2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
by subject...

21 - 30 of 177 results for: BIO

BIO 25Q: The Molecular Basis of Genetic Disease

Preference to sophomores. Focus is on two genetic diseases resulting from the production of protein molecules that are unable to fold into their native conformations, called conformational diseases: cystic fibrosis and amyotrophic lateral sclerosis or Lou Gehrig's disease. Hypotheses and controversies surrounding the molecular basis of these disorders, and implications for novel therapeutics. Readings from research literature.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Kopito, R. (PI)

BIO 26N: Maintenance of the Genome

Preference to freshmen. The precious blueprint for life is entrusted to the genomic DNA molecules in all living cells. Multiple strategies have evolved to prevent the deleterious consequences from endogenous DNA alterations and damage from radiation or genotoxic chemicals in the environment. In this seminar you will learn about the remarkable systems that scan cellular DNA for alterations and make repairs to ensure genomic stability. Deficiencies in DNA repair have been implicated in many hereditary diseases involving developmental defects, premature aging, and/or predisposition to cancer. An understanding of DNA repair mechanisms is important for advances in the fields of cancer biology, neurobiology, and gerontology. Background readings, introductory lectures, student presentations, short term paper.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Hanawalt, P. (PI)


Ever marveled at the imposing trees around campus? This course will explore trees on campus using Bracewell's marvelous "Trees of Stanford" as a rough guide. We will develop tools and explore ideas that will allow the wider community to cherish and appreciate the oft-neglected trees on campus. The course will include guest lectures that focus on the theme of trees: from literature to the physics and biology of trees, to the environmental impact of global forest loss.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Bhaya, D. (PI)

BIO 30: Ecology for Everyone (EARTHSYS 30)

Everything is connected, but how? Ecology is the science of interactions and the changes they generate. This project-based course links individual behavior, population growth, species interactions, and ecosystem function. Introduction to measurement, observation, experimental design and hypothesis testing in field projects, mostly done in groups. The goal is to learn to think analytically about everyday ecological processes involving bacteria, fungi, plants, animals and humans. The course uses basic statistics to analyze data; there are no math prerequisites except arithmetic. Open to everyone, including those who may be headed for more advanced courses in ecology and environmental science.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Gordon, D. (PI)

BIO 30N: Extinctions in Near Time: Biodiversity loss since the Pleistocene

The transition 11,700 years ago from the Pleistocene glacial period into the Holocene interglacial witnessed the expansion of humans around the world, climatic warming and the demise of many large vertebrate species. Since that time extinctions have continued on land and in the sea, culminating with the biodiversity crisis we are experiencing today. We will explore these prehistoric extinctions: "Who? When? Where? and Why?" in order to learn more about our planet's future.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-CE, WAY-SMA | Grading: Letter (ABCD/NP)

BIO 31Q: Ants: Behavior, Ecology, and Evolution

Preference to sophomores. Behavior: the organization of colonies, how they operate without central control, how they resemble other complex systems like brains. Ecology: how populations of colonies change, comparing the ecology of a species in SW American desert and invasive Argentine ants. Evolution: why are there so many species of ants; how are they alike, how do they differ, and why? Ants as the theme for exploring how to do research in animal behavior, ecology, and evolution. Research project will be on the invasive Argentine ant: its distribution on campus, foraging trails, and nest structure.
Terms: not given this year | Units: 3 | Grading: Satisfactory/No Credit

BIO 33N: Conservation Science and Practice

Preference to freshmen. Interdisciplinary. The science and art of conservation today. The forces that are driving change in Earth's atmosphere, lands, waters, and variety of life forms. Which broad dimensions of the biosphere, and which elements of ecosystems, most merit protection? The prospects for, and challenges in, making conservation economically attractive and commonplace. Field trip; project.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter (ABCD/NP)

BIO 34N: Hunger

The biology of hunger and satiety, disease states that disrupt normal responses to hunger and satiety, starvation responses and adaptations to starvation in a variety of organisms, food production and distribution mechanisms, historic famines and their causes, the challenges of providing adequate food and energy for the Earth's growing population, local and global efforts to alleviate hunger, and hunger in fiction.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

BIO 35N: Water: From Cadillac Deserts to Plant Physiology

Water is an essential ingredient for life. While the Mediterranean climate of California draws immigrants and tourists to our mild dry climate, infrequent rain and prized water rights have led to a tumultuous history behind how water is currently distributed. In this freshman seminar we will discuss water in California from multiple perspectives that span weather, history, art and plant physiology. The implications of climate change on agriculture and the Californian economy and lifestyle will also be discussed.
Terms: not given this year | Units: 3 | Grading: Letter (ABCD/NP)

BIO 37N: Green Revolution and Plant Biotechnology

Feeding ever-growing populations is a constant challenge to mankind. In the second half of the 20th century, the breeding of improved varieties combined with the use of chemical fertilizers and pesticides led to crop yield increases labeled the Green Revolution. Modern technologies in genetic engineering are expected to bring the second green revolution. Meeting the current and future global food needs without further damaging the fragile environment requires innovative effort from scientists and the society.
Terms: not given this year | Units: 2-3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints