2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
Browse
by subject...
    Schedule
view...
 

1 - 10 of 14 results for: APPPHYS ; Currently searching spring courses. You can expand your search to include all quarters

APPPHYS 100: The Questions of Clay: Craft, Creativity and Scientific Process

Students will create individual studio portfolios of ceramic work and pursue technical investigations of clay properties and the firing process using modern scientific equipment. Emphasis on development of creative process; parallels between science and traditional craft; integration of creative expression with scientific method and analysis. Prior ceramics experience desirable but not necessary. Limited enrollment. Prerequisite: any level of background in physics.
Terms: Spr | Units: 5 | UG Reqs: WAY-CE, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Mabuchi, H. (PI)

APPPHYS 207: Laboratory Electronics

Lecture/lab emphasizing analog and digital electronics for lab research. RC and diode circuits. Transistors. Feedback and operational amplifiers. Active filters and circuits. Pulsed circuits, voltage regulators, and power circuits. Precision circuits, low-noise measurement, and noise reduction techniques. Circuit simulation tools. Analog signal processing techniques and modulation/demodulation. Principles of synchronous detection and applications of lock-in amplifiers. Common laboratory measurements and techniques illustrated via topical applications. Prerequisites: undergraduate device and circuit exposure.
Terms: Spr | Units: 4 | Grading: Letter (ABCD/NP)
Instructors: Fox, J. (PI)

APPPHYS 215: Numerical Methods for Physicists and Engineers

Fundamentals of numerical methods applied to physical systems. Derivatives and integrals; interpolation; quadrature; FFT; singular value decomposition; optimization; linear and nonlinear least squares fitting; error estimation; deterministic and stochastic differential equations; Monte Carlo methods. Lectures will be accompanied by guided project work enabling each student to make rapid progress on a project of relevance to their interests.
Terms: Spr, alternate years, not given next year | Units: 4 | Grading: Letter or Credit/No Credit
Instructors: Moler, K. (PI)

APPPHYS 232: Advanced Imaging Lab in Biophysics (BIO 132, BIO 232, BIOPHYS 232, GENE 232)

Laboratory and lectures. Advanced microscopy and imaging, emphasizing hands-on experience with state-of-the-art techniques. Students construct and operate working apparatus. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Laboratory topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, microendoscopy, and optical trapping. Limited enrollment. Recommended: basic physics, Biology core or equivalent, and consent of instructor.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

APPPHYS 272: Solid State Physics (PHYSICS 172)

Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for PHYSICS 172 and graduate students for APPPHYS 272. Prerequisites: PHYSICS 170 and PHYSICS 171, or equivalents.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Baer, T. (PI) ; Beasley, M. (PI) ; Bienenstock, A. (PI) ; Block, S. (PI) ; Brongersma, M. (PI) ; Bucksbaum, P. (PI) ; Byer, R. (PI) ; Chu, S. (PI) ; Clemens, B. (PI) ; Digonnet, M. (PI) ; Doniach, S. (PI) ; El Gamal, A. (PI) ; Fan, S. (PI) ; Fejer, M. (PI) ; Fetter, A. (PI) ; Fisher, D. (PI) ; Fisher, I. (PI) ; Fox, J. (PI) ; Ganguli, S. (PI) ; Geballe, T. (PI) ; Goldhaber-Gordon, D. (PI) ; Harris, J. (PI) ; Harris, S. (PI) ; Harrison, W. (PI) ; Heinz, T. (PI) ; Hesselink, L. (PI) ; Huberman, B. (PI) ; Hwang, H. (PI) ; Kapitulnik, A. (PI) ; Kasevich, M. (PI) ; Kenny, T. (PI) ; Khuri-Yakub, B. (PI) ; Kino, G. (PI) ; Lee, Y. (PI) ; Lev, B. (PI) ; Mabuchi, H. (PI) ; Manoharan, H. (PI) ; Miller, D. (PI) ; Moerner, W. (PI) ; Moler, K. (PI) ; Nilsson, A. (PI) ; Osheroff, D. (PI) ; Palanker, D. (PI) ; Parkin, S. (PI) ; Pease, R. (PI) ; Petrosian, V. (PI) ; Quate, C. (PI) ; Raubenheimer, T. (PI) ; Reis, D. (PI) ; Rugar, D. (PI) ; Safavi-Naeini, A. (PI) ; Schnitzer, M. (PI) ; Shen, Z. (PI) ; Solgaard, O. (PI) ; Stohr, J. (PI) ; Sturrock, P. (PI) ; Suzuki, Y. (PI) ; Tantawi, S. (PI) ; Vuckovic, J. (PI) ; Wiedemann, H. (PI) ; Winick, H. (PI) ; Yamamoto, Y. (PI) ; Zhang, S. (PI)

