2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
Browse
by subject...
    Schedule
view...
 

1 - 10 of 65 results for: MATSCI ; Currently searching offered courses. You can also include unoffered courses

MATSCI 82N: Science of the Impossible

Imagine a world where cancer is cured with light, objects can be made invisible, and teleportation is allowed through space and time. The future once envisioned by science fiction writers is now becoming a reality, thanks to advances in materials science and engineering. This seminar will explore 'impossible' technologies - those that have shaped our past and those that promise to revolutionize the future. Attention will be given to both the science and the societal impact of these technologies. We will begin by investigating breakthroughs from the 20th century that seemed impossible in the early 1900s, such as the invention of integrated circuits and the discovery of chemotherapy. We will then discuss the scientific breakthroughs that enabled modern 'impossible' science, such as photodynamic cancer therapeutics, invisibility, and psychokinesis through advanced mind-machine interfaces. Lastly, we will explore technologies currently perceived as completely impossible and brainstorm the breakthroughs needed to make such science fiction a reality. The course will include introductory lectures and in-depth conversations based on readings. Students will also be given the opportunity to lead class discussions on a relevant 'impossible science' topic of their choosing.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Dionne, J. (PI)

MATSCI 100: Undergraduate Independent Study

Independent study in materials science under supervision of a faculty member.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

MATSCI 150: Undergraduate Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 3-6 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 151: Microstructure and Mechanical Properties (MATSCI 251)

Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 152: Electronic Materials Engineering

Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure; electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; elementary p-n junction theory; operating principles of light emitting diodes, solar cells, thermoelectric coolers, and transistors. Semiconductor processing including crystal growth, ion implantation, thin film deposition, etching, lithography, and nanomaterials synthesis.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Dionne, J. (PI)

MATSCI 153: Nanostructure and Characterization

The structure of materials at the nanoscale is in most cases the same crystalline form as the natural phase. Structures of materials such as semiconductors, ceramics, metals, and nanotubes; classification of these materials according to the principles of crystallography. Primary methods of structural characterization, X-ray diffraction, and electron microscopy; their applications to study such nanostructures.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Sher, R. (PI)

MATSCI 154: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and solar-thermal power.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Chueh, W. (PI)

MATSCI 155: Nanomaterials Synthesis

The science of synthesis of nanometer scale materials. Examples including solution phase synthesis of nanoparticles, the vapor-liquid-solid approach to growing nanowires, formation of mesoporous materials from block-copolymer solutions, and formation of photonic crystals. Relationship of the synthesis phenomena to the materials science driving forces and kinetic mechanisms. Materials science concepts including capillarity, Gibbs free energy, phase diagrams, and driving forces.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Clemens, B. (PI)

MATSCI 156: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution (EE 293A, ENERGY 293A, MATSCI 256)

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 157: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. No prior background beyond a working knowledge of calculus and high school physics is presumed. Topics include: The Schrodinger equation and applications to understanding of the properties of quantum dots, semiconductor heterostructures, nanowires, and bulk solids. Tunneling processes and applications to nanoscale devices; the scanning tunneling microscope, and quantum cascade lasers. Simple models for the electronic properties and band structure of materials including semiconductors, insulators and metals and applications to semiconductor devices. Time-dependent perturbation theory and interaction of light with materials with applications to laser technology.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints