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Abstract

We present a detailed balance based approach for performing current density-voltage characteristic modeling of nanophotonic solar cells. This approach takes into account the intrinsic material non-idealities, and is useful for determining the theoretical limit of solar cell eciency for a given structure. Our approach only
requires the cells absorption spectra over all angles, which can be readily calculated using available simulation tools. Using this approach, we elucidate the physics of open-circuit voltage enhancement over bulk cells in nanoscale thin film and single wire structures, by showing that the enhancement is related to the
absorption suppression in the immediate spectral region above the bandgap.
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