Solid materials, comprised of many billions of interacting ions and electrons, present boundless opportunities for discovery and create the basis of modern technology. The Emergent Phenomena in Quantum Systems (EPiQS) Initiative promotes fundamental research on quantum materials, systems in which strong interactions among constituent electrons lead to a great variety of emergent phenomena—cooperative behaviors that cannot be predicted from the properties of individual electrons. The best known example is high-temperature superconductivity, in which electrons form bound pairs despite their electrical repulsion and flow without any resistance. Other, equally striking, emergent phenomena include: “heavy” electrons that appear to be hundreds or thousands of times more massive than free electrons; exotic “emergent particles” with properties different from any known elementary particle; and electrons that self-organize into complex spatial patterns, reminiscent of the behavior of molecules in a liquid crystal display.
The exotic collective properties of electrons underlying emergent phenomena in quantum materials have perplexed scientists for decades. However, recent experimental and theoretical progress indicates that the field is poised for transformation. This progress has been driven largely by:
- Unprecedented control in materials synthesis at the atomic level, including the creation of “artificial quantum materials,” hybrid structures with unique and tunable emergent properties,
- Ultra-sensitive measurement tools that can probe structural, electronic and magnetic properties on the sub-atomic scale, and
- New theoretical frameworks for understanding collective electronic properties and powerful new approaches to calculating the electronic properties of complex solids.
EPiQS Grants
The $90M EPiQS Initiative aims to stimulate breakthroughs in this field to fundamentally change our understanding of the organizing principles of complex matter. EPiQS has established an integrated research program that includes materials synthesis, experiment, and theory, and that crosses the boundaries among physics, chemistry, and materials science. We support basic discovery-driven research rather than efforts targeting specific applications. EPiQS focuses on a relatively small group of the field’s top scientists and provides them with substantial resources, the freedom to explore uncertain research directions, and ample opportunities to exchange ideas and foster collaborations.
EPiQS uses five funding approaches to fuel discovery in the field:
- The Moore Investigator in Quantum Materials awards, which allow a group of top experts in experimental research and materials synthesis to maximize their creativity;
- The Moore Fellows in Materials Synthesis awards, which help leading young materials synthesis experts establish themselves at U.S. academic institutions;
- Support for Theory Centers at several leading universities, which strengthens theoretical research and enriches the intellectual environment at these institutions through support for postdoctoral and visiting scientists;
- Flexible funding, which enables us to seize timely opportunities to impact the field by supporting development of unique instrumentation and high-risk experimental efforts;
- Community-building activities that create and sustain a vibrant research network to promote the exchange of ideas and materials.
To learn more about the scope and focus of EPiQS, please visit our Frequently Asked Questions or see our full list of EPiQS Grants.
EPiQS Team
Dusan Pejakovic, Ph.D., Program Officer
Ernie Glover, Ph.D., Program Officer
Anna Gallagher, Program Associate