 19 changes in prices, revenues and net income, and in the availability or quality of commodities. GHG
- 20 reduction requires not only technological but also behavioural and institutional changes, which may
- affect wellbeing. The changes in wellbeing are measured in monetary terms through a change in
- income that is equivalent to the impact on wellbeing. Changes in prices and incomes are often
- 23 projected through economic models (see Chapter 6). In many cases, mitigation primarily involves
- 24 improvements in energy efficiency or changes in the generation and use of energy from fossil fuels
- in order to reduce GHG emissions.
- 26 The models assessed in Chapter 6 are called IAMs (or Integrated Models – IMs) because they couple 27 several systems together (such as the economy and the climate) in an integrated fashion, tracking 28 the impact of changes in economic production on GHG emissions, as well as of emissions on global 29 temperatures and the effect of mitigation policies on emissions. As discussed in Section 6.2, the 30 IAMs used in Chapter 6 are heterogeneous. However, for most of the Chapter 6 IAMs, climate 31 change has no feedback effects on market supply and demand, and most do not include damage functions.⁴⁶ The calculation of cost depends on assumptions made (1) in specifying the model's 32 33 structure and (2) in calibrating its parameters. The models are calibrated to actual economic data. 34 While more validation is required, some models are validated by making and testing predictions of 35 the response to observed changes (Valenzuela et al., 2007; Beckman et al., 2011; Baldos and Hertel, 36 2013). While some models do not address either the speed or cost of adjustment, many models 37 incorporate adjustment costs and additional constraints to reflect deviations from full optimization 38 (see Jacoby et al., 2006; Babiker et al., 2009; van Vuuren et al., 2009). Most models allow little scope 39 for endogenous (price-induced) technical change (3.11.4) or endogenous non-price behavioural 40 factors (3.10.1). It is a matter of debate how well the models accurately represent underlying
- 41 economic processes (see Burtraw, 1996; Burtraw et al., 2005; Hanemann, 2010).
- 42 Besides estimating total cost, the models can be used to estimate Marginal Abatement Cost (MAC),
- the private cost of abating one additional unit of emissions. With a cap-and-trade system, emissions
- 44 would theoretically be abated up to the point where MAC equals the permit price; with an emissions

⁴⁶ Climate is assumed to be *separable* from market goods in the models' utility functions. If that assumption is incorrect, Carbone and Smith (2013) show that the welfare calculation may have significant error.

tax, they would be abated to the point where MAC equals the tax rate. It is common to graph the
MAC associated with different levels of abatement. Under simplified conditions, the area under the
MAC curve measures the total economic cost of emissions reduction, but not if it fails to capture
some of the economy-wide effects associated with large existing distortions (Klepper and Peterson,
2006; Paltsev et al., 2007; Kesicki and Ekins, 2012; Morris et al., 2012). However, a MAC is a static
approximation to the dynamic process involved in pollution abatement; it thus has its limitations.

7

8 **Box 3.10** Could mitigation have a negative private cost?

9 A persistent issue in the analysis of mitigation options and costs is whether available mitigation 10 opportunities can be privately profitable – that is, generate benefits to the consumer or firm that are 11 in excess of their own cost of implementation – but which are not voluntarily undertaken. Absent 12 another explanation, a negative private cost implies that a person is not fully pursuing his own 13 interest. (By contrast, a negative social cost arises when the total of everybody's benefits exceeds 14 costs, suggesting that some private decision-maker is not maximizing the interests of others.) The 15 notion that available mitigation opportunities may have negative costs recently received attention 16 because of analyses by McKinsey & Company (2009), Enkvist et al. (2007) and others that focused 17 especially on energy use for lighting and heating in residential and commercial buildings, and on 18 some agricultural and industrial processes. Much of this literature is in the context of the "energy 19 efficiency gap,"47 which dates to the 1970s, and the "Porter hypothesis".48

20 The literature suggesting that available opportunities may have negative cost often points to

21 institutional, political or social barriers as the cause. But other literature suggests economic

22 explanations. In addition, however, evidence indicates that the extent of such negative cost

23 opportunities can be overstated, particularly in purely engineering studies.

Engineering studies may overestimate the energy savings, for example because they assume perfect installation and maintenance of the equipment (Dubin et al., 1986; Nadel and Keating, 1991) or they

- 26 fail to account for interactions among different investments such as efficient lighting and cooling
- 27 (Huntington, 2011). Engineering studies also may fail to account for all costs actually incurred,
- including time costs, scarce managerial attention and the opportunity cost of the money, time or
- attention devoted to energy efficiency.⁴⁹ In some cases, the engineering analysis may not account
- 30 for reductions in quality (e.g., CFL lighting is perceived as providing less attractive lighting services).
- Choices may also be influenced by uncertainty (e.g., this is an unfamiliar product, one doesn't know
- how well it will work, or what future energy prices will be). Another consideration sometimes
- 33 overlooked in engineering analyses is the rebound effect the cost saving induces a higher rate of
- equipment usage (see Subsection 3.9.5). The analyses may overlook heterogeneity among
- 35 consumers: what appears attractive for the average consumer may not be attractive for all (or many)

⁴⁷ The efficiency gap is defined as the difference between the socially desirable amount of energy efficiency (however defined) and what firms and consumers are willing to undertake voluntarily (see Meier and Whittier, 1983; Joskow and Marron, 1992, 1993; Jaffe and Stavins, 1994).

⁴⁸ Porter (1991) and Porter and van der Linde (1995) argued that unilateral reductions in pollution could stimulate innovation and improve firms' competitiveness as a by-product; see also Lanoie et al (2008); Jaffe and Palmer (1997). The subsequent literature has obtained mixed finding (Ambec and Barla, 2006; Ambec et al., 2013).

⁴⁹ For example, Anderson and Newell (2004) examined energy audits for manufacturing plants and found that roughly half of the projects recommended by auditors were not adopted despite extremely short payback periods. When asked, plant managers responded that as much as 93 percent of the projects were rejected for economic reasons, many of which related to high opportunity costs. Joskow and Marron (1992, 1993) show some engineering estimates understated actual costs.

- 1 consumers, based on differences in their circumstances and preferences. One approach to validation
- 2 is to examine energy efficiency programs and compare ex ante estimates of efficiency opportunities
- 3 with ex post accomplishment; the evidence from such comparisons appears to be inconclusive,
- 4 though more analysis may be fruitful.⁵⁰
- 5 Economic explanations include the following.⁵¹ Given uncertainty and risk aversion, consumers may
- 6 rationally desire a higher return as compensation. Price uncertainty and the irreversibility of
- 7 investment may also pose additional economic barriers to the timing of adoption it may pay to
- wait before making the investment (Hassett and Metcalf, 1993; Metcalf, 1994). Mitigation
 investments take time to pay off, and consumers act as if they are employing high discount rates
- 10 when evaluating such investments (Hausman, 1979). These consumer discount rates might be much
- 11 higher than those of commercial businesses, reflecting liquidity and credit constraints. The durability
- 12 of the existing capital stock can be a barrier to rapid deployment of otherwise profitable new
- 13 technologies. Also, a principal-agent problem arises when the party that pays for an energy-
- 14 efficiency investment doesn't capture all the benefits, or vice versa. For example a tenant installs an
- 15 efficient refrigerator, but the landlord retains ownership when the tenant leaves (split incentives).
- 16 Or the landlord buys a refrigerator but doesn't care about its energy efficiency. Such problems can
- also arise in organizations where different actors are responsible, say, for energy bills and
- 18 investment accounts.⁵² Finally, energy users, especially residential users, may be uninformed, or
- 19 poorly informed, about the energy savings they are forgoing. In some cases, the seller of the product
- 20 has better information than the potential buyer (asymmetric information) and may fail to convey
- that information credibly (Bardhan et al., 2013).
- 22 Recently, some economists have suggested that systematic behavioral biases in decision making can
- 23 cause a failure to make otherwise profitable investment. These have been classified as non-standard
- 24 beliefs (e.g., incorrect assessments of fuel savings Allcott, 2013), non-standard preferences (e.g.,
- loss aversion Greene et al., 2009), and non-standard decision-making (e.g., tax salience Chetty et
- al., 2009). Such phenomena can give rise to what might be considered "misoptimization" by decision
- 27 makers, which in turn could create a role for efficiency-improving policy not motivated by
- conventional market failures (Allcott et al., forthcoming); see Subsection 3.10.1 for a fuller
 account.
- 30 In summary, whether opportunities for mitigation at negative private cost exist is ultimately an
- 31 empirical question. Both economic and non-economic reasons can explain why they might exist, as
- noted in recent reviews (Huntington, 2011; Murphy and Jaccard, 2011; Allcott and Greenstone,
- 33 2012; Gillingham and Palmer, 2014). But, evidence also suggests that the occurrence of negative
- 34 private costs is sometimes overstated, for reasons identified above. This remains an active area of
- 35 research and debate.

36 3.9.4 Social cost of carbon

- Although estimates of aggregate damages from climate change are useful in formulating GHG
 mitigation policies (despite the caveats listed in Subsection 3.9.2), they are often needed for more
 mundane policy reasons. Governments have to make decisions about regulation when implementing
 - ⁵⁰ Arimura et al (2012) review US electricity industry conservation programs (demand side management –

⁵¹ Allcott and Greenstone (2012) and Gillingham and Palmer (2014) provide excellent reviews.

⁵² Davis (2011) and Gillingham et al (2012) provide evidence of principal-agent problems in residential energy, although amount of energy lost as a result was not large in the cases examined.

DSM) and conclude that programs saved energy at a mean cost of US\$0.05 per kWh, with a 90% confidence interval of US\$0.003 to US\$0.010. Allcott and Greenstone (2012) conclude that this average cost is barely profitable. Although this may be true, one cannot conclude that on this evidence alone that ex ante engineering estimates of costs were too optimistic.

- energy policies, such as on fuel or EE standards for vehicles and appliances. The social cost of carbon 1
- 2 emissions can be factored into such decisions.
- 3 To calculate the social cost, consider a baseline trajectory of emissions (E₀,...,E_t) that results in a
- trajectory of temperature changes, ΔT_t . Suppose a damage function for year t is discounted to the 4
- 5 present and called $D(\Delta T_t)$, as discussed in Equation 3.9.2. These trajectories result in a discounted
- 6 present value of damages:

7 Equation 3.9.2.
$$PVD \equiv \int_{0}^{\infty} D(\Delta T_{t}) dt$$

8 Then take the derivative with respect to a small change in emissions at t=0, E₀, to measure the extra 9 cost associated with a one tonne increase in emissions at time 0 (that is, the increment in PVD):

 $MDCC = \frac{\partial PVD}{\partial E_0}.$ 10 Equation 3.9.3.

11 When applied to CO₂ this equation gives the marginal damage from the change in climate that

12 results from an extra tonne of carbon. It is also called the social cost of carbon (SCC). It should be

emphasized that the calculation of SCC is highly sensitive to the projected future trajectory of 13

14 emissions and also any current or future regulatory regime.⁵³

15 Because of its potential use in formulating climate or energy regulatory policy, governments have

16 commissioned estimates of SCC. Since 2002, an SCC value has been used in policy analysis and

17 regulatory impact assessment in the United Kingdom (Clarkson and Deyes, 2002). It was revised in

2007 and 2010. In 2010, a standardized range of SCC values based on simulations with DICE, FUND 18

- 19 and PAGE using alternative projections of emissions and alternative discount rates, was made
- available to all U.S. Government agencies.⁵⁴ It was updated in 2013 (US Interagency Working Group, 20 21 2013).

22 3.9.5 The Rebound effect

23 Technological improvements in energy efficiency (EE) have direct effects on energy consumption and 24 thus GHG emissions, but can cause other changes in consumption, production and prices that will, in 25 turn, affect GHG emissions. These changes are generally called 'rebound' or 'takeback' because in

most cases they reduce the net energy or emissions reduction associated with the efficiency 26

27 improvement. The size of rebound is controversial, with some research papers suggesting little or no

rebound and others concluding that it offsets most or all reductions from EE policies (Greening et al., 28

29 2000; Binswanger, 2001; Gillingham et al., 2013, summarize the empirical research). Total EE

30 rebound can be broken down into three distinct parts: substitution-effect, income-effect and

31 economy-wide.

32 In end-use consumption, substitution-effect rebound, or 'direct rebound' assumes that a consumer

33 will make more use of a device if it becomes more energy efficient because it will be cheaper to use.

- 34 Substitution-effect rebound extends to innovations triggered by the improved EE that results in new 35 ways of using the device. To pay for that extra use, the individual must still consume less of
- 36 something else, so net substitution-effect rebound is the difference between the energy expended

⁵³ Some ambiguity regards the definition of the SCC and the correct way to calculate it in the context of an equilibrium IAM (in terms of distinguishing between a marginal change in welfare vs. a marginal change in damage only). See, for instance, an account of the initial U.S. Government effort (Greenstone et al., 2013).

⁵⁴ Obviously, estimates of the SCC are sensitive to the structural and data assumptions in the models used to compute the SCC. Weitzman (2013), for instance, demonstrates the significance of the discount rate in the calculation.

- in using more of the device and the energy saved from using whatever was previously used less (see
 Thomas and Azevedo, 2013).
- 3 Income-effect rebound or 'indirect rebound', arises if the improvement in EE makes the consumer
- 4 wealthier and leads her to consume additional products that require energy. Even if energy efficient
- 5 bulbs lead to no substitution-effect rebound (more lighting), income-effect rebound would result if
- 6 the consumer spends the net savings from installing the bulbs on new consumption that uses
- 7 energy. The income-effect rebound will reflect the size of the income savings from the EE
- 8 improvement and the energy intensity of marginal income expenditures.
- 9 Analogous rebound effects for EE improvements in production are substitution towards an input
- 10 with improved energy efficiency, and substitution among products by consumers when an EE
- 11 improvement changes the relative prices of goods, as well as an income effect when an EE
- 12 improvement lowers production costs and creates greater wealth.
- 13 Economy-wide rebound refers to impacts beyond the behaviour of the entity benefiting directly
- 14 from the EE improvement, such as the impact of EE on the price of energy. For example, improved
- 15 fuel economy lowers vehicle oil demand and prices leading some consumers to raise their
- 16 consumption of oil products. The size of this energy price effect will be greater with less elastic
- 17 supply and more elastic demand. Some argue that the macroeconomic multiplier effects of a wealth
- 18 shock from EE improvement also create economy-wide rebound.
- 19 Rebound is sometimes confused with the concept of economic leakage, which describes the
- 20 incentive for emissions-intensive economic activity to migrate away from a region that restricts
- 21 GHGs (or other pollutants) towards areas with fewer or no restrictions on such emissions. Energy
- 22 efficiency rebound will occur regardless of how broadly or narrowly the policy change is adopted. As
- 23 with leakage, however, the potential for significant rebound illustrates the importance of
- 24 considering the full equilibrium effects of a policy designed to address climate change.

25 **3.9.6 Greenhouse gas emissions metrics**

- 26 The purpose of emissions metrics is to establish an exchange rate, that is, to assign relative values
- 27 between physically and chemically different GHGs and radiative forcing agents (Fuglestvedt et al.,
- 28 2003; Plattner et al., 2009). For instance, per unit mass, CH₄ is a more potent GHG than CO₂ in terms
- of instantaneous radiative forcing, yet it operates on a shorter time scale. In a purely temporal
- sense, the impacts are different. Therefore, how should mitigation efforts be apportioned for
 emissions of different GHGs?⁵⁵
- 32 GHG emissions metrics are required for generating aggregate GHG emissions inventories; to
- determine the relative prices of different GHGs in a multi-gas emissions trading system; for designing
- 34 multi-gas mitigation strategies; or for life-cycle assessment (e.g., Peters, Aamaas, Lund, et al., 2011).
- 35 Since metrics quantify the trade-offs between different GHGs, any metric used for mitigation
- 36 strategies explicitly or implicitly evaluates the climate impact of different gases relative to each
- 37 other.
- 38 The most prominent GHG emissions metric is the Global Warming Potential (GWP), which calculates
- 39 the integrated radiative forcing from the emission of one kilogram of a component *j* out to a time
- 40 horizon *T*:

41 Equation 3.9.4. $AGWP_j$ $T = {T \atop 0} RF_j t dt$,

- 42 The AGWP is an absolute metric. The corresponding relative metric is then defined as GWP_j = AGWP_j
- 43 / AGWP_{CO2}.

⁵⁵ This issue is discussed in Chapter 8 of WGI.

- 1 The GWP with a finite time horizon *T* was introduced by the IPCC (1990). With a 100-year time
- 2 horizon, the GWP is used in the Kyoto Protocol and many other scientific and policy applications for
- 3 converting emissions of various GHGs into " CO_2 equivalents". As pointed out in WGI, no scientific
- 4 argument favors selecting 100 years compared with other choices. Conceptual shortcomings of the
- 5 GWP include: (a) the choice of a finite time horizon is arbitrary, yet has strong effects on metric 6 value (IPCC, 1990); (b) the same CO₂ equivalent amount of different gases may have different
- physical climate implications (Fuglestvedt, Berntsen, et al., 2000; O'Neill, 2000; Smith and Wigley,
- 2000); (c) physical impacts and impacts to humans (well-being) are missing; and (d) temporal
- 9 aggregation of forcing does not capture important differences in temporal behavior. Limitations and
- inconsistencies also relate to the treatment of indirect effects and feedbacks (see WGI, Chapter 8).
- 11 Many alternative metrics have been proposed in the scientific literature. It can be argued that the
- 12 net impacts from different gases should be compared (when measured in the same units) and the
- relative impact used for the exchange rate. The Global Damage Potential ('GDamP' in this Section)
- 14 follows this approach by using climate damages as an impact proxy, and exponential discounting for
- inter-temporal aggregation of impacts (Hammitt et al., 1996b; Kandlikar, 1996b). Since marginal
- damages depend on the time at which GHGs are emitted, the GDamP is a time-variant metric. The
- 17 GDamP accounts for the full causal chain from emissions to impacts. One advantage of the
- 18 framework is that relevant normative judgements, such as the choice of inter-temporal discounting
- and the valuation of impacts, are explicit (Deuber et al., 2013). In practice, however, the GDamP is
- difficult to operationalize. The difficulties in calculating the GDamP and SCC are closely related (see
- 21 Section 3.9.4).
- 22 The Global Cost Potential (GCP) calculates the time-varying ratio of marginal abatement costs of
- 23 alternative gases arising in a cost-effective multi-gas mitigation strategy given a prescribed climate
- target (Manne and Richels, 2001), such as a cap on temperature change or on GHG concentrations.
- 25 While the GCP avoids the problems associated with damage functions, it still requires complex
- 26 integrated energy-economy-climate models to calculate GHG price ratios, and is therefore less
- 27 transparent to stakeholders than physical metrics.⁵⁶
- 28 The time-dependant Global Temperature Change Potential (GTP) is a physical metric that does not
- involve integration of the chosen impact parameter over time (Shine et al., 2007). It is defined as the
- 30 relative effect of different gases on temperature at a predefined future date from a unit impulse of
- those gases. Typically these are normalized to a base, such as same mass of CO_2 emitted. While the
- 32 GWP and GTP were not constructed with a specific policy target in mind, the GCP is conceptually
- 33 more consistent with a policy approach aiming at achieving climate objectives in a cost-effective way 24 (Euglestwedt et al. 2002; Manning and Beisinger, 2011; Tel et al. 2012)
- 34 (Fuglestvedt et al., 2003; Manning and Reisinger, 2011; Tol et al., 2012).
- Virtually all metrics can be expressed in terms of a generalization of Equation 3.9.5 (Kandlikar,
- 36 1996b; Forster et al., 2007)

37 Equation 3.9.5. $AM_j = \int_t I_{CO2} \Delta T(t), RF(t), ..., W t dt,$

- 38 Where the *impact function I_j* links the metric to the change in a physical climate parameter, typically
- the global mean radiative forcing *RF* (e.g., in the case of the GWP) or the change in global mean
- 40 temperature ΔT (e.g., GTP and most formulations of the GDamP). In some cases, the impact function
- also considers the rate of change of a physical climate parameter (Manne and Richels, 2001;
- 42 Johansson et al., 2006).
- The temporal 'weighting function, W(t)', determines how the metric aggregates impacts over time. It can prescribe a finite time horizon (GWP), evaluation at a discrete point in time (GTP), or exponential

⁵⁶ In the context of a multi-gas integrated assessment model which seeks to minimize the cost of meeting a climate target.

discounting over an infinite time horizon (GDamP), which is consistent with the standard approach

- to inter-temporal aggregation used in economics (see Section 3.6.2). The weighting used in the
 GWP is a weight equal to one up to the time horizon and zero thereafter.
- 4 The categorization according to their choice of impact and temporal weighting function (Table 3.4)
- 5 serves to expose underlying explicit and implicit assumptions, which, in turn, may reflect normative
- 6 judgements. It also helps to identify relationships between different metric concepts (Tol et al.,
- 7 2012; Deuber et al., 2013). In essence, the choice of an appropriate metric for policy applications
- involves a trade-off between completeness, simplicity, measurability and transparency (Fuglestvedt
 et al., 2003; Plattner et al., 2009; Deuber et al., 2013). The GDP and GCP are cost effective in
- implementing multi-gas mitigation policies, but are subject to large measurability, value-based and
- scientific uncertainties. Simple physical metrics, such as the GWP, are easier to calculate and
- 12 produce a more transparent result, but are inaccurate in representing the relevant impact trade-offs
- 13 between different GHGs (Fuglestvedt et al., 2003; Deuber et al., 2013).
- 14 The choice of metric can have a strong effect on the numerical value of GHG exchange rates. This is
- 15 particularly relevant for CH₄, which operates on a much shorter timescale than CO₂. In WGI, Chapter
- 16 8.7, an exchange ratio of CH_4 to CO_2 of 28 is given for GWP and of 4 for a time horizon of 100 years
- for GTP.⁵⁷ For a quadratic damage function and a discount rate of 2%, Boucher (2012) obtained a
 median estimate of the GDamP exchange ratios of 24.3. This exchange rate obviously has very
- 19 significant implications for relative emphasis a country may place on methane mitigation vs. carbon
- 20 dioxide mitigation.
- A small but increasing body of literature relates to the economic implications of metric choice. A
- 22 limited number of model-based examinations find that, despite its conceptual short-comings, the
- GWP-100 performs roughly similarly to GTP or a cost-optimizing metric (such as the GCP) in terms of
- aggregate costs of reaching a prescribed climate target, although regional and sectoral differences
- may be significant (Godal and Fuglestvedt, 2002; Johansson et al., 2006; Reisinger et al., 2013; Smith
- et al., 2013; Ekholm et al., 2013). In other words, based on these few studies, the scope for reducing
 aggregate mitigation costs of reaching a particular climate target by switching to a metric other than
- aggregate mitigation costs of reaching a particular climate target by switching to a metric other than
 the currently used GWP-100 may be limited, although there may be significant differences in terms
- 29 of regional costs.
- 30 In the Kyoto Protocol, emission reductions of one GHG can be traded with reductions in all other
- 31 GHGs. Such 'single-basket' approaches implicitly assume that the GHGs can linearly substitute each
- 32 other in the mitigation effort. However, the same CO₂ equivalent amount of different GHGs can
- result in climate responses that are very different for transitional and long-term temperature
- change, chiefly due to different life-times of the substances (Fuglestvedt, Bernstsen, et al., 2000;
- 35 Smith and Wigley, 2000). As an alternative, multi-basket approaches have been proposed, which
- 36 only allow trading within groups of forcing agents with similar physical and chemical properties
- 37 (Rypdal et al., 2005; Jackson, 2009; Daniel et al., 2012; Smith et al., 2013). Smith et al. (2013)
- propose a methodology for categorizing GHGs into two baskets of (a) long-lived species, for which
- 39 the cumulative emissions determine the long-term temperature response, and (b) shorter-lived
 40 species for which sustained emissions matter. Applying concerts emission activity longer matters are an emission of the long-term temperature response.
- 40 species for which sustained emissions matter. Applying separate emission equivalence metrics and 41 regulations to each of the two baskets can effectively control the maximum peak temperature
- 42 reached under a global climate policy regime. However, further research on the institutional
- 43 requirements and economic implications of such an approach is needed, as it requires regulators to
- 44 agree on separate caps for each basket and reduces the flexibility of emission trading systems to
- 45 harvest the cheapest mitigation options.

⁵⁷ See WGI chapter 8, Appendix 8A for GWP and GTP values for an extensive list of components.

1

Name of metric Impact function		Atmospheric background	Time dimension	Reference	
GWP	Global Warming Potential	RF	Constant	Constant temporal weighting over fixed time horizon	IPCC (1990)
GWP-LA	Global Warming Potential (discounting)	RF	Constant, average of future conditions	Exponential discounting	Lashof and Ahuja (1990)
GTP-H	Global Temperature Change Potential (fixed time horizon)	ΔT	Constant	Evaluation at a fixed time T after emission	Fuglestvedt et al., (2010), Shine et al. (2005)
GTP(t)	Time-dependent global temperature change potential	ΔΤ	Time-varying	Evaluation at a fixed end point time in the future	Shine et al. (2007)
СЕТР	Cost Effective Temperature Potential	ΔT	Exogenous scenario	complex function of time when climate threshold is reached	Johannson (2012)
MGTP	Mean Global Temperature Change Potential	ΔΤ	Time-varying	Constant temporal weighting over fixed time horizon	Gillet and Mathews (2010), Peters et al (2011)
GCP	Global Cost Potential	Infinite damage above climate target	Time-varying	Exponential discounting	Manne and Richels (2001)
GDamP	Global Damage Potential	$D(\Delta T)$	Time-varying	Exponential discounting	Kandlikar (1996a), Hammit et al. (1996a)

3

4 **3.10** Behavioural economics and culture

- 5 This Section summarizes behavioural economics related to climate change mitigation. We focus on
- 6 systematic deviations from the traditional neoclassical economic model, which assumes that
- 7 preferences are complete, consistent, transitive and non-altruistic, and that humans have
- 8 unbounded computational capacity and rational expectations. In this context, social and cultural
- 9 issues and conditions that frame our attitudes, as well as living conditions, are also addressed.
- 10 Chapter 2 also considers behavioural questions, though primarily in the context of risk and
- 11 uncertainty.
- 12 Although the focus is on the behaviour of individuals, some firms and organizations also take actions
- that appear to be inconsistent with the standard neoclassical model of the profit-maximizing firm
 (Ivon and Maxwell 2007)
- 14 (Lyon and Maxwell, 2007).

15 **3.10.1** Behavioural economics and the cost of emissions reduction

- 16 Behavioural economics deals with cognitive limitations (and abilities) that affect people's economic
- 17 decision-making processes. Choices can be affected and/or framed by perceived fairness, social
- 18 norms, cooperation, selfishness and so on.⁵⁸ Behavioural economics emphasizes the cognitive, social

⁵⁸See, e.g., Babcock and Loewenstein (1997), Shiv and Fedorikhin (1999), Asheim et al. (2006), Barrett (2007), Levati et al. (2007), Potters et al. (2007), Shogren and Taylor (2008) and Dannenberg et al. (2010).

- 1 and emotional factors that lead to apparently irrational choices. A growing number of documented
- 2 systematic deviations from the neoclassical model help explain people's behaviour, but here we
- 3 focus on several that we see as most relevant to climate change mitigation.⁵⁹

4 3.10.1.1 Consumer undervaluation of energy costs

Consumers may undervalue energy costs when they purchase energy-using durables, such as 5 vehicles, or make other investment decisions related to energy use.⁶⁰ By 'undervalue', we mean that 6 7 consumers' choices systematically fail to maximize the utility they experience when the choices are 8 implemented ('experienced' utility) (Kahneman and Sugden, 2005; see also, e.g., Fleurbaey, 2009). 9 This misoptimization reduces demand for EE. Three potential mechanisms of undervaluation may be 10 most influential (see also Box 3.10). First, when considering a choice with multiple attributes, 11 evidence suggests that consumers are inattentive to add-on costs and ancillary attributes, such as 12 shipping and handling charges or sales taxes (Hossain and Morgan, 2006; Chetty et al., 2009). It 13 could be that EE is a similar type of ancillary product attribute and is thus less salient at the time of 14 purchase. Second, significant evidence across many contexts also suggests that humans are 'present 15 biased' (DellaVigna, 2009). If energy costs affect consumption in the future while purchase prices 16 affect consumption in the present, this would lead consumers to be less energy efficient. Third, 17 people's beliefs about the implications of different choices may be systematically biased (Jensen, 18 2010; Bollinger et al., 2011; Kling et al., 2012; McKenzie et al., 2013). Attari et al. (2010) show that 19 people systematically underestimate the energy savings from a set of household energy conserving 20 activities, and Allcott (2013) shows that the average consumer either correctly estimates or 21 systematically slightly underestimates the financial savings from more fuel-efficient vehicles. Each of these three mechanisms of undervaluation appears plausible based on results from other contexts. 22 23 However, rigorous evidence of misoptimization is limited in the specific context of energy demand 24 (Allcott and Greenstone, 2012).

25 Three implications arise for climate and energy policy if the average consumer who is marginal to a 26 policy does, in fact, undervalue energy costs. The first is an 'internality dividend' from carbon taxes 27 (or other policies that internalize the carbon externality into energy prices): a carbon tax can actually 28 increase consumer welfare when consumers undervalue energy costs (Allcott et al., forthcoming). 29 This occurs because undervaluation would be a pre-existing distortion that reduces demand for EE 30 below consumers' private optima, and one that increasing carbon taxes helps to correct. Second, in 31 addition to carbon taxes, other tax or subsidy policies that raise the relative purchase price of 32 energy-inefficient durable goods can improve welfare (Cropper and Laibson, 1999; O'Donoghue and 33 Rabin, 2008; Fullerton et al., 2011). Third, welfare gains are largest from policies that preferentially 34 target consumers who undervalue energy costs the most. This effect is related to the broader 35 philosophies of libertarian paternalism (Sunstein and Thaler, 2003) and asymmetric paternalism 36 (Camerer et al., 2003), which advocate policies that do not infringe on freedom of choice but could 37 improve choices by the subset of people who misoptimize. In the context of energy demand, such 38 policies might include labels or programmes that provide information about, and attract attention 39 to, energy use by durable goods.

40 **3.10.1.2** *Firm behaviour*

- 41 Some of the phenomena described above may also apply to firms. Lyon and Maxwell (2004, 2008)
- 42 examine in detail the tendency of firms to undertake pro-environment actions, such as mitigation,
- 43 without being prompted by regulation. Taking a neoclassical approach to the problem, they find that

⁵⁹See Rachlinksi (2000), Brekke and Johansson-Stenmann (2008), Gowdy (2008) and the American Psychological Association (2010).

⁶⁰ This can even apply to cases that use sophisticated methods to support decisions (e.g., Korpi and Ala-Risku, 2008).

- 1 firms view a variety of pro-environment actions as being to their advantage. However, evidence of a
- 2 compliance norm has been found in other contexts where firms' responses to regulation have been
- 3 studied (Ayres and Braithwaite, 1992; Gunningham et al., 2003).
- 4 The conventional economic model represents the firm as a single, unitary decision-maker, with a
- 5 single objective, namely, profit maximization. As an alternative to this 'black-box' model of the firm
- 6 (Malloy, 2002), the firm may be seen as an organization with a multiplicity of actors, perhaps with
- 7 different goals, and with certain distinctive internal features (Coase, 1937; Cyert and March, 1963;
- 8 Williamson, 1975).

9 3.10.1.3 Non-price interventions to induce behavioural change

- 10 Besides carbon taxes and other policies that affect relative prices, other non-price policy instruments
- can reduce energy demand, and, therefore, carbon emissions. Such interventions include, supplying 11
- 12 information on potential savings from energy-efficient investment, drawing attention to energy use,
- 13 and providing concrete examples of energy-saving measures and activities (e.g., Stern, 1992;
- 14 Abrahamse et al., 2005). They also include providing feedback on historical energy consumption
- 15 (Fischer, 2008) and information on how personal energy use compares to a social norm (Allcott, 2011).61
- 16
- 17 In some cases, non-price energy conservation and efficiency programmes may have low costs to the
- 18 programme operator, and it is therefore argued that they are potential substitutes if carbon taxes
- 19 are not politically feasible (Gupta et al., 2007). However, it is questionable whether such
- 20 interventions are appropriate substitutes for carbon taxes, for example, in terms of environmental
- 21 and cost effectiveness, because their impact may be small (Gillingham et al., 2006) and unaccounted
- 22 costs may reduce the true welfare gains. For example, consumers' expenditures on energy-efficient
- 23 technologies and time spent turning lights off may not be observed.
- 24 Research in other domains (e.g., Bertrand et al., 2010) has shown that a person's choices are
- 25 sometimes not consistent. They may be malleable by 'ancillary conditions' - non-informational
- 26 factors that do not affect experienced utility. In the context of EE, this could imply that energy
- 27 demand may be reduced with relatively low welfare costs through publicity aimed at changing
- 28 consumer preferences. However, publicly-funded persuasion campaigns bring up important ethical
- 29 and political concerns, and the effectiveness of awareness-raising programmes on energy and
- 30 carbon will depend on how consumers actually use the information and the mix of policy
- 31 instruments (Gillingham et al., 2006; Gupta et al., 2007; also Worrell et al., 2004; Mundaca et al.,
- 32 2010).

33 3.10.1.4 Altruistic reductions of carbon emissions

- 34 In many contexts, people are altruistic, being willing to reduce their own welfare to increase that of
- 35 others. For example, in laboratory 'dictator games', people voluntarily give money to others
- 36 (Forsythe et al., 1994), and participants in public goods games regularly contribute more than the
- 37 privately-optimal amount (Dawes and Thaler, 1988; Ledyard, 1993). Charitable donations in the
- 38 United States amount to more than 2% of GDP (List, 2011). Similarly, many individuals voluntarily
- 39 contribute to environmental public goods, such as reduced carbon emissions. For example, \$387
- 40 million were spent on voluntary carbon offset purchases in 2009 (Bloomberg, 2010).
- 41 Pre-existing altruistic voluntary carbon emission reductions could moderate the effects of a new
- 42 carbon tax on energy demand because the introduction of monetary incentives can 'crowd out'
- 43 altruistic motivations (Titmuss, 1970; Frey and Oberholzer-Gee, 1997; Gneezy and Rustichini, 2000).
- 44 Thus, a carbon tax could reduce voluntary carbon emission reductions even as it increases

⁶¹The efficacy of these interventions can often be explained within neoclassical economic models. From an expositional perspective, it is still relevant to cover them in this Subsection.

- 1 financially-motivated ones. While this effect might not weaken the welfare argument for a carbon
- 2 tax, it does reduce the elasticity of carbon emissions to a carbon tax.
- 3 Reciprocity, understood as the practice of people rewarding generosity and castigating cruelty
- 4 towards them, has been found to be a key driver of voluntary contributions to public goods. Positive
- 5 reciprocity comes in the form of conditional cooperation, which is a tendency to cooperate when
- 6 others do so too (Axelrod, 1984; Fischbacher et al., 2001; Frey and Meier, 2004). However,
- 7 cooperation based on positive reciprocity is often fragile and is declining over time (Bolton et al.,
- 8 2004; Fischbacher and Gächter, 2010). Incentives and penalties are fundamental to maintaining
- 9 cooperation in environmental treaties (Barrett, 2003). Adding a strategic option to punish defectors
- 10 often stabilizes cooperation, even when punishment comes at a cost to punishers (Ostrom et al.,
- 11 1992; Fehr and Gächter, 2002). Yet, if agents are allowed to counter-punish, the effectiveness of
- reciprocity to promote cooperation might be mitigated (Nikiforakis, 2008). However, most
 laboratory studies have been conducted under symmetric conditions and little is known about
- human cooperation in asymmetric settings, which tend to impose more serious normative conflicts
- 15 (Nikiforakis et al., 2012).
- 16 Experiments also reveal a paradox: actors can agree to a combined negotiated climate goal for
- 17 reducing the risk of catastrophe, but behave as if they were blind to the risks (Barrett and
- 18 Dannenberg, 2012). People are also often motivated by concerns about the fairness of outcomes
- and procedures; in particular, many do not like falling behind others (Fehr and Schmidt, 1999; Bolton
- and Ockenfels, 2000; Charness and Rabin, 2002; Bolton et al., 2005). Such concerns can both
- 21 promote and hamper the effectiveness of negotiations, including climate negotiations, in
- overcoming cooperation and distributional problems (Güth et al., 1982; Lange and Vogt, 2003; Lange
- 23 et al., 2007; Dannenberg et al., 2010).
- 24 Uncertainty about outcomes and behaviours also tends to hamper cooperation (Gangadharan and
- 25 Nemes, 2009; Ambrus and Greiner, 2012). As a result, the information given to, and exchanged by,
- decision makers may affect social comparison processes and reciprocal interaction, and thus the
- 27 effectiveness of mechanisms to resolve conflicts (Goldstein et al., 2008; Chen et al., 2010; Bolton et
- al., 2013). In particular, face-to-face communication has been proved to significantly promote
- 29 cooperation (Ostrom, 1990; Brosig et al., 2003) . Concerns about free-riding are perceived as a
- 30 barrier to engaging in mitigation actions (Lorenzoni et al., 2007). The importance of fairness in
- promoting international cooperation (see also Chapter 4) is one of the few non-normative
- 32 justifications for fairness in climate policy.

33 **3.10.1.5** Human ability to understand climate change

- 34 So far, we have covered deviations from the neoclassical model that affect energy demand. Such 35 deviations can also affect the policy-making process. The understanding of climate change as a 36 physical phenomenon with links to societal causes and impacts is highly complex (Weber and Stern, 37 2011). Some deviations are behavioural and affect perceptions and decision making in various 38 settings besides climate change. (See Section 2.2 for a fuller discussion). For example, perceptions 39 of, and reactions to, uncertainty and risk can depend not only on external reality, as assumed in the 40 neoclassical model, but also on cognitive and emotional processes (Subsection 2.2.1). When making 41 decisions, people tend to overweight outcomes that are especially 'available' or salient (Kahneman 42 and Tversky, 1974, 1979). They are more averse to losses than they are interested in gains relative to 43 a reference point (Kahneman and Tversky, 1979). Because climate change involves a loss of existing 44 environmental amenities, this can increase its perceived costs. However, if the costs of abatement 45 are seen as a reduction relative to a reference rate of future economic growth, this can increase the 46 perceived costs of climate change mitigation.
- Some factors make it hard for people to think about climate change and lead them to underweight
 it: it happens gradually; the major effects are likely to occur in the distant future; the effects will be
- 49 felt elsewhere; and their nature is uncertain. Furthermore, weather is naturally variable, and the

- 1 distinction between weather and climate is often misunderstood (Reynolds et al., 2010). People's
- 2 perceptions and understanding of climate change do not necessarily correspond to scientific
- 3 knowledge (Subsection 2.2.1.1) because they are more vulnerable to emotions, values, views and
- 4 (unreliable) sources (Weber and Stern, 2011). People are likely to be misled if they apply their
- 5 conventional modes of understanding to climate change (Bostrom et al., 1994).

6 3.10.2 Social and cultural issues

- 7 In recent years, the orientation of social processes and norms towards mitigation efforts has been
- 8 seen as an alternative or complement to traditional mitigation actions, such as incentives and
- 9 regulation. We address some of the concepts discussed in the literature which, from a social and
- 10 cultural perspective, contribute to strengthening climate change actions and policies.

11 **3.10.2.1** Customs

- 12 In both developed and developing countries, governments, social organizations and individuals have
- 13 tried to change cultural attitudes towards emissions, energy use and, lifestyles (European
- 14 Commission, 2009). For example, household energy-use patterns for space and water heating differ
- 15 significantly between Japan and Norway because of lifestyle differences (Wilhite et al., 1996; Gram-
- 16 Hanssen, 2010). Some have argued that the bio-cultural heritage of indigenous peoples is a resource
- 17 that should be valued and preserved as it constitutes an irreplaceable bundle of teachings on the
- practices of mitigation and sustainability (Sheridan and Longboat, 2006; Russell-Smith et al., 2009;
- 19 Kronik and Verner, 2010). Sometimes local strategies and indices have metamorphosed into national
- 20 policies, as in the case of 'Buen Vivir' in Ecuador (Choquehuanca, 2010; Gudynas, 2011) and 'Gross
- 21 National Happiness' (GNH), described in Box 3.11. In rich countries, and among social groups with
- high levels of environmental awareness, interest in sustainability has given rise to cultural
- 23 movements promoting change in modes of thought, production, and consumption. Including the
- 24 cultural dimension in mitigation policies facilitates social acceptability.
- 25
- 26 Box 3.11 Gross National Happiness (GNH)

The Kingdom of Bhutan has adopted an index of GNH as a tool for assessing national welfare and
 planning development (Kingdom of Bhutan, 2008). According to this concept, happiness does not
 derive from consumption, but rather from factors such as the ability to live in harmony with nature

30 (Taplin et al., 2013). Thus, GNH is both a critique of, and an alternative to, the conventional global

- development model (Taplin et al., 2013). The GNH Index measures wellbeing and progress according
- to nine key domains (and 72 core indicators) (Uddin et al., 2007). The intention is to increase access
- to health, education, clean water and electrical power (Pennock and Ura, 2011) while maintaining a
- 34 balance between economic growth, environmental protection and the preservation of local culture
- and traditions. This is seen as a 'Middle Way' aimed at tempering the environmental and social costs
- of unchecked economic development (Frame, 2005; Taplin et al., 2013).

37 **3.10.2.2** Indigenous peoples

- Indigenous peoples number millions across the globe (Daes, 1996). Land and the natural
- 39 environment are integral to their sense of identity and belonging and to their culture, and are
- 40 essential for their survival (Gilbert, 2006; Xanthaki, 2007). The ancestral lands of indigenous peoples
- 41 contain 80% of the earth's remaining healthy ecosystems and global biodiversity priority areas,
- 42 including the largest tropical forests (Sobrevila, 2008). Because they depend on natural resources
- and inhabit biodiversity-rich but fragile ecosystems, indigenous peoples are particularly vulnerable
- to climate change and have only limited means of coping with such change (Henriksen, 2007;
- 45 Permanent Forum on Indigenous Issues, 2008). They are often marginalized in decision-making and
- 46 unable to participate adequately in local, national, regional and international climate-change
- 47 mechanisms. Yet, it is increasingly being recognized that indigenous peoples can impart valuable
- 48 insights into ways of managing mitigation and adaptation (Nakashima et al., 2012), including forest

governance and conserving ecosystems (Nepstad et al., 2006; Hayes and Murtinho, 2008; Persha et al., 2011).

3 3.10.2.3 Women and Climate Change

4 Women often have more restricted access to, and control of, the resources on which they depend

- 5 than men. In many developing countries, most small-scale food producers are women. They are
- 6 usually the ones responsible for collecting water and fuel and for looking after the sick. If climate
- change adversely affects crop production and the availability of fuel and water, or increases ill
 health, women may bear a disproportionate burden of those consequences (Dankelman, 2002;
- 9 UNEP, 2011).⁶² On the other hand, they may be better at adapting to climate change, both at home
- and in the community. But given their traditional vulnerability, the role of women across society will
- 11 need to be re-examined in a gender-sensitive manner to ensure they have equal access to all types
- 12 of resources (Agostino and Lizarde, 2012).

13 **3.10.2.4** Social institutions for collective action

- 14 Social institutions shape individual actions in ways that can help in both climate mitigation and
- adaptation. They promote trust and reciprocity, establish networks, and contribute to the evolution
- 16 of common rules. They also provide structures through which individuals can share information and
- 17 knowledge, motivate and coordinate behaviour, and act collectively to deal with common
- 18 challenges. Collective action is reinforced when social actors understand they can participate in local
- 19 solutions to a global problem that directly concerns them.
- As noted in Subsections 3.10.1.5 and 2.2, public perceptions of the cause and effect of climate
- change vary, in both developed and developing countries, with some erroneous ideas persisting
- even among well-educated people. Studies of perceptions (O'Connor et al., 1999; Corner et al.,
- 23 2012) demonstrate that the public is often unaware of the roles that individuals and society can play
- in both mitigation and adaptation. The concepts of social and policy learning can be used in
- 25 stimulating and organizing collective action. Social learning involves participation by members of a
- 26 group in discourse, imitation and shared collective or individual actions. The concept of policy
- 27 learning describes the process of adaptation by organizations to external change while retaining or
- 28 strengthening their own objectives and domination over existing socio-economic structures (Adger
- and Kelly, 1999). The task of an educational programme in mitigating and adapting to climate change
- 30 is to represent a collective global problem in individual and social terms. This will require the
- 31 strategies for disseminating scientific information to be reinforced and the practical implications
- 32 advertised in ways that are understandable to diverse populations (González Gaudiano and Meira
- 33 Cartea, 2009).

34 **3.11 Technological change**

- 35 Mitigation scenarios aim at significant reductions in current emission levels that will be both difficult
- 36 and costly to achieve with existing technological options. However, cost-reducing technological
- 37 innovations are plausible. The global externality caused by climate change compounds market
- failures common to private sector innovations. Appropriate policy interventions are accordingly
- needed to encourage the type and amount of climate-friendly technological change (TC) that would
- 40 lead to sizable reductions in the costs of reducing carbon emissions. This Section reviews theories,
- 41 concepts and principles used in the study of environmentally-oriented TC, and highlights key lessons
- 42 from the literature, in particular, the potential of policy to encourage TC. Examples of success and

⁶² Natural disasters over the period 1981–2002 revealed evidence of a gender gap: natural disasters lowered women's life expectancy more than men's: the worse the disaster and the lower the woman's socio-economic status the bigger the disparity (Neumayer and Plümper, 2007).

- 1 failure in promoting low carbon energy production and consumption technologies are further
- 2 evaluated in Chapters 6-16.

3 3.11.1 Market provision of TC

4 As pollution is not fully priced by the market, private individuals lack incentives to invest in the

- 5 development and use of emissions-reducing technologies in the absence of appropriate policy
- 6 interventions. Market failures other than environmental pollution include what is known as the
- 7 'appropriability problem'. This occurs when inventors copy and build on existing innovations, and
- 8 reap part of the social returns on them. While the negative climate change externality leads to over
- 9 use of the environment, the positive 'appropriability' externality leads to an under-supply of technological innovation.⁶³ Indeed, empirical research provides ample evidence that social rates of 10
- return on R&D are higher than private rates of return (Griliches, 1992). Thus, the benefits of new 11
- 12 knowledge may be considered as a public good (see, e.g., Geroski, 1995).
- 13 Imperfections in capital markets often distort the structure of incentives for financing technological
- 14 development. Information about the potential of a new technology may be asymmetrically held,
- 15 creating adverse selection (Hall and Lerner, 2010). This may be particularly acute in developing
- 16 countries. The issue of path dependence, acknowledged in evolutionary models of TC, points to the
- 17 importance of transformative events in generating or diverting technological trajectories (see
- 18 Chapters 4 and 5). Even endogenously induced transformative events may not follow a smooth or
- 19 predictable path in responding to changing economic incentives, suggesting that carbon-price policy
- 20 alone may not promote the desired transformative events.

21 3.11.2 Induced innovation

- The concept of 'induced innovation' postulates that investment in R&D is profit-motivated and 22
- responds positively to changes in relative prices⁶⁴ (Hicks, 1932; Binswanger and Ruttan, 1978; 23
- Acemoglu, 2002).⁶⁵ Initial evidence of induced TC focused on the links between energy prices and 24
- 25 innovation and revealed the lag between induced responses and the time when price changes came
- 26 into effect, which is estimated at five years by Newell et al. (1999) and Popp (2002) (see Chapter 5).
- 27 Policy also plays an important role in inducing innovation, as demonstrated by the increase in
- 28 applications for renewable energy patents within the European Union in response to incentives for
- 29 innovation provided by both national policies and international efforts to combat climate change
- 30 (Johnstone et al., 2010). Recent evidence also suggests that international environmental
- 31 agreements provide policy signals that encourage both innovation (Dekker et al., 2012) and diffusion
- 32 (Popp et al., 2011). With the exception of China, most climate-friendly innovation occurred in
- 33 developed countries (Dechezlepretre et al., 2011).⁶⁶

34 3.11.3 Learning-by-doing and other structural models of TC

- 35 An extensive literature relates to rates of energy cost reduction based on the concept of 'experience' 36
- curves (see Chapter 6). In economics, this concept is often described as learning-by-doing (LBD) to

⁶⁶ Global R&D expenditures amounted to \$1.107 trillion in 2007, with OECD nations accounting for 80%, and the U.S. and Japan together accounting for 46% (National Science Board, 2010).

⁶³ For incremental innovations, the net technology externality can be negative. Depending on market structure and intellectual property rules, the inventor of an incremental improvement on an existing technology may be able to appropriate the entire market, thereby earning profits that exceed the incremental value of the improvement.

⁶⁴ It should be pointed out that in economics, "induced innovation" typically means innovation induced by relative price differences. The IPCC uses a different definition: innovation induced by policy.

⁶⁵ In economics, 'induced innovation' typically means innovation induced by relative price differences. The IPCC uses a different definition: innovation induced by policy.

- 1 describe the decrease in costs to manufacturers as a function of cumulative output or 'learning-by-
- 2 using', reflecting the reduction in costs (and/or increase in benefits) to consumers as a function
- 3 using a technology. While learning curves are relatively easy to incorporate into most climate
- 4 integrated assessment models (IAMs), the application of LBD has limitations as a model of TC (Ferioli
- 5 et al., 2009) . Learning curves ignore potential physical constraints. For example, while costs may
- 6 initially fall as cumulative output expands, if renewable energy is scaled up, the use of suboptimal
- locations for production would increase costs. Ferioli et al. (2009) also provide evidence that
 learning can be specific to individual components, so that the savings from learning may not fully
- learning can be specific to individual components, so that the savings from learning may not fully
 transfer from one generation of equipment to the next. They therefore suggest caution when
- extrapolating cost savings from learning curves to long-term frames or large-scale expansions.
- 11 Similarly, in a study on cost reductions associated with photovoltaic cells, Nemet (2006) finds that
- 12 most efficiency gains come from universities, which have little traditional LBD through production
- experience. Hendry and Harborne (2011) provide examples of the interaction of experience and R&D
- 14 in the development of wind technology.

15 **3.11.4 Endogenous and exogenous TC and growth**

- 16 Within climate policy models, TC is either treated as exogenous or endogenous. Köhler et al. (2006),
- Gillingham et al. (2008) and Popp et al. (2010) provide reviews of the literature on TC in climatemodels.
- 19 Exogenous TC (most common in models) progresses at a steady rate over time, independently of
- 20 changes in market incentives. One drawback of exogenous TC is that it ignores potential feedback
- 21 between climate policy and the development of new technologies. Models with endogenous TC
- address this limitation by relating technological improvements in the energy sector to changes in
- 23 energy prices and policy. These models demonstrate that ignoring induced innovation overstates the
- 24 costs of climate control.
- 25 The Nordhaus (1977, 1994) DICE model is the pioneering example of a climate policy model
- 26 incorporating TC into IAMs. In most implementations of DICE, TC is exogenous. Efforts to endogenize
- 27 TC have been difficult, mainly because market-based spillovers from R&D are not taken into account
- 28 when deciding how much R&D to undertake. Recent attempts to endogenize TC include WITCH
- 29 model (Bosetti et al., 2006)and Popp's (2004) ENTICE model. Popp (2004) shows that models that
- ignore directed TC do indeed significantly overstate the costs of environmental regulation (more
- detailed discussion on TC in these and more recent models is provided in Chapter 6).
- 32 An alternative approach builds on new growth theories, where TC is by its nature endogenous, in
- order to look at the interactions between growth and the environment. Policies like R&D subsidies
- 34 or carbon taxes affect aggregate growth by affecting entrepreneurs' incentives to innovate.
- 35 Factoring in firms' innovations dramatically changes our view of the relationship between growth
- and the environment. More recent work by Acemoglu et al. (2012) extends the endogenous growth
- 37 literature to the case where firms can choose the direction of innovation (i.e., they can decide
- ³⁸ whether to innovate in more or less carbon-intensive technologies or sectors).⁶⁷
- 39 In contrast, LBD models use learning curve estimates to simulate falling costs for alternative energy
- 40 technologies as cumulative experience with the technology increases. One criticism of these models
- 41 is that learning curve estimates provide evidence of correlation, but not causation. While LBD is easy
- 42 to implement, it is difficult to identify the mechanisms through which learning occurs. Goulder and
- 43 Mathai (2000) provide a theoretical model that explores the implications of modelling technological

⁶⁷ Other works investigating the response of technology to environment regulations include Grübler and Messner (1998), Manne and Richels (2004b), Messner (1997), Buonanno et al. (2003), Nordhaus (2002), Di Maria and Valente (2008), Bosetti et al. (2008), Massetti et al. (2009), Grimaud and Rouge (2008), and Aghion et al. (2009).

change through R&D or LBD (several empirical studies on this are reviewed in more detail in Chapter
6).

3 3.11.5 Policy measures for inducing R&D

Correcting the environmental externality or correcting knowledge market failures present two key
 options for policy intervention to encourage development of climate-friendly technologies. Patent
 protection, R&D tax credits and rewarding innovation are good examples of correcting failures in
 knowledge markets and promoting higher rates of innovation. On the other hand, policies regulating

- 8 environmental externalities, such as a carbon tax or a cap-and-trade system, influence the direction
- 9 of innovation.
- 10 Chapter 15 discusses in more detail how environmental and technology policies work best in tandem

(e.g. Popp, 2006; Fischer, 2008; Acemoglu et al., 2012). For instance, in evaluating a broad set of

12 policies to reduce CO₂ emissions and promote innovation and diffusion of renewable energy in the

13 United States electricity sector, Fischer & Newell (2008) find that a portfolio of policies (including

emission pricing and R&D) achieves emission reductions at significantly lower cost than any single

policy (see Chapters 7 to 13). However, Gerlagh and van der Zwaan (2006) note the importance of

16 evaluating the trade-off between cost savings from innovation and Fischer and Newell (2008)

17 assumptions of decreasing returns to scale due to space limitations for new solar and wind

18 installations.

19 3.11.6 Technology transfer (TT)

20 Technology transfer (TT) has been at the centre of the scholarly debate on climate change and

equity in economic development as a way for developed countries to assist developing countries

access new low carbon technologies. Modes of TT include, trade in products, knowledge and

technology, direct foreign investment, and international movement of people (Hoekman et al.,

24 2005). Phases and steps for TT involve absorption and learning, adaptation to the local environment

and needs, assimilation of subsequent improvements, and generalization. Technological learning or

catch-up thus proceeds in stages: importing foreign technologies; local diffusion and incremental
 improvements in process and product design; and marketing, with different policy measures suited

to different stages of the catch-up process.

²⁹ 'Leapfrogging', or the skipping of some generations of technology or stages of development, is a

30 useful concept in the climate change mitigation literature for enabling developing countries to avoid

the more emissions-intensive stages of development (Watson and Sauter, 2011). Examples of

32 successful low-carbon leapfrogging are discussed in more detail in Chapter 14.

33 Whether proprietary rights affect transfers of climate technologies has become a subject of

34 significant debate. Some technologies are in the public domain; they are not patented or their

35 patents have expired. Much of the debate on patented technologies centres on whether the

temporary monopoly conferred by patents has hampered access to technology. Proponents of

37 strong intellectual property (IP) rights believe that patents enhance TT as applicants have to disclose

information on their inventions. Some climate technology sectors, for example, those producing

renewable energy, have easily available substitutes and sufficient competition, so that patents on

40 these technologies do not make them costly or prevent their spread (Barton, 2007). In other climate-

related technology sectors, IP protection could be a barrier to TT (Lewis, 2007). (The subject is

42 further discussed in Chapters 13 and 15.)

43 Various international agreements on climate change, trade and intellectual property include

44 provisions for facilitating the transfer of technology to developing countries. Climate change

45 agreements encourage participation by developing countries and address barriers to the adoption of

46 technologies, including financing. However, some scholars have found these agreements to be

47 ineffective because they do not incorporate mechanisms for ensuring technology transfers to

developing countries (Moon, 2008). (The literature on international cooperation on TT is further
 discussed in Chapters 13, 14 and 16.)

3 3.12 Gaps in knowledge and data

As this Chapter makes clear, many questions are not completely answered by the literature. So it is
prudent to end our assessment with our findings on where research might be directed over the
coming decade so that the AR6 (should there be one) may be able to say more about the ethics and
economics of climate change.

- To plan an appropriate response to climate change, it is important to evaluate each of the alternative responses that are available. How can we take into account changes in the world's population? Should society aim to promote the total of people's wellbeing in the world, or their average wellbeing, or something else? The answer to this question will make a great difference to the conclusions we reach.
- The economics and ethics of geoengineering is an emerging field that could become of the utmost importance to policymakers. Deeper analysis of the ethics of this topic is needed, as well as more research on the economic aspects of different possible geoengineering approaches and their potential effects and side effects.
- To develop better and more realistic estimates of the components of the damage function, more closely connected to WGII assessments of physical impacts. Quantifying non-market values, that is, measuring valuations placed by humans on nature and culture, is highly uncertain and could be improved through more and better methods and empirical studies.
 As discussed in Section 3.9, the aggregate damage functions used in many IAMs are generated from a remarkable paucity of data and are thus of low reliability.
- Ex-post evaluation addressing the effectiveness of different regulatory approaches, both
 singly and jointly can be invaluable. For instance, understanding, retrospectively, the
 effectiveness of the European Union Emissions Trading Scheme (EU ETS), the California cap and-trade system, or the interplay between renewable standards and carbon regulations in
 a variety of countries.
- Energy models need to provide a more realistic portrait of microeconomic decision-making
 frameworks for technology-choice (energy-economy models).
- A literature is emerging in economics and ethics on the risk of catastrophic climate change
 impacts, but much more probing into the ethical dimensions is needed to inform future
 economic analysis.
- More research that incorporates behavioural economics into climate change mitigation is
 needed. For instance, more work on understanding how individuals and their social
 preferences respond to (ambitious) policy instruments and make decisions relevant to
 climate change is critical.
- To improve understanding of mitigation costs. Despite the importance of the cost of
 mitigation, the aggregate cost of mitigating x tonnes of carbon globally is poorly understood.
 To put it differently, a global carbon tax of x dollars per tonne would yield y(t) tonnes of
 carbon abatement at time, t. We do not understand the relationship between x and y(t).
- To evaluate climate risk. The choice of the rate at which future uncertain climate damages
 are discounted depends on their risk profile in relation to other risks in the economy. By how
 much does mitigating climate change reduce the aggregate uncertainty faced by future
 generations?

To improve Integrated Assessment Models. As has been recently underscored by several authors (Pindyck, 2013; Stern, 2013) as well as this review, integrated assessment models have very significant shortcomings for CBA, as they do not fully represent climate damages, yet remain important tools for investigating climate policy. They have been widely and successfully applied for CEA analysis (Paltsev et al., 2008; Clarke et al., 2009; Krey and Clarke, 2011; Fawcett et al., 2013). Research into improving the state-of-the-art of such models (beyond just updating) can have high payoff.

8 **3.13 Frequently Asked Questions**

9 FAQ 3.1 The IPCC is charged with providing the world with a clear scientific view of the

10 current state of knowledge on climate change. Why does it need to consider ethics?

11 The IPCC aims to provide information that can be used by governments and other agents when they 12 are considering what they should do about climate change. The question of what they should do is a

13 normative one and thus has ethical dimensions because it generally involves the conflicting interests

of different people. The answer rests implicitly or explicitly on ethical judgements. For instance, an

answer may depend on a judgement about the responsibility of the present generation towards

16 people who will live in the future or on a judgement about how this responsibility should be

17 distributed among different groups in the present generation. The methods of ethical theory

18 investigate the basis and logic of judgements such as these.

19 FAQ 3.2 Do the terms justice, fairness and equity mean the same thing?

20 The terms 'justice', 'fairness' and 'equity' are used with subtly different meanings in different

disciplines and by different authors. 'Justice' and 'equity' commonly have much the same meaning:

22 'justice' is used more frequently in philosophy; 'equity' in social science. Many authors use 'fairness'

as also synonymous with these two. In reporting on the literature, the IPCC assessment does not

impose a strictly uniform usage on these terms. All three are often used synonymously. Section 3.3

describes what they refer to, generally using the term 'justice'.

26 Whereas justice is broadly concerned with a person receiving her due, 'fairness' is sometimes used

in the narrower sense of receiving one's due (or 'fair share') in comparison with what others receive.

28 So it is unfair if people do not all accept an appropriate share of the burden of reducing emissions,

29 whereas on this narrow interpretation it is not unfair – though it may be unjust – for one person's

30 emissions to harm another person. Fairness is concerned with the distribution of goods and harms

among people. 'Distributive justice' – described in Section 3.3 – falls under fairness on the narrow

32 interpretation.

FAQ 3.3 What factors are relevant in considering responsibility for future measures that

34 would mitigate climate change?

35 It is difficult to indicate unambiguously how much responsibility different parties should take for

36 mitigating future emissions. Income and capacity are relevant, as are ethical perceptions of rights

and justice. One might also investigate how similar issues have been dealt with in the past in non-

climate contexts. Under both common law and civil law systems, those responsible for harmful

- actions can only be held liable if their actions infringe a legal standard, such as negligence or
- 40 nuisance. Negligence is based on the standard of the reasonable person. On the other hand, liability
- 41 for causing a nuisance does not exist if the actor did not know or have reason to know the effects of
- 42 its conduct. If it were established that the emission of GHGs constituted wrongful conduct within the
- 43 terms of the law, the nature of the causal link to the resulting harm would then have to be
- 44 demonstrated.
- 45

1 References

- Abrahamse W., L. Steg, C. Vlek, and T. Rothengatter (2005). A review of intervention studies aimed
 at household energy conservation. *Journal of Environmental Psychology* 25, 273–291. (DOI:
- at household energy conservation. *Jour*10.1016/j.jenvp.2005.08.002).
- 5 Acemoglu D. (2002). Directed technical change. *The Review of Economic Studies* 69, 781–809.
- Acemoglu D., P. Aghion, L. Bursztyn, and D. Hemous (2012). The environment and directed
 technical change. *American Economic Review* 102, 131–166. (DOI: 10.1257/aer.102.1.131).
- 8 Ackerman F., S.J. DeCanio, R.. Howarth, and K. Sheeran (2009). Limitations of integrated
- 9 assessment models of climate change. *Climatic Change* **95**, 297–315. (DOI: 10.1007/s10584-009-0570.)
- 10 9570-x).
- 11 Ackerman F., E.A. Stanton, and R. Bueno (2013). Epstein–Zin Utility in DICE: Is Risk Aversion
- 12 Irrelevant to Climate Policy? *Environmental and Resource Economics* 56, 73–84. (DOI:
 13 10.1007/s10640-013-9645-z).
- 14 Adaman F., N. Karalı, G. Kumbaroğlu, I. Or, B. Özkaynak, and Ü. Zenginobuz (2011). What
- determines urban households' willingness to pay for CO2 emission reductions in Turkey: A
- 16 contingent valuation survey. *Energy Policy* **39**, 689–698. (DOI: 10.1016/j.enpol.2010.10.042).
- Adger W.N., J. Barnett, K. Brown, N. Marshall, and K. O'Brien (2012). Cultural dimensions of climate
 change impacts and adaptation. *Nature Climate Change* 3, 112–117.
- 19 Adger W.N., and P.M. Kelly (1999). Social Vulnerability to Climate Change and the Architecture of
- Entitlements. *Mitigation and Adaptation Strategies for Global Change* 4, 253–266. (DOI:
 10.1023/A:1009601904210).
- Adler M. (2011). Well-Being and Fair Distribution: Beyond Cost-Benefit Analysis. Oxford University
 Press, USA, 656 pp., (ISBN: 0195384997).
- Agar N. (2001). *Life's Intrinsic Value: Science, Ethics, and Nature*. Columbia University Press, 220 pp.,
 (ISBN: 9780231117876).
- Aghion P., R. Blundell, R. Griffith, P. Howitt, and S. Prantl (2009). The effects of entry on incumbent
 innovation and productivity. *Review of Economics and Statistics* 91, 20–32. (DOI:
- 28 10.1162/rest.91.1.20).
- Agostino A., and R. Lizarde (2012). Gender and climate justice. *Development* 55, 90–95. (DOI: 10.1057/dev.2011.99).
- 31 Akter S., and J. Bennett (2011). Household perceptions of climate change and preferences for
- mitigation action: the case of the Carbon Pollution Reduction Scheme in Australia. *Climatic Change* **109**, 417–436. (DOI: 10.1007/s10584-011-0034-8).
- Alcamo J., and E. Kreileman (1996). Emission scenarios and global climate protection. *Global Environmental Change* 6, 305–334. (DOI: 10.1016/S0959-3780(96)00030-1).
- 36 Aldred J. (1994). Existence value, welfare and altruism. *Environmental Values* **3**, 381–402. (DOI:
- 37 10.3197/096327194776679665).

- Aldy J.E, Krupnick A.J, Parry I.W.H, Newell R.G, and Pizer W.A (2010). Designing climate mitigation
 policy. J. Econ. Lit. Journal of Economic Literature 48, 903–934.
- 3 Aldy J.E., M.J. Kotchen, and A.A. Leiserowitz (2012). Willingness to pay and political support for a
- 4 US national clean energy standard. *Nature Climate Change* **2**, 596–599. (DOI:
- 5 10.1038/nclimate1527).
- 6 Alkin M. (2004). Evaluation roots : tracing theorists' views and influences. Sage Publications,
- 7 Thousand Oaks Calif., (ISBN: 9780761928935).
- Allcott H. (2011). Social norms and energy conservation. *Journal of Public Economics* 95, 1082–1095.
 (DOI: 10.1016/j.jpubeco.2011.03.003).
- Allcott H. (2013). The welfare effects of misperceived product costs: Data and calibrations from the automobile market. *American Economic Journal: Economic Policy* 5, 30–66.
- Allcott H., and M. Greenstone (2012). Is there an energy efficiency gap? *Journal of Economic Perspectives* 26, 3–28. (DOI: 10.1257/jep.26.1.3).

14 Allcott H., S. Mullainathan, and D. Taubinsky (forthcoming). Energy policy with externalities and

- 15 internalities. *Journal of Public Economics*.
- 16 Ambec S., and P. Barla (2006). Can Environmental Regulations be Good for Business? An Assessment
- 17 of the Porter Hypothesis. *Energy Studies Review* **14**. Available at:
- 18 http://digitalcommons.mcmaster.ca/esr/vol14/iss2/1.
- 19 Ambec S., M.A. Cohen, S. Elgie, and P. Lanoie (2013). The Porter Hypothesis at 20: Can
- 20 Environmental Regulation Enhance Innovation and Competitiveness? *Review of Environmental*
- 21 *Economics and Policy*. (DOI: 10.1093/reep/res016). Available at:
- 22 http://reep.oxfordjournals.org/content/early/2013/01/04/reep.res016.
- 23 Ambrus A., and B. Greiner (2012). Imperfect Public Monitoring with Costly Punishment: An
- 24 Experimental Study. *The American Economic Review* **102**, 3317–3332.
- **American Law Institute (2011).** *Restatement of the law (third): restitution and unjust enrichment.*
- 26 American Law Institute Publishers, St. Paul, MN.
- 27 American Psychological Association (2010). *Psychology and global climate change: addressing a*
- 28 *multi-faceted phenomenon and set of challenges*. Available at:
- 29 http://www.apa.org/science/about/publications/climate-change.aspx.
- 30 Amundsen E.S., and J.B. Mortensen (2001). The Danish Green Certificate System: some simple
- analytical results. *Energy Economics* **23**, 489–509. (DOI: 10.1016/S0140-9883(01)00079-2).
- 32 Anderson S.T., and R.G. Newell (2004). Information programs for technology adoption: the case of
- energy-efficiency audits. *Resource and Energy Economics* **26**, 27–50. (DOI:
- 34 10.1016/j.reseneeco.2003.07.001).
- 35 Anthoff D., and R. Hahn (2010). Government failure and market failure: on the inefficiency of
- environmental and energy policy. *Oxford Review of Economic Policy* **26**, 197–224. (DOI:
- 37 10.1093/oxrep/grq004).

- 1 **Anthoff D., C. Hepburn, and R.S.J. Tol (2009).** Equity weighting and the marginal damage costs of 2 climate change. *Ecological Economics* **68**, 836–849. (DOI: 10.1016/j.ecolecon.2008.06.017).
- Anthoff D., and R.S.J. Tol (2013). The uncertainty about the social cost of carbon: A decomposition analysis using FUND. *Climatic Change* **117**, 515–530. (DOI: 10.1007/s10584-013-0706-7).
- Antolini D.E., and C.L. Rechtschaffen (2008). Common law remedies: a refresher. *Environmental Law Reporter News and Analysis* 38, 10114–10127.
- 7 **Appiah K.A. (2010).** *The ethics of identity*. Princeton University Press. Available at:
- 8 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=853T-hj-
- 9 TKMC&oi=fnd&pg=PP2&dq=The+Ethics+of+Identity+2005+appiah&ots=s_FLhUMI1_&sig=eBv56v6OI
- 10 RI8_Rg6KTbkQltclho.
- 11 Archibald G.C. (1959). Welfare economics, ethics, and essentialism. *Economica* **26**, 316–327.
- Arimura T.H., S. Li, R.G. Newell, and K. Palmer (2012). Cost-effectiveness of electricity energy
 efficiency programs. *The Energy Journal* 33, 63–99.
- Arrhenius G. (forthcoming). *Population ethics: the challenge of future generations*. Oxford University
 Press, Oxford.
- Arrow K.J. (1963). Social choice and individual values. Yale University Press, New Haven, (ISBN:
 9780300013641).
- Arrow K.J. (1977). Extended sympathy and the possibility of social choice. *American Economic Review* 67, 219–225.
- Arrow K.J. (1999). Discounting, morality, and gaming. In: *Discounting and Intergenerational Equity*.
 P.R. Portney, J.J.. Weyant, (eds.), Resources for the Future, Washington, D.C. pp.13–21, (ISBN:
- 22 0915707896).
- Arrow K.J. (2007). Global climate change: a challenge to policy. *The Economists' Voice* 4. Available
 at:
- 25 http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/contentUri?t:ac=j\$002fev.20
- 26 07.4.3\$002fev.2007.4.3.1270\$002fev.2007.4.3.1270.xml.
- 27 Arrow K., M. Cropper, C. Gollier, B. Groom, G. Heal, R. Newell, W. Nordhaus, R. Pindyck, W. Pizer,
- **P. Portney, T. Sterner, R.S.J. Tol, and M. Weitzman (2013).** Determining Benefits and Costs for
- 29 Future Generations. *Science* **341**, 349–350. (DOI: 10.1126/science.1235665).
- 30 Arze del Granado F.J., D. Coady, and R. Gillingham (2012). The Unequal Benefits of Fuel Subsidies: A
- Review of Evidence for Developing Countries. *World Development* **40**, 2234–2248. (DOI:
- 32 10.1016/j.worlddev.2012.05.005).
- 33 Asheim G.B., C.B. Froyn, J. Hovi, and F.C. Menz (2006). Regional versus global cooperation for
- climate control. *Journal of Environmental Economics and Management* **51**, 93–109. (DOI: 10.1016/j.icom.2005.04.004)
- 35 10.1016/j.jeem.2005.04.004).
- 36 **Atkinson A.B. (1970).** On the measurement of inequality. *Journal of economic theory* **2**, 244–263.

Attari S.Z., M.L. DeKay, C.I. Davidson, and W. Bruine de Bruin (2010). Public perceptions of energy
 consumption and savings. *Proceedings of the National Academy of Sciences* 107, 16054–16059. (DOI: 10.1073/pnas.1001509107).

- Aunan K., J. Fang, H. Vennemo, K. Oye, and H.M. Seip (2004). Co-benefits of climate policy—lessons
 learned from a study in Shanxi, China. *Energy Policy* 32, 567–581. (DOI: 10.1016/S0301-
- 6 4215(03)00156-3).
- 7 Axelrod R.M. (1984). *The Evolution of Cooperation*. Basic Books, New York.
- Ayres I., and J. Braithwaite (1992). *Responsive Regulation:Transcending the Deregulation Debate*.
 Oxford University Press, 218 pp., (ISBN: 9780199879953).
- Azar C., and T. Sterner (1996). Discounting and distributional considerations in the context of global warming. *Ecological Economics* 19, 169–184. (DOI: 10.1016/0921-8009(96)00065-1).
- Babcock L., and G. Loewenstein (1997). Explaining Bargaining Impasse: The Role of Self-Serving
 Biases. *The Journal of Economic Perspectives* 11, 109–126. (DOI: 10.2307/2138254).
- Babiker M., A. Gurgel, S. Paltsev, and J. Reilly (2009). Forward-looking versus recursive-dynamic
 modeling in climate policy analysis: A comparison. *Economic modelling* 26, 1341–1354.
- Babiker M., J. Reilly, and L. Viguier (2004). Is International Emissions Trading Always Beneficial? *The Energy Journal* 25, 33–56.
- 18 Baer P. (2010). Greenhouse Development Rights: A Framework for Climate Protection That is "More
- 19 Fair" Than Equal Per Capita Emissions Rights. In: *Climate Ethics: essential readings*. S.M. Gardiner, S.
- 20 Caney, D. Jamieson, H. Shue, (eds.), Oxford University Press, pp.215–230, .
- Baier A. (1981). The Rights of Past and Future Persons. In: *Responsibilities to Future Generations: Environmental Ethics*. E. Partridge, (ed.), Prometheus Books, pp.171–183, .
- Baldos U.L.C., and T.W. Hertel (2013). Looking back to move forward on model validation: insights
 from a global model of agricultural land use. *Environmental Research Letters* 8, 034024.
- Ballard C.L., and D. Fullerton (1992). Distortionary Taxes and the Provision of Public Goods. *The* Journal of Economic Perspectives 6, 117–131.
- Bansal R., and A. Yaron (2004). Risks for the Long Run: A Potential Resolution of Asset Pricing
 Puzzles. *The Journal of Finance* 59, 1481–1509. (DOI: 10.1111/j.1540-6261.2004.00670.x).
- Bardach E. (2005). A practical guide for policy analysis : the eightfold path to more effective problem
 solving. Sage; CQ Press, Los Angeles; Thousand Oaks, (ISBN: 9781608718429).
- 31 Bardhan A., D. Jaffee, C. Kroll, and N. Wallace (2013). Energy efficiency retrofits for U.S. housing:
- 32 Removing the bottlenecks. *Regional Science and Urban Economics*.
- 33 **Barrett S. (2003).** Environment and Statecraft: The Strategy of Environmental Treaty-Making: The
- 34 *Strategy of Environmental Treaty-Making*. Oxford University Press. Available at:
- 35 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=uqrey86neSIC&oi=fnd&
- 36 pg=PR8&dq=Environment+and+Statecraft&ots=wFEl3fc3oM&sig=NpRRBtUG-j9YrUkHIWLa_4UA-dI.

- Barrett S. (2007). Why Cooperate?: The Incentive to Supply Global Public Goods: The Incentive to
 Supply Global Public Goods. OUP Oxford, 276 pp., (ISBN: 9780199211890).
- Barrett S. (2008). The incredible economics of geoengineering. *Environmental and Resource Economics* 39, 45–54.
- 5 **Barrett S., and A. Dannenberg (2012).** Climate negotiations under scientific uncertainty. *Proceedings* 6 *of the National Academy of Sciences* **109**, 17372–17376. (DOI: 10.1073/pnas.1208417109).
- Barro R.J. (2006). Rare Disasters and Asset Markets in the Twentieth Century. *The Quarterly Journal* of Economics 121, 823–866. (DOI: 10.2307/25098810).
- Barro R.J. (2009). Rare Disasters, Asset Prices, and Welfare Costs. *American Economic Review* 99, 243–264. (DOI: 10.1257/aer.99.1.243).
- Barry B. (1977). Justice between generations. In: *Law, Morality and Society. Essays in Honor of H. L.* A. Hart, P.M.S. Hacker and Joseph Raz (eds.). Clarendon Press, Oxford pp.268–284, .
- Barry B. (1989). A treatise on social justice, volume 1: theories of justice. Harvester-Wheatsheaf,
 London.
- **Barry B. (1999).** Sustainability and intergenerational justice. In: *Fairness and Futurity. Essays on*
- 16 Environmental Sustainability. A. Dobson, (ed.), Oxford University Press, Oxford pp.93–117, .
- 17 **Barton J.H. (2007).** Intellectual property and access to clean energy technologies in developing
- 18 countries: an analysis of solar photovoltaic, biofuels and wind technologies. ICTSD Trade and
- 19 Sustainable Energy Series Issue Paper No. 2. International Centre for Trade and Sustainable
- 20 Development, Geneva, Switzerland.
- Becht M. (1995). The theory and estimation of individual and social welfare measures. *Journal of Economic Surveys* 9, 53–87.
- Beckman J., T. Hertel, and W. Tyner (2011). Validating energy-oriented CGE models. *Energy Economics* 33, 799–806.
- Behrens K.G. (2012). Moral obligations towards future generations in African thought. *Journal of Global Ethics* 8, 179–191. (DOI: 10.1080/17449626.2012.705786).
- Bell D. (2011). Does anthropogenic climate change violate human rights? *Critical Review of International Social and Political Philosophy* 14, 99–124. (DOI: 10.1080/13698230.2011.529703).
- Bennett J., and R. Blamey (2001). The Choice Modelling Approach to Environmental Valuation.
 Edward Elgar Publishing, 288 pp., (ISBN: 9781840643046).
- Berrens R.P., A.K. Bohara, H.C. Jenkins-Smith, C.L. Silva, and D.L. Weimer (2004). Information and
 effort in contingent valuation surveys: application to global climate change using national internet
 samples. *Journal of Environmental Economics and Management* 47, 331–363. (DOI: 10.1016/S0095 0696(03)00094-9).
- Bertrand M., D. Karlan, S. Mullainathan, E. Shafir, and J. Zinman (2010). What's advertising content worth? evidence from a consumer credit marketing field experiment. *Quarterly Journal of Economics*
- 37 **125**, 263–305. (DOI: 10.1162/qjec.2010.125.1.263).

- Betz G. (2012). The case for climate engineering research: an analysis of the "arm the future"
 argument. *Climatic Change* 111, 473–485. (DOI: 10.1007/s10584-011-0207-5).
- Betz G., and S. Cacean (2012). Ethical Aspects of Climate Engineering. KIT Scientific Publishing, 170
 pp., (ISBN: 9783866448568).
- 5 **Binswanger M. (2001).** Technological progress and sustainable development: what about the 6 rebound effect? *Ecological Economics* **36**, 119–132. (DOI: 10.1016/S0921-8009(00)00214-7).
- Binswanger H., and V. Ruttan (1978). Induced innovation: technology institutions and development.
 Johns Hopkins University Press, Baltimore, M.D.
- 9 Birks P. (2005). Unjust enrichment (second edition). Oxford University Press, New York.
- Birnbacher D. (1988). Verantwortung für zukünftige Generationen. Ph. Reclam, Stuttgart, 297 pp.,
 (ISBN: 3150284473).
- Birnbacher D. (2009). "What motivates us to care for the (distant) future?" In: *Intergenerational* Justice. Oxford University Press, Oxford.
- Blackorby C., W. Bossert, and D. Donaldson (2005). *Population issues in social-choice theory, welfare economics and ethics*. Cambridge University Press, Cambridge, (ISBN: 9780521825511).
- 16 **Blackorby C., and D. Donaldson (1990).** A review article: The case against the use of the sum of 17 compensating variations in cost-benefit analysis. *Canadian Journal of Economics*, 471–494.
- Blok K. (2007). Introduction to energy analysis. Techne Press, Amsterdam, 256 pp., (ISBN:
 9789085940166).
- Bloomberg (2010). Building bridges: state of the voluntary carbon markets 2010. Available at:
 http://www.forest-trends.org/documents/files/doc_2433.pdf.
- 22 Blumer H. (1956). Sociological analysis and the "variable." American Sociological Review 21, 683–90.
- 23 Boadway R.W., and N. Bruce (1984). *Welfare economics*. B. Blackwell. Available at:
- 24 http://www.econ.cam.ac.uk/faculty/edwards/Prelim/Outline.pdf.
- 25 Bockstael N.E., and K.E. McConnell (2007). Environmental valuation with revealed preferences : a
- theoretical guide to empirical models. Springer Netherland, Dordrecht, 389 pp., (ISBN: 0792365011
 9780792365013).
- 28 Böhringer C., and K.E. Rosendahl (2010). Green promotes the dirtiest: on the interaction between
- black and green quotas in energy markets. *Journal of Regulatory Economics* 37, 316–325. (DOI:
 10.1007/s11149-010-9116-1).
- Bollinger B., P. Leslie, and A. Sorensen (2011). Calorie posting in chain restaurants. *American Economic Journal: Economic Policy* 3, 91–128. (DOI: 10.1257/pol.3.1.91).
- Bolton G.E., J. Brandts, and A. Ockenfels (2005). Fair procedures: Evidence from games involving
 lotteries. *The Economic Journal* 115, 1054–1076.
- **Bolton G., B. Greiner, and A. Ockenfels (2013).** Engineering trust: reciprocity in the production of reputation information. *Management Science* **59**, 265–285.

- **Bolton G.E., E. Katok, and A. Ockenfels (2004).** How effective are electronic reputation
- 2 mechanisms? An experimental investigation. *Management science* **50**, 1587–1602.
- 3 Bolton G.E., and A. Ockenfels (2000). ERC: A theory of equity, reciprocity, and competition.
- 4 *American economic review*, 166–193.
- 5 Borck J.C., and C. Coglianese (2009). Voluntary environmental programs: assessing their
- 6 effectiveness. *Annual Review of Environment and Resources* **34**, 305–324. (DOI:
- 7 10.1146/annurev.environ.032908.091450).
- 8 Bosello F., C. Carraro, and E. De Cian (2010). Climate Policy and the Optimal Balance between
- 9 Mitigation, Adaptation and Unavoided Damage. *Climate Change Economics* 01, 71–92. (DOI:
 10.1142/S20100078100008X).
- 11 **Bosello F., F. Eboli, and R. Pierfederici (2012).** Assessing the Economic Impacts of Climate Change.
- 12 *Review of Environment Energy and Economics*. Available at:
- 13 http://re3.feem.it/getpage.aspx?id=4569.
- Bosetti V., C. Carraro, M. Galeotti, E. Massetti, and M. Tavoni (2006). WITCH A World Induced
 Technical Change Hybrid model. *Energy Journal*, 13–37.
- Bosetti V., C. Carraro, E. Massetti, and M. Tavoni (2008). International energy R&D spillovers and
 the economics of greenhouse gas atmospheric stabilization. *Energy Economics* 30, 2912–2929. (DOI:
- 18 10.1016/j.eneco.2008.04.008).
- 19 Bostrom A., M.G. Morgan, B. Fischhoff, and D. Read (1994). What Do People Know About Global
- 20 Climate Change? 1. Mental Models. *Risk Analysis* **14**, 959–970. (DOI: 10.1111/j.1539-
- 21 6924.1994.tb00065.x).
- Botzen W.J.W., and J.C.J.M. van den Bergh (2012). Risk attitudes to low-probability climate change
 risks: WTP for flood insurance. *Journal of Economic Behavior & Organization* 82, 151–166. (DOI:
 10.1016/j.jebo.2012.01.005).
- Boucher O. (2012). Comparison of physically- and economically-based CO<sub>2</sub> equivalences for methane. *Earth System Dynamics* 3, 49–61. (DOI: 10.5194/esd-3-49-2012).
- Brekke K.A., and O. Johansson-Stenman (2008). The behavioural economics of climate change.
 Oxford Review of Economic Policy 24, 280–297. (DOI: 10.1093/oxrep/grn012).
- 29 Brennan A., and Y.S. Lo (2010). Understanding environmental philosophy. Acumen, Durham.
- Broome J. (1994). Structured and unstructured valuation. *Analyse & Kritik* 16, 121–132.
- Broome J. (2004). *Weighing lives*. Oxford University Press, Oxford, (ISBN: 9780199297702).
- 32 Broome J. (2009). Why economics needs ethical theory. In: Arguments for a Better World: Essays in
- 33 Honour of Amartya Sen. K. Basu, R. Kanbur, (eds.), Oxford University Press, Oxford pp.7–14, .
- Broome J. (2012). Climate Matters: Ethics in a Warming World (Amnesty International Global Ethics
 Series). WW Norton & Company. Available at:
- 36 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=RjrYYEk8GYQC&oi=fnd&
- 37 pg=PT7&dq=Climate+Matters:+Ethics+In+a+Warming+World&ots=csYGp-
- 38 nX9Q&sig=q9L3quID0ITAhdTutpi5DXlge7w.

- Brosig J., J. Weimann, and A. Ockenfels (2003). The effect of communication media on cooperation.
 German Economic Review 4, 217–241.
- 3 Bruce J.P., H. Lee, and E.F. Haites (1996). Climate Change 1995: Economic and Social Dimensions of
- 4 Climate Change: Contribution of Working Group III to the Second Assessment Report of the
- 5 Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
- 6 Bruckner T., G. Petschel-Held, F.L. Toth, H.M. Füssel, C. Helm, M. Leimbach, and H.J. Schellnhuber
- 7 (1999). Climate change decision-support and the tolerable windows approach. *Environmental*
- 8 Modeling and Assessment **4**, 217–234.
- 9 **De Bruin K.C., R.B. Dellink, and R.S.J. Tol (2009).** AD-DICE: an implementation of adaptation in the 10 DICE model. *Climatic Change* **95**, 63–81. (DOI: 10.1007/s10584-008-9535-5).
- 11 Brunée J., S. Goldberg, R. Lord, and L. Rajamani (2012). Overview of legal issues relevant to climate
- change. In: *Climate Change Liability: Transnational Theory and Practice*. R. Lord, S. Goldberg, L.
 Rajamani, J. Brunée, (eds.), Cambridge University Press, Cambridge UK pp.23–49, .
- 14 **Buchanan A.E. (2004).** Justice, legitimacy, and self-determination moral foundations for international
- *law.* Oxford University Press, Oxford, 520 pp., (ISBN: 0198295359 9780198295358). Available at:
- 16 http://rave.ohiolink.edu/ebooks/ebc/0198295359.
- 17 Buck H.J. (2012). Climate Remediation to Address Social Development Challenges: Going Beyond
- 18 Cost-Benefit and Risk Approaches to Assessing Solar Radiation Management. In: *Engineering the* 19 *Climate: The Ethics of Solar Radiation Management*. C.J. Preston, (ed.), Lexington Books, (ISBN:
- 20 0739175408).
- Bunzl M. (2008). An Ethical Assessment of Geoengineering. *Bulletin of the Atomic Scientists* 64, 18.
- Bunzl M. (2009). Researching geoengineering: should not or could not? *Environmental Research Letters* 4, 045104.
- Buonanno P., C. Carraro, and M. Galeotti (2003). Endogenous induced technical change and the costs of Kyoto. *Resource and Energy Economics* **25**, 11–34. (DOI: 10.1016/S0928-7655(02)00015-5).
- 26 Burns W.C.G., and H.M. Osofsky (2009). Overview: The Exigencies That Drive Potential Causes of
- 27 Action for Climate Change. In: *Adjudicating Climate Change: State, National, and International*
- 28 Approaches. W.C.G. Burns, H.M. Osofsky, (eds.), Cambridge University Press, pp.1–27, .
- Burtraw D. (1996). The SO2 emissions trading program: cost savings without allowance trades.
 Contemporary Economic Policy 14, 79–94. (DOI: 10.1111/j.1465-7287.1996.tb00615.x).
- 31 Burtraw D., D.A. Evans, A. Krupnick, K. Palmer, and R. Toth (2005). Economics of pollution trading
- 32 for SO2 and NOx. Annual Review of Environment and Resources **30**, 253–289. (DOI:
- 33 10.1146/annurev.energy.30.081804.121028).
- 34 Burtraw D., A. Krupnick, K. Palmer, A. Paul, M. Toman, and C. Bloyd (2003). Ancillary benefits of
- reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector. *Journal of Environmental Economics and Management* **45**, 650–673. (DOI: 10.1016/S0095-
- 37 0696(02)00022-0).
- Butt D. (2007). On benefiting from injustice. *Canadian Journal of Philosophy* 37, 129–152. (DOI:
 10.1353/cjp.2007.0010).

- 1 Camerer C.F., S. Issacharoff, G.F. Loewenstein, T. O'Donoghue, and M. Rabin (2003). Regulation for
- 2 conservatives: behavioral economics and the case for "asymmetric paternalism." University of
- 3 Pennsylvania Law Review **151**, 1211.
- Campbell J.Y. (1996). Understanding Risk and Return. *Journal of Political Economy* 104, 298–345.
 (DOI: 10.2307/2138928).
- Caney S. (2005). Cosmopolitan justice, responsibility, and global climate change. *Leiden Journal of International Law* 18, 747–775. (DOI: 10.1017/S0922156505002992).
- Caney S. (2006a). Cosmopolitan justice, rights and global climate change. *Canadian Journal of Law and Jurisprudence* XIX, 255–278.
- Caney S. (2006b). Environmental degradation, reparations, and the moral significance of history.
 Journal of Social Philosophy 37, 464–482. (DOI: 10.1111/j.1467-9833.2006.00348.x).
- Caney S. (2009). Justice and the distribution of greenhouse gas emissions. *Journal of Global Ethics* 5, 125–146. (DOI: 10.1080/17449620903110300).
- Caney S. (2010). Climate change and the duties of the advantaged. *Critical Review of International* Social and Political Philosophy 13, 203–228. (DOI: 10.1080/13698230903326331).
- 16 **Caney S. (2012).** Just Emissions. *Philosophy & Public Affairs* **40**, 255–300. (DOI: 10.1111/page 12005)
- 17 10.1111/papa.12005).
- Carbone J.C., and V.K. Smith (2013). Valuing Nature in a General Equilibrium. *Journal of Environmental Economics and Management* 66, 72–89.
- Cardoso A., and J. Benhin (2011). Assessing the viability of protecting Colombian Caribbean coast
 from sea level rise: An economic valuationg approach. *Semestre Económico* 14, 13–30.
- 22 Carlsson F., M. Kataria, A. Krupnick, E. Lampi, Å. Löfgren, P. Qin, S. Chung, and T. Sterner (2012).
- Paying for Mitigation: A Multiple Country Study. *Land Economics* **88**, 326–340.
- Carson R.T., and W.M. Hanemann (2005). Contingent Valuation. In: *Handbook of Environmental Economics*. K.-G. Mäler, J.R. Vincent, (eds.), Elsevier, pp.821–936, (ISBN: 1574-0099). Available at:
- *Economics*. K.-G. Mäler, J.R. Vincent, (eds.), Elsevier, pp.821–936, (ISBN: 1574)
 http://www.sciencedirect.com/science/article/pii/S1574009905020176.
 - 27 **Champ P., K.J. Boyle, and T.C. Brown (2003).** *A primer on nonmarket valuation*. Kluwer Academic
 - Publishers, Dordrecht; Boston, 592 pp., (ISBN: 1402014309 9781402014307 0792364988
 9780792364986 1402014457 9781402014451).
- 30 **Chang R. (1997).** *Incommensurability, incomparability, and practical reason*. Harvard University
- 31 Press, Cambridge Mass., (ISBN: 9780674447561).
- Charness G., and M. Rabin (2002). Understanding social preferences with simple tests. *The Quarterly Journal of Economics* 117, 817–869.
- Chen H. (1990). *Theory-driven evaluations*. Sage Publications, Newbury Park Calif., (ISBN:
 9780803935327).
- 36 **Chen Y., M. Harper, J. Konstan, and S. Xin Li (2010).** Social comparisons and contributions to online 37 communities: A field experiment on movielens. *The American Economic Review*, 1358–1398.

- Chetty R., A. Looney, and K. Kroft (2009). Salience and taxation: theory and evidence. *American Economic Review* 99, 1145–1177. (DOI: 10.1257/aer.99.4.1145).
- Choquehuanca C. D. (2010). Hacia la reconstrucción del Vivir Bien. América Latina en Movimiento,
 ALAI 452, 6–13.
- Clarke L., J. Edmonds, V. Krey, R. Richels, S. Rose, and M. Tavoni (2009). International climate policy
 architectures: Overview of the EMF 22 International Scenarios. *Energy Economics* 31, S64–S81.
- Clarkson R., and K. Deyes (2002). Estimating the Social Cost of Carbon Emissions. Department of
 Environment, Food and Rural Affairs: London.
- 9 Cline W.R. (1992). *The Economics of Global Warming*. Institute for International Economics, (ISBN:
 9780881321326). Available at: http://books.google.com/books?id=kTJvx2-fTYUC.
- Coase R.H. (1937). The Nature of the Firm. *Economica* 4, 386–405. (DOI: 10.1111/j.1468 0335.1937.tb00002.x).
- Cochrane J. (2001). Asset Pricing. Princeton University Press, (ISBN: 0691074984). Available at: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0691074984.
- Coleman J.L. (1992). *Risks and Wrongs: Philosophical Analysis*. Cambridge University Press Archive,
 532 pp., (ISBN: 9780521428613).
- Compston H. (2010). The politics of climate policy: Strategic options for national governments. *The Political Quarterly* 81, 107–115.
- 19 **Corner A., and N. Pidgeon (2010).** Geoengineering the Climate: The Social and Ethical Implications.
- 20 Environment: Science and Policy for Sustainable Development **52**, 24–37. (DOI:
- 21 10.1080/00139150903479563).
- 22 Corner A., N. Pidgeon, and K. Parkhill (2012). Perceptions of geoengineering: public attitudes,
- stakeholder perspectives, and the challenge of "upstream" engagement. *Wiley Interdisciplinary*
- 24 *Reviews: Climate Change* **3**, 451–466. (DOI: 10.1002/wcc.176).
- Costello C.J., M.G. Neubert, S.A. Polasky, and A.R. Solow (2010). Bounded uncertainty and climate
 change economics. *Proceedings of the National Academy of Sciences* 107, 8108–8110. (DOI:
 10.1073/pnas.0911488107).
- 28 **Cowen T. (1992).** Consequentialism implies a zero rate of intergenerational discount. In: *Philosophy,*
- 29 Politics, and Society. Yale University Press, New Haven, CT pp.162–168, .
- 30 Cragg M., and M. Kahn (1997). New Estimates of Climate Demand: Evidence from Location Choice.
- 31 *Journal of Urban Economics* **42**, 261–284. (DOI: 10.1006/juec.1996.2027).
- 32 Craig P.P., A. Gadgil, and J.G. Koomey (2002). What can history teach us? a retrospective
- examination of long-term energy forecasts for the united states. *Annual Review of Energy and the*
- 34 *Environment* **27**, 83–118. (DOI: 10.1146/annurev.energy.27.122001.083425).
- 35 Crate S.A. (2008). Gone the Bull of Winter? Grappling with the Cultural Implications of and
- Anthropology's Role(s) in Global Climate Change. *Current Anthropology* **49**, 569–595. (DOI:
- 37 10.1086/529543).

- 1 Creutzig F., E. McGlynn, J. Minx, and O. Edenhofer (2011). Climate policies for road transport
- 2 revisited (I): Evaluation of the current framework. *Energy Policy* **39**, 2396–2406. (DOI:
- 3 10.1016/j.enpol.2011.01.062).
- 4 Cropper M., and D. Laibson (1999). The Implications of Hyperbolic Discounting for Project
- 5 Evaluation. In: *Discounting Intergenerational Equity*. P.R. Portney, J. Weyant, (eds.), Resources for 6 the Future, Washington D.C.
- Crost B., and C. Traeger (2013). Optimal climate policy: Uncertainty versus Monte-Carlo. *Economic Letters* 120, 552–558.
- 9 Crutzen P.J. (2006). Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to
 10 Resolve a Policy Dilemma? *Climatic Change* 77, 211–220. (DOI: 10.1007/s10584-006-9101-y).
- 11 Currie C., S.N. Gabhainn, E. Godeau, C. Roberts, R. Smith, D. Currie, W. Picket, M. Richter, A.

12 **Morgan, and V. Barnekow Rasmussen (2008).** *Global health risks: mortality and the burden of* 13 *disease attributable to selected major risks*. World Health Organization.

- Cyert R.M., and J.G. March (1963). A Behavioral Theory of the Firm. Prentice Hall, Englewood Cliffs,
 NJ, 352 pp.
- 16 **Daes I. (1996).** Supplementary Report of the Special Rapporteur on the Protection of the Heritage of
- *Indigenous Peoples*. United Nations Sub-Commission on Prevention of Discrimination and Protection
 of Minorities.
- Dalton H. (1920). The measurement of the inequality of incomes. *The Economic Journal* 30, 348–
 361.
- Dana D. (2009). The contextual rationality of the precautionary principle. *Queen's Law Journal* 35,
 67–96.
- 23 Daniel V.E., R.J.G.M. Florax, and P. Rietveld (2009). Flooding risk and housing values: An economic
- assessment of environmental hazard. *Ecological Economics* **69**, 355–365. (DOI:
- 25 10.1016/j.ecolecon.2009.08.018).
- Daniel J.S., S. Solomon, M. McFarland, and P. Friedlingstein (2012). Limitations of single-basket
 trading: lessons from the Montreal Protocol for climate policy. *Climatic Change Climatic Change* 111,
 241–248.
- Dankelman I. (2002). Climate change: learning from gender analysis and women's experiences of
 organising for sustainable development. *Gender and Development* 10, 21–29.
- Dannenberg A., B. Sturm, and C. Vogt (2010). Do equity preferences matter for climate negotiators?
 An experimental investigation. *Environmental and Resource Economics* 47, 91–109.
- **Dasgupta P. (2007).** Comments on the Stern Review's economics of climate change. *National*
- 34 Institute Economic Review **199**, 4–7. (DOI: 10.1177/002795010719900102).
- 35 Dasgupta P. (2008). Discounting climate change. *Journal of Risk and Uncertainty* 37, 141–169. (DOI:
 36 10.1007/s11166-008-9049-6).
- **Dasgupta P., and G.M. Heal (1980).** *Economic theory and exhaustible resources*. Cambridge
- 38 University Press, Cambridge, (ISBN: 9780521297615).

- 1 **Davis L.W. (2011).** Evaluating the Slow Adoption of Energy Efficient Investments: Are Renters Less
- 2 *Likely to Have Energy Efficient Appliances?* National Bureau of Economic Research, Inc. 301–316 pp.
- 3 Available at: http://ideas.repec.org/h/nbr/nberch/12130.html.
- Dawes R.M., and R.H. Thaler (1988). Anomalies: cooperation. *The Journal of Economic Perspectives* 2, 187–197.
- 6 **DeCanio S.J. (2003).** *Economic models of climate change: a critique*. Palgrave Macmillan, New York.
- 7 Dechezlepretre A., M. Glachant, I. Hascic, N. Johnstone, and Y. Meniere (2011). Invention and
- 8 transfer of climate change-mitigation technologies: a global analysis. *Review of Environmental*
- 9 *Economics and Policy* **5**, 109–130. (DOI: 10.1093/reep/req023).
- 10 **Dekker T., H.R.J. Vollebergh, F.P. de Vries, and C. Withagen (2012).** Inciting protocols. *Journal of* 11 *Environmental Economics and Management* **64**, 45–67.
- 12 Dell M., B.F. Jones, and B.A. Olken (2009). Temperature and Income: Reconciling New Cross-
- 13 Sectional and Panel Estimates. *American Economic Review* **99**, 198–204. (DOI:
- 14 10.1257/aer.99.2.198).
- 15 Dell M., B.F. Jones, and B.A. Olken (2012). Temperature Shocks and Economic Growth: Evidence
- 16 from the Last Half Century. *American Economic Journal: Macroeconomics* **4**, 66–95. (DOI:
- 17 10.1257/mac.4.3.66).
- DellaVigna S. (2009). Psychology and economics: evidence from the field. *Journal of Economic Literature* 47, 315–372. (DOI: 10.1257/jel.47.2.315).
- Dervis K., and J. Klugman (2011). Measuring human progress: the contribution of the Human
 Development Index and related indices. *Revue d'économie politique* 121, 73–92.
- Deschênes O., and M. Greenstone (2007). The Economic Impacts of Climate Change: Evidence from
 Agricultural Output and Random Fluctuations in Weather. *American Economic Review* 97, 354–385.
 (DOI: 10.1257/aer.97.1.354).
- 25 Deschênes O., and M. Greenstone (2011). Climate Change, Mortality, and Adaptation: Evidence
- from Annual Fluctuations in Weather in the US. *American Economic Journal: Applied Economics* 3,
 152–185. (DOI: 10.1257/app.3.4.152).
- Deschênes O., and C. Kolstad (2011). Economic impacts of climate change on California agriculture.
 Climatic Change 109, 365–386. (DOI: 10.1007/s10584-011-0322-3).
- 30 Dessus S., and D. O'Connor (2003). Climate Policy without Tears CGE-Based Ancillary Benefits
- Estimates for Chile. *Environmental and Resource Economics* **25**, 287–317. (DOI:
- 32 10.1023/A:1024469430532).
- Deuber O., G. Luderer, and O. Edenhofer (2013). Physico-economic evaluation of climate metrics: A
 conceptual framework. *Environmental Science and Policy* 29, 37–45.
- Diamond P.A. (1967). Cardinal welfare, individualistic ethics, and interpersonal comparison of utility:
 Comment. *The Journal of Political Economy* 75, 765.
- **Diamond P.A. (1977).** A framework for social security analysis. *Journal of Public Economics* **8**, 275–
- 38 298. (DOI: 10.1016/0047-2727(77)90002-0).

- 1 **Van Dijk C. (2011).** Civil liability for global warming in the Netherlands. In: *Climate Change Liability*.
- 2 M. Faure, M. Peeters, (eds.), Edward Elgar Publishing Ltd., Cheltenham UK pp.206–226, .
- 3 **Dimson E. (2002).** *Triumph of the optimists: 101 years of global investment returns*. Princeton
- 4 University Press, Princeton, N.J, 339 pp., (ISBN: 0691091943).
- Donner L.J., and W.G. Large (2008). Climate modeling. *Annual Review of Environment and Resources*33, 1–17. (DOI: 10.1146/annurev.environ.33.020707.160752).
- Drèze J. (1998). Distribution matters in cost-benefit analysis: a comment on K.A. Brekke. *The Journal* of Public Economics 70, 485–488.
- 9 Drèze J., and N. Stern (1989). The Theory of Cost-Benefit Analysis. In: *Handbook of Public Economics*.
 10 A. Auerbach, M. Feldstein, (eds.), North-Holland, Amsterdam pp.909–989, .
- Dryzek J.S. (1997). *The politics of the earth: environmental discourses*. Oxford University Press,
 Oxford; New York, (ISBN: 0198781601 9780198781608 0198781598 9780198781592).
- 13 Dubash N.K., D. Raghunandan, G. Sant, and A. Sreenivas (2013). Indian Climate Change Policy.
- 14 Economic & Political Weekly **48**, 47.
- 15 Dubin J., A. Miedema, and R. Chandran (1986). Price effects of energy-efficient technologies: a
- study of residential demand for heating and cooling. *RAND Journal of Economics* **17**, 310–325.
- 17 Dunne J.P., R.J. Stouffer, and J.G. John (2013). Reductions in labour capacity from heat stress under
- 18 climate warming. *Nature Climate Change*. Available at:
- http://www.nature.com.proxy.library.ucsb.edu:2048/nclimate/journal/vaop/ncurrent/full/nclimate1
 827.html.
- 21 Eboli F., R. Parrado, and R. Roson (2010). Climate-change feedback on economic growth:
- explorations with a dynamic general equilibrium model. *Environment and Development Economics*
- **15**, 515–533. (DOI: 10.1017/S1355770X10000252).
- Ekholm T., T.J. Lindroos, and I. Savolainen (2013). Robustness of climate metrics under climate
 policy ambiguity. *Environmental Science & Policy* 31, 44–52. (DOI: 10.1016/j.envsci.2013.03.006).
- 26 Ellerman A.D. (2010). Pricing carbon: the European Union emissions trading scheme. Cambridge
- 27 University Press. Available at:
- 28 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=pigVprvX56QC&oi=fnd&
- 29 pg=PR10&dq=Ellerman+2010+pricing+carbon&ots=Cr4HZ9GjRF&sig=fnyJy5cxTltHVeLo9tl6jV4Kong.
- Elster J., and J.E. Roemer (1993). Interpersonal comparisons of well-being. Cambridge University
 Press, Cambridge, (ISBN: 9780521457224).
- 32 Den Elzen M., J. Fuglestvedt, N. Höhne, C. Trudinger, J. Lowe, B. Matthews, B. Romstad, C.P. de
- 33 Campos, and N. Andronova (2005). Analysing countries' contribution to climate change: scientific
- and policy-related choices. *Environmental Science & Policy* **8**, 614–636. (DOI:
- 35 10.1016/j.envsci.2005.06.007).
- 36 Enkvist P.-A., T. Nauclér, and J. Rosander (2007). A cost curve for greenhouse gas reduction. *The*
- 37 *McKinsey Quarterly*. Available at:
- 38 http://www.mckinseyquarterly.com/A_cost_curve_for_greenhouse_gas_reduction_1911.

- 1 Epstein L.G., and S.E. Zin (1991). Substitution, Risk Aversion, and the Temporal Behavior of
- Consumption and Asset Returns: An Empirical Analysis. *Journal of Political Economy* 99, 263–286.
 (DOI: 10.2307/2937681).
- 4 European Commission (1985). Council Directive of 25 July 1985 on the approximation of the laws,
- regulations and administrative provisions of the member states concerning liability for defective
 products.
- Furopean Commission (2009). Europeans' attitudes towards climate change. European Commission.
 Available at: http://ec.europa.eu/public_opinion/archives/ebs/ebs_322_en.pdf.
- 9 European Union (2004). Directive 2004/35/CE of the European Parliament and the Council on
 10 environmental liability with regard to the prevention and remedying of environmental damage.
- Ewing B., and D. Kysar (2012). Prods and pleas: limited government in an era of unlimited harm.
 Yale Law Journal 131, 350–424.
- Fankhauser S. (1994). The economic costs of global warming damage: A survey. *Global Environmental Change* 4, 301–309. (DOI: 10.1016/0959-3780(94)90030-2).
- Fankhauser S., R.S.J. Tol, and D.W. Pearce (1997). The aggregation of climate change damages: a
 welfare theoretic approach. *Environmental and Resource Economics* 10, 249–266.
- Farber D. (2007). Basic compensation for victims of climate change. University of Pennsylvania Law
 Review 155, 1605–1655.
- Faure M., and A. Nollkaemper (2007). International liability as an instrument to prevent and
 compensate for climate change. *Stanford Journal of International Law* 26A, 123–179.
- Faure M., and M. Peeters (2011). Concluding remarks. In: *Climate Change Liability*. M. Faure, M.
 Peeters, (eds.), Edward Elgar Publishing Ltd., Cheltenham UK pp.255–274, .
- Faure M., and G. Skogh (2003). *The economic analysis of environmental policy and law: an introduction*. Edward Elgar, Northampton MA, 354 pp.
- Fawcett A., L. Clarke, S. Rausch, and J. Weyant (2013). Policy Overview of the EMF24 Study. *The Energy Journal*.
- 27 Fehr E., and S. Gächter (2002). Altruistic punishment in humans. *Nature* 415, 137–140.
- Fehr E., and K.M. Schmidt (1999). A theory of fairness, competition, and cooperation. *The quarterly journal of economics* 114, 817–868.
- Feinberg J. (1984). Harm to Others (The Moral Limits of the Criminal Law). Oxford University Press,
 USA, 284 pp., (ISBN: 0195034090).
- Ferioli F., K. Schoots, and B.C.C. van der Zwaan (2009). Use and limitations of learning curves for
 energy technology policy: a component-learning hypothesis. *Energy Policy* 37, 2525–2535. (DOI:
 10.1016/j.enpol.2008.10.043).
- Fischbacher U., and S. Gächter (2010). Social preferences, beliefs, and the dynamics of free riding in public good experiments. *American Economic Review* **100**, 541–556.

- Fischbacher U., S. Gächter, and E. Fehr (2001). Are people conditionally cooperative? Evidence from
 a public goods experiment. *Economics Letters* 71, 397–404. (DOI: 10.1016/S0165-1765(01)00394-9).
- Fischer C. (2008). Feedback on household electricity consumption: a tool for saving energy? *Energy Efficiency* 1, 79–104. (DOI: 10.1007/s12053-008-9009-7).
- 5 **Fischer C., and R.G. Newell (2008).** Environmental and technology policies for climate mitigation.
- 6 Journal of Environmental Economics and Management **55**, 142–162. (DOI:
- 7 10.1016/j.jeem.2007.11.001).
- 8 Fisher A.C., W.M. Hanemann, M.J. Roberts, and W. Schlenker (2012). The Economic Impacts of

9 Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment.
 10 American Economic Review **102**, 3749–3760. (DOI: 10.1257/aer.102.7.3749).

- Fleming J.R. (2010). Fixing the Sky: The Checkered History of Weather and Climate Control. Columbia
 University Press, (ISBN: 978-0-231-14412-4).
- Fleurbaey M. (2008). Fairness, Responsibility, and Welfare. Oxford University Press, 307 pp., (ISBN:
 9780191607578).
- Fleurbaey M. (2009). Beyond GDP: The Quest for a Measure of Social Welfare. *Journal of Economic Literature* 47, 1029–1075. (DOI: 10.1257/jel.47.4.1029).
- Fleurbaey M. (2010). Assessing risky social situations. *The Journal of Political Economy* 118, 649–
 680. (DOI: 10.1086/656513).
- 19 Fleurbaey M., and P. Hammond (2004). Interpersonally comparable utility. In: Handbook of Utility
- *Theory*. S. Barbera, P.J. Hammond, C. Seidl, (eds.), Kluwer Academic Publishers, Dordrecht
 [Netherlands].
- **Foley D. (2009).** The economic fundamentals of global warming. In: *Twenty-First Century*
- Macroeconomics: Responding to the Climate Challenge. J.M. Harris, N.. Goodwin, (eds.), Edward
 Elgar, Northampton, MA.
- 25 Ford J.D., B. Smit, and J. Wandel (2006). Vulnerability to climate change in the Arctic: A case study
- 26 from Arctic Bay, Canada. *Global Environmental Change* **16**, 145–160. (DOI:
- 27 10.1016/j.gloenvcha.2005.11.007).
- Ford J.D., B. Smit, J. Wandel, M. Allurut, K. Shappa, H. Ittusarjuat, and K. Qrunnut (2008). Climate
- change in the Arctic: current and future vulnerability in two Inuit communities in Canada. *The Geographical Journal* 174, 45–62. (DOI: 10.1111/j.1475-4959.2007.00249.x).
- Forster P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, and J. Lean
- 32 (2007). Changes in atmospheric constituents and in radiative forcing. In: *Climate Change 2007: The*
- 33 Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the
- 34 Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis,
- et. al, (eds.), Cambridge University Press, Cambridge, United Kingdom and New York.
- 36 Forsythe R., J.L. Horowitz, N.E. Savin, and M. Sefton (1994). Fairness in simple bargaining
- experiments. *Games and Economic Behavior* **6**, 347–369. (DOI: 10.1006/game.1994.1021).
- **Frame B. (2005).** Bhutan: a review of its approach to sustainable development. *Development in*
- 39 *Practice* **15**, 216–221. (DOI: 10.1080/09614520500041963).

- 1 Frankfurt H. (1999). Equality and respect. Social Research 64, 3–15.
- Frederick S., G. Loewenstein, and T. O'donoghue (2002). Time discounting and time preference: a
 critical review. *Journal of economic literature* 40, 351–401.
- Freeman J., and C.D. Kolstad (2006). Moving to markets in environmental regulation: lessons from *twenty years of experience*. Oxford University Press, Oxford ; New York, 488 pp., (ISBN:
 0195189655).
- Frey B.S., and S. Meier (2004). Social comparisons and pro-social behavior: Testing" conditional
 cooperation" in a field experiment. *The American Economic Review* 94, 1717–1722.
- 9 Frey B.S., and F. Oberholzer-Gee (1997). The cost of price incentives: an empirical analysis of
 10 motivation crowding-out. *The American Economic Review* 87, 746–755.
- Friman M. (2007). *Historical responsibility in the UNFCCC*. Centre for Climate Science and Policy
 Research, Linkopings Universitet. 70 pp.
- Fuglestvedt J.W., T.K. Bernstsen, O. Godal, and T. Skodvin (2000). Climate implications of GWPbased reductions in greenhouse gas emissions. *Geophysical Research Letters* 27, 409–412.
- 15 Fuglestvedt J.S., T.K. Berntsen, O. Godal, R. Sausen, K.P. Shine, and T. Skodvin (2003). Metrics of
- climate change: assessing radiative forcing and emission indices. *Climatic Change* 58, 267–331. (DOI:
 10.1023/A:1023905326842).
- 18 Fuglestvedt J.S., T.K. Berntsen, O. Godal, and T. Skodvin (2000). Climate implications of GWP-based
- reductions in greenhouse gas emissions. *Geophysical Research Letters* 27, 409–412. (DOI:
 10.1029/1999GL010939).
- 21 Fuglestvedt J.S., K.P. Shine, T. Berntsen, J. Cook, D.S. Lee, A. Stenke, R.B. Skeie, G.J.M. Velders, and
- 1.A. Waitz (2010). Transport impacts on atmosphere and climate: Metrics. *Atmospheric Environment*
- 23 **44**, 4648–4677. (DOI: 10.1016/j.atmosenv.2009.04.044).
- Fullerton D. (2011). Six distributional effects of environmental policy. *Risk Analysis* **31**, 923–29.
- Fullerton D., G. Heutel, and G.E. Metcalf (2011). Does the Indexing of Government Transfers Make
 Carbon Pricing Progressive? *American Journal of Agricultural Economics*.
- Fullerton D., and G.E. Metcalf (2001). Environmental controls, scarcity rents, and pre-existing
 distortions. *Journal of Public Economics* 80, 249–267. (DOI: 10.1016/S0047-2727(00)00087-6).
- Fullerton D., and D.L. Rogers (1993). Who Bears the Lifetime Tax Burden? Brookings Institution
 Press, 264 pp., (ISBN: 9780815729938).
- Gangadharan L., and V. Nemes (2009). Experimental analysis of risk and uncertainty in provisioning
 private and public goods. *Economic Inquiry* 47, 146–164.
- Gardiner S.M. (2004). Ethics and Global Climate Change. *Ethics* 114, 555–600. (DOI:
 10.1086/382247).
- 35 **Gardiner S.M. (2010).** Is "Arming the Future" with Geoengineering Really the Lesser Evil?: Some
- 36 Doubts about the Ethics of Intentionally Manipulating the Climate System. In: *Climate Ethics:*
- 37 essential readings. S.M. Gardiner, (ed.), Oxford University Press, pp.284–314, .

- Gardiner S.M. (2011). A perfect moral storm: the ethical tragedy of climate change. Oxford
 University Press, USA, (ISBN: 0195379446).
- Gerlagh R., and B. Van der Zwaan (2006). Options and instruments for a deep cut in CO2 emissions:
 carbon dioxide capture or renewables, taxes or subsidies? *Energy Journal* 27, 25–48.
- Geroski P. (1995). Markets for technology: knowledge, innovation, and appropriability. In: *Handbook* of the economics of innovation and technological change. P. Stoneman, (ed.), Blackwell, Oxford
 pp.90–131, (ISBN: 0631177736 9780631177739 0631197745 9780631197744).
- Gerrard M., and G. Wannier (2012). United States. In: *Climate Change Liability: Transnational Theory and Practice*. R. Lord, S. Goldberg, L. Rajamani, J. Brunée, (eds.), Cambridge University Press,
 Cambridge UK pp.556–603, .
- Gilbert J. (2006). Indigenous Peoples' Land Rights Under International Law: From Victims to Actors.
 BRILL, 352 pp., (ISBN: 9781571053695).
- Gillett N.P., and H.D. Matthews (2010). Accounting for carbon cycle feedbacks in a comparison of
 the global warming effects of greenhouse gases. *Environmental Research Letters* 5, 034011. (DOI:
 10.1088/1748-9326/5/3/034011).
- Gillingham K., M. Harding, and D. Rapson (2012). Split incentives in residential energy consumption.
 Energy Journal 33, 37–62.
- Gillingham K., M.J. Kotchen, D.S. Rapson, and G. Wagner (2013). Energy policy: The rebound effect
 is overplayed. *Nature* 493, 475–476. (DOI: 10.1038/493475a).
- Gillingham K., R. Newell, and K. Palmer (2006). Energy efficiency policies: A retrospective
 examination. Annual Review of Environment and Resources 31, 161–192.
- Gillingham K., R.G. Newell, and W.A. Pizer (2008). Modeling endogenous technological change for
 climate policy analysis. *Energy Economics* 30, 2734–2753. (DOI: 10.1016/j.eneco.2008.03.001).
- Gillingham K., and K. Palmer (2014). Bridging the Energy Efficiency Gap: Insights for Policy from
 Economic Theory and Empirical Analysis. *Review of Environmental Economics and Policy*.
- 26 Gini C. (1912). Variabilità e mutabilità. In: Memorie di metodologica statistica. E. Pizetti, T. Salvemini,
- 27 (eds.), Libreria Eredi Virgilio Veschi, Rome. Available at:
- 28 http://adsabs.harvard.edu//abs/1912vamu.book.....G.
- Gneezy U., and A. Rustichini (2000). A fine is a price. *The Journal of Legal Studies* 29, 1. (DOI:
 10.1086/468061).
- Godal O., and J.S. Fuglestvedt (2002). Testing 100-year global warming potentials: impacts on
 compliance costs and abatement profile. *Climatic Change* 52, 93–127.
- Goldberg S., and R. Lord (2012). England. In: *Climate Change Liability: Transnational Theory and Practice*. R. Lord, S. Goldberg, L. Rajamani, J. Brunée, (eds.), Cambridge University Press, Cambridge
- 35 UK pp.445–488, .
- Goldstein N.J., R.B. Cialdini, and V. Griskevicius (2008). A room with a viewpoint: Using social norms
 to motivate environmental conservation in hotels. *Journal of Consumer Research* 35, 472–482.

- Gollier C. (2002). Time Horizon and the Discount Rate. *Journal of Economic Theory* 107, 463–473.
 (DOI: 10.1006/jeth.2001.2952).
- Gollier C. (2010). Ecological discounting. *Journal of Economic Theory* 145, 812–829. (DOI:
 10.1016/j.jet.2009.10.001).
- Gollier C. (2012). Pricing The Planet's Future: The Economics of Discounting in an Uncertain World.
 Princeton University Press, 246 pp., (ISBN: 9780691148762).
- Gollier C., and M.L. Weitzman (2010). How should the distant future be discounted when discount
 rates are uncertain? *Economics Letters* 107, 350–353. (DOI: 10.1016/j.econlet.2010.03.001).
- 9 González Gaudiano E., and P. Meira Cartea (2009). Educación, comunicación y cambio climático.
 10 Resistencias para la acción social responsable. *Trayectorias* 11, 6–38.
- Gorman W.M. (1955). The intransitivity of certain criteria used in welfare economics. *Oxford Economic Papers* 7, 25–35.
- Gorman W.M. (1968). The structure of utility functions. *The Review of Economic Studies* 35, 367–
 390.
- 15 **Gosseries A. (2004).** Historical emissions and free riding. *Ethical Perspectives* **11**, 36–60.
- Goulder L.H. (1995). Environmental taxation and the double dividend: a reader's guide. *International Tax and Public Finance* 2, 157–183. (DOI: 10.1007/BF00877495).
- Goulder L.H. (2013). Markets for Pollution Allowances: What Are the (New) Lessons? *jep Journal of Economic Perspectives* 27, 87–102.
- 20 Goulder L.H., and K. Mathai (2000). Optimal CO2 abatement in the presence of induced
- technological change. *Journal of Environmental Economics and Management* **39**, 1–38. (DOI:
 10.1006/jeem.1999.1089).
- Goulder L.H., and I.W.H. Parry (2008). Instrument choice in environmental policy. *Review of Environmental Economics and Policy* 2, 152 –174. (DOI: 10.1093/reep/ren005).
- Goulder L.H., I.W.. Parry, and D. Burtraw (1997). Revenue-raising versus other approaches to
 environmental protection: the critical significance of preexisting tax distortions. *RAND Journal of Economics* 28, 708–731.
- Goulder L.H., and R.N. Stavins (2011). Challenges from state-federal interactions in us climate
 change policy. *American Economic Review* 101, 253–257.
- **Gowdy J.M. (2008).** Behavioral economics and climate change policy. *Journal of Economic Behavior* & *Organization* **68**, 632–644. (DOI: 10.1016/j.jebo.2008.06.011).
- Grainger C.A., and C.D. Kolstad (2010). Who pays a price on carbon? *Environmental and Resource Economics* 46, 359–376. (DOI: 10.1007/s10640-010-9345-x).
- 34 Gram-Hanssen K. (2010). Residential heat comfort practices: understanding users. Building Research
- 35 & Information **38**, 175–186. (DOI: 10.1080/09613210903541527).

- 1 Greene D.L., J. German, and M.A. Delucchi (2009). Fuel economy: The case for market failure. In:
- 2 *Reducing climate impacts in the transportation sector*. Springer, pp.181–205, .Available at:
- 3 http://link.springer.com.proxy.library.ucsb.edu:2048/chapter/10.1007/978-1-4020-6979-
- 4 6_11/fulltext.html.
- 5 **Greene C., B. Monger, and M. Huntley (2010).** Geoengineering: The Inescapable Truth of Getting to 350. *Solutions* **1**, 57–66.
- Greene D.L., P.D. Patterson, M. Singh, and J. Li (2005). Feebates, rebates and gas-guzzler taxes: a
 study of incentives for increased fuel economy. *Energy Policy* 33, 757–775. (DOI:
- 9 10.1016/j.enpol.2003.10.003).
- Greening L.A., and S. Bernow (2004). Design of coordinated energy and environmental policies: use
 of multi-criteria decision-making. *Energy Policy* 32, 721–735. (DOI: 10.1016/j.enpol.2003.08.017).
- Greening L., D. Greene, and C. Difiglio (2000). Energy efficiency and consumption: The rebound
 effect a survey. *Energy Policy* 28, 389–401.
- 14 Greenstone M., E. Kopits, and A. Wolverton (2013). Developing a Social Cost of Carbon for US

15 Regulatory Analysis: A Methodology and Interpretation. *Review of Environmental Economics and*

- 16 *Policy* **7**, 23–46. (DOI: 10.1093/reep/res015).
- Griffin J. (1986). Well being: its meaning, measurement, and moral importance. Clarendon Press,
 Oxford, (ISBN: 9780198248439).
- 19 **Griliches Z. (1992).** The search for R&D spillovers. *Scandinavian Journal of Economics* **94**, S29–47.
- Grimaud A., and L. Rouge (2008). Environment, directed technical change and economic policy.
 Environmental and Resource Economics 41, 439–463. (DOI: 10.1007/s10640-008-9201-4).
- Groosman B., N.Z. Muller, and E. O'Neill-Toy (2011). The Ancillary Benefits from Climate Policy in
 the United States. *Environmental and Resource Economics* 50, 585–603. (DOI: 10.1007/s10640-011 9483-9).
- 25 Grossman D.A. (2009). Tort-Based Climate Litigation. In: Adjudicating Climate Change: State,
- 26 National, and International Approaches. Cambridge University Press, pp.193–229, .
- Grübler A., and S. Messner (1998). Technological change and the timing of mitigation measures.
 Energy Economics 20, 495–512. (DOI: 10.1016/S0140-9883(98)00010-3).
- Gudynas E. (2011). Buen Vivir: Today's tomorrow. *Development* 54, 441–447. (DOI:
 10.1057/dev.2011.86).
- Guéant O., R. Guesnerie, and J.-M. Lasry (2012). Ecological Intuition versus Economic "Reason."
 Journal of Public Economic Theory 14, 245–272. (DOI: 10.1111/j.1467-9779.2011.01541.x).
- Guesnerie R. (2004). Calcul économique et développement durable. *Revue économique* 55, 363–
 382. (DOI: 10.3917/reco.553.0363).
- **Gunningham N. (2013).** Managing the energy trilemma: The case of Indonesia. *Energy Policy* **54**,
- 36 184–193. (DOI: 10.1016/j.enpol.2012.11.018).

- Gunningham N., R.A. Kagan, and D. Thornton (2003). Shades of Green: Business, Regulation, and
 Environment. Stanford University Press, 228 pp., (ISBN: 9780804748520).
- Gupta S., D.A. Tirpak, N. Burger, J. Gupta, J. Höhne, I.A. Boncheva, G.M. Kanoan, C. Kolstad, J.A.

4 Kruger, A. Michaelowa, S. Murase, J. Pershing, T. Saijo, and A. Sari (2007). Policies, instruments and

- 5 co-operative arrangements. In: *Climate Change 2007: Mitigation. Contribution of Working Group III*
- 6 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R.
- 7 Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)]. Cambridge University Press, Cambridge, United
- 8 Kingdom and New York, NY, USA. pp.745–807, .
- 9 Güth W., R. Schmittberger, and B. Schwarze (1982). An experimental analysis of ultimatum
- 10 bargaining. *Journal of Economic Behavior & Organization* **3**, 367–388.
- 11 Haab T.C., and K.E. McConnell (2002). Valuing environmental and natural resources : the
- *econometrics of non-market valuation*. E. Elgar Pub., Cheltenham, U.K.; Northampton, Mass., USA, (ISBN: 1840647043 9781840647044 1843763885 9781843763888).
- Hahn R.W. (1989). Economic Prescriptions for Environmental Problems: How the Patient Followed
 the Doctor's Orders. *Journal of Economic Perspectives* 3, 95–114. (DOI: 10.1257/jep.3.2.95).
- 16 Hale B. (2012a). The world that would have been: moral hazard arguments against geoengineering.

17 In: Engineering the Climate: The Ethics of Solar Radiation Management. C.J. Preston, (ed.), Lexington

- Books, Lanham, Md pp.113–131, (ISBN: 9780739175408 0739175408 9780739175415
 0739175416).
- Hale B. (2012b). Getting the Bad Out: Remediation Technologies and Respect for Others. In: *The Environment: Philosophy, Science, and Ethics*. MIT Press, (ISBN: 9780262017404).
- Hale B., and L. Dilling (2011). Geoengineering, Ocean Fertilization, and the Problem of Permissible
 Pollution. *Science, Technology & Human Values* 36, 190–212. (DOI: 10.1177/0162243910366150).
- 24 Hale B., and W.P. Grundy (2009). Remediation and Respect: Do Remediation Technologies Alter Our
- 25 Responsibility? *Environmental Values* **18**, 397–415. (DOI: 10.3197/096327109X12532653285696).
- Hall B., and J. Lerner (2010). The financing of R&D and innovation. In: *Handbook of the economics of innovation*. B.H. Hall, N. Rosenberg, (eds.), Elsevier, Amsterdam pp.610–638, .
- Hallegatte S. (2008). An Adaptive Regional Input-Output Model and its Application to the
- Assessment of the Economic Cost of Katrina. *Risk Analysis* **28**, 779–799. (DOI: 10.1111/j.1539-6924.2008.01046.x).
- Hallegatte S., J.-C. Hourcade, and P. Dumas (2007). Why economic dynamics matter in assessing
- 32 climate change damages: Illustration on extreme events. *Ecological Economics* **62**, 330–340. (DOI:
- 33 10.1016/j.ecolecon.2006.06.006).
- Halsnæs K., P.R. Shukla, D. Ahuja, G. Akumu, R. Beale, J. Edmonds, C. Gollier, A. Grübler, M.H.
- 35 Duong, A. Markandya, M. McFarland, E. Nikitina, T. Sugiyama, A. Villavicencio, and J. Zou (2007).
- 36 Framing issues. In: Climate Change 2007: Mitigation. Contribution of Working III to the Fourth
- 37 Assessment Report to the Intergovernmental Panel on Climate Change. B. Metz, O. Davidson, P.
- Bosch, R. Dave, L. Meyer, (eds.), Cambridge University Press, New York pp.117–167, .
- 39 Hamilton C. (2013). Earthmasters: The Dawn of the Age of Climate Engineering. Yale University
- 40 Press. Available at:

- 1 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=x61F2HkKtVEC&oi=fnd&
- $2 \qquad pg=PR9\&dq=Earthmasters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering\&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Age+of+Climate+Engineering&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Dawn+of+the+Dawn+of+the+Age+of+Climate+Engineering&ots=2qQ5X_cZU4\&sigstricters:+The+Dawn+of+the+Dawn+of+$
- 3 =wDVMtf23TRPQ-0CQWJzmTQCrGlc.

Hammitt J.K., A.K. Jain, J.L. Adams, and D.J. Wuebbles (1996a). A welfare-based index for assessing
 environmental effects of greenhouse-gas emissions. *Nature* 381, 301–303. (DOI: 10.1038/381301a0).

Hammitt J.K., A.K. Jain, J.L. Adams, and D.J. Wuebbles (1996b). A welfare-based index for assessing
 environmental effects of greenhouse-gas emissions. *Nature* 381, 301–303. (DOI: 10.1038/381301a0).

8 Hammond P.J. (1993). Interpersonal comparisons of utility: Why and how they are and should be

- 9 made. In: *Interpersonal comparisons of well-being*. J. Elster, J. Roemer, (eds.), Cambride University
 10 Press, Cambridge pp.200–254, .
- Hanemann W.M. (1991). Willingness to pay and willingness to accept: how much can they differ?
 The American Economic Review 81, 635–647.
- Hanemann W.M. (2010). Cap-and-trade: a sufficient or necessary condition for emission reduction?
 Oxford Review of Economic Policy 26, 225–252. (DOI: 10.1093/oxrep/grq015).
- 15 **Hardin G. (1968).** The tragedy of the commons. *Science* **162**, 1243–1248.
- Harford J.D. (1998). The Ultimate Externality. *The American Economic Review* 88, 260–265. (DOI:
 10.2307/116828).
- **Haritz M. (2011).** Liability with and liability from the precautionary principle in climate change cases.
- In: *Climate Change Liability*. M. Faure, M. Peeters, (eds.), Edward Elgar Publishing Ltd., Cheltenham
 UK pp.255–274, .
- Harman E. (2004). Can we harm and benefit in creating? *Philosophical Perspectives* 18, 89–113. (DOI:
 10.1111/j.1520-8583.2004.00022.x).
- Harrington W., R. Morgenstern, and T. Sterner (2004). Choosing environmental policy: comparing
 instruments and outcomes in the United States and Europe. Resources for the Future, Washington
 DC, (ISBN: 9781891853876).
- 26 **Harrod H.R. (1949).** Towards a dynamic economics: some recent developments of economic theory
- 27 *and their application to policy*. Macmillan and Co., London. Available at:
- 28 http://books.google.com/books?id=6BtZPAAACAAJ.
- Harsanyi J.C. (1955). Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility.
 Journal of Political Economy 63, 309–321.
- Harsanyi J.C. (1977). Rational Behavior and Bargaining Equilibrium in Games and Social Situations.
 Cambridge University Press.
- Hassett K.A., and G.E. Metcalf (1993). Energy conservation investment: Do consumers discount the
 future correctly? *Energy Policy* 21, 710–716.
- 35 Hassol S. (2004). Impacts of a Warming Arctic Arctic Climate Impact Assessment. Cambridge
- 36 University Press, (ISBN: 0 521 61778 2).

- Hausman J.A. (1979). Individual Discount Rates and the Purchase and Utilization of Energy-Using
 Durables. *The Bell Journal of Economics* 10, 33–54. (DOI: 10.2307/3003318).
- 3 Hayes T.M., and F. Murtinho (2008). Are indigenous forest reserves sustainable? An analysis of
- present and future land-use trends in Bosawas, Nicaragua. *International Journal of Sustainable Development & World Ecology* 15, 497–511. (DOI: 10.1080/13504500809469845).
- Hegerl G.C., and S. Solomon (2009). Risks of Climate Engineering. *Science* 325, 955–956. (DOI:
 10.1126/science.1178530).
- Helm D. (2010). Government failure, rent-seeking, and capture: the design of climate change policy.
 Oxford Review of Economic Policy 26, 182–196.
- Hendry C., and P. Harborne (2011). Changing the view of wind power development: More than
 "bricolage." *Research Policy* 40, 778–789. (DOI: 10.1016/j.respol.2011.03.001).
- 12 Henriksen J.B. (2007). *Highly vulnerable indigenous and local communities, inter alia, of the Arctic,*
- 13 small island states and high altitudes, concerning the impacts of climate change and accelerated
- 14 threats, such as pollution, drought and desertification, to traditional knowledge and practices with a
- 15 focus of causes and solution. UNEP. Available at: http://www.cbd.int/doc/meetings/tk/emccilc-
- 16 01/other/emccilc-01-wg8j-05-inf-18-en.pdf.
- Hepburn C. (2006). Regulation by prices, quantities, or both: a review of instrument choice. *Oxford Review of Economic Policy* 22, 226–247. (DOI: 10.1093/oxrep/grj014).
- Hepburn C., M. Grubb, K. Neuhoff, F. Matthes, and M. Tse (2006). Auctioning of EU ETS phase II
 allowances: how and why? *Climate Policy* 6, 137–160.
- Heyd D. (1992). *Genethics: moral issues in the creation of people*. University of California Press,
 Berkeley, (ISBN: 9780520077140).
- Hicks J.R. (1932). *The theory of wages*. Macmillan, London.
- Hiller A. (2011). Climate Change and Individual Responsibility. *The Monist* 94, 349–368.
- 25 **HM Treasury (2003).** *The Green Book Appraisal and evaluation in central government*. London.
- 26 Hoekman B., K. Maskus, and K. Saggi (2005). Transfer of technology to developing countries:
- 27 Unilateral and multilateral policy options. *World Development* **33**, 1587–1602. (DOI:
- 28 10.1016/j.worlddev.2005.05.005).
- Hoel M., and T. Sterner (2007). Discounting and relative prices. *Climatic Change* 84, 265–280. (DOI:
 10.1007/s10584-007-9255-2).
- Höhne N., H. Blum, J. Fuglestvedt, R.B. Skeie, A. Kurosawa, G. Hu, J. Lowe, L. Gohar, B. Matthews,
- 32 A.C.N. de Salles, and C. Ellermann (2011). Contributions of individual countries' emissions to climate
- 33 change and their uncertainty. *Climatic Change* **106**, 359–391. (DOI: 10.1007/s10584-010-9930-6).
- 34 Hope C. (2011). *The Social Cost of CO2 from the PAGE09 Model*. Social Science Research Network,
- 35 Rochester, NY. Available at: http://papers.ssrn.com/abstract=1973863.

- 1 Hope C. (2013). Critical issues for the calculation of the social cost of CO2: why the estimates from
- 2 PAGE09 are higher than those from PAGE2002. *Climatic Change* **117**, 531–543. (DOI:
- 3 10.1007/s10584-012-0633-z).
- Hope C., J. Anderson, and P. Wenman (1993). Policy analysis of the greenhouse effect: An
 application of the PAGE model. *Energy Policy* 21, 327–338.
- 6 Hossain T., and J. Morgan (2006). ...plus shipping and handling: revenue (non) equivalence in field
- 7 experiments on eBay. Advances in Economic Analysis & Policy 6. (DOI: 10.2202/1538-0637.1429).
- 8 Available at: http://www.bepress.com/bejeap/advances/vol6/iss2/art3.
- Hourcade J.C., M. Jaccard, C. Bataille, and F. Ghersi (2006). Hybrid Modeling: New Answers to Old
 Challenges. *The Energy Journal* 2, 1–12.
- Hourdequin M. (2012). Geoengineering, solidarity, and moral risk. In: *Engineering the Climate: The Ethics of Solar Radiation Management*. C.J. Preston, (ed.), Lexington Books, Lanham, Md pp.15–32,
 (ISBN: 9780739175408 0739175408 9780739175415 0739175416).
- 14 **Van den Hove S. (2000).** Participatory approaches to environmental policy-making: the European
- 15 Commission Climate Policy Process as a case study. *Ecological Economics* **33**, 457–472. (DOI:
- 16 10.1016/S0921-8009(99)00165-2).
- Howarth R.B. (1996). Climate change and overlapping generations. *Contemporary Economic Policy* 14, 100–111.
- Howarth R.B., and R.B. Norgaard (1992). Environmental Valuation under Sustainable Development.
 The American Economic Review 82, 473–477. (DOI: 10.2307/2117447).
- 21 Hsiang S.M. (2010). Temperatures and cyclones strongly associated with economic production in the

22 Caribbean and Central America. *Proceedings of the National Academy of Sciences* **107**, 15367–15372.

- 23 (DOI: 10.1073/pnas.1009510107).
- Hsiang S.M., M. Burke, and E. Miguel (2013). Quantifying the influence of climate on human
 conflict. *Science*, 1237557.
- 26 Hulme M. (2009). Why We Disagree About Climate Change. Cambridge University Press, (ISBN:
- 27 9780521727327). Available at:
- 28 http://www.cambridge.org/gb/knowledge/isbn/item2327124/?site_locale=en_GB.
- Hunter D., and J. Salzman (2007). Negligence in the air: the duty of care in climate change litigation.
 University of Pennsylvania Law Review 155, 1741–1794.
- Huntington H.G. (2011). The Policy Implications of Energy-Efficiency Cost Curves. *The Energy Journal*
- 32 **Volume 32**. Available at: http://ideas.repec.org/a/aen/journl/32si1-a02.html.
- Hurka T. (1982). Average utilitarianisms. *Analysis* 42, 65–69.
- Huseby R. (2010). Sufficiency: restated and defended. *Journal of Political Philosophy* 18, 178–197.
 (DOI: 10.1111/j.1467-9760.2009.00338.x).
- 36 **IEA, OPEC, OECD, and The World Bank (2011).** *Joint report by IEA, OPEC, OECD and World Bank on*
- fossil-fuel and other energy subsidies: An update of the G20 Pittsburgh and Toronto Commitments.
- 38 Available at: http://www.oecd.org/env/49090716.pdf.

- 1 **IPCC (1990).** *Climate Change: the Intergovernmental Panel on Climate Change Scientific Assessment.*
- 2 Cambridge University Press, Cambridge.
- 3 **IPCC (1995).** *Second Assessment Report*. Intergovernmental Panel on Climate Change.
- 4 IPCC (2007). Synthesis report. Cambridge University Press, Cambridge, UK, 52 pp. Available at:
 5 www.ipcc.ch.
- Jackson S.C. (2009). Parallel Pursuit of Near-Term and Long-Term Climate Mitigation. *Science* 326,
 526–527.
- Jacoby H.D., J.M. Reilly, J.R. McFarland, and S. Paltsev (2006). Technology and technical change in
 the MIT EPPA model. *Energy Economics* 28, 610–631.
- Jaffe A.B., and K. Palmer (1997). Environmental Regulation and Innovation: A Panel Data Study.
 Review of Economics and Statistics 79, 610–619. (DOI: 10.1162/003465397557196).
- Jaffe A.B., and R.N. Stavins (1994). The energy-efficient gap: What does it mean? *Energy Policy* 22,
 804.
- Jamieson D. (1992). Ethics, Public Policy, and Global Warming. *Science, Technology, & Human Values* 17, 139–153.
- Jamieson D. (1996). Ethics and intentional climate change. *Climatic Change* 33, 323–336. (DOI:
 10.1007/BF00142580).
- Jamieson D. (1997). Global Responsibilities: Ethics, Public Health, and Global Environmental Change.
 Indiana Journal of Global Legal Studies 5, 99–119.
- Jamieson D. (2001). Climate Change and Global Environmental Justice. In: *Changing the Atmosphere:*
- *Expert Knowledge and Environmental Governance*. C.A. Miller, P.N. Edwards, (eds.), MIT Press,
 pp.287–307, (ISBN: 9780262632195).
- Jamieson D. (2010). Climate Change, Responsibility, and Justice. *Science and Engineering Ethics* 16, 431–445. (DOI: 10.1007/s11948-009-9174-x).
- Jensen R. (2010). The (perceived) returns to education and the demand for schooling. *Quarterly* Journal of Economics 125, 515–548. (DOI: 10.1162/qjec.2010.125.2.515).
- Johansson D.J.A. (2012). Economics- and physical-based metrics for comparing greenhouse gases.
 Climatic Change 110, 123–141. (DOI: 10.1007/s10584-011-0072-2).
- 29 Johansson D.J.A., U.M. Persson, and C. Azar (2006). The cost of using global warming potentials:
- analysing the trade off between CO2, CH4 and N2O. *Climatic Change* **77**, 291–309. (DOI:
- 31 10.1007/s10584-006-9054-1).
- Johnstone N., I. Haščič, and D. Popp (2010). Renewable energy policies and technological
- innovation: evidence based on patent counts. *Environmental and Resource Economics* 45, 133–155.
 (DOI: 10.1007/s10640-009-9309-1).
- Jones A.D., W.D. Collins, J. Edmonds, M.S. Torn, A. Janetos, K.V. Calvin, A. Thomson, L.P. Chini, J.
- 36 Mao, X. Shi, P. Thornton, G.C. Hurtt, and M. Wise (2013). Greenhouse Gas Policy Influences Climate

- via Direct Effects of Land-Use Change. *Journal of Climate* 26, 3657–3670. (DOI: 10.1175/JCLI-D-12-00377.1).
- 3 Joskow P.L., and D.B. Marron (1992). What Does a Negawatt Really Cost? Evidence from Utility
- 4 Conservation Programs. *The Energy Journal* **13**, 41–74. (DOI: 10.2307/41322467).
- Joskow P.L., and D.B. Marron (1993). What Does Utility-Subsidized Energy Efficiency Really Cost.
 Science 260, 281 +370.
- Jotzo F. (2012). Australia's carbon price. *Nature Climate Change* 2, 475–476. (DOI:
 10.1038/nclimate1607).
- Jotzo F., and S. Hatfield-Dodds (2011). Price Floors in Emissions Trading to Reduce Policy Related
 Investment Risks: an Australian View. *Crawford School Center for Climate Economics and Policy* Working Paper 1105. Available at: http://ideas.repec.org/p/een/ccepwp/1105.html.
- Jung C., K. Krutilla, and R. Boyd (1996). Incentives for advanced pollution abatement technology at
 the industry level: an evaluation of policy alternatives. *Journal of environmental economics and management* 30, 95–111.
- Kahneman D., and A. Deaton (2010). High income improves evaluation of life but not emotional
 well-being. *Proceedings of the National Academy of Sciences* 107, 16489–16493. (DOI:
- 17 10.1073/pnas.1011492107).
- Kahneman D., and R. Sugden (2005). Experienced Utility as a Standard of Policy Evaluation.
 Environmental and Resource Economics 32, 161–181. (DOI: 10.1007/s10640-005-6032-4).
- Kahneman D., and A. Tversky (1974). Judgment under uncertainty: heuristics and biases. *Science* 185, 1124–1131. (DOI: 10.1126/science.185.4157.1124).
- Kahneman D., and A. Tversky (1979). Prospect theory: an analysis of decision under risk.
 Econometrica 47, 263–292.
- Kandlikar M. (1996a). Indices for comparing greenhouse gas emissions: integrating science and
 economics. *Energy Economics* 18, 265–281. (DOI: 10.1016/S0140-9883(96)00021-7).
- Kandlikar M. (1996b). Indices for comparing greenhouse gas emissions: integrating science and
 economics. *Energy Economics* 18, 265–281. (DOI: 10.1016/S0140-9883(96)00021-7).
- 28 Kant I. (1956). Critique of practical reason (L.W. Beck, Tran.). Bobbs-Merrill, Indianapolis.
- 29 Kaplow L., E. Moyer, and D.A. Weisbach (2010). The Social Evaluation of Intergenerational Policies
- 30 and Its Application to Integrated Assessment Models of Climate Change. *The B.E. Journal of*
- 31 *Economic Analysis & Policy* **10**. (DOI: 10.2202/1935-1682.2519). Available at:
- 32 http://www.degruyter.com/view/j/bejeap.2010.10.issue-
- 33 2/bejeap.2010.10.2.2519/bejeap.2010.10.2.2519.xml.
- 34 Karplus V.J., S. Paltsev, M. Babiker, and J.M. Reilly (2013). Applying engineering and fleet detail to

35 represent passenger vehicle transport in a computable general equilibrium model. *Economic*

- 36 *Modelling* **30**, 295–305.
- 37 Keenan R.J, Caripis L, Foerster A, Godden L, and Peel J (2012). Science and the governance of
- Australia's climate regime. *Nat. Clim. Change Nature Climate Change* **2**, 477–478.

- 1 Keeney R.L., and H. Raiffa (1993). Decisions with Multiple Objectives: Preferences and Value Trade-
- 2 Offs. Cambridge University Press, 596 pp., (ISBN: 9780521438834).
- Keith D.W. (2000). Geoengineering the Climate: History and Prospect. Annual Review of Energy and
 the Environment 25, 245–284. (DOI: 10.1146/annurev.energy.25.1.245).
- Keith D.W., E. Parson, and M.G. Morgan (2010). Research on global sun block needed now. *Nature*463, 426–427. (DOI: 10.1038/463426a).
- 7 Kelly D.L., and C.D. Kolstad (2001). Malthus and Climate Change: Betting on a Stable Population.
- 8 Journal of Environmental Economics and Management **41**, 135–161. (DOI: 10.1006/jeem.2000.1130).
- 9 Kelly D.L., C.D. Kolstad, and G.T. Mitchell (2005). Adjustment costs from environmental change.
- 10 *Journal of Environmental Economics and Management* **50**, 468–495. (DOI:
- 11 10.1016/j.jeem.2005.02.003).
- 12 Kelman S. (1981). Cost-Benefit Analysis: An Ethical Critique. *Regulation* 5, 33.
- Kesicki F., and P. Ekins (2012). Marginal abatement cost curves: a call for caution. *Climate Policy* 12, 219–236.
- 15 **Kingdom of Bhutan (2008).** *The Constitution of the Kingdom of Bhutan*. Thim-phu, 262 pp., (ISBN:
- 16 9993675407). Available at: http://www.constitution.bt/TsaThrim%20Eng%20(A5).pdf.
- Kjellstrom T., R.S. Kovats, S.J. Lloyd, T. Holt, and R.S.J. Tol (2009). The Direct Impact of Climate
 Change on Regional Labor Productivity. *Archives of Environmental & Occupational Health* 64, 217–
 227. (DOI: 10.1080/19338240903352776).
- 20 Klepper G., and S. Peterson (2006). Marginal abatement cost curves in general equilibrium: The
- influence of world energy prices. *Resource and Energy Economics* **28**, 1–23. (DOI:
- 22 10.1016/j.reseneeco.2005.04.001).
- Kling J.R., S. Mullainathan, E. Shafir, L.C. Vermeulen, and M.V. Wrobel (2012). Comparison friction:
 experimental evidence from medicare drug plans. *The Quarterly Journal of Economics* 127, 199–235.
 (DOI: 10.1093/qje/qjr055).
- Koch H., M. Lührs, and R. Verheyen (2012). Germany. In: *Climate Change Liability: Transnational Theory and Practice*. R. Lord, S. Goldberg, L. Rajamani, J. Brunée, (eds.), Cambridge University Press,
- 28 Cambridge UK pp.376–416, .
- Kocherlakota N.R. (1996). The Equity Premium: It's Still a Puzzle. *Journal of Economic Literature* 34,
 42–71. (DOI: 10.2307/2729409).
- Koehler D.A. (2007). The effectiveness of voluntary environmental programs—a policy at a crossroads? *Policy Studies Journal* **35**, 689–722. (DOI: 10.1111/j.1541-0072.2007.00244.x).
- Köhler J., M. Grubb, D. Popp, and O. Edenhofer (2006). The transition to endogenous technical
 change in climate-economy models: a technical overview to the innovation modeling comparison
 project. *The Energy Journal*, 17–55.
- 36 Kok M., B. Metz, J. Verhagen, and S. Van Rooijen (2008). Integrating development and climate
- policies: national and international benefits. *Climate Policy* **8**, 103–118. (DOI:
- 38 10.3763/cpol.2007.0436).

- Kolstad C.D. (2010). Environmental economics. Oxford University Press, New York, 480 pp., (ISBN:
 9780199732647).
- 3 Kolstad C.D., T.S. Ulen, and G.V. Johnson (1990). Ex Post Liability for Harm vs. Ex Ante Safety
- 4 Regulation: Substitutes or Complements? *The American Economic Review* 80, 888–901. (DOI:
 5 10.2307/2006714).
- Korpi E., and T. Ala-Risku (2008). Life cycle costing: a review of published case studies. *Managerial Auditing Journal* 23, 240–261. (DOI: 10.1108/02686900810857703).
- 8 Kosolapova E. (2011). Liability for climate change-related damage in domestic courts: claims for
- 9 compensation in the USA. In: *Climate Change Liability*. M. Faure, M. Peeters, (eds.), Edward Elgar 10 Publishing Ltd., Cheltenham UK pp.189–205, .
- 11 **Kraut R. (2007).** *What is good, and why*. Harvard University Press, Cambridge, Mass.
- Kreps D.M., and E.L. Porteus (1978). Temporal Resolution of Uncertainty and Dynamic Choice
 Theory. *Econometrica* 46, 185–200. (DOI: 10.2307/1913656).
- Krey V., and L. Clarke (2011). Role of renewable energy in climate mitigation: a synthesis of recent
 scenarios. *Climate Policy* 11, 1131–1158.
- 16 **Kronik J., and D. Verner (2010).** The Role of Indigenous Knowledge in Crafting Adaptation and
- 17 Mitigation Strategies for Climate Change in Latin America. In: *The Social Dimensions of Climate*
- *Change: Equity and Vulnerability in a Warming World*. World Bank Publications, pp.145–169, (ISBN:
 9780821378878).
- Krutilla J.V. (1967). Conservation Reconsidered. *The American Economic Review* 57, 777–786. (DOI: 10.2307/1815368).
- 22 Kull A. (1995). Rationalizing restitution. *California Law Review* 83, 1191–1242.
- Kumar R. (2003). Who Can Be Wronged? *Philosophy & Public Affairs* 31, 99–118. (DOI:
- 24 10.1111/j.1088-4963.2003.00099.x).
- 25 Kymlicka W. (1995). Multicultural citizenship: A liberal theory of minority rights. Cambridge Univ
- 26 Press. Available at:
- http://journals.cambridge.org.proxy.library.ucsb.edu:2048/production/action/cjoGetFulltext?fulltext
 id=6258800.
- 29 **Kysar D. (2011).** What climate change can do about tort law. *Environmental Law* **41**, 1–41.
- 30 Laibson D. (1997). Golden Eggs and Hyperbolic Discounting. *The Quarterly Journal of Economics* 112,
- 31 443–478. (DOI: 10.1162/003355397555253).
- 32 Laitner J., S.J. De Canio, J.G. Koomey, and A.H. Sanstad (2003). Room for improvement: increasing
- the value of energy modeling for policy analysis. *Utilities Policy* **11**, 87–94. (DOI: 10.1016/S0957-
- 34 1787(03)00020-1).
- Lamarque J.-F., T.C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B.
- 36 Owen, M.G. Schultz, D. Shindell, S.J. Smith, E. Stehfest, J. Van Aardenne, O.R. Cooper, M. Kainuma,
- N. Mahowald, J.R. McConnell, V. Naik, K. Riahi, and D.P. van Vuuren (2010). Historical (1850–2000)
- 38 gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology

- and application. *Atmospheric Chemistry and Physics* **10**, 7017–7039. (DOI: 10.5194/acp-10-7017 2010).
- 3 Lange A., and C. Vogt (2003). Cooperation in international environmental negotiations due to a
- 4 preference for equity. *Journal of Public Economics* **87**, 2049–2067.
- Lange A., C. Vogt, and A. Ziegler (2007). On the importance of equity in international climate policy:
 An empirical analysis. *Energy Economics* 29, 545–562.
- Lanoie P., M. Patry, and R. Lajeunesse (2008). Environmental regulation and productivity: testing
 the porter hypothesis. *Journal of Productivity Analysis* 30, 121–128. (DOI: 10.1007/s11123-008-0108-
- 9 4).
- Lashof D.A., and D.R. Ahuja (1990). Relative contributions of greenhouse gas emissions to global
 warming. *Nature* 344, 529–531. (DOI: 10.1038/344529a0).
- Laslett P., and J.S. Fishkin (1992). Justice between age groups and generations. Yale University Press,
 New Haven.
- 14 Laycock D. (2012). Restoring restitution to the canon. *Michigan Law Review* **110**, 929–952.
- Ledyard J.O. (1993). *Public goods: a survey of experimental research*. Division of the Humanities and
 Social Sciences, California Institute of Technology, Pasadena, Calif.
- 17 Lee J.J., and T.A. Cameron (2008). Popular Support for Climate Change Mitigation: Evidence from a
- General Population Mail Survey. *Environmental and Resource Economics* 41, 223–248. (DOI:
 10.1007/s10640-007-9189-1).
- Lee J.-S., S.-H. Yoo, and S.-J. Kwak (2010). Public's willingness to pay for preventing climate change.
 Applied Economics Letters 17, 619–622. (DOI: 10.1080/13504850802277113).
- Leisner T., and S. Müller-Klieser (2010). Aerosolbasierte Methoden des Climate Engineering: Eine
 Bewertung. *Technikfolgenabschätzung Theorie und Praxis* 19, 25–32.
- Lenton T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber (2008).
- Tipping elements in the Earth's climate system. *Proceedings of the National Academy of Sciences* **105**, 1786–1793. (DOI: 10.1073/pnas.0705414105).
- Leopold A. (1949). A Sand County almanac, and Sketches here and there. Oxford University Press,
 New York, (ISBN: 0195007778 9780195007770).
- Levati M.V., M. Sutter, and E. van der Heijden (2007). Leading by Example in a Public Goods
- Experiment with Heterogeneity and Incomplete Information. *Journal of Conflict Resolution* 51, 793–
 818. (DOI: 10.1177/0022002707302796).
- Levin H., and P. McEwan (2001). Cost-effectiveness analysis: methods and applications. Sage
 Publications, Thousand Oaks Calif., (ISBN: 9780761919339).
- 34 **Lewis J.I. (2007).** Technology acquisition and innovation in the developing world: wind turbine
- development in china and india, studies in comparative international development. *Studies in*
- 36 comparative international development **42**, 208–232.

- Lin B., and Z. Jiang (2011). Estimates of energy subsidies in China and impact of energy subsidy
 reform. *Energy Economics* 33, 273–283. (DOI: 10.1016/j.eneco.2010.07.005).
- Lipsey R.G., and K. Lancaster (1956). The General Theory of Second Best. *The Review of Economic* Studies 24, 11. (DOI: 10.2307/2296233).
- List J.A. (2011). The market for charitable giving. *Journal of Economic Perspectives* 25, 157–180.
 (DOI: 10.1257/jep.25.2.157).
- Lobell D.B., W. Schlenker, and J. Costa-Roberts (2011). Climate Trends and Global Crop Production
 Since 1980. *Science* 333, 616–620. (DOI: 10.1126/science.1204531).
- 9 Longo A., D. Hoyos, and A. Markandya (2012). Willingness to Pay for Ancillary Benefits of Climate
 10 Change Mitigation. *Environmental and Resource Economics* 51, 119–140. (DOI: 10.1007/s10640-011 11 9491-9).
- 12 Loomis J.B., and R.B. Richardson (2006). An external validity test of intended behavior: Comparing
- revealed preference and intended visitation in response to climate change. *Journal of Environmental Planning and Management* 49, 621–630. (DOI: 10.1080/09640560600747562).
- Lorenzoni I., S. Nicholson-Cole, and L. Whitmarsh (2007). Barriers perceived to engaging with
- 16 climate change among the UK public and their policy implications. *Global Environmental Change* **17**,
- 17 445–459. (DOI: 10.1016/j.gloenvcha.2007.01.004).
- Lüken M., O. Edenhofer, B. Knopf, M. Leimbach, G. Luderer, and N. Bauer (2011). The role of
 technological availability for the distributive impacts of climate change mitigation policy. *Energy Policy* 39, 6030–6039.
- Lyon T.P., and J.W. Maxwell (2004). Corporate Environmentalism and Public Policy. Cambridge
 University Press, 316 pp., (ISBN: 9780521603768).
- Lyon T.P., and J.W. Maxwell (2007). Environmental public voluntary programs reconsidered. *Policy Studies Journal* 35, 723–750. (DOI: 10.1111/j.1541-0072.2007.00245.x).
- 25 Lyon T.P., and J.W. Maxwell (2008). Corporate Social Responsibility and the Environment: A
- Theoretical Perspective. *Review of Environmental Economics and Policy* 2, 240–260. (DOI:
 10.1093/reep/ren004).
- Maddison D. (2001). The Amenity Value of the Global Climate. Earthscan, 164 pp., (ISBN:
 9781853836770).
- Maddison D. (2003). The amenity value of the climate: the household production function approach.
 Resource and Energy Economics 25, 155–175.
- 32 Maddison D., and A. Bigano (2003). The amenity value of the Italian climate. *Journal of*
- 33 *Environmental Economics and Management* **45**, 319–332. (DOI: 10.1016/S0095-0696(02)00052-9).
- 34 **Majchrzak A. (1984).** *Methods for policy research*. Sage Publications, Beverly Hills.
- 35 Mäler K.-G., and J.R. Vincent (2005). Handbook of Environmental Economics: Valuing Environmental
- 36 Changes. Elsevier, 647 pp., (ISBN: 9780444511454).

- Malinvaud E. (1953). Capital accumulation and efficient allocation of resources. *Econometrica* 21, 233–268.
- Malloy T.F. (2002). Regulating by Incentives: Myths, Models and Micromarkets. *Texas Law Review* 80, 531–605.
- 5 **Mank B. (2007).** Civil remedies. In: *Global climate change and U.S. law*. M. Gerrard, Energy American 6 Bar Association. Section of Environment, (eds.), American Bar Association, Section of Environment,
- 7 Energy, and Resources, Chicago, Ill. pp.183–258, (ISBN: 9781590318164 1590318161).
- Manne A.S., and R.G. Richels (1992). Buying Greenhouse Insurance: The Economic Costs of CO2
 Emission Limits. The MIT Press, 194 pp., (ISBN: 026213280X).
- 10 **Manne A.S., and R.G. Richels (1995).** The Greenhouse Debate: Economic Efficiency, Burden Sharing 11 and Hedging Strategies. *The Energy Journal* **16**, 1–37. (DOI: 10.2307/41322615).
- Manne A.S., and R.G. Richels (2001). An alternative approach to establishing trade-offs among greenhouse gases. *Nature* **410**, 675–677. (DOI: 10.1038/35070541).
- Manne A.S., and R.G. Richels (2004a). MERGE: An Integrated Assessment Model for Global Climate
 Change. Stanford University. Available at: http://www.stanford.edu/group/MERGE/GERAD1.pdf.
- Manne A.S., and R.G. Richels (2004b). The impact of learning-by-doing on the timing and costs of CO2 abatement. *Energy Economics* 26, 603–619. (DOI: 10.1016/j.eneco.2004.04.033).
- Manning M., and A. Reisinger (2011). Broader perspectives for comparing different greenhouse
 gases. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 369, 1891–1905. (DOI: 10.1098/rsta.2010.0349).
- 21 Di Maria C., and S. Valente (2008). Hicks meets Hotelling: the direction of technical change in
- 22 capital–resource economies. *Environment and Development Economics* **13**, 691. (DOI:
- 23 10.1017/S1355770X08004567).
- Marshall A. (1890). *Principles of economics* (C. Cuillebaud, Ed.). Macmillan and Co., London, (ISBN:
 9781573921404).
- Marshall C., and G.B. Rossman (2006). *Designing qualitative research*. SAGE, London, (ISBN:
 9781412924887).
- Martin I.R (2013). Consumption-Based asset pricing with higher cumulants. *Rev. Econ. Stud. Review* of *Economic Studies* 80, 745–773.
- 30 Mason H., M. Jones-Lee, and C. Donaldson (2009). Modelling the monetary value of a QALY: a new
- approach based on UK data. *Health Economics* **18**, 933–950. (DOI: 10.1002/hec.1416).
- 32 Massetti E., C. Carraro, and L. Nicita (2009). How does climate policy affect technical change? An
- analysis of the direction and pace of technical progress in a climate-economy model. *Energy Journal* **30**, 7–38.
- 35 Mathers C., G. Stevens, and M. Mascarenhas (2009). Global health risks: mortality and burden of
- 36 *disease attributable to selected major risks*. World Health Organization. Available at:
- 37 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=Ycbr2e2WPdcC&oi=fnd

- 1 &pg=PR5&dq=Global+Health+Risks:+Mortality+and+Burden+of+Disease+Attributable+to+Selected+
- 2 Major+Risks&ots=aeE3-uYh7v&sig=uKeuS9KD2EEF_yDuZqi5LZ1UYXo.
- Matthews R.C. (1986). The economics of institutions and the sources of growth. *The Economic* Journal 96, 903–918.
- 5 McCollum D.L., V. Krey, K. Riahi, P. Kolp, A. Grubler, M. Makowski, and N. Nakicenovic (2012).
- 6 Climate policies can help resolve energy security and air pollution challenges. *Climatic Change*, 1–16.
- 7 McConnell K.E., and N.E. Bockstael (2006). Valuing the environment as a factor of production. In:
- 8 Handbook of environmental economics. K.-G. Mäler, J.R. Vincent, (eds.), Elsevier, Amsterdam; Boston
- 9 pp.621–669, (ISBN: 0444500634 9780444500632 0444511458 9780444511454 0444511466
- 10 9780444511461).
- 11 **McGregor P.G., J. Kim Swales, and M.A. Winning (2012).** A review of the role and remit of the 12 committee on climate change. *Energy Policy Energy Policy* **41**, 466–473.
- 13 McKenzie D., J. Gibson, and S. Stillman (2013). A land of milk and honey with streets paved with
- 14 gold: Do emigrants have over-optimistic expectations about incomes abroad? *Journal of*
- 15 *Development Economics* **102**, 116–127. (DOI: 10.1016/j.jdeveco.2012.01.001).
- 16 **McKibbin W.J., and P.J. Wilcoxen (2002).** The role of economics in climate change policy. *Journal of* 17 *Economic Perspectives* **16**, 107–129. (DOI: 10.1257/0895330027283).
- McKinnon C. (2011). Climate Change and Future Justice: Precaution, Compensation and Triage.
 Routledge, 192 pp., (ISBN: 0415461251).
- 20 McKinsey & Company (2009). Pathways to a Low-Carbon Economy: Version 2 of the Global
- 21 *Greenhouse Gas Abatement Cost Curve*. Available at:
- 22 http://www.epa.gov/statelocalclimate/documents/pdf/mckinsey_summary_11-19-09.pdf.
- 23 McMahan J. (1998). Wrongful life: paradoxes in the morality of causing people to exist. In: *Rational*
- 24 commitment and social justice. J.L. Coleman, C.W. Morris, J.L. Coleman, C.W. Morris, (eds.),
- 25 Cambridge University Press, Cambridge pp.208–248, (ISBN: 9780511527364, 9780521631792,
- 26 9780521042024). Available at: http://ebooks.cambridge.org/ref/id/CBO9780511527364A020.
- Meier A.K., and J. Whittier (1983). Consumer discount rates implied by purchases of energy-efficient
 refrigerators. *Energy* 8, 957–962.
- Messner S. (1997). Endogenized technological learning in an energy systems model. *Journal of Evolutionary Economics* 7, 291–313. (DOI: 10.1007/s001910050045).
- Metcalf G.E. (1994). Economics and rational conservation policy. *Energy Policy* 22, 819–825. (DOI: 10.1016/0301-4215(94)90140-6).
- Metcalf G.E. (1999). A distributional analysis of an environmental tax shift. *National Tax Journal* 52,
 655–681.
- 35 Metz B., O. Davidson, P. Bosch, R. Dave, and L. Meyer (2007). *Climate Change 2007: Mitigation.*
- 36 Contribution of Working III to the Fourth Assessment Report to the Intergovernmental Panel on
- 37 *Climate Change.* Cambridge University Press, New York, 691-743 pp.

- Metz B., O. Davidson, R. Swart, and J. Pan (2001). *Climate change 2001 : mitigation*. Cambridge
 University Press, Cambridge; New York, (ISBN: 9780521807692).
- 3 Meyer L.H. (2003). Past and Future: The Case for an Identity-Independent Notion of Harm. In:
- 4 *Rights, culture, and the law: themes from the legal and political philosophy of Joseph Raz.* L.H.
- 5 Meyer, S.L. Paulson, T.W.M. Pogge, (eds.), Oxford University Press, Oxford ; New York pp.143–159,
- 6 (ISBN: 0199248257).
- 7 Meyer L.H. (2005). *Historische Gerechtigkeit*. Walter de Gruyter, Berlin and New York, 458 pp.,
 8 (ISBN: 978-3-11-092749-8).
- 9 Meyer L. (2010). Intergenerational Justice (E.N. Zalta, Ed.). *The Stanford Encyclopedia of Philosophy*.
 10 Available at: http://plato.stanford.edu/archives/spr2010/entries/justice-intergenerational/.
- Meyer L.H. (2013). Why Historical Emissions Should Count. *Chicago Journal of International Law* 13, 597–685.
- Meyer L., and D. Roser (2006). Distributive justice and climate change: the allocation of emission rights. *Analyse & Kritik* 28, 223–249.
- 15 Meyer L., and D. Roser (2009). Enough for the future. In: *Intergenerational justice*. A. Gosseries, L.
- Meyer, (eds.), Oxford University Press, Oxford; New York pp.219–248, (ISBN: 9780199282951
 0199282951).
- Meyer L.H., and D. Roser (2010). Climate justice and historical emissions. *Critical Review of International Social and Political Philosophy* 13, 229–253. (DOI: 10.1080/13698230903326349).
- Mickwitz P. (2003). A framework for evaluating environmental policy instruments. *Evaluation* 9, 415
 -436. (DOI: 10.1177/1356389003094004).
- 22 Miller D. (2004). Holding nations responsible. *Ethics* **114**, 240–268. (DOI: 10.1086/379353).
- Mirrlees J.A. (1971). An exploration in the theory of optimum income taxation. *The Review of Economic Studies* 38, 175–208.
- Mirrlees J.A. (1982). The economic uses of utilitarianism. In: *Utilitarianism and Beyond*. Amartya
 Sen, Bernard Arthur Owen Williams, (eds.), Cambridge University Press, .
- Mont O., and C. Dalhammar (2005). Sustainable consumption: at the cross-road of environmental
 and consumer policies. *International Journal of Sustainable Development* 8, 258–279.
- **De Montis A., P. De Toro, B. Droste-Franke, I. Omann, and S. Stagl (2005).** Assessing the quality of different MCDA methods. In: *Alternatives for Environmental Valuation*. Routledge, .
- 31 **Moon S. (2008).** *Does TRIPS Art. 66.2 Encourage Technology Transfer to LDCs? An Analysis of Country*
- 32 *Submissions to the TRIPS Council (1999-2007)*. UNCTAD ICTSD Project on IPRs and Sustainable 33 Development.
- 34 Morris J., S. Paltsev, and J. Reilly (2012). Marginal Abatement Costs and Marginal Welfare Costs for
- 35 Greenhouse Gas Emissions Reductions: Results from the EPPA Model. *Environmental Modeling* &
- 36 Assessment **17**, 325–336. (DOI: 10.1007/s10666-011-9298-7).

- 1 Möst D., and W. Fichtner (2010). Renewable energy sources in European energy supply and
- 2 interactions with emission trading. *Energy Policy* **38**, 2898–2910. (DOI:
- 3 10.1016/j.enpol.2010.01.023).
- Mundaca L. (2008). Markets for energy efficiency: Exploring the implications of an EU-wide
 "Tradable White Certificate" scheme. *Energy Economics* 30, 3016–3043.
- Mundaca L., M. Mansoz, L. Neij, and G.R. Timilsina (2013). Transaction costs analysis of low-carbon
 technologies. *Climate Policy* 13, 490–513. (DOI: 10.1080/14693062.2013.781452).
- 8 **Mundaca L., and L. Neij (2009).** A multi-criteria evaluation framework for tradable white certificate 9 schemes. *Energy Policy* **37**, 4557–4573. (DOI: 10.1016/j.enpol.2009.06.011).
- 10 Mundaca L., L. Neij, E. Worrell, and M. McNeil (2010). Evaluating Energy Efficiency Policies with
- 11 Energy-Economy Models. *Annual Review of Environment and Resources* **35**, 305–344. (DOI:
- 12 10.1146/annurev-environ-052810-164840).
- 13 Murphy R., and M. Jaccard (2011). Energy efficiency and the cost of GHG abatement: A comparison
- of bottom-up and hybrid models for the US. *Energy Policy* **39**, 7146–7155. (DOI:
- 15 10.1016/j.enpol.2011.08.033).
- Murphy K.M., and R.H. Topel (2006). The value of health and longevity. *Journal of Political Economy* 114, 871–904. (DOI: 10.1086/508033).
- 18 **Murray C.J. (1994).** Quantifying the burden of disease: the technical basis for disability-adjusted life 19 years. *Bulletin of the World Health Organization* **72**, 429–445.
- 20 Nadel S., and K. Keating (1991). Engineering estimates vs. impact evaluation results: How do they
- 21 *compare and why?* American Council for an Energy-Efficient Economy. Available at:
- 22 http://www.aceee.org/research-report/u915.
- 23 Nakashima D.J., United Nations University. Institute of Advanced Studies. Traditional Knowledge

Initiative, and S. and C.O. United Nations. Educational (2012). Weathering uncertainity : traditional

25 *knowledge for climate change assessment and adaptation*. UNESCO ; UNU-IAS, Paris; Darwin, (ISBN:

- 26 9789230010683 9230010685 9780980708486 0980708486).
- Narita D., K. Rehdanz, and R.S.J. Tol (2012). Economic costs of ocean acidification: a look into the
 impacts on global shellfish production. *Climatic Change* 113, 1049–1063. (DOI: 10.1007/s10584-011 0383-3).
- 30 **National Science Board (2010).** *Science and Engineering Indicators 2010. Chapter 4, Research and*
- 31 *Development: Funds and Technology Linkages.* National Science Foundation, Arlington, VA. Available 32 at: http://www.nsf.gov/statistics/seind10/c4/c4h.htm.
- Nelson J.A. (2013). Ethics and the economist: What climate change demands of us. *Ecological Economics* 85, 145–154. (DOI: 10.1016/j.ecolecon.2011.07.029).
- Nemet G.F. (2006). Beyond the learning curve: factors influencing cost reductions in photovoltaics.
 Energy Policy 34, 3218–3232. (DOI: 10.1016/j.enpol.2005.06.020).
- 37 Nepstad D., S. Schwartzman, B. Bamberger, M. Santilli, D. Ray, P. Schlesinger, P. Lefebvre, A.
- 38 Alencar, E. Prinz, G. Fiske, and A. Rolla (2006). Inhibition of Amazon deforestation and fire by parks
- 39 and indigenous lands. *Conservation Biology* **20**, 65–73. (DOI: 10.1111/j.1523-1739.2006.00351.x).

- Neumayer E. (2000). In defence of historical accountability for greenhouse gas emissions. *Ecological Economics* 33, 185–192. (DOI: 10.1016/S0921-8009(00)00135-X).
- 3 **Neumayer E., and T. Plümper (2007).** The Gendered Nature of Natural Disasters: The Impact of
- Catastrophic Events on the Gender Gap in Life Expectancy, 1981–2002. Annals of the Association of
 American Geographers Annals of the Association of American Geographers 97, 551–566.
- 6 New M., D. Liverman, H. Schroder, and K. Anderson (2011). Four degrees and beyond: the potential
- 7 for a global temperature increase of four degrees and its implications. *Philosophical Transactions of*
- 8 the Royal Society A: Mathematical, Physical and Engineering Sciences **369**, 6–19. (DOI:
- 9 10.1098/rsta.2010.0303).
- 10 **Newell R.G., A.B. Jaffe, and R.N. Stavins (1999).** The induced innovation hypothesis and energy-11 saving technological change. *The Quarterly Journal of Economics* **114**, 941–975. (DOI:
- 12 10.1162/003355399556188).
- Newell R.G., and W.A. Pizer (2003). Discounting the distant future: how much do uncertain rates increase valuations? *YJEEM Journal of Environmental Economics and Management* 46, 52–71.
- Nikiforakis N. (2008). Punishment and counter-punishment in public good games: Can we really
 govern ourselves? *Journal of Public Economics* 92, 91–112.
- Nikiforakis N., C.N. Noussair, and T. Wilkening (2012). Normative conflict and feuds: The limits of
 self-enforcement. *Journal of Public Economics* 96, 797–807.
- Nolt J. (2011). Nonanthropocentric climate ethics. Wiley Interdisciplinary Reviews: Climate Change 2,
 701–711. (DOI: 10.1002/wcc.131).
- Nord E., J.L. Pinto, J. Richardson, P. Menzel, and P. Ubel (1999). Incorporating societal concerns for
 fairness in numerical valuations of health programmes. *Health Economics* 8, 25–39.
- Nordhaus W.D. (1977). Economic growth and climate: the carbon dioxide problem. *The American Economic Review* 67, 341–346.
- Nordhaus W.D. (1991). To slow or not to slow: the economics of the greenhouse effect. *The Economic Journal* 101, 920–937.
- Nordhaus W.D. (1993a). Rolling the "DICE": an optimal transition path for controlling greenhouse
 gases. *Resource and Energy Economics* 15, 27–50. (DOI: 10.1016/0928-7655(93)90017-O).
- Nordhaus W.D. (1993b). Optimal Greenhouse-Gas Reductions and Tax Policy in the "DICE" Model.
 The American Economic Review 83, 313–317. (DOI: 10.2307/2117683).
- Nordhaus W.D. (1994). Managing the global commons: the economics of climate change. MIT Press,
 Cambridge, MA, 213 pp., (ISBN: 0262140551 9780262140553).
- 33 Nordhaus W.D. (2002). Modeling induced innovation in climate-change policy. In: *Technological*
- *change and the environment*. A. Grübler, N. Nakićenović, W.D. Nordhaus, (eds.), Resources for the
 Future, Washington D.C.
- 36 Nordhaus W.D. (2006). Geography and macroeconomics: New data and new findings. *Proceedings*
- of the National Academy of Sciences of the United States of America **103**, 3510–3517. (DOI:
- 38 10.1073/pnas.0509842103).

- Nordhaus W.D. (2007). A Review of the "Stern Review on the Economics of Climate Change." *Journal* of Economic Literature 45, 686–702. (DOI: 10.2307/27646843).
- 3 **Nordhaus W.D. (2008).** A question of balance: weighing the options on global warming policies. Yale
- 4 University Press, New Haven, CT, (ISBN: 9780300137484). Available at:
- 5 http://books.google.com/books?id=FsraAAAAMAAJ.
- 6 **Nordhaus W.D. (2010).** Economic aspects of global warming in a post-Copenhagen environment.
- 7 *Proceedings of the National Academy of Sciences* **107**, 11721–11726. (DOI:
- 8 10.1073/pnas.1005985107).
- 9 Nordhaus W.D. (2011a). The Economics of Tail Events with an Application to Climate Change.
- 10 *Review of Environmental Economics and Policy* **5**, 240–257. (DOI: 10.1093/reep/rer004).
- 11 Nordhaus W.D. (2011b). Estimates of the Social Cost of Carbon: Background and Results from the
- 12 RICE-2011 Model. Cowles Foundation Discussion Paper No. 1826. Available at:
- 13 http://dido.econ.yale.edu/P/cd/d18a/d1826.pdf.
- 14 Nordhaus R.R., and K.W. Danish (2003). *Designing a mandatory greenhouse gas reduction program*
- 15 *for the US*. Pew Center on Global Climate Change. Available at:
- 16 http://www.pewclimate.org/docUploads/USGas.pdf.
- 17 Nordhaus W., and P. Sztorc (2013). DICE 2013: Introduction and User's Manual.
- 18 Nordhaus W.D., and Z. Yang (1996). *RICE: A Regional Dynamic General Equilibrium Model of Optimal* 19 *Climate-change Policy*. National Science Foundations, U.S. Environmental Protection Agency, 29 pp.
- Nozick R. (1974). Anarchy, State, and Utopia: Robert Nozick. Basic Books, 388 pp., (ISBN:
 9780465097203).
- Nyborg K. (2012). The Ethics and Politics of Environmental Cost-Benefit Analysis. Routledge, 144 pp.,
 (ISBN: 041558650X).
- 24 O'Connor R.E., R.J. Bard, and A. Fisher (1999). Risk perceptions, general environmental beliefs, and
- willingness to address climate change. *Risk Analysis* 19, 461–471. (DOI: 10.1111/j.1539 6924.1999.tb00421.x).
- O'Donoghue T., and M. Rabin (2008). Procrastination on long-term projects. *Journal of Economic* Behavior & Organization 66, 161–175.
- 29 O'Neill B.C. (2000). The Jury Is Still Out on Global Warming Potentials. *Climatic Change* 44.
- 30 Oates W.E., and R.M. Schwab (1988). Economic competition among jurisdictions: efficiency
- enhancing or distortion inducing? *Journal of Public Economics* **35**, 333–354.
- 32 **Oberdiek J. (2012).** The Moral Significance of Risking. *Legal Theory* **18**, 339–356. (DOI:
- 33 10.1017/S1352325212000018).
- Olson M. (1971). *The logic of collective action : public goods and the theory of groups*. Harvard
 University Press, Cambridge Mass., (ISBN: 9780674537514).
- 36 **Opschoor J.B., and R.K. Turner (1994).** *Economic incentives and environmental policies: principles* 37 *and practice*. Kluwer Academic Publishers, Dordrecht.

- 1 Östblom G., and E. Samakovlis (2007). Linking health and productivity impacts to climate policy
- 2 costs: a general equilibrium analysis. *Climate Policy* **7**, 379–391. (DOI:
- 3 10.1080/14693062.2007.9685663).
- 4 **Ostrom E. (1990).** *Governing the commons: The evolution of institutions for collective action.*
- 5 Cambridge university press. Available at:
- 6 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=4xg6oUobMz4C&oi=fnd
- 7 &pg=PR11&dq=Governing+the+commons:+The+evolution+of+institutions+for+collective+action&ot 8 s=2MauvHil2i&sig=VC4HTW7aV06gC00Tp6VicPGTD04
- 8 s=aMauyHiJ2j&sig=VC4HTW7aV06qCO9Tp6VjcRGTD04.
- 9 **Ostrom E. (1999).** Institutional rational choice: an assessment of the institutional analysis and
- 10 development framework. In: Theories of the policy process. Westview Press, Boulder Colo. pp.21–
- 11 64, (ISBN: 9780813399850). Available at: http://www.mendeley.com/research/art-and-the-
- 12 aesthetic-an-institutional-analysis/.
- Ostrom E., J. Walker, and R. Gardner (1992). Covenants with and without a sword: Self-governance is possible. *The American Political Science Review*, 404–417.
- Oswald A.J., and S. Wu (2010). Objective confirmation of subjective measures of human well-being:
 evidence from the U.S.A. *Science* 327, 576–579. (DOI: 10.1126/science.1180606).
- Ott K. (2010). Kartierung der Argumente zum Geoengineering. In: *Jahrbuch Ökologie 2011*. S. Hirzel,
 Stuttgart pp.20–32, .
- 19 **Ott K. (2012).** Might Solar Radiation Management Constitute a Dilemma? In: *Engineering the*
- *Climate: The Ethics of Solar Radiation Management*. C.J. Preston, (ed.), Lexington Books, Lanham,
 Md pp.35–42, (ISBN: 9780739175408 0739175408 9780739175415 0739175416).
- Page E.A. (2007). Justice between generations: investigating a sufficientarian approach. *Journal of Global Ethics* 3, 3–20. (DOI: 10.1080/17449620600991960).
- Palmer C. (2011). Does nature matter? The place of the nonhuman in the ethics of climate change.
- In: *The Ethics of Global Climate Change*. D.G. (ed. . Arnold, (ed.), Cambridge University Press,
- 26 pp.272–279, (ISBN: 9781107000698).
- Palmquist R.B. (2006). Property Value Models. In: *The Handbook of Environmental Economics*.
 Elsevier, Amsterdam.
- 29 Paltsev S., J.M. Reilly, H.D. Jacoby, A.C. Gurgel, G.E. Metcalf, A.P. Sokolov, and J.F. Holak (2008).
- 30 Assessment of US GHG cap-and-trade proposals. *Climate Policy* **8**, 395–420.
- 31 Paltsev S., J.M. Reilly, H.D. Jacoby, and K.H. Tay (2007). How (and why) do climate policy costs differ
- 32 among countries? In: *Human-induced climate change: an interdisciplinary assessment*. M.
- 33 Schlesinger, H. Kheshgi, J. Smith, F. de la Chesnaye, J.M. Reilly, T. Wilson, C. Kolstad, (eds.), Cambride
- 34 University Press, Cambridge pp.282–293, .
- 35 **Parfit D. (1986).** *Reasons and persons*. Oxford University Press, Oxford, UK, (ISBN: 9780191519840).
- 36 **Parfit D. (1997).** Equality and priority. *Ratio* **10**, 202–221.
- 37 **Parry I.W.H. (1995).** Pollution taxes and revenue recycling. *Journal of Environmental Economics and*
- 38 Management **29**, 64–77.

- 1 Parry I.W.H. (1997). Environmental taxes and quotas in the presence of distorting taxes in factor
- 2 markets. Resources and Energy Economics 19, 203-220.
- 3 Parry I.W.H. (2004). Are emissions permits regressive? Journal of Environmental Economics and
- Management 47, 364–387. (DOI: 10.1016/j.jeem.2003.07.001). 4
- 5 Parry I.W.H., and R.C. Williams (1999). A second-best evaluation of eight policy instruments to 6 reduce carbon emissions. *Resource and Energy Economics* **21**, 347–373.
- 7 Partridge E. (1981). Responsibilities to future generations: environmental ethics. Prometheus Books, 8 Buffalo, N.Y, 319 pp., (ISBN: 0879751428).
- 9 Pawson R., and N. Tilley (1997). Realistic evaluation. Sage Ltd., Thousand Oaks, CA.
- 10 Pearce D. (1991). The role of carbon taxes in adjusting to global warming. The Economic Journal 101, 11 938-948.
- Peck S.C., and T.J. Teisberg (1992). CETA: A Model for Carbon Emissions Trajectory Assessment. The 12 13 Energy Journal 13, 55–77. (DOI: 10.2307/41322454).
- 14 Peck S.C., and T.J. Teisberg (1994). Optimal carbon emissions trajectories when damages depend on 15 the rate or level of global warming. Climatic Change 28, 289–314. (DOI: 10.1007/BF01104138).
- 16 Pendleton L.H., P. King, C. Mohn, D.G. Webster, R. Vaughn, and P.N. Adams (2011). Estimating the 17 potential economic impacts of climate change on Southern California beaches. Climatic Change 109, 18 277-298. (DOI: 10.1007/s10584-011-0309-0).
- Pendleton L.H., and R. Mendelsohn (1998). Estimating the Economic Impact of Climate Change on 19 20 the Freshwater Sportsfisheries of the Northeastern U.S. Land Economics 74, 483. (DOI: 21 10.2307/3146880).
- 22 Pennock M., and K. Ura (2011). Gross national happiness as a framework for health impact
- 23 assessment. Environmental Impact Assessment Review 31, 61–65. (DOI: 10.1016/j.eiar.2010.04.003).
- 24 Permanent Forum on Indigenous Issues (2008). Inter-Agency Support Group on Indigenous Peoples'
- 25 Issues: Collated Paper on Indigenous Peoples and Climate Change. Permanent Forum on Indigenous
- 26 Issues. Available at: http://www.cbd.int/doc/meetings/tk/emccilc-01/other/emccilc-01-ipcc-en.pdf.
- 27 Perrett R.W. (2003). Future Generations and the Metaphysics of the Self: Western and Indian 28 philosophical perspectives. Asian Philosophy 13, 29–37. (DOI: 10.1080/09552360301664).
- 29 Persha L., A. Agrawal, and A. Chhatre (2011). Social and Ecological Synergy: Local Rulemaking,
- 30 Forest Livelihoods, and Biodiversity Conservation. Science 331, 1606–1608. (DOI:
- 31 10.1126/science.1199343).
- 32 Peters G.P., B. Aamaas, T. Berntsen, and J.S. Fuglestvedt (2011). The integrated global temperature 33 change potential (iGTP) and relationships between emission metrics. Environmental Research Letters 34 **6**, 044021. (DOI: 10.1088/1748-9326/6/4/044021).
- 35 Peters G.P., B. Aamaas, T. Lund, C. Solli, and J.S. Fuglestvedt (2011). Alternative "global warming"
- 36 metrics in life cycle assessment: a case study with existing transportation data. Environmental
- 37 *science* & *technology* **45**, 8633–41.

- 1 **Pezzey J.C.V. (2003).** Emission Taxes and Tradeable Permits A Comparison of Views on Long-Run
- 2 Efficiency. Environmental and Resource Economics **26**, 329–342.
- 3 Pezzey J.C.V., and F. Jotzo (2012). Tax-versus-trading and efficient revenue recycling as issues for
- 4 greenhouse gas abatement. Journal of Environmental Economics and Management Forthcoming.
- 5 (DOI: 10.1016/j.jeem.2012.02.006). Available at:
- 6 http://linkinghub.elsevier.com/retrieve/pii/S0095069612000423.
- 7 Pezzey J.C.V., S. Mazouz, and F. Jotzo (2010). The logic of collective action and Australia's climate
- policy. Australian Journal of Agricultural and Resource Economics 54, 185–202. (DOI: 10.1111/j.14678489.2010.00489.x).
- 10 **Phaneuf D.J., and V.K. Smith (2006).** Recreation demand models. In: *Handbook of environmental*
- 11 economics. K.-G. Mäler, J.R. Vincent, (eds.), Elsevier, Amsterdam; Boston pp.671–761, (ISBN:
- 12 0444500634 9780444500632 0444511458 9780444511454 0444511466 9780444511461).
- 13 **Pigou A.C. (1932).** *The economics of welfare*. Macmillan and Co., London, 1392 pp.
- Pindyck R.S. (2011). Fat Tails, Thin Tails, and Climate Change Policy. *Review of Environmental Economics and Policy* 5, 258–274.
- Pindyck R.S. (2013). Climate Change Policy: What Do the Models Tell Us? *Journal of Economic Literature* 51, 860–872.
- Pizer W.A. (2002). Combining price and quantity controls to mitigate global climate change. *Journal* of *Public Economics* 85, 409–434. (DOI: 10.1016/S0047-2727(01)00118-9).
- Plattner G.K., T. Stocker, P. Midgley, and M. Tignor (2009). *IPCC Expert Meeting on the Science of Alternative Metrics: Meeting Report*. Intergovernmental Panel on Climate Change.
- Popp D. (2002). Induced innovation and energy prices. *The American Economic Review* 92, 160–180.
- 23 **Popp D. (2004).** ENTICE: endogenous technological change in the DICE model of global warming.
- Journal of Environmental Economics and Management **48**, 742–768. (DOI:
- 25 10.1016/j.jeem.2003.09.002).
- Popp D. (2006). R&D subsidies and climate policy: is there a "free lunch"? *Climatic Change* 77, 311–
 341. (DOI: 10.1007/s10584-006-9056-z).
- Popp D., I. Hascic, and N. Medhi (2011). Technology and the diffusion of renewable energy. *Energy Economics* 33, 648–662. (DOI: 10.1016/j.eneco.2010.08.007).
- 30 **Popp D., R.G. Newell, and A.B. Jaffe (2010).** Energy, the environment, and technological change. In:
- 31 Handbook of the economics of innovation. B. Hall, N. Rosenberg, (eds.), Academic Press/Elsevier,
- 32 Burlington pp.873–937, .
- Porter M.E. (1991). Towards a Dynamic Theory of Strategy. *Strategic Management Journal* 12, 95–
 117. (DOI: 10.2307/2486436).
- 35 Porter M.E., and C. van der Linde (1995). Toward a New Conception of the Environment-
- 36 Competitiveness Relationship. *The Journal of Economic Perspectives* **9**, 97–118. (DOI:
- 37 10.2307/2138392).

- Posner E.A., and D. Weisbach (2010). *Climate change justice*. Princeton University Press, Princeton,
 N.J., (ISBN: 9780691137759).
- Potters J., M. Sefton, and L. Vesterlund (2007). Leading-by-example and signaling in voluntary
 contribution games: an experimental study. *Economic Theory* 33, 169–182. (DOI: 10.1007/s00199-
- 5 006-0186-3).
- 6 **Preston C.J. (2011).** Re-Thinking the Unthinkable: Environmental Ethics and the Presumptive
- 7 Argument Against Geoengineering. *Environmental Values* **20**, 457–479. (DOI:
- 8 10.3197/096327111X13150367351212).
- 9 **Preston C.J. (2012).** Solar Radiation Management and Vulnerable Populations: The Moral Deficit and
- its Prospects. In: *Engineering the Climate: The Ethics of Solar Radiation Management*. C.J. Preston,
 (ed.), Lexington Books, (ISBN: 0739175408).
- Preston C.J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation
 management and carbon dioxide removal. *Wiley Interdisciplinary Reviews: Climate Change* 4, 23–37.
 (DOI: 10.1002/wcc.198).
- Quiggin J. (2008). Stern and his critics on discounting and climate change: an editorial essay. *Climatic Change* 89, 195–205. (DOI: 10.1007/s10584-008-9434-9).
- Rachlinski J. (2000). The psychology of global climate change. *University of Illinois Law Review* 2000.
 Available at: http://illinoislawreview.org/article/the-psychology-of-global-climate-change/.
- 19 **Rajamani L. (2000).** The principle of common but differentiated responsibility and the balance of

20 commitments under the climate regime. *Review of European Community and International*

- 21 *Environmental Law* **9**, 120–131. (DOI: 10.1111/1467-9388.00243).
- Ramsey F.P. (1928). A mathematical theory of saving. *The Economic Journal* 38, 543–559.
- 23 **Rapport Lebègue (2005).** *Révision du taux d'actualisation des investissements publics. Rapport du*
- 24 groupe présidé par Daniel Lebègue. Commissariat Général au Plan, Paris. Available at:
- http://www.plan.gouv.fr/intranet/upload/actualite/Rapport%20Lebegue%20Taux%20actualisation%
 2024-01-05.pdf.
- 27 Rawls J. (1971). A Theory of Justice. Belknap Press of Harvard University Press, Cambridge, MA.
- Rawls J. (1999). The law of peoples, with the idea of public reason revisited. Harvard University Press,
 Cambridge Mass., (ISBN: 9780674000797).
- 30 **Regan T. (2004).** *The case for animal rights*. University of California Press, Berkeley.
- 31 **Rehdanz K., and D.J. Maddison (2009).** The amenity value of climate to households in Germany.
- 32 Oxford Economic Papers **61**, 150–167. (DOI: 10.1093/oep/gpn028).
- 33 Reilly J., S. Paltsev, K. Strzepek, N.E. Selin, Y. Cai, K.-M. Nam, E. Monier, S. Dutkiewicz, J. Scott, and
- 34 **M. Webster (2013).** Valuing climate impacts in integrated assessment models: the MIT IGSM.
- 35 *Climatic Change*, 1–13.
- **Reiman J. (2007).** Being Fair to Future People: The Non-Identity Problem in the Original Position.
- 37 *Philosophy & Public Affairs* **35**, 69–92. (DOI: 10.1111/j.1088-4963.2007.00099.x).

- 1 Reisinger A., P. Havlik, K. Riahi, O. Vliet, M. Obersteiner, and M. Herrero (2013). Implications of
- 2 alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture.
- 3 Climatic Change **117**.
- 4 Ren X., D. Fullerton, and J.B. Braden (2011). Optimal taxation of externalities interacting through
- markets: A theoretical general equilibrium analysis. *Resource and Energy Economics* 33, 496–514.
 (DOI: 10.1016/j.reseneeco.2010.10.002).
- Reynolds T.W., A. Bostrom, D. Read, and M.G. Morgan (2010). Now What Do People Know About
 Global Climate Change? Survey Studies of Educated Laypeople. *Risk Analysis* 30, 1520–1538. (DOI:
 10.1111/j.1539-6924.2010.01448.x).
- Rezai A., D.K. Foley, and L. Taylor (2011). Global warming and economic externalities. *Economic Theory* 49, 329–351. (DOI: 10.1007/s00199-010-0592-4).
- 12 Richardson R.B., and J.B. Loomis (2004). Adaptive recreation planning and climate change: a
- 13 contingent visitation approach. *Ecological Economics* **50**, 83–99. (DOI:
- 14 10.1016/j.ecolecon.2004.02.010).
- Richels R.G., and G.J. Blanford (2008). The value of technological advance in decarbonizing the US
 economy. *Energy Economics* 30, 2930–2946.
- 17 Riekkola A.K., E.O. Ahlgren, and P. Söderholm (2011). Ancillary benefits of climate policy in a small
- 18 open economy: The case of Sweden. *Energy Policy* **39**, 4985–4998. (DOI:
- 19 10.1016/j.enpol.2011.06.015).
- 20 Rist R.C. (1998). Choosing the right policy instruments at the right time: the contextual challenges of
- selection and implementation. In: *Carrots, sticks and sermons*. Transaction Publishers, New
 Brunswick NJ pp.149–163, .
- Rive N., A. Torvanger, and J.S. Fuglestvedt (2006). Climate agreements based on responsibility for
 global warming: Periodic updating, policy choices, and regional costs. *Global Environmental Change* 16, 182–194. (DOI: 10.1016/j.gloenvcha.2006.01.002).
- Rivers N., and M. Jaccard (2006). Useful models for simulating policies to induce technological
 change. *Energy Policy* 34, 2038–2047. (DOI: 10.1016/j.enpol.2005.02.003).
- Robbins L. (1937). An essay on the nature and significance of economic science. Macmillan, London;
 New York, (ISBN: 9781610160391).
- **Roberts M.J., and W. Schlenker (2010).** *Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate*. National Bureau of Economic Research.
- 32 Available at: http://www.nber.org/papers/w15921.
- Roberts M.J., and M. Spence (1976). Effluent charges and licenses under uncertainty. *Journal of Public Economics* 5, 193–208.
- 35 **Robock A. (2008).** 20 reasons why geoengineering may be a bad idea. *Bulletin of the Atomic*
- 36 Scientists. Available at:
- 37 http://www.atmos.washington.edu/academics/classes/2012Q1/111/20Reasons.pdf.
- Robock A., M. Bunzl, B. Kravitz, and G.L. Stenchikov (2010). A Test for Geoengineering? *Science* 327,
 530–531. (DOI: 10.1126/science.1186237).

Rolston H. (1988). Environmental ethics: duties to and values in the natural world. Temple University
 Press, Philadelphia, (ISBN: 087722501X 9780877225010 0877226288 9780877226284).

3 **Rolston H. (1999).** Genes, genesis and God: values and their origins in natural and human history: the

4 *Gifford lectures, University of Edinburgh, 1997 - 1998.* Cambridge Univ. Press, Cambridge UK, (ISBN:

- 5 052164108X 9780521641081 052164674X 9780521646741).
- Rosa E.A., and T. Dietz (1998). Climate change and society: speculation, construction and scientific
 investigation. *International Sociology* 13, 421–455. (DOI: 10.1177/026858098013004002).
- 8 Roson R., and D.V. der Mensbrugghe (2012). Climate change and economic growth: impacts and
- 9 interactions. *International Journal of Sustainable Economy* **4**, 270–285. (DOI:
- 10 10.1504/IJSE.2012.047933).
- Rossi P.H., M.W. Lipsey, and H.E. Freeman (2005). Evaluation : a systematic approach. Sage
 Publications, Thousand Oaks, CA, (ISBN: 0761908943 9780761908944).
- Routley R. (1973). Is there a need for a new, an environmental, ethic? *Proceedings of the XVth World Congress of Philosophy Varna* 1, 205–210.
- 15 Routley R., and V. Routley (1980). Human chauvinism and environmental ethics. In: *Environmental*

16 philosophy. D. Mannison, M.A. McRobbie, R. Routley, (eds.), Australian National University, Research

- 17 School of Social Sciences, Canberra pp.96–189, .
- Russell-Smith J., P. Whitehead, and P. Cooke (2009). Culture, Ecology and Economy of Fire
 Management in North Australian Savannas: Rekindling the Wurrk Tradition. Csiro Publishing, 417
 pp., (ISBN: 9780643099999).
- Ryan S.P. (2012). The Costs of Environmental Regulation in a Concentrated Industry. *Econometrica* 80, 1019–1061. (DOI: 10.3982/ECTA6750).
- 23 Rypdal K., T. Berntsen, J.S. Fuglestvedt, K. Aunan, A. Torvanger, F. Stordal, J.M. Pacyna, and L.P.

24 **Nygaard (2005).** Tropospheric ozone and aerosols in climate agreements: scientific and political

- challenges. *Environmental Science & Policy Environmental Science & Policy* **8**, 29–43.
- Sagoff M. (2008). The economy of the earth: philosophy, law, and the environment. Cambridge
 University Press, Cambridge ; New York, 266 pp., (ISBN: 9780521867559).
- 28 Sandler R.L. (2012). Solar Radiation Management and Nonhuman Species. In: *Engineering the*
- *Climate: The Ethics of Solar Radiation Management*. C.J. Preston, (ed.), Lexington Books, Lanham,
 Md.
- Sandsmark M., and H. Vennemo (2006). A portfolio approach to climate investments: CAPM and
 endogenous risk. *Environmental and Resource Economics* 37, 681–695. (DOI: 10.1007/s10640-006 9049-4).
- Sardemann G., and A. Grunwald (2010). Einführung in den Schwerpunkt. *Technikfolgenabschätzung Theorie und Praxis* 2, 4–7.
- 36 Sassi F. (2006). Calculating QALYs, comparing QALY and DALY calculations. *Health Policy and*
- 37 *Planning* **21**, 402–408. (DOI: 10.1093/heapol/czl018).

- Schelling T.C. (1995). Intergenerational Discounting. *Energy Policy* 23, 395–401. (DOI: 16/0301 4215(95)90164-3).
- Schelling T.C. (1996). The economic diplomacy of geoengineering. *Climatic Change* 33, 303–307.
 (DOI: 10.1007/BF00142578).
- Scheraga J.D. (1994). Energy and the environment Something new under the sun? *Energy Policy* 22, 798–803. (DOI: 10.1016/0301-4215(94)90137-6).
- Schlenker W., and M.J. Roberts (2009). Nonlinear temperature effects indicate severe damages to
 U.S. crop yields under climate change. *Proceedings of the National Academy of Sciences* 106, 15594–
 15508 (DOI: 10.1072/proc.0006865106)
- 9 15598. (DOI: 10.1073/pnas.0906865106).
- Schneider S.H. (2008). Geoengineering: could we or should we make it work? *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 366, 3843–
 3862. (DOI: 10.1098/rsta.2008.0145).
- Schneider S.H., K. Kuntz-Duriseti, and C. Azar (2000). Costing non-linearities, surprises, and irreversible events. *Pacific and Asian Journal of Energy* **10**, 81–106.
- Schwartz T. (1978). Obligations to Posterity. In: *Obligations to Future Generations*. R.I. Sikora, B.
 Barry, (eds.), Temple University Press, Philadelphia pp.3–13, .
- De Scitovszky T. (1941). A note on welfare propositions in economics. *The Review of Economic* Studies 9, 77–88.
- 19 Scott D. (2012). Insurance Policy or Technological Fix? The Ethical Implications of Framing Solar
- 20 Radiation Management. In: *Engineering the Climate: The Ethics of Solar Radiation Management*. C.J.
- 21 Preston, (ed.), Lexington Books, Lanham, Md pp.151–168, .
- 22 Scrieciu S., A. Rezai, and R. Mechler (2013). On the economic foundations of green growth
- 23 discourses: the case of climate change mitigation and macroeconomic dynamics in economic
- 24 modeling. *Wiley Interdisciplinary Reviews: Energy and Environment* **2**, 251–268. (DOI:
- 25 10.1002/wene.57).
- Scriven M. (1991). Evaluation thesaurus. Sage Publications, Newbury Park, Calif., (ISBN: 0803943636
 9780803943636 0803943644 9780803943643).
- 28 Sen A. (1970). *Collective choice and social welfare*. North-Holland Publishing Co., (ISBN:
- 0816277656). Available at: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07 20&path=ASIN/0816277656.
- 31 Sen A.K. (1973). On economic inequality. Clarendon Press, Oxford, (ISBN: 9780198281931).
- 32 Sen A.K. (1982). Interpersonal comparisons of welfare. Blackwell, Oxford.
- 33 **Sen A.K. (1999).** *Development as freedom*. Oxford University Press, New York.
- 34 **De-Shalit A. (1995).** *Why Posterity Matters: Environmental Policies and Future Generations.*
- 35 Routledge, 174 pp., (ISBN: 9780415100182).
- Sheridan J., and R. "He C. the S. Longboat (2006). The Haudenosaunee Imagination and the Ecology
 of the Sacred. *Space and Culture* 9, 365–381.

- Sherwood S.C., and M. Huber (2010). An adaptability limit to climate change due to heat stress.
 Proceedings of the National Academy of Sciences 107, 9552–9555. (DOI: 10.1073/pnas.0913352107).
- 3 **Shiffrin S.V. (1999).** Wrongful life, procreative responsibility, and the significance of harm. *Legal*
- 4 *Theory* **5**. (DOI: 10.1017/S1352325299052015). Available at:
- 5 http://www.journals.cambridge.org/abstract_S1352325299052015.
- 6 Shine K.P., T.K. Berntsen, J.S. Fuglestvedt, R.B. Skeie, and N. Stuber (2007). Comparing the climate

7 effect of emissions of short- and long-lived climate agents. *Philosophical Transactions of the Royal*

8 Society A: Mathematical, Physical and Engineering Sciences **365**, 1903–1914. (DOI:

- 9 10.1098/rsta.2007.2050).
- Shine K.P., J.S. Fuglestvedt, K. Hailemariam, and N. Stuber (2005). Alternatives to the global
 warming potential for comparing climate impacts of emissions of greenhouse gases. *Climatic Change* 68, 281–302. (DOI: 10.1007/s10584-005-1146-9).
- Shiv B., and A. Fedorikhin (1999). Heart and Mind in Conflict: The Interplay of Affect and Cognition
 in Consumer Decision Making. *Journal of Consumer Research* 26, 278–292. (DOI: 10.1086/209563).
- 15 Shogren J.F., and L.O. Taylor (2008). On Behavioral-Environmental Economics. *Review of*
- 16 Environmental Economics and Policy **2**, 26–44. (DOI: 10.1093/reep/rem027).
- Shue H. (1993). Subsistence Emissions and Luxury Emissions. *Law & Policy* 15, 39–60. (DOI:
 10.1111/j.1467-9930.1993.tb00093.x).
- Shue H. (1999). Global environment and international inequality. *International Affairs* 75, 531–545.
 (DOI: 10.1111/1468-2346.00092).
- 21 Shue H. (2010). Deadly delays, saving opportunities: creating a more dangerous world? In: *Climate*

22 ethics essential readings. S.M. Gardiner, S. Caney, D. Jamieson, H. Shue, (eds.), Oxford University

23 Press, Oxford; New York pp.146–162, (ISBN: 9780199750580 0199750580 9780195399615

- 24 0195399617 9780195399622 0195399625). Available at: http://site.ebrary.com/id/10399387.
- 25 Sidgwick H. (1907). *The methods of ethics*. Hackett Pub. Co., Indianapolis, (ISBN: 9780915145287).
- Sieg H., V.K. Smith, H.S. Banzhaf, and R. Walsh (2004). Estimating the general equilibrium benefits
 of large changes in spatially delineated public goods. *International Economic Review* 45, 1047–1077.
- Sijm J., K. Neuhoff, and Y. Chen (2006). CO2 cost pass-through and windfall profits in the power
 sector. *Climate Policy* 6, 49–72.
- Sikora R.I., and B. Barry (1978). *Obligations to future generations*. Temple University Press,
 Philadelphia, 250 pp., (ISBN: 0877221324).
- 32 **Singer P. (1993).** *Practical ethics*. Cambridge University Press, Cambridge.
- Singer P. (2002). One world: the ethics of globalization. Yale University Press, New Haven, 235 pp.,
 (ISBN: 0300096860).
- 35 **Sinnot-Armstrong W. (2010).** It's Not My Fault: Global Warming and Individual Moral Obligations. In:
- 36 *Climate Ethics: essential readings*. S.M. Gardner, S. Caney, D. Jamieson, H. Shue, (eds.), Oxford
- 37 University Press, pp.332–346, .

Smith K. (2010). Stern, climate policy and saving rates. *Climate Policy* 10, 289–297. (DOI: 10.3763/cpol.2009.0044).

- 3 Smith P.T. (2012). Domination and the Ethics of Solar Radiation Management. In: Engineering the
- *Climate: The Ethics of Solar Radiation Management*. C.J. Preston, (ed.), Lexington Books, Lanham,
 Md pp.43–61, .
- Smith S., K. Joseph, E. Jae, E. Jiyong, and A. Mizrahi (2013). Sensitivity of multi-gas climate policy to
 emission metrics. *Climatic Change* 117.
- 8 Smith j. B., and D.A. Tirpak (1989). The Potential effects of global climate change on the United

9 States: report to Congress. U.S. Environmental Protection Agency, Office of Policy, Planning, and

- 10 Evaluation, Office of Research and Development, 480 pp.
- Smith S.J., and M.L. Wigley (2000). Global Warming Potentials: 1. Climatic Implications of Emissions
 Reductions. *Climatic Change* 44, 445–457. (DOI: 10.1023/A:1005584914078).
- 13 **Sobrevila C. (2008).** The Role of Indigenous Peoples in Biodiversity Conservation: The Natural but
- 14 often forgotten partners. The International Bank for Reconstruction and Development, The World
- 15 Bank. Available at:
- 16 http://siteresources.worldbank.org/INTBIODIVERSITY/Resources/RoleofIndigenousPeoplesinBiodive
- 17 rsityConservation.pdf.
- Sohngen B., R. Mendelsohn, and R.A. Sedjo (2001). A global model of climate change impacts on timber markets. *Journal of Agricultural and Resource Economics* 26.
- Solomon B.D., and N.H. Johnson (2009). Valuing climate protection through willingness to pay for
 biomass ethanol. *Ecological Economics* 68, 2137–2144. (DOI: 10.1016/j.ecolecon.2009.02.010).
- Somanathan E. (2006). Valuing lives equally: distributional weights for welfare analysis. *Economics Letters* 90, 122–125. (DOI: 10.1016/j.econlet.2005.07.015).
- Sorrell S., D. Harrison, D. Radov, P. Klevnas, and A. Foss (2009). White certificate schemes:
 Economic analysis and interactions with the EU ETS. *Energy Policy* 37, 29–42.
- Spash C.L., K. Urama, R. Burton, W. Kenyon, P. Shannon, and G. Hill (2009). Motives behind willingness to pay for improving biodiversity in a water ecosystem: Economics, ethics and social
- psychology. *Ecological Economics* 68, 955–964. (DOI: 10.1016/j.ecolecon.2006.09.013).
- Stanton E.A. (2011). Negishi welfare weights in integrated assessment models: the mathematics of
 global inequality. *Climatic Change* 107, 417–432. (DOI: 10.1007/s10584-010-9967-6).
- 31 Stanton E.A., F. Ackerman, and S. Kartha (2009). Inside the integrated assessment models: Four
- issues in climate economics. *Climate and Development* **1**, 166–184. (DOI: 10.3763/cdev.2009.0015).
- Steiner H. (1983). The rights of future generations. In: *Energy and the Future*. D. MacLean, P.G.
 Brown, (eds.), Rowman & Littlefield, Totowa, New Jersey pp.151–165, .
- 35 **Stern N. (forthcoming).** Ethics, equity and the economics of climate change. *Economics and*
- 36 *Philosophy*. Available at:
- 37 http://webfirstlive.lse.ac.uk/GranthamInstitute/publications/WorkingPapers/Working%20Papers/80
- 38 -89/WP84-ethics-equity-economics-of-climate-change.pdf.

- Stern P.C. (1992). What psychology knows about energy conservation. *American Psychologist* 47, 1224–1232. (DOI: 10.1037/0003-066X.47.10.1224).
- Stern N. (2007). The Economics of Climate Change. The Stern Review. Cambridge University Press,
 New York.
- 5 Stern N. (2008). The economics of climate change. *The American Economic Review* 98, 1–37.
- Stern N. (2009). The global deal: climate change and the creation of a new era of progress and
 prosperity. Public Affairs, New York, (ISBN: 1458758818).
- 8 **Stern N. (2013).** The Structure of Economic Modeling of the Potential Impacts of Climate Change:
- Grafting Gross Underestimation of Risk onto Already Narrow Science Models. *Journal of Economic Literature* 51, 838–859. (DOI: 10.1257/jel.51.3.838).
- **Sterner T. (2003).** *Policy instruments for environmental and natural resource management.*
- 12 Resources for the Future : World Bank ; Swedish International Development Cooperation Agency,
- 13 Washington, DC; Stockholm, (ISBN: 1891853120 9781891853128).
- 14 Sterner T. (Ed.) (2011). Fuel Taxes and the Poor. Resources for the Future Press (RFF Press),
- 15 Washington, USA. Available at: http://www.sustainableguernsey.info/blog/wp-
- 16 content/uploads/2011/12/2011-Earthscan-book-Sterner-Fuel-Taxes-and-the-Poor.pdf.
- 17 Sterner T., and U.M. Persson (2008). An even sterner review: introducing relative prices into the
- discounting debate. *Review of Environmental Economics and Policy* **2**, 61–76. (DOI:
- 19 10.1093/reep/rem024).
- Stigler G.J. (1971). The theory of economic regulation. *Bell Journal of Economics & Management Science* 2.
- 22 Stiglitz J., A. Sen, and J.-P. Fitoussi (2009). Report by the Commission on the Measurement of
- 23 Economic Performance and Social Progress. Available at: http://www.stiglitz-sen-
- 24 fitoussi.fr/documents/rapport_anglais.pdf.
- 25 Strzepek K., and B. Boehlert (2010). Competition for water for the food system. *Philosophical*
- 26 Transactions of the Royal Society B: Biological Sciences **365**, 2927–2940. (DOI:
- 27 10.1098/rstb.2010.0152).
- Sumner L.W. (1999). Welfare, Happiness, and Ethics. Oxford University Press, USA, (ISBN:
 9780198238782). Available at: http://books.google.co.uk/books?id=QU4qLZJ2D4wC.
- Sunstein C.R., and R.H. Thaler (2003). Libertarian paternalism is not an oxymoron. University of
 Chicago Law Review; SSRN Electronic Journal 70, 1159–1202. (DOI: 10.2139/ssrn.405940).
- **Svoboda T. (2012a).** Is Aerosol Geoengineering Ethically Preferable to Other Climate Change
- 33 Strategies? *Ethics & the Environment* **17**, 111–135.
- 34 **Svoboda T. (2012b).** The Ethics of Geoengineering: Moral Considerability and the Convergence
- 35 Hypothesis. *Journal of Applied Philosophy* **29**, 243–256. (DOI: 10.1111/j.1468-5930.2012.00568.x).
- 36 **Svoboda T., K. Keller, and N. Tuana (2011).** Sulfate Aerosol Geoengineering: The Question of Justice.
- 37 *Public Affairs Quarterly* **25**. Available at: http://paq.press.illinois.edu/25/3/svoboda.html.

- 1 Taplin R., S.N. Uddin, and K. Pibalsook (2013). In: Sustainable Development: Asia-Pacific
- 2 Perspectives. P.S. Low, (ed.), Cambridge University Press, (ISBN: 9780521897174).
- 3 **Taylor P. (1986).** *Respect for nature*. Princeton University Press, Princeton, N.J.
- Taylor C. (1995). *Philosophical arguments*. Harvard University Press, Cambridge, Mass., (ISBN:
 0674664760 9780674664760).
- Temkin L.S. (1993). *Inequality*. Oxford University Press, New York, (ISBN: 0195078608
 9780195078602 0195111494 9780195111491).
- Temkin L.S. (2012). *Rethinking the Good: Moral Ideals and the Nature of Practical Reasoning*. Oxford
 University Press, 640 pp., (ISBN: 9780199759446).
- 10**The Royal Society (2009).** Geoengineering the climate: science, governance and uncertainty. The11Royal Society. Available at: http://royalsociety.org/policy/publications/2009/geoengineering-
- 12 climate/.
- 13 **The World Bank (2012).** *Turn Down the Heat: Why a* 4°*C Warmer World Must be Avoided.*
- 14 International Bank for Reconstruction and Development / The World Bank, Washington DC.
- 15 Thomas B.A., and I.L. Azevedo (2013). Estimating direct and indirect rebound effects for U.S.
- households with input–output analysis Part 1: Theoretical framework. *Ecological Economics* 86, 199–
 210. (DOI: 10.1016/j.ecolecon.2012.12.003).
- **Thompson J. (2001).** Historical Injustice and Reparation: Justifying Claims of Descendants. *Ethics* **112**, 114–135. (DOI: 10.1086/339139).
- 20 **Thompson J. (2009).** Intergenerational justice: Rights and responsibilities in an intergenerational
- 21 *polity*. Taylor & Francis US. Available at:
- 22 http://books.google.com.proxy.library.ucsb.edu:2048/books?hl=en&lr=&id=jqIxy4XYHqIC&oi=fnd&p
- 23 g=PP1&dq=thompson+intergenerational+justice&ots=Wj8PZGHOYJ&sig=kb3ZnlM2M5dPOQt6vDg5-
- 24 9kjKak.
- 25 **Tietenberg T.H. (2006).** *Emissions trading: principles and practice*. Resources for the Future,
- 26 Washington, DC, (ISBN: 1933115300 9781933115306 1933115319 9781933115313).
- Titmuss R.M. (1970). *The gift relationship: from human blood to social policy* (A. Oakley and J.
 Ashton, Eds.). New Press, New York, (ISBN: 1565844033 9781565844032).
- **Titus J.G. (1992).** The costs of climate change to the United States. In: *Global Climate Change:*
- *Implications, Challenges and Mitigation Measures*. S.K. Majumdar, (ed.), Pennsylvania Academy of
 Science, Easton, Pennsylvania pp.384–409, (ISBN: 0945809077).
- Tol R.S.J. (1995). The damage costs of climate change toward more comprehensive calculations.
 Environmental and Resource Economics, 353–374.
- Tol R.S.J. (2002a). Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates.
 Environmental and Resource Economics 21, 47–73. (DOI: 10.1023/A:1014500930521).
- **Tol R.S.J. (2002b).** Estimates of the Damage Costs of Climate Change, Part II. Dynamic Estimates.
- 37 *Environmental and Resource Economics* **21**, 135–160. (DOI: 10.1023/A:1014539414591).

- Tol R.S.J., K.B. Terje, C.O.N. Brian, S.F. Jan, and P.S. Keith (2012). A unifying framework for metrics for aggregating the climate effect of different emissions. *Environmental Research Letters* 7.
 Toth F.L., C. Carraro, J. Christensen, A. Edmonds, B. Flannery, C. Gay-Garcia, H. Lee, K.M. Meyer-Abich, E. Nikitina, A. Rahman, R. Richels, Y. Ruqiu, A. Villavicencio, Y. Wake, and J. Weyant (2001).
- 5 Decision-making frameworks. In: *Climate Change 2001: Mitigation*. B. Metz, O. Davidson, R. Swart,
- 6 M. Pallemaerts, (eds.), Cambridge University Press, Cambridge UK and New York pp.601–688, .
- Traeger C.. (2011). Sustainability, limited substitutability, and non-constant social discount rates.
 Journal of Environmental Economics and Management 62, 215–228.
- **Tseng W.-C., and C.-C. Chen (2008).** Valuing the potential economic impact of climate change on the
 Taiwan trout. *Ecological Economics* 65, 282–291. (DOI: 10.1016/j.ecolecon.2007.06.015).
- 11 **Tullock G. (1975).** The transitional gains trap. *Bell Journal of Economics* **6**.
- **Tunc A. (1983).** *International encyclopedia of comparative law: Volume XI, Torts*. Martinus Nijhoff
 Publishers, The Hague, 766 pp., (ISBN: 3166445420 9783166445427 9024727871 9789024727872).
- 14 **U.S. Environmental Protection Agency (2010).** *Guidelines for preparing economic analyses*. National
- 15 Center for Environmental Economics. Appendix B pp. Available at:
- 16 http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/homepage.
- 17 Uddin S.N., R. Taplin, and X. Yu (2007). Energy, environment and development in Bhutan.
- 18 *Renewable and Sustainable Energy Reviews* **11**, 2083–2103. (DOI: 10.1016/j.rser.2006.03.008).
- Ulph A. (2013). Optimal Climate Change Policies When Governments Cannot Commit. *Environ Resource Econ Environmental and Resource Economics*.
- 21 **UNDP (2010).** *Human Development Report. The Real Wealth of Nations: Pathways to Human*
- 22 Development. United Nations Development Programme, New York. Available at:
- 23 http://hdr.undp.org/en/reports/global/hdr2010/chapters/.
- UNEP (2011). Women at the frontline of climate change: Gender risks and hopes. United Nations
 Environment Programme, GRID-Arendal.
- 26 United States Congress (1980). Comprehensive Environmental Response, Compensation, and
 27 Liability Act.
- US Interagency Working Group (2013). Technical Update of the Social Cost of Carbon for Regulatory
 Impact Analysis Under Executive Order 12866.
- 30 US Office of Management and Budget (2003). Circular N. A-4 To the Heads of Executive Department
- 31 *Establishments, Subject: Regulatory Analysis.* Executive Office of the President, Washington D.C.
- 32 Available at: http://www.whitehouse.gov/omb/circulars_a004_a-4.
- 33 Valenzuela E., T.W. Hertel, R. Keeney, and J.J. Reimer (2007). Assessing global computable general
- equilibrium model validity using agricultural price volatility. *American Journal of Agricultural Economics* 89, 383–397.
- 36 Velleman D. (1991). Well being and time. *Pacific Philosophical Quarterly* **72**, 48–77.

- Victor D.G., M.G. Morgan, F. Apt, and J. Steinbruner (2009). The Geoengineering Option A Last
 Resort against Global Warming. *Foreign Affairs* 88, 64.
- 3 Viscusi W.K., and J.E. Aldy (2003). The Value of a Statistical Life: A Critical Review of Market
- 4 Estimates Throughout the World. *Journal of Risk and Uncertainty* **27**, 5–76.
- 5 Van Vuuren D.P., M. Hoogwijk, T. Barker, K. Riahi, S. Boeters, J. Chateau, S. Scrieciu, J. van Vliet, T.
- 6 Masui, and K. Blok (2009). Comparison of top-down and bottom-up estimates of sectoral and
- 7 regional greenhouse gas emission reduction potentials. *Energy Policy* **37**, 5125–5139.
- Watkiss P., and A. Hunt (2012). Projection of economic impacts of climate change in sectors of
 Europe based on bottom up analysis: human health. *Climatic Change* 112, 101–126.
- 10 Watson J., and R. Sauter (2011). Sustainable innovation through leapfrogging: a review of the
- evidence. *International Journal of Technology and Globalisation* **5**, 170–189. (DOI:
- 12 10.1504/IJTG.2011.039763).
- Weber E.U., and P.C. Stern (2011). Public understanding of climate change in the United States.
 American Psychologist 66, 315–328. (DOI: 10.1037/a0023253).
- Weikard H.-P., and X. Zhu (2005). Discounting and environmental quality: When should dual rates
 be used? *Economic Modelling* 22, 868–878.
- Weil P. (1989). The equity premium puzzle and the risk-free rate puzzle. *Journal of Monetary Economics* 24, 401–421. (DOI: 10.1016/0304-3932(89)90028-7).
- Weimer D.L., and A.R. Vining (2010). *Policy analysis: concepts and practice*. Pearson, Boston, (ISBN:
 9780205781300 0205781306).
- 21 Weirich P. (1983). Utility tempered with equality. *Nous* 17, 423–439.
- 22 Weitzman M.L. (1974). Prices vs. quantities. *The Review of Economic Studies* 41, 477–491.
- Weitzman M.L. (1980). The "Ratchet Principle" and Performance Incentives. *The Bell Journal of Economics* 11, 302–308. (DOI: 10.2307/3003414).
- 25 Weitzman M.L. (1998). Why the Far-Distant Future Should Be Discounted at Its Lowest Possible
- Rate. *Journal of Environmental Economics and Management* **36**, 201–208. (DOI:
- 27 10.1006/jeem.1998.1052).
- Weitzman M.L. (2001). Gamma Discounting. *American Economic Review* 91, 260–271. (DOI: 10.1257/aer.91.1.260).
- Weitzman M.L. (2007a). Subjective expectations and asset-return puzzles. *The American Economic Review* 97, 1102–1130.
- Weitzman M.L. (2007b). A Review of The Stern Review on the Economics of Climate Change. *Journal* of *Economic Literature* **45**, 703–724. (DOI: 10.1257/002205107783217861).
- 34 **Weitzman M.L. (2009).** On modeling and interpreting the economics of catastrophic climate change.
- 35 *Review of Economics and Statistics* **91**, 1–19. (DOI: 10.1162/rest.91.1.1).

- Weitzman M.L. (2010a). What is the "damages function" for global warming and what difference
 might it make? *Climate Change Economics* 01, 57–69. (DOI: 10.1142/S2010007810000042).
- 3 **Weitzman M.L. (2010b).** Risk-adjusted gamma discounting. *Journal of Environmental Economics and* 4 *Management* **60**, 1–13. (DOI: 10.1016/j.jeem.2010.03.002).
- Weitzman M.L. (2011). Fat-tailed uncertainty in the economics of catastrophic climate change.
 Review of Environmental Economics and Policy 5, 275–292. (DOI: 10.1093/reep/rer006).
- Weitzman M.L. (2013). Tail-Hedge Discounting and the Social Cost of Carbon. *Journal of Economic Literature* 51, 873–882. (DOI: 10.1257/jel.51.3.873).
- 9 **Wellman C. (1995).** *Real rights*. Oxford University Press New York. Available at: http://profs-10 polisci.mcgill.ca/muniz/intergen/Wellman.pdf.
- Wilhite H., H. Nakagami, T. Masuda, Y. Yamaga, and H. Haneda (1996). A cross-cultural analysis of
 household energy use behaviour in Japan and Norway. *Energy Policy* 24, 795–803. (DOI:
 10.1016/0301-4215(96)00061-4).
- 14 **Williamson O.E. (1975).** *Markets and hierarchies, analysis and antitrust implications: a study in the* 15 *economics of internal organization.* Free Press, 312 pp., (ISBN: 9780029353608).
- Willig R.D. (1976). Consumer's surplus without apology. *The American Economic Review* 66, 589–
 597.
- Wolf C. (2009). Intergenerational justice, human needs, and climate policy. A. Gosseries, L.H. Meyer,
 (eds.), Oxford University Press, Oxford pp.347–76, .
- Wolff J., and A. de-Shalit (2007). *Disadvantage*. Oxford University Press, USA, 224 pp., (ISBN:
 0199278261).
- Worrell E., S. Ramesohl, and G. Boyd (2004). Advances in Energy Forecasting Models Based on
 Engineering Economics*. *Annual Review of Environment and Resources* 29, 345–381. (DOI:
- 24 10.1146/annurev.energy.29.062403.102042).
- Wu J., N. Li, S. Hallegatte, P. Shi, A. Hu, and X. Liu (2011). Regional indirect economic impact
 evaluation of the 2008 Wenchuan Earthquake. *Environmental Earth Sciences* 65, 161–172. (DOI:
 10.1007/s12665-011-1078-9).
- Xanthaki A. (2007). Indigenous rights and United Nations standards: self-determination, culture and
 land. Cambridge University Press, Cambridge, UK ; New York, 314 pp., (ISBN: 9780521835749).
- 30 **Zeleny M., and J.L. Cochrane (1982).** *Multiple criteria decision making*. McGraw-Hill New York.
- 31 Available at:
- 32 http://classwebs.spea.indiana.edu/kenricha/Oxford/Archives/Oxford%202006/Courses/Decision%20
- 33 Making/Articles/Zeleny,%20Ch.%203.pdf.
- **Zimmermann R. (1995).** Unjustified enrichment: the modern civilian approach. *Oxford Journal of Legal Studies* **15**, 403–429. (DOI: 10.1093/ojls/15.3.403).
- 36 **Zivin J.G., and M.J. Neidell (2010).** *Temperature and the Allocation of Time: Implications for Climate*
- 37 *Change*. National Bureau of Economic Research. Available at: http://www.nber.org/papers/w15717.