2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
Browse
by subject...
    Schedule
view...
 

131 - 140 of 196 results for: all courses

MATSCI 81N: Bioengineering Materials to Heal the Body

Preference to freshmen. How scientists and engineers are designing new materials for surgeon to use in replacing body parts such as heart tissue or the spinal cord. How cells, in the body and transplanted stem cells, communicate with implanted materials. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. Students identify a clinically important disease or injury that requires a better material, research approaches to the problem, and debate possible engineering solutions.
Terms: not given this year | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 151: Microstructure and Mechanical Properties (MATSCI 251)

Primarily for students without a materials background. Mechanical properties and their dependence on microstructure in a range of engineering materials. Elementary deformation and fracture concepts, strengthening and toughening strategies in metals and ceramics. Topics: dislocation theory, mechanisms of hardening and toughening, fracture, fatigue, and high-temperature creep. Prerequisite: ENGR 50 or equivalent.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 152: Electronic Materials Engineering

Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure and electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; diffusion; elementary p-n junction theory; operating principles of metal-oxide-semiconductor field effect transistors. Semiconductor processing including crystal growth, oxidation kinetics, ion implantation, thin film deposition, etching, and photolithography. Prerequisite: ENGR 50 or equivalent.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Dionne, J. (PI)

MATSCI 153: Nanostructure and Characterization

The structure of materials at the nanoscale is in most cases the same crystalline form as the natural phase. Structures of materials such as semiconductors, ceramics, metals, and nanotubes; classification of these materials according to the principles of crystallography. Primary methods of structural characterization, X-ray diffraction, and electron microscopy; their applications to study such nanostructures.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Earhart, C. (PI)

MATSCI 154: Solid State Thermodynamics

The principles of thermodynamics and relationships between thermodynamic variables. Equilibrium in thermodynamic systems. Thermodynamics of multicomponent systems.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Barnett, D. (PI)

MATSCI 155: Nanomaterials Synthesis

The science of synthesis of nanometer scale materials. Examples including solution phase synthesis of nanoparticles, the vapor-liquid-solid approach to growing nanowires, formation of mesoporous materials from block-copolymer solutions, and formation of photonic crystals. Relationship of the synthesis phenomena to the materials science driving forces and kinetic mechanisms. Materials science concepts including capillarity, Gibbs free energy, phase diagrams, and driving forces.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Clemens, B. (PI)

MATSCI 156: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution (MATSCI 256)

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Clemens, B. (PI)

MATSCI 157: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. The Schrödinger equation, uncertainty principle, bound states and periodic potentials, angular momentum, quantum statistics, and perturbation theory. Applications to electronic band structure in semiconductors, metals, and nanostructures; vibrational properties of solids; light/matter interaction and lasers; bonding; magnetic materials; nanotechnology. Prerequisites: working knowledge of calculus and high school physics.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 160: Nanomaterials Laboratory

Preference to sophomores and juniors. Hands-on approach to synthesis and characterization of nanoscale materials. How to make, pattern, and analyze the latest nanotech materials, including nanoparticles, nanowires, and self-assembled monolayers. Techniques such as soft lithography, self-assembly, and surface functionalization. The VLS mechanism of nanowire growth, nanoparticle size control, self-assembly mechanisms, and surface energy considerations. Laboratory projects. Enrollment limited to 24.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Melosh, N. (PI)

MATSCI 161: Nanocharacterization Laboratory (MATSCI 171)

Nanocharaterization techniques, such as: optical and electron microscopy, x-ray photoelectron spectroscopy and atomic force microscopy, will be explained in class and used in lab to determine structure of materials and understand why they have certain properties. This WIM class includes instruction on writing, statistics, generating effective plots with curve fits, using databases to find information and giving oral scientific presentations. Prerequsite: ENGR 50 or equivalent. (75 min. lecture + 3 hr. lab most weeks.)
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: McGehee, M. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints