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Unwrapping and
Visualizing
Cuneiform Tablets

Cuneiform inscriptions, which scholars
consider the first written language, were
made in moist, clay tablets. People started making these
tablets before 3400 BC and continued for more than
3,000 years. More than 100,000 tablets still exist today,
in various states of disintegration. They range in size
from two to dozens of centimeters. Typically, they hold

administrative data, document his-

We present a semiautomatic
method for unwrapping and
visualizing inscribed surfaces,
such as cuneiform tablets. It
provides a clear visualization

that can be printed on paper.

toric events and commercial trans-
actions, and narrate everyday life.

Unfortunately, the writing used
on clay tablets has evolved over
time, and the evolution has con-
tributed to a loss of the meaning of
the language used. Early pictograms
were written quickly and gradually
evolved so that related pictograms
ran together. Translating these
inscribed texts has thus been diffi-
cult. In addition to translation prob-
lems, scholars of ancient writing
also face the challenge of depicting the text inscribed
on the cuneiform tablets when creating illustrations for
use in books or research papers.

We’ve developed a semiautomatic method for con-
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cisely displaying the tablets’ inscribed writing, thereby
providing a clear visualization that can be printed on
paper (for other approaches, see the “Previous Work”
sidebar). We first scan the tablets with 3D range scan-
ners and use the scan data to construct a high-resolu-
tion 3D model (at a resolution of 50 microns). Next, we
unwrap and warp the tablet surface to form a set of flat
rectangles, one per side or edge of the tablet. This
process permits all the writing to be seen at once,
although necessarily slightly distorted. Finally, we apply
curvature coloring and accessibility coloring to the
unwrapped text, thereby replacing raking illumination
with a nonphotorealistic rendering technique.

IMustration problems

The simplest solution to the illustration problem is to
photograph a tablet illuminated with a raking light
source, as Figure 1a shows. Although most of the writing
on a cuneiform tablet is on the front (obverse) or back
(reverse) faces, these faces are often curved. The curva-
ture causes distortions from foreshortening on the periph-
ery when looking perpendicularly at the tablet’s center
(see Figure 1a). This effect is exacerbated by the fact that,
on many cuneiform tablets, the text wraps around one or
more edges. Finally, the raking illumination poses a prob-
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1 (a) A photograph of a small Ur Ill dynasty cuneiform tablet (from 2100 BC). (b) A Phong-shaded rendering of a 50-micron resolution
3D model containing 3.2-million triangles. Note that the writing wraps around the tablet’s edges, making it difficult to see from a
single picture. (c) The writing has been unwrapped and shown as a displacement map. (d) The unwrapped inscriptions have been
accessibility-colored, curvature-colored, and rendered with Phong shading to enhance readability.
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Previous Work

There are several major institutes of cuneiform study
around the world, including the Faculty of Oriental Studies
at Oxford, the Oriental Institute at the University of Chicago,
the Department of Near East Languages and Cultures at
UCLA, the Max Plank Institute for the History of Science in
Berlin, and the Free University of Berlin. Researchers from the
last three institutions in this list are collaborating on the
Cuneiform Digital Library Initiative, in which tablets are
scanned on a flatbed scanner and abstracted into
pictographic symbols (as in Figure 2b). They use a vector-
based graphics program, such as Adobe Illustrator, and
human interaction.! In their system, a user selects a type of
mark from a graphical palette. Next, a scanned tablet image
is used as a reference to aid the user in accurate placement
of symbolic marks, such as wedge shapes. The computer
also performs a statistical analysis of the inscriptions, thereby
deducing some meaning about them. Another capability of
their system is the portrayal of the marks on the tablet as
clear black-and-white illustrations, free of soil or the effects
of weathering. However, cuneiform inscriptions are open to
interpretation, so valuable information may be filtered out
during this process. Also, although their system is effective
on flat tablets, it doesn’t work as well for rounded tablets or
those whose writing extends around the tablet sides. By
contrast, our method only visualizes the marks—it doesn’t
transcribe them.

Malzbender et al.? have recently visualized cuneiform
tablets by taking pictures of a tablet with different light
directions to compute what they call a polynomial texture

map. These maps have a set of coefficients stored at each
texel that are used for evaluating a biquadratic polynomial
of the light direction. When viewing the clay artifacts, their
method’s effect is similar to using photometric stereo to
estimate a normal map and then interactively rendering it
with different materials and lighting.

In other work, Rushmeier et al.? published a method for
computing horizon maps from images captured under
controlled lighting. Horizon maps store self-shadowing
information for a set of quantized azimuthal light directions
at each point of a terrain surface. These may be rendered in
real time with modern hardware. When used|in conjunction
with bump maps, horizon maps produce realistic
renderings. In contrast to the 3D scanning required for our
method, the input images may be acquired relatively
quickly in both Malzbender’s and Rushmeier’s methods.
However, their techniques don’t address the unwrapping
problem and aren‘t suitable for publishing tablets.
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2 (a) An example of a raking-light
photograph of a protocuneiform
tablet (circa third millennium BC); it
records an account of malt and
barley groats used in beer produc-
tion for four administration offi-
cials.! Although the front surface of
this tablet is relatively flat, the text
wraps around the edges in places,
making it illegible from a single
viewpoint. (b) A pen-and-ink style
transcription of this tablet.

Photo courtesy Christie’s London; illustration from Archaic Bookkeeping.

lem when parts of the tablet are in shadow, thus giving
the observer no visual information about an inscription’s
critical portions. An additional form of obfuscation from
illumination occurs when we nearly align the inscription’s
orientation with the incoming light direction.

An alternative to photography is to manually tran-
scribe the tablet symbols, producing a result similar to
Figure 2b. Unfortunately, this task is tedious, and it fails
to portray the nuances and ambiguity of the original.
Most applications require that the text be reproduced
in a form that conveys the original in its entirety.

If we’re willing to extend the publication medium
beyond the printed book, we can consider using a com-
puter to visualize the tablets. Digital photographs of the

tablet may be taken from a variety of camera angles,
processed, and viewed interactively, as in Apple’s Quick-
Time Virtual Reality (QTVR). Another option is to scan
the tablet, thereby creating a 3D model and then dis-
play this model using an interactive 3D rendering pro-
gram. Such programs let users manipulate a virtual
camera and light source relative to the model to view all
the markings on the tablet. Yet another approach is the
lightfield, which combines photographic imagery with
3D-like interactivity.? Lightfield viewers display images
from new camera positions and orientations by inter-
polating from a dense array of photographic images
taken from known camera positions and orientations.
Here again, users can manipulate the virtual camera to
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3 (a) Tablet models may be broken Iu,k ST LY = Mt

(see upper right corner) with miss-
ing fragments. (b) Users may need
to repair the missing portions so
the displacement maps can be
extracted.
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see all the tablet’s inscribed characters. However, the
printed page has benefits such as longevity and avail-
ability that computers don’t.

Software pipeline

Figure 1 shows our software pipeline, which consists
of three steps: scanning, unwrapping, and visualizing.
The first step uses a combination of software and spe-
cialized hardware, while the last two involve only soft-
ware. All the steps require modest amounts of human
guidance to achieve optimum results.

Scanning

In the first step we scan a tablet with a 3D laser range
scanner. Unfortunately, capturing the finest details on a
cuneiform tablet requires a high-resolution 3D scanner.
Robert Englund, professor of Near Eastern Languages
and Cultures at the University of California, Los Ange-
les, told us that he found that the smallest details on
cuneiform tablets (particularly from the small script of
the second millennium BC and later) requires a resolu-
tion of 300 dots per inch (dpi), with 600 dpi preferred.
After some experimentation, we confirmed his finding.
This implies that we need a 3D scanner with a resolution
of 50 microns. For the figures in this article, we used a
laser triangulation range scanner built by the National
Research Council of Canada (http://www.vit.iit.nrc.ca/)
with exactly this resolution.

Because each scan of an object using a swept laser
scanner shows only one side of the object, we must
scan the object multiple times from different view-
points and merge the resulting range images. Although
we could merge range scans in several ways, we used
adiscrete volumetric intermediate representation of a
cumulative weighted signed distance function (see
http://graphics.stanford.edu/software/vrip/ for more
information on this approach). We scan-converted
each range image to a distance function and then com-
bined it with data already acquired using a simple addi-
tive scheme. Extracting the zero-distance isosurface
from the accumulated volume generates the final
dense triangle mesh manifold. Applying this method
to 22 range images of the tablet in Figure 1a, we cre-
ated a 3.2-million-triangle model with a resolution of
50 microns (see Figure 1b).

In the next step of the pipeline, we unwrap approxi-
mately rectangular patches of text, but we must first pre-
pare the mesh for the unwrapping. Many cuneiform
tablets are broken or are missing significant pieces, as
Figure 3 shows. Unwrapping a rectangular patch from
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a (broken) tablet that’s L-shaped would leave the
unwrapped patch extremely distorted. Therefore, we
virtually repair the tablet model by using Paraform’s
software to define new geometry where pieces have bro-
ken away from the original tablet. The resulting repaired
areas don’t have inscriptions, but approximate the
tablet’s shape prior to writing. In particular, Paraform’s
software provides a virtual spherical tool with which we
can interactively sculpt the mesh’s broken surfaces,
gradually pushing the vertices outward to approximate
the unbroken surface (see Figure 3b).

Unwrapping

The second step in our pipeline is to unwrap the
characters from the model. Once again, using
Paraform’s software, we partition the irregular mesh
into rectangular patches.? Specifically, for each patch,
we interactively specify the patch boundary as four
connected curves on the 3D tablet model’s surface.
Next, we fit a grid of springs to each patch by itera-
tively relaxing and subdividing the spring grid. Relax-
ing makes the gridlines more evenly spaced across the
model, while subdividing creates a better fit of the
spring grid to the irregular mesh. The resulting spring
grid defines a 2D parameterization over the mesh. We
then fit a coarse tensor product B-spline surface to
the spring grid. The error between the fitted surface
and the spring grid is represented as a displacement
map (see Figure 4).* The reason for using this hybrid
B-spline and displacement map representation is that,
given suitable parameters in the fitting process, the
B-spline surface captures the overall tablet shape.
Plus, the displacement map captures the inscribed
marks.

Because we can't fit an entire tablet using a single
patch, we treat the tablets as approximating a rectan-
gular box, and we fit one patch to each side. This effec-
tively unfolds the tablet. Sides where the text runs over
from both the obverse and reverse can be repeated (see
Figure 5). For example, the patch (labeled A in Figure
5b) on the right of the obverse is repeated but rotated
180 degrees (and labeled V) on the right of the reverse,
because the writing spills onto it from both the obverse
and reverse sides. Likewise, the topmost patch (&) is
repeated as the bottommost, without rotation. These
duplicated side patches let text running over from the
obverse and reverse sides be read at a glance.

By discarding the B-spline surface and rendering the
displacement map, the text appears unwrapped, so that
all the script is visible at once (see Figure 5c¢).



(b)

4 We decompose (a) the 3D computer model into (b) a coarse B-spline, which captures the basic tablet shape, and
(c) a displacement map, which encodes the inscribed detail. We discard the B-spline surface, retaining only the

displacement map.

Visualizing

The third and final step of our
pipeline involves visualizing the
inscriptions. The visualizations
involve converting the displacement
maps into dense triangle meshes,
estimating normals at the vertices,
accessibility- and curvature-color-
ing the vertices, and finally, render-
ing with Phong shading.

We can convert a displacement

map into a triangle mesh by first dic-
ing a plane into a dense rectangular
mesh, so that each pixel in the dis-
placement map image lies on a ver-

Obverse

tex of the rectangle mesh. We then

move each vertex up or down from
the plane by an amount proportion-
al to the displacement value of the
corresponding pixel. We then bisect

Reverse

each tiny rectangle diagonally to

yield two triangles. (b) 2

The resulting geometry may be
used to calculate approximate nor-
mals at each vertex, which we need for renderings. To
find a vertex’s normal, we scale the normal of each tri-
angle that incorporates that vertex by the triangle’s area.
We sum the area-scaled normals for all such triangles
and divide by the total area of all triangles that incor-
porate that vertex.

At this point, we could render the newfound triangle
mesh and normals with Phong lighting, but ambiguities
resulting from incisions aligned with the light direction
would persist. To reduce these ambiguities and visual-
ly enhance the inscriptions’ shape, we artificially color
the mesh’s vertices, using accessibility coloring and cur-
vature coloring, individually or in combination.

Accessibility coloring involves coloring each point on
amesh according to the maximum size of a probe sphere
that can be placed at some fixed offset above the point
without intersecting the mesh.> Using this technique,
narrow crevices are darkly colored—where at most a
small sphere can fit in them—while plateaus and moun-
taintops are lighter in color—where a much larger probe
sphere meets the criterion. The offset improves the

appearance of the result, because with zero offset, all
vertices and edges associated with (even slightly) con-
cave parts of the mesh would be colored black.

When dealing with dense triangle meshes, we com-
pute accessibility only at vertices, and we approximate
the accessibility at a vertex by determining if other ver-
tices fall inside a sphere associated with that vertex.
We then map this accessibility to color, and we bilin-
early interpolate these colors across triangles. More
formally,

For each vertex v e verts(surface), do:
Letrealr=0 // Radius
do:
Letr=r+epsilon
Let point ¢ =v + NormalAt(v) * (r + offset)
// Next find the closest point to ¢, excluding v
Let point p = Nearest(verts(surface) — v, c)
While Distance(c, p) >r
Letr=r—epsilon
SetColor (v, power(r / maxRadius, gamma))

IEEE Computer Graphics and Applications

5 we
unwrapped (a)
the tablet in the
photograph
using (b) the
diagram, which
resulted in (c)
the computer
rendering.
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6 To accessibility-color a vertex (shown as a dot), we
must find the largest sphere that can fit at distance
offset away along the normal assigned to that vertex.
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7 (a) The unwrapped displacement map. (b) The same displacement map
is directionally lit with a raking light disposed at the upper right. (c) Fea-
tures only accessibility coloring. (d) Features only curvature coloring. (e)
The product of the previous three images, being accessibility-colored and
curvature-colored as well as illuminated with a raking light. (f) These
images magnify the upper centers of Figures 7a through 7e.
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In this pseudocode, offset is the distance that the probe
sphere is placed above the vertex (see Figure 6). The last
line sets the color of a vertex by raising the maximum
radius found to the power gamma. This nonlinear map-
ping of radii to colors distributes the colors in a more
even and visually appealing manner.

Alternatively, we can color a surface according to cur-
vature. To determine curvature coloring for a surface
defined by a mesh, we approximate the mesh’s curva-
ture at each vertex using other vertices in its vicinity.
Vertices with more absolute curvature (upward or
downward), such as those in the bottoms of inscribed
marks, receive darker coloring. To be precise,

For each vertex v on the surface, do:
Let vector sum = (0, 0, 0)
For each vertex w € Neighborhood (v), do:

Let sum = sum + NormalAt(w)

Let sum = sum/CountNeighbors(v)
Curv=1-dot(NormalAt(v), sum)
RawColor =1 —sqrt((2 — Curv) * Curv)
SetColor (v, power(RawColor, gamma))

To combine the output of the two methods, we take
the product of their gamma-mapped intensities.

Results and discussion

Figures 1d, 5c, 7e, 8, and 9d show examples of our
pipeline. In our opinion, the combination of curvature
coloring, accessibility coloring, and raking light yields
the best enhancement of the inscriptions. Compared to
Figures 1a, 2a, and 5a, each mark is clearly visible and
readable in Figures 1d, 5c, 7e, and 8. We’ve shown these
figures to several cuneiform scholars, who agree. The
unwrapped inscriptions are visually comprehensible
from a single image because darkening by accessibility
coloring indicates their depths and curvature coloring
enhances the 2D shapes of their troughs.

Despite these successes, our pipeline has several lim-
itations. First, there’s some geometric error introduced
at each step in the process. The raw scans from the scan-
ner are accurate to 50 microns. Provided they’re resam-
pled at a resolution of 25 microns or less when merged
into a full model and also when creating the spring
meshes, the values in the displacement map should be
accurate to around 50 microns.

Second and most significantly, distortion is inherent
in flattening curved surfaces onto planes (see Figure 9).
By using tensor product surfaces to fit tablet surfaces, we
assume that the tablet is well approximated by a box. To
the extent this assumption is untrue, the unwrapped
inscriptions appear warped, particularly around the cor-
ners of the displacement map image. This distortion may
decrease the legibility of individual marks, which were
made by pressing a physical stylus into a soft curved sur-
face. We don’t currently have a quantitative measure for
this distortion, but in the worst case, it could conceivably
transform the mark into a different word. However, we
haven’t seen such severe distortions in our examples.

We might employ an interrupted projection onto a
plane, like the Interrupted Goode Homolosine Projec-
tion for mapping the Earth. As Figure 9c shows, such a



projection would show the surface
split apart with seams occurring
along the tablet’s ledger lines (the !
lines separating vertically adjacent R E
rows of marks). This projection
would more evenly distribute the
distortion among the unwrapped
characters. Achieving this projection
would require a way to flatten the
coarse B-spline surfaces, retaining
their boundary shape. We haven’t
tried this.

To further control distortion, we
could draw Paraform feature curves
along the ledger lines in the
cuneiform text. These curves are
treated as isoparametriclines in the
fitting process, thereby forcing the
ledger lines to be horizontal in the
generated displacement map. This
helps reduce the distortion in the
output. We used feature curves in a
couple places in Figure 9c to par-
tially improve the output, but the
distortion from tablet curvature is
too severe to be fixed.

A third limitation of our pipeline
is that large inscriptions pull the
coarse B-spline surface (which is an
approximation of the tablet’s sur-
face) down inside them. As a result,
the measured depths of some
inscriptions in the displacement
map are less than they should be.
We’d prefer to have the B-spline sur-
face be the original surface of the
clay, before the stylus had penetrat-
ed it. By using what’s known as the
alpha hull of the mesh, we may bet-
ter approximate this virgin surface
(see Figure 10, next page). The
alpha hull,® a generalization of the
convex hull, is defined as the com-
plement of all spheres of radius
alpha that don’t intersect the sur-
face. We haven't tried this either.

The fourth limitation is the inef-
ficiency of the process of virtually
repairing broken tablets by interac-
tively adding geometry to the
scanned 3D model. The process
might be aided by using symmetries
in a tablet’s shape to approximate
the missing geometry. A more com-
prehensive solution would permit
arbitrarily shaped patches to be input and output, rather
than forcing them to be rectangular. We could define an
energy function for the mapping and minimize it
through an optimization process.”
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Future work
We've described methods for unwrapping and visu-

Obverse

Edge

Reverse

alizing inscriptions on cuneiform tablets. These tech-
niques should be applicable to other inscribed objects
and artifacts as well. For example, the bas-reliefs on Tra-
jan’s column (in Rome, Italy), which has many small
carvings over its surface, might be better visualized by
employing the unwrapping and coloring approach pre-
sented here.
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8 The inscrip-
tions,
unwrapped and
visualized using
our pipeline,
would be diffi-
cult to depict
using photogra-
phy. They would
also be difficult
to transcribe,
because of the
large number of
small marks.

9 This example
shows a highly
curved tablet in
top (a) and
side views

(b), respective-
ly. As a result of
the high curva-
ture, the
unwrapped text
(d) becomes
severely
warped. A
solution to this
problem might
involve cutting
the rows into a
number of split
sections (c). In
cartography,
planar maps of
the Earth that
are split apart
like this are
termed inter-
rupted.
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10 The dotted curve is the true surface; it's coarsely
approximated by a B-spline surface, shown with the solid
curve. But to approximate the virgin (unmarked) sur-
face, we really want the alpha hull, drawn with the
dashed curve. The difference between this curve and the
true surface curves represents the inscriptions better.

We envision several directions for future work. One
is toward inexpensive high-resolution 3D scanners,
because the number of extant tablets is large (more than
100,000) and archiving projects aren’t typically highly
funded. A passive vision method, such as shape-from-
stereo on a flatbed scanner,® might be capable of cap-
turing the detail with sufficient resolution and it would
be inexpensive enough to enable almost anyone with
access to cuneiform tablets to create high-resolution
models. However, we’ve experimented with this tech-
nique and were unable to reliably detect features,
because of noise or the lack of sufficient distinguishable
texture for the stereo algorithm to lock onto.

To improve the unwrapping phase, we could auto-
matically compute the boundary curves of a patch on a
3D tablet model rather than requiring that a user draw
them. However, such an automatic process would be
feasible only if it included a method for minimizing dis-
tortion of the unwrapped tablet or for isolating the dis-
tortion to unimportant tablet parts.

Finally, having 3D tablet models may facilitate accu-
rate cuneiform optical character recognition (OCR),
which has been a dream of researchers. (Researchers
have written several papers® about fast automatic
cuneiform character recognition using optical correla-
tors, but their emphasis is on speed rather than automa-
tion.) For written text, abstract symbols (see Figure 2b)
derived from OCR may be superior to our nonphotore-
alistic rendering of displacement maps extracted from
a 3D model. |
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