APPPHYS 293: Theoretical Neuroscience

Introduction to fundamental theoretical ideas that provide conceptual insights into how networks of neurons cooperatively mediate important brain functions. Topics include basic mathematical models of single neurons, neuronal computation through feedforward and recurrent network dynamics, principles of associative memory, applications of information theory to early sensory systems, correlations and neural population coding, network plasticity and the self-organization of stimulus selectivity, and supervised and unsupervised learning through multiple mechanisms of synaptic plasticity. Emphasis on developing mathematical and computational skills to analyze complex neural systems. Prerequisites: calculus, linear algebra, and basic probability theory, or consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 383: Introduction to Atomic Processes

Atomic spectroscopy, matrix elements using the Coulomb approximation, summary of Racah algebra, oscillator and line strengths, Einstein A coefficients. Radiative processes, Hamiltonian for two- and three-state systems, single- and multi-photon processes, linear and nonlinear susceptibilities, density matrix, brightness, detailed balance, and electromagnetically induced transparency. Inelastic collisions in the impact approximation, interaction potentials, Landau-Zener formulation. Continuum processes, Saha equilibrium, autoionization, and recombination.
Terms: Spr, alternate years, not given next year | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 390: Dissertation Research

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Baer, T. (PI) ; Beasley, M. (PI) ; Bienenstock, A. (PI) ; Block, S. (PI) ; Brongersma, M. (PI) ; Bucksbaum, P. (PI) ; Byer, R. (PI) ; Chu, S. (PI) ; Clemens, B. (PI) ; Digonnet, M. (PI) ; Doniach, S. (PI) ; El Gamal, A. (PI) ; Fan, S. (PI) ; Fejer, M. (PI) ; Fetter, A. (PI) ; Fisher, D. (PI) ; Fisher, I. (PI) ; Fox, J. (PI) ; Ganguli, S. (PI) ; Geballe, T. (PI) ; Goldhaber-Gordon, D. (PI) ; Harris, J. (PI) ; Harris, S. (PI) ; Harrison, W. (PI) ; Heinz, T. (PI) ; Hesselink, L. (PI) ; Huberman, B. (PI) ; Hwang, H. (PI) ; Kapitulnik, A. (PI) ; Kasevich, M. (PI) ; Kenny, T. (PI) ; Khuri-Yakub, B. (PI) ; Kino, G. (PI) ; Lee, Y. (PI) ; Lev, B. (PI) ; Mabuchi, H. (PI) ; Manoharan, H. (PI) ; Miller, D. (PI) ; Moerner, W. (PI) ; Moler, K. (PI) ; Nilsson, A. (PI) ; Osheroff, D. (PI) ; Palanker, D. (PI) ; Parkin, S. (PI) ; Pease, R. (PI) ; Petrosian, V. (PI) ; Quate, C. (PI) ; Raubenheimer, T. (PI) ; Reis, D. (PI) ; Rugar, D. (PI) ; Safavi-Naeini, A. (PI) ; Schnitzer, M. (PI) ; Shen, Z. (PI) ; Solgaard, O. (PI) ; Stohr, J. (PI) ; Sturrock, P. (PI) ; Suzuki, Y. (PI) ; Tantawi, S. (PI) ; Vuckovic, J. (PI) ; Wiedemann, H. (PI) ; Winick, H. (PI) ; Yamamoto, Y. (PI) ; Zhang, S. (PI)

APPPHYS 393: Biophysics of Solvation (BIOPHYS 393)

Statistical mechanics of water-protein or water-DNA (or RNA) interactions; effects of coulomb forces on molecular hydration shells and ion clouds; limitations of the Poisson-Boltzmann equations; DNA collapse, DNA-protein interactions; structure-function relationships in ion channels.
Terms: Spr, alternate years, not given next year | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints