2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
Browse
by subject...
    Schedule
view...
 

1 - 10 of 84 results for: GEOPHYS

GEOPHYS 20N: Predicting Volcanic Eruptions

Preference to sophomores. The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 50N: Planetary Habitability, World View, and Sustainability

Sustainability lessons from the geological past Life on Earth has partially perished in sudden mass extinctions several time over the Earth's history. Threats include actions of our own volition, including fossil fuel burning as well as natural events, including the impact of large asteroids. The end Permian 250 million years ago and end Paleocene 55 million years ago extinctions involved natural burning of fossil fuels. The 65 million year ago end Cretaceous extinction involved the impact of and asteroid and possibly fossil fuel burning. Related sustainability topics in the popular press will be discussed as they arise. Student pairs lead discussions on topics on how humanity might avert these catastrophes. Offered occasionally.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Zebker, H. (PI)

GEOPHYS 80: The Energy-Water Nexus (EARTHSYS 140)

Energy, water, and food are our most vital resources constituting a tightly intertwined network: energy production requires water, transporting and treating water needs energy, producing food requires both energy and water. The course is an introduction to learn specifically about the links between energy and water. Students will look first at the use of water for energy production, then at the role of energy in water projects, and finally at the challenge in figuring out how to keep this relationship as sustainable as possible. Students will explore case examples and are encouraged to contribute examples of concerns for discussion as well as suggest a portfolio of sustainable energy options.
Terms: alternate years, given next year | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at nn https://pangea.stanford.edu/research/CDFM/CourseDescriptions/GP_113_announcement.pdf
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 100: Directed Reading

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Grading: Letter (ABCD/NP)

GEOPHYS 104: The Water Course (EARTHSYS 104)

The pathway that water takes from rainfall to the tap using student home towns as an example. How the geological environment controls the quantity and quality of water; taste tests of water from around the world. Current U.S. and world water supply issues.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 110: Earth on the Edge: Introduction to Geophysics

Introduction to the foundations of contemporary geophysics. Topics drawn from four broad themes in: whole Earth geodynamics, geohazards, natural resources, and environment/sustainability. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, magnetism, electromagnetics, and geodesy) can be used to provide fundamental insight into the behavior of the Earth's complex geosystems. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 112: Exploring Geosciences with MATLAB

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.
Terms: Aut | Units: 1-3 | Grading: Letter or Credit/No Credit

GEOPHYS 118: Understanding Natural Hazards, Quantifying Risk, Increasing Resilience in Highly Urbanized Regions (EESS 118, EESS 218, GEOPHYS 218, GES 118, GES 218)

Integrating the science of natural hazards, methods for quantitatively estimating the risks that these hazards pose to populations and property, engineering solutions that might best ameliorate these risks and increase resilience to future events, and policy and economic decision-making studies that may increase long-term resilience to future events. Panel discussions by outside experts exploring the science, engineering, policy, and economics that underly the hazards, risks, and strategies for increasing resilience. Group assignments to evaluate the way in which natural hazards, and human population and developing interact in megacities to produce risk, and what strategies might be adopted in each area to reduce risks posted by the specific hazards faced by these urban areas.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints