2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
Browse
by subject...
    Schedule
view...
 

1 - 10 of 45 results for: MATH ; Currently searching spring courses. You can expand your search to include all quarters

MATH 20: Calculus

Continuation of 19. Applications of differential calculus; introduction to integral calculus of functions of one variable, including: the definite integral, methods of symbolic and numerical integration, applications of the definite integral. Prerequisites: 19 or equivalent.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 21: Calculus

Continuation of 20. Applications of integral calculus, introduction to differential equations, infinite series. Prerequisite: 20 or equivalent.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 51: Linear Algebra and Differential Calculus of Several Variables

Geometry and algebra of vectors, systems of linear equations, matrices and linear transformations, diagonalization and eigenvectors, vector valued functions and functions of several variables, parametric curves, partial derivatives and gradients, the derivative as a matrix, chain rule in several variables, constrained and unconstrained optimization. Prerequisite: 21, or 42, or a score of 4 on the BC Advanced Placement exam or 5 on the AB Advanced Placement exam, or consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 51A: Linear Algebra and Differential Calculus of Several Variables, ACE

Students attend MATH 51 lectures with different recitation sessions: four hours per week instead of two, emphasizing engineering applications. Prerequisite: application; see http://soe.stanford.edu/edp/programs/ace.html.
Terms: Aut, Win, Spr | Units: 6 | UG Reqs: GER:DB-Math | Grading: Letter (ABCD/NP)

MATH 52: Integral Calculus of Several Variables

Iterated integrals, line and surface integrals, vector analysis with applications to vector potentials and conservative vector fields, physical interpretations. Divergence theorem and the theorems of Green, Gauss, and Stokes. Prerequisite: 51 and 42 or equivalents.
Terms: Aut, Win, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 53: Ordinary Differential Equations with Linear Algebra

Ordinary differential equations and initial value problems, systems of linear differential equations with constant coefficients, applications of second-order equations to oscillations, matrix exponentials, Laplace transforms, stability of non-linear systems and phase plane analysis, numerical methods. Prerequisite: 51 and 42 or equivalents.
Terms: Aut, Win, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 53H: Honors Multivariable Mathematics

Continuation of 52H. Prerequisite: 52H.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter (ABCD/NP)

MATH 104: Applied Matrix Theory

Linear algebra for applications in science and engineering: orthogonality, projections, the four fundamental subspaces of a matrix, spectral theory for symmetric matrices, the singular value decomposition, the QR decomposition, least-squares, the condition number of a matrix, algorithms for solving linear systems. ( Math 113 offers a more theoretical treatment.) Prerequisites: MATH 51 and MATH 52 or 53.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 107: Graph Theory

An introductory course in graph theory establishing fundamental concepts and results in variety of topics. Topics include: basic notions, connectivity, cycles, matchings, planar graphs, graph coloring, matrix-tree theorem, conditions for hamiltonicity, Kuratowski's theorem, Ramsey and Turan-type theorem. Prerequisites: 51 or equivalent and some familiarity with proofs is required.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Fox, J. (PI)

MATH 113: Linear Algebra and Matrix Theory

Algebraic properties of matrices and their interpretation in geometric terms. The relationship between the algebraic and geometric points of view and matters fundamental to the study and solution of linear equations. Topics: linear equations, vector spaces, linear dependence, bases and coordinate systems; linear transformations and matrices; similarity; eigenvectors and eigenvalues; diagonalization. ( Math 104 offers a more application-oriented treatment.)
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